Merge tag 'spdx-5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-block.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13
14 #include "../perf.h"
15 #include "session.h"
16 #include "machine.h"
17 #include "memswap.h"
18 #include "sort.h"
19 #include "tool.h"
20 #include "event.h"
21 #include "evlist.h"
22 #include "evsel.h"
23 #include "map.h"
24 #include "color.h"
25 #include "util.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36
37 #include "intel-pt-decoder/intel-pt-log.h"
38 #include "intel-pt-decoder/intel-pt-decoder.h"
39 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
40 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
41
42 #define MAX_TIMESTAMP (~0ULL)
43
44 struct intel_pt {
45         struct auxtrace auxtrace;
46         struct auxtrace_queues queues;
47         struct auxtrace_heap heap;
48         u32 auxtrace_type;
49         struct perf_session *session;
50         struct machine *machine;
51         struct perf_evsel *switch_evsel;
52         struct thread *unknown_thread;
53         bool timeless_decoding;
54         bool sampling_mode;
55         bool snapshot_mode;
56         bool per_cpu_mmaps;
57         bool have_tsc;
58         bool data_queued;
59         bool est_tsc;
60         bool sync_switch;
61         bool mispred_all;
62         int have_sched_switch;
63         u32 pmu_type;
64         u64 kernel_start;
65         u64 switch_ip;
66         u64 ptss_ip;
67
68         struct perf_tsc_conversion tc;
69         bool cap_user_time_zero;
70
71         struct itrace_synth_opts synth_opts;
72
73         bool sample_instructions;
74         u64 instructions_sample_type;
75         u64 instructions_id;
76
77         bool sample_branches;
78         u32 branches_filter;
79         u64 branches_sample_type;
80         u64 branches_id;
81
82         bool sample_transactions;
83         u64 transactions_sample_type;
84         u64 transactions_id;
85
86         bool sample_ptwrites;
87         u64 ptwrites_sample_type;
88         u64 ptwrites_id;
89
90         bool sample_pwr_events;
91         u64 pwr_events_sample_type;
92         u64 mwait_id;
93         u64 pwre_id;
94         u64 exstop_id;
95         u64 pwrx_id;
96         u64 cbr_id;
97
98         u64 tsc_bit;
99         u64 mtc_bit;
100         u64 mtc_freq_bits;
101         u32 tsc_ctc_ratio_n;
102         u32 tsc_ctc_ratio_d;
103         u64 cyc_bit;
104         u64 noretcomp_bit;
105         unsigned max_non_turbo_ratio;
106         unsigned cbr2khz;
107
108         unsigned long num_events;
109
110         char *filter;
111         struct addr_filters filts;
112 };
113
114 enum switch_state {
115         INTEL_PT_SS_NOT_TRACING,
116         INTEL_PT_SS_UNKNOWN,
117         INTEL_PT_SS_TRACING,
118         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
119         INTEL_PT_SS_EXPECTING_SWITCH_IP,
120 };
121
122 struct intel_pt_queue {
123         struct intel_pt *pt;
124         unsigned int queue_nr;
125         struct auxtrace_buffer *buffer;
126         struct auxtrace_buffer *old_buffer;
127         void *decoder;
128         const struct intel_pt_state *state;
129         struct ip_callchain *chain;
130         struct branch_stack *last_branch;
131         struct branch_stack *last_branch_rb;
132         size_t last_branch_pos;
133         union perf_event *event_buf;
134         bool on_heap;
135         bool stop;
136         bool step_through_buffers;
137         bool use_buffer_pid_tid;
138         bool sync_switch;
139         pid_t pid, tid;
140         int cpu;
141         int switch_state;
142         pid_t next_tid;
143         struct thread *thread;
144         bool exclude_kernel;
145         bool have_sample;
146         u64 time;
147         u64 timestamp;
148         u32 flags;
149         u16 insn_len;
150         u64 last_insn_cnt;
151         char insn[INTEL_PT_INSN_BUF_SZ];
152 };
153
154 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
155                           unsigned char *buf, size_t len)
156 {
157         struct intel_pt_pkt packet;
158         size_t pos = 0;
159         int ret, pkt_len, i;
160         char desc[INTEL_PT_PKT_DESC_MAX];
161         const char *color = PERF_COLOR_BLUE;
162
163         color_fprintf(stdout, color,
164                       ". ... Intel Processor Trace data: size %zu bytes\n",
165                       len);
166
167         while (len) {
168                 ret = intel_pt_get_packet(buf, len, &packet);
169                 if (ret > 0)
170                         pkt_len = ret;
171                 else
172                         pkt_len = 1;
173                 printf(".");
174                 color_fprintf(stdout, color, "  %08x: ", pos);
175                 for (i = 0; i < pkt_len; i++)
176                         color_fprintf(stdout, color, " %02x", buf[i]);
177                 for (; i < 16; i++)
178                         color_fprintf(stdout, color, "   ");
179                 if (ret > 0) {
180                         ret = intel_pt_pkt_desc(&packet, desc,
181                                                 INTEL_PT_PKT_DESC_MAX);
182                         if (ret > 0)
183                                 color_fprintf(stdout, color, " %s\n", desc);
184                 } else {
185                         color_fprintf(stdout, color, " Bad packet!\n");
186                 }
187                 pos += pkt_len;
188                 buf += pkt_len;
189                 len -= pkt_len;
190         }
191 }
192
193 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
194                                 size_t len)
195 {
196         printf(".\n");
197         intel_pt_dump(pt, buf, len);
198 }
199
200 static void intel_pt_log_event(union perf_event *event)
201 {
202         FILE *f = intel_pt_log_fp();
203
204         if (!intel_pt_enable_logging || !f)
205                 return;
206
207         perf_event__fprintf(event, f);
208 }
209
210 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
211                                    struct auxtrace_buffer *b)
212 {
213         bool consecutive = false;
214         void *start;
215
216         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
217                                       pt->have_tsc, &consecutive);
218         if (!start)
219                 return -EINVAL;
220         b->use_size = b->data + b->size - start;
221         b->use_data = start;
222         if (b->use_size && consecutive)
223                 b->consecutive = true;
224         return 0;
225 }
226
227 /* This function assumes data is processed sequentially only */
228 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
229 {
230         struct intel_pt_queue *ptq = data;
231         struct auxtrace_buffer *buffer = ptq->buffer;
232         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
233         struct auxtrace_queue *queue;
234         bool might_overlap;
235
236         if (ptq->stop) {
237                 b->len = 0;
238                 return 0;
239         }
240
241         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
242
243         buffer = auxtrace_buffer__next(queue, buffer);
244         if (!buffer) {
245                 if (old_buffer)
246                         auxtrace_buffer__drop_data(old_buffer);
247                 b->len = 0;
248                 return 0;
249         }
250
251         ptq->buffer = buffer;
252
253         if (!buffer->data) {
254                 int fd = perf_data__fd(ptq->pt->session->data);
255
256                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
257                 if (!buffer->data)
258                         return -ENOMEM;
259         }
260
261         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
262         if (might_overlap && !buffer->consecutive && old_buffer &&
263             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
264                 return -ENOMEM;
265
266         if (buffer->use_data) {
267                 b->len = buffer->use_size;
268                 b->buf = buffer->use_data;
269         } else {
270                 b->len = buffer->size;
271                 b->buf = buffer->data;
272         }
273         b->ref_timestamp = buffer->reference;
274
275         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
276                 b->consecutive = false;
277                 b->trace_nr = buffer->buffer_nr + 1;
278         } else {
279                 b->consecutive = true;
280         }
281
282         if (ptq->step_through_buffers)
283                 ptq->stop = true;
284
285         if (b->len) {
286                 if (old_buffer)
287                         auxtrace_buffer__drop_data(old_buffer);
288                 ptq->old_buffer = buffer;
289         } else {
290                 auxtrace_buffer__drop_data(buffer);
291                 return intel_pt_get_trace(b, data);
292         }
293
294         return 0;
295 }
296
297 struct intel_pt_cache_entry {
298         struct auxtrace_cache_entry     entry;
299         u64                             insn_cnt;
300         u64                             byte_cnt;
301         enum intel_pt_insn_op           op;
302         enum intel_pt_insn_branch       branch;
303         int                             length;
304         int32_t                         rel;
305         char                            insn[INTEL_PT_INSN_BUF_SZ];
306 };
307
308 static int intel_pt_config_div(const char *var, const char *value, void *data)
309 {
310         int *d = data;
311         long val;
312
313         if (!strcmp(var, "intel-pt.cache-divisor")) {
314                 val = strtol(value, NULL, 0);
315                 if (val > 0 && val <= INT_MAX)
316                         *d = val;
317         }
318
319         return 0;
320 }
321
322 static int intel_pt_cache_divisor(void)
323 {
324         static int d;
325
326         if (d)
327                 return d;
328
329         perf_config(intel_pt_config_div, &d);
330
331         if (!d)
332                 d = 64;
333
334         return d;
335 }
336
337 static unsigned int intel_pt_cache_size(struct dso *dso,
338                                         struct machine *machine)
339 {
340         off_t size;
341
342         size = dso__data_size(dso, machine);
343         size /= intel_pt_cache_divisor();
344         if (size < 1000)
345                 return 10;
346         if (size > (1 << 21))
347                 return 21;
348         return 32 - __builtin_clz(size);
349 }
350
351 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
352                                              struct machine *machine)
353 {
354         struct auxtrace_cache *c;
355         unsigned int bits;
356
357         if (dso->auxtrace_cache)
358                 return dso->auxtrace_cache;
359
360         bits = intel_pt_cache_size(dso, machine);
361
362         /* Ignoring cache creation failure */
363         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
364
365         dso->auxtrace_cache = c;
366
367         return c;
368 }
369
370 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
371                               u64 offset, u64 insn_cnt, u64 byte_cnt,
372                               struct intel_pt_insn *intel_pt_insn)
373 {
374         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
375         struct intel_pt_cache_entry *e;
376         int err;
377
378         if (!c)
379                 return -ENOMEM;
380
381         e = auxtrace_cache__alloc_entry(c);
382         if (!e)
383                 return -ENOMEM;
384
385         e->insn_cnt = insn_cnt;
386         e->byte_cnt = byte_cnt;
387         e->op = intel_pt_insn->op;
388         e->branch = intel_pt_insn->branch;
389         e->length = intel_pt_insn->length;
390         e->rel = intel_pt_insn->rel;
391         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
392
393         err = auxtrace_cache__add(c, offset, &e->entry);
394         if (err)
395                 auxtrace_cache__free_entry(c, e);
396
397         return err;
398 }
399
400 static struct intel_pt_cache_entry *
401 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
402 {
403         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
404
405         if (!c)
406                 return NULL;
407
408         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
409 }
410
411 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
412 {
413         return ip >= pt->kernel_start ?
414                PERF_RECORD_MISC_KERNEL :
415                PERF_RECORD_MISC_USER;
416 }
417
418 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
419                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
420                                    uint64_t to_ip, uint64_t max_insn_cnt,
421                                    void *data)
422 {
423         struct intel_pt_queue *ptq = data;
424         struct machine *machine = ptq->pt->machine;
425         struct thread *thread;
426         struct addr_location al;
427         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
428         ssize_t len;
429         int x86_64;
430         u8 cpumode;
431         u64 offset, start_offset, start_ip;
432         u64 insn_cnt = 0;
433         bool one_map = true;
434
435         intel_pt_insn->length = 0;
436
437         if (to_ip && *ip == to_ip)
438                 goto out_no_cache;
439
440         cpumode = intel_pt_cpumode(ptq->pt, *ip);
441
442         thread = ptq->thread;
443         if (!thread) {
444                 if (cpumode != PERF_RECORD_MISC_KERNEL)
445                         return -EINVAL;
446                 thread = ptq->pt->unknown_thread;
447         }
448
449         while (1) {
450                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
451                         return -EINVAL;
452
453                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
454                     dso__data_status_seen(al.map->dso,
455                                           DSO_DATA_STATUS_SEEN_ITRACE))
456                         return -ENOENT;
457
458                 offset = al.map->map_ip(al.map, *ip);
459
460                 if (!to_ip && one_map) {
461                         struct intel_pt_cache_entry *e;
462
463                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
464                         if (e &&
465                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
466                                 *insn_cnt_ptr = e->insn_cnt;
467                                 *ip += e->byte_cnt;
468                                 intel_pt_insn->op = e->op;
469                                 intel_pt_insn->branch = e->branch;
470                                 intel_pt_insn->length = e->length;
471                                 intel_pt_insn->rel = e->rel;
472                                 memcpy(intel_pt_insn->buf, e->insn,
473                                        INTEL_PT_INSN_BUF_SZ);
474                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
475                                 return 0;
476                         }
477                 }
478
479                 start_offset = offset;
480                 start_ip = *ip;
481
482                 /* Load maps to ensure dso->is_64_bit has been updated */
483                 map__load(al.map);
484
485                 x86_64 = al.map->dso->is_64_bit;
486
487                 while (1) {
488                         len = dso__data_read_offset(al.map->dso, machine,
489                                                     offset, buf,
490                                                     INTEL_PT_INSN_BUF_SZ);
491                         if (len <= 0)
492                                 return -EINVAL;
493
494                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
495                                 return -EINVAL;
496
497                         intel_pt_log_insn(intel_pt_insn, *ip);
498
499                         insn_cnt += 1;
500
501                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
502                                 goto out;
503
504                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
505                                 goto out_no_cache;
506
507                         *ip += intel_pt_insn->length;
508
509                         if (to_ip && *ip == to_ip)
510                                 goto out_no_cache;
511
512                         if (*ip >= al.map->end)
513                                 break;
514
515                         offset += intel_pt_insn->length;
516                 }
517                 one_map = false;
518         }
519 out:
520         *insn_cnt_ptr = insn_cnt;
521
522         if (!one_map)
523                 goto out_no_cache;
524
525         /*
526          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
527          * entries.
528          */
529         if (to_ip) {
530                 struct intel_pt_cache_entry *e;
531
532                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
533                 if (e)
534                         return 0;
535         }
536
537         /* Ignore cache errors */
538         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
539                            *ip - start_ip, intel_pt_insn);
540
541         return 0;
542
543 out_no_cache:
544         *insn_cnt_ptr = insn_cnt;
545         return 0;
546 }
547
548 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
549                                   uint64_t offset, const char *filename)
550 {
551         struct addr_filter *filt;
552         bool have_filter   = false;
553         bool hit_tracestop = false;
554         bool hit_filter    = false;
555
556         list_for_each_entry(filt, &pt->filts.head, list) {
557                 if (filt->start)
558                         have_filter = true;
559
560                 if ((filename && !filt->filename) ||
561                     (!filename && filt->filename) ||
562                     (filename && strcmp(filename, filt->filename)))
563                         continue;
564
565                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
566                         continue;
567
568                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
569                              ip, offset, filename ? filename : "[kernel]",
570                              filt->start ? "filter" : "stop",
571                              filt->addr, filt->size);
572
573                 if (filt->start)
574                         hit_filter = true;
575                 else
576                         hit_tracestop = true;
577         }
578
579         if (!hit_tracestop && !hit_filter)
580                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
581                              ip, offset, filename ? filename : "[kernel]");
582
583         return hit_tracestop || (have_filter && !hit_filter);
584 }
585
586 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
587 {
588         struct intel_pt_queue *ptq = data;
589         struct thread *thread;
590         struct addr_location al;
591         u8 cpumode;
592         u64 offset;
593
594         if (ip >= ptq->pt->kernel_start)
595                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
596
597         cpumode = PERF_RECORD_MISC_USER;
598
599         thread = ptq->thread;
600         if (!thread)
601                 return -EINVAL;
602
603         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
604                 return -EINVAL;
605
606         offset = al.map->map_ip(al.map, ip);
607
608         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
609                                      al.map->dso->long_name);
610 }
611
612 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
613 {
614         return __intel_pt_pgd_ip(ip, data) > 0;
615 }
616
617 static bool intel_pt_get_config(struct intel_pt *pt,
618                                 struct perf_event_attr *attr, u64 *config)
619 {
620         if (attr->type == pt->pmu_type) {
621                 if (config)
622                         *config = attr->config;
623                 return true;
624         }
625
626         return false;
627 }
628
629 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
630 {
631         struct perf_evsel *evsel;
632
633         evlist__for_each_entry(pt->session->evlist, evsel) {
634                 if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
635                     !evsel->attr.exclude_kernel)
636                         return false;
637         }
638         return true;
639 }
640
641 static bool intel_pt_return_compression(struct intel_pt *pt)
642 {
643         struct perf_evsel *evsel;
644         u64 config;
645
646         if (!pt->noretcomp_bit)
647                 return true;
648
649         evlist__for_each_entry(pt->session->evlist, evsel) {
650                 if (intel_pt_get_config(pt, &evsel->attr, &config) &&
651                     (config & pt->noretcomp_bit))
652                         return false;
653         }
654         return true;
655 }
656
657 static bool intel_pt_branch_enable(struct intel_pt *pt)
658 {
659         struct perf_evsel *evsel;
660         u64 config;
661
662         evlist__for_each_entry(pt->session->evlist, evsel) {
663                 if (intel_pt_get_config(pt, &evsel->attr, &config) &&
664                     (config & 1) && !(config & 0x2000))
665                         return false;
666         }
667         return true;
668 }
669
670 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
671 {
672         struct perf_evsel *evsel;
673         unsigned int shift;
674         u64 config;
675
676         if (!pt->mtc_freq_bits)
677                 return 0;
678
679         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
680                 config >>= 1;
681
682         evlist__for_each_entry(pt->session->evlist, evsel) {
683                 if (intel_pt_get_config(pt, &evsel->attr, &config))
684                         return (config & pt->mtc_freq_bits) >> shift;
685         }
686         return 0;
687 }
688
689 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
690 {
691         struct perf_evsel *evsel;
692         bool timeless_decoding = true;
693         u64 config;
694
695         if (!pt->tsc_bit || !pt->cap_user_time_zero)
696                 return true;
697
698         evlist__for_each_entry(pt->session->evlist, evsel) {
699                 if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
700                         return true;
701                 if (intel_pt_get_config(pt, &evsel->attr, &config)) {
702                         if (config & pt->tsc_bit)
703                                 timeless_decoding = false;
704                         else
705                                 return true;
706                 }
707         }
708         return timeless_decoding;
709 }
710
711 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
712 {
713         struct perf_evsel *evsel;
714
715         evlist__for_each_entry(pt->session->evlist, evsel) {
716                 if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
717                     !evsel->attr.exclude_kernel)
718                         return true;
719         }
720         return false;
721 }
722
723 static bool intel_pt_have_tsc(struct intel_pt *pt)
724 {
725         struct perf_evsel *evsel;
726         bool have_tsc = false;
727         u64 config;
728
729         if (!pt->tsc_bit)
730                 return false;
731
732         evlist__for_each_entry(pt->session->evlist, evsel) {
733                 if (intel_pt_get_config(pt, &evsel->attr, &config)) {
734                         if (config & pt->tsc_bit)
735                                 have_tsc = true;
736                         else
737                                 return false;
738                 }
739         }
740         return have_tsc;
741 }
742
743 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
744 {
745         u64 quot, rem;
746
747         quot = ns / pt->tc.time_mult;
748         rem  = ns % pt->tc.time_mult;
749         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
750                 pt->tc.time_mult;
751 }
752
753 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
754                                                    unsigned int queue_nr)
755 {
756         struct intel_pt_params params = { .get_trace = 0, };
757         struct perf_env *env = pt->machine->env;
758         struct intel_pt_queue *ptq;
759
760         ptq = zalloc(sizeof(struct intel_pt_queue));
761         if (!ptq)
762                 return NULL;
763
764         if (pt->synth_opts.callchain) {
765                 size_t sz = sizeof(struct ip_callchain);
766
767                 /* Add 1 to callchain_sz for callchain context */
768                 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
769                 ptq->chain = zalloc(sz);
770                 if (!ptq->chain)
771                         goto out_free;
772         }
773
774         if (pt->synth_opts.last_branch) {
775                 size_t sz = sizeof(struct branch_stack);
776
777                 sz += pt->synth_opts.last_branch_sz *
778                       sizeof(struct branch_entry);
779                 ptq->last_branch = zalloc(sz);
780                 if (!ptq->last_branch)
781                         goto out_free;
782                 ptq->last_branch_rb = zalloc(sz);
783                 if (!ptq->last_branch_rb)
784                         goto out_free;
785         }
786
787         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
788         if (!ptq->event_buf)
789                 goto out_free;
790
791         ptq->pt = pt;
792         ptq->queue_nr = queue_nr;
793         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
794         ptq->pid = -1;
795         ptq->tid = -1;
796         ptq->cpu = -1;
797         ptq->next_tid = -1;
798
799         params.get_trace = intel_pt_get_trace;
800         params.walk_insn = intel_pt_walk_next_insn;
801         params.data = ptq;
802         params.return_compression = intel_pt_return_compression(pt);
803         params.branch_enable = intel_pt_branch_enable(pt);
804         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
805         params.mtc_period = intel_pt_mtc_period(pt);
806         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
807         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
808
809         if (pt->filts.cnt > 0)
810                 params.pgd_ip = intel_pt_pgd_ip;
811
812         if (pt->synth_opts.instructions) {
813                 if (pt->synth_opts.period) {
814                         switch (pt->synth_opts.period_type) {
815                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
816                                 params.period_type =
817                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
818                                 params.period = pt->synth_opts.period;
819                                 break;
820                         case PERF_ITRACE_PERIOD_TICKS:
821                                 params.period_type = INTEL_PT_PERIOD_TICKS;
822                                 params.period = pt->synth_opts.period;
823                                 break;
824                         case PERF_ITRACE_PERIOD_NANOSECS:
825                                 params.period_type = INTEL_PT_PERIOD_TICKS;
826                                 params.period = intel_pt_ns_to_ticks(pt,
827                                                         pt->synth_opts.period);
828                                 break;
829                         default:
830                                 break;
831                         }
832                 }
833
834                 if (!params.period) {
835                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
836                         params.period = 1;
837                 }
838         }
839
840         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
841                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
842
843         ptq->decoder = intel_pt_decoder_new(&params);
844         if (!ptq->decoder)
845                 goto out_free;
846
847         return ptq;
848
849 out_free:
850         zfree(&ptq->event_buf);
851         zfree(&ptq->last_branch);
852         zfree(&ptq->last_branch_rb);
853         zfree(&ptq->chain);
854         free(ptq);
855         return NULL;
856 }
857
858 static void intel_pt_free_queue(void *priv)
859 {
860         struct intel_pt_queue *ptq = priv;
861
862         if (!ptq)
863                 return;
864         thread__zput(ptq->thread);
865         intel_pt_decoder_free(ptq->decoder);
866         zfree(&ptq->event_buf);
867         zfree(&ptq->last_branch);
868         zfree(&ptq->last_branch_rb);
869         zfree(&ptq->chain);
870         free(ptq);
871 }
872
873 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
874                                      struct auxtrace_queue *queue)
875 {
876         struct intel_pt_queue *ptq = queue->priv;
877
878         if (queue->tid == -1 || pt->have_sched_switch) {
879                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
880                 thread__zput(ptq->thread);
881         }
882
883         if (!ptq->thread && ptq->tid != -1)
884                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
885
886         if (ptq->thread) {
887                 ptq->pid = ptq->thread->pid_;
888                 if (queue->cpu == -1)
889                         ptq->cpu = ptq->thread->cpu;
890         }
891 }
892
893 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
894 {
895         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
896                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
897         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
898                 if (ptq->state->to_ip)
899                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
900                                      PERF_IP_FLAG_ASYNC |
901                                      PERF_IP_FLAG_INTERRUPT;
902                 else
903                         ptq->flags = PERF_IP_FLAG_BRANCH |
904                                      PERF_IP_FLAG_TRACE_END;
905                 ptq->insn_len = 0;
906         } else {
907                 if (ptq->state->from_ip)
908                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
909                 else
910                         ptq->flags = PERF_IP_FLAG_BRANCH |
911                                      PERF_IP_FLAG_TRACE_BEGIN;
912                 if (ptq->state->flags & INTEL_PT_IN_TX)
913                         ptq->flags |= PERF_IP_FLAG_IN_TX;
914                 ptq->insn_len = ptq->state->insn_len;
915                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
916         }
917
918         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
919                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
920         if (ptq->state->type & INTEL_PT_TRACE_END)
921                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
922 }
923
924 static int intel_pt_setup_queue(struct intel_pt *pt,
925                                 struct auxtrace_queue *queue,
926                                 unsigned int queue_nr)
927 {
928         struct intel_pt_queue *ptq = queue->priv;
929
930         if (list_empty(&queue->head))
931                 return 0;
932
933         if (!ptq) {
934                 ptq = intel_pt_alloc_queue(pt, queue_nr);
935                 if (!ptq)
936                         return -ENOMEM;
937                 queue->priv = ptq;
938
939                 if (queue->cpu != -1)
940                         ptq->cpu = queue->cpu;
941                 ptq->tid = queue->tid;
942
943                 if (pt->sampling_mode && !pt->snapshot_mode &&
944                     pt->timeless_decoding)
945                         ptq->step_through_buffers = true;
946
947                 ptq->sync_switch = pt->sync_switch;
948         }
949
950         if (!ptq->on_heap &&
951             (!ptq->sync_switch ||
952              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
953                 const struct intel_pt_state *state;
954                 int ret;
955
956                 if (pt->timeless_decoding)
957                         return 0;
958
959                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
960                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
961                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
962                 while (1) {
963                         state = intel_pt_decode(ptq->decoder);
964                         if (state->err) {
965                                 if (state->err == INTEL_PT_ERR_NODATA) {
966                                         intel_pt_log("queue %u has no timestamp\n",
967                                                      queue_nr);
968                                         return 0;
969                                 }
970                                 continue;
971                         }
972                         if (state->timestamp)
973                                 break;
974                 }
975
976                 ptq->timestamp = state->timestamp;
977                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
978                              queue_nr, ptq->timestamp);
979                 ptq->state = state;
980                 ptq->have_sample = true;
981                 intel_pt_sample_flags(ptq);
982                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
983                 if (ret)
984                         return ret;
985                 ptq->on_heap = true;
986         }
987
988         return 0;
989 }
990
991 static int intel_pt_setup_queues(struct intel_pt *pt)
992 {
993         unsigned int i;
994         int ret;
995
996         for (i = 0; i < pt->queues.nr_queues; i++) {
997                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
998                 if (ret)
999                         return ret;
1000         }
1001         return 0;
1002 }
1003
1004 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
1005 {
1006         struct branch_stack *bs_src = ptq->last_branch_rb;
1007         struct branch_stack *bs_dst = ptq->last_branch;
1008         size_t nr = 0;
1009
1010         bs_dst->nr = bs_src->nr;
1011
1012         if (!bs_src->nr)
1013                 return;
1014
1015         nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1016         memcpy(&bs_dst->entries[0],
1017                &bs_src->entries[ptq->last_branch_pos],
1018                sizeof(struct branch_entry) * nr);
1019
1020         if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1021                 memcpy(&bs_dst->entries[nr],
1022                        &bs_src->entries[0],
1023                        sizeof(struct branch_entry) * ptq->last_branch_pos);
1024         }
1025 }
1026
1027 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1028 {
1029         ptq->last_branch_pos = 0;
1030         ptq->last_branch_rb->nr = 0;
1031 }
1032
1033 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1034 {
1035         const struct intel_pt_state *state = ptq->state;
1036         struct branch_stack *bs = ptq->last_branch_rb;
1037         struct branch_entry *be;
1038
1039         if (!ptq->last_branch_pos)
1040                 ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1041
1042         ptq->last_branch_pos -= 1;
1043
1044         be              = &bs->entries[ptq->last_branch_pos];
1045         be->from        = state->from_ip;
1046         be->to          = state->to_ip;
1047         be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1048         be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1049         /* No support for mispredict */
1050         be->flags.mispred = ptq->pt->mispred_all;
1051
1052         if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1053                 bs->nr += 1;
1054 }
1055
1056 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1057 {
1058         return pt->synth_opts.initial_skip &&
1059                pt->num_events++ < pt->synth_opts.initial_skip;
1060 }
1061
1062 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1063                                    struct intel_pt_queue *ptq,
1064                                    union perf_event *event,
1065                                    struct perf_sample *sample)
1066 {
1067         if (!pt->timeless_decoding)
1068                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1069
1070         sample->ip = ptq->state->from_ip;
1071         sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1072         sample->pid = ptq->pid;
1073         sample->tid = ptq->tid;
1074         sample->addr = ptq->state->to_ip;
1075         sample->period = 1;
1076         sample->cpu = ptq->cpu;
1077         sample->flags = ptq->flags;
1078         sample->insn_len = ptq->insn_len;
1079         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1080
1081         event->sample.header.type = PERF_RECORD_SAMPLE;
1082         event->sample.header.misc = sample->cpumode;
1083         event->sample.header.size = sizeof(struct perf_event_header);
1084 }
1085
1086 static int intel_pt_inject_event(union perf_event *event,
1087                                  struct perf_sample *sample, u64 type)
1088 {
1089         event->header.size = perf_event__sample_event_size(sample, type, 0);
1090         return perf_event__synthesize_sample(event, type, 0, sample);
1091 }
1092
1093 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1094                                       union perf_event *event,
1095                                       struct perf_sample *sample, u64 type)
1096 {
1097         if (!pt->synth_opts.inject)
1098                 return 0;
1099
1100         return intel_pt_inject_event(event, sample, type);
1101 }
1102
1103 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1104                                           union perf_event *event,
1105                                           struct perf_sample *sample, u64 type)
1106 {
1107         int ret;
1108
1109         ret = intel_pt_opt_inject(pt, event, sample, type);
1110         if (ret)
1111                 return ret;
1112
1113         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1114         if (ret)
1115                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1116
1117         return ret;
1118 }
1119
1120 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1121 {
1122         struct intel_pt *pt = ptq->pt;
1123         union perf_event *event = ptq->event_buf;
1124         struct perf_sample sample = { .ip = 0, };
1125         struct dummy_branch_stack {
1126                 u64                     nr;
1127                 struct branch_entry     entries;
1128         } dummy_bs;
1129
1130         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1131                 return 0;
1132
1133         if (intel_pt_skip_event(pt))
1134                 return 0;
1135
1136         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1137
1138         sample.id = ptq->pt->branches_id;
1139         sample.stream_id = ptq->pt->branches_id;
1140
1141         /*
1142          * perf report cannot handle events without a branch stack when using
1143          * SORT_MODE__BRANCH so make a dummy one.
1144          */
1145         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1146                 dummy_bs = (struct dummy_branch_stack){
1147                         .nr = 1,
1148                         .entries = {
1149                                 .from = sample.ip,
1150                                 .to = sample.addr,
1151                         },
1152                 };
1153                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1154         }
1155
1156         return intel_pt_deliver_synth_b_event(pt, event, &sample,
1157                                               pt->branches_sample_type);
1158 }
1159
1160 static void intel_pt_prep_sample(struct intel_pt *pt,
1161                                  struct intel_pt_queue *ptq,
1162                                  union perf_event *event,
1163                                  struct perf_sample *sample)
1164 {
1165         intel_pt_prep_b_sample(pt, ptq, event, sample);
1166
1167         if (pt->synth_opts.callchain) {
1168                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1169                                      pt->synth_opts.callchain_sz + 1,
1170                                      sample->ip, pt->kernel_start);
1171                 sample->callchain = ptq->chain;
1172         }
1173
1174         if (pt->synth_opts.last_branch) {
1175                 intel_pt_copy_last_branch_rb(ptq);
1176                 sample->branch_stack = ptq->last_branch;
1177         }
1178 }
1179
1180 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1181                                                struct intel_pt_queue *ptq,
1182                                                union perf_event *event,
1183                                                struct perf_sample *sample,
1184                                                u64 type)
1185 {
1186         int ret;
1187
1188         ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1189
1190         if (pt->synth_opts.last_branch)
1191                 intel_pt_reset_last_branch_rb(ptq);
1192
1193         return ret;
1194 }
1195
1196 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1197 {
1198         struct intel_pt *pt = ptq->pt;
1199         union perf_event *event = ptq->event_buf;
1200         struct perf_sample sample = { .ip = 0, };
1201
1202         if (intel_pt_skip_event(pt))
1203                 return 0;
1204
1205         intel_pt_prep_sample(pt, ptq, event, &sample);
1206
1207         sample.id = ptq->pt->instructions_id;
1208         sample.stream_id = ptq->pt->instructions_id;
1209         sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1210
1211         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1212
1213         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1214                                             pt->instructions_sample_type);
1215 }
1216
1217 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1218 {
1219         struct intel_pt *pt = ptq->pt;
1220         union perf_event *event = ptq->event_buf;
1221         struct perf_sample sample = { .ip = 0, };
1222
1223         if (intel_pt_skip_event(pt))
1224                 return 0;
1225
1226         intel_pt_prep_sample(pt, ptq, event, &sample);
1227
1228         sample.id = ptq->pt->transactions_id;
1229         sample.stream_id = ptq->pt->transactions_id;
1230
1231         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1232                                             pt->transactions_sample_type);
1233 }
1234
1235 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1236                                    struct intel_pt_queue *ptq,
1237                                    union perf_event *event,
1238                                    struct perf_sample *sample)
1239 {
1240         intel_pt_prep_sample(pt, ptq, event, sample);
1241
1242         /*
1243          * Zero IP is used to mean "trace start" but that is not the case for
1244          * power or PTWRITE events with no IP, so clear the flags.
1245          */
1246         if (!sample->ip)
1247                 sample->flags = 0;
1248 }
1249
1250 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1251 {
1252         struct intel_pt *pt = ptq->pt;
1253         union perf_event *event = ptq->event_buf;
1254         struct perf_sample sample = { .ip = 0, };
1255         struct perf_synth_intel_ptwrite raw;
1256
1257         if (intel_pt_skip_event(pt))
1258                 return 0;
1259
1260         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1261
1262         sample.id = ptq->pt->ptwrites_id;
1263         sample.stream_id = ptq->pt->ptwrites_id;
1264
1265         raw.flags = 0;
1266         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1267         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1268
1269         sample.raw_size = perf_synth__raw_size(raw);
1270         sample.raw_data = perf_synth__raw_data(&raw);
1271
1272         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1273                                             pt->ptwrites_sample_type);
1274 }
1275
1276 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1277 {
1278         struct intel_pt *pt = ptq->pt;
1279         union perf_event *event = ptq->event_buf;
1280         struct perf_sample sample = { .ip = 0, };
1281         struct perf_synth_intel_cbr raw;
1282         u32 flags;
1283
1284         if (intel_pt_skip_event(pt))
1285                 return 0;
1286
1287         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1288
1289         sample.id = ptq->pt->cbr_id;
1290         sample.stream_id = ptq->pt->cbr_id;
1291
1292         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1293         raw.flags = cpu_to_le32(flags);
1294         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1295         raw.reserved3 = 0;
1296
1297         sample.raw_size = perf_synth__raw_size(raw);
1298         sample.raw_data = perf_synth__raw_data(&raw);
1299
1300         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1301                                             pt->pwr_events_sample_type);
1302 }
1303
1304 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1305 {
1306         struct intel_pt *pt = ptq->pt;
1307         union perf_event *event = ptq->event_buf;
1308         struct perf_sample sample = { .ip = 0, };
1309         struct perf_synth_intel_mwait raw;
1310
1311         if (intel_pt_skip_event(pt))
1312                 return 0;
1313
1314         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1315
1316         sample.id = ptq->pt->mwait_id;
1317         sample.stream_id = ptq->pt->mwait_id;
1318
1319         raw.reserved = 0;
1320         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1321
1322         sample.raw_size = perf_synth__raw_size(raw);
1323         sample.raw_data = perf_synth__raw_data(&raw);
1324
1325         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1326                                             pt->pwr_events_sample_type);
1327 }
1328
1329 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1330 {
1331         struct intel_pt *pt = ptq->pt;
1332         union perf_event *event = ptq->event_buf;
1333         struct perf_sample sample = { .ip = 0, };
1334         struct perf_synth_intel_pwre raw;
1335
1336         if (intel_pt_skip_event(pt))
1337                 return 0;
1338
1339         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1340
1341         sample.id = ptq->pt->pwre_id;
1342         sample.stream_id = ptq->pt->pwre_id;
1343
1344         raw.reserved = 0;
1345         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1346
1347         sample.raw_size = perf_synth__raw_size(raw);
1348         sample.raw_data = perf_synth__raw_data(&raw);
1349
1350         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1351                                             pt->pwr_events_sample_type);
1352 }
1353
1354 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1355 {
1356         struct intel_pt *pt = ptq->pt;
1357         union perf_event *event = ptq->event_buf;
1358         struct perf_sample sample = { .ip = 0, };
1359         struct perf_synth_intel_exstop raw;
1360
1361         if (intel_pt_skip_event(pt))
1362                 return 0;
1363
1364         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1365
1366         sample.id = ptq->pt->exstop_id;
1367         sample.stream_id = ptq->pt->exstop_id;
1368
1369         raw.flags = 0;
1370         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1371
1372         sample.raw_size = perf_synth__raw_size(raw);
1373         sample.raw_data = perf_synth__raw_data(&raw);
1374
1375         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1376                                             pt->pwr_events_sample_type);
1377 }
1378
1379 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1380 {
1381         struct intel_pt *pt = ptq->pt;
1382         union perf_event *event = ptq->event_buf;
1383         struct perf_sample sample = { .ip = 0, };
1384         struct perf_synth_intel_pwrx raw;
1385
1386         if (intel_pt_skip_event(pt))
1387                 return 0;
1388
1389         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1390
1391         sample.id = ptq->pt->pwrx_id;
1392         sample.stream_id = ptq->pt->pwrx_id;
1393
1394         raw.reserved = 0;
1395         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1396
1397         sample.raw_size = perf_synth__raw_size(raw);
1398         sample.raw_data = perf_synth__raw_data(&raw);
1399
1400         return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1401                                             pt->pwr_events_sample_type);
1402 }
1403
1404 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1405                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1406 {
1407         union perf_event event;
1408         char msg[MAX_AUXTRACE_ERROR_MSG];
1409         int err;
1410
1411         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1412
1413         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1414                              code, cpu, pid, tid, ip, msg, timestamp);
1415
1416         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1417         if (err)
1418                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1419                        err);
1420
1421         return err;
1422 }
1423
1424 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1425                                  const struct intel_pt_state *state)
1426 {
1427         struct intel_pt *pt = ptq->pt;
1428         u64 tm = ptq->timestamp;
1429
1430         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1431
1432         return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1433                                     ptq->tid, state->from_ip, tm);
1434 }
1435
1436 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1437 {
1438         struct auxtrace_queue *queue;
1439         pid_t tid = ptq->next_tid;
1440         int err;
1441
1442         if (tid == -1)
1443                 return 0;
1444
1445         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1446
1447         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1448
1449         queue = &pt->queues.queue_array[ptq->queue_nr];
1450         intel_pt_set_pid_tid_cpu(pt, queue);
1451
1452         ptq->next_tid = -1;
1453
1454         return err;
1455 }
1456
1457 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1458 {
1459         struct intel_pt *pt = ptq->pt;
1460
1461         return ip == pt->switch_ip &&
1462                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1463                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1464                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1465 }
1466
1467 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1468                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT | \
1469                           INTEL_PT_CBR_CHG)
1470
1471 static int intel_pt_sample(struct intel_pt_queue *ptq)
1472 {
1473         const struct intel_pt_state *state = ptq->state;
1474         struct intel_pt *pt = ptq->pt;
1475         int err;
1476
1477         if (!ptq->have_sample)
1478                 return 0;
1479
1480         ptq->have_sample = false;
1481
1482         if (pt->sample_pwr_events && (state->type & INTEL_PT_PWR_EVT)) {
1483                 if (state->type & INTEL_PT_CBR_CHG) {
1484                         err = intel_pt_synth_cbr_sample(ptq);
1485                         if (err)
1486                                 return err;
1487                 }
1488                 if (state->type & INTEL_PT_MWAIT_OP) {
1489                         err = intel_pt_synth_mwait_sample(ptq);
1490                         if (err)
1491                                 return err;
1492                 }
1493                 if (state->type & INTEL_PT_PWR_ENTRY) {
1494                         err = intel_pt_synth_pwre_sample(ptq);
1495                         if (err)
1496                                 return err;
1497                 }
1498                 if (state->type & INTEL_PT_EX_STOP) {
1499                         err = intel_pt_synth_exstop_sample(ptq);
1500                         if (err)
1501                                 return err;
1502                 }
1503                 if (state->type & INTEL_PT_PWR_EXIT) {
1504                         err = intel_pt_synth_pwrx_sample(ptq);
1505                         if (err)
1506                                 return err;
1507                 }
1508         }
1509
1510         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1511                 err = intel_pt_synth_instruction_sample(ptq);
1512                 if (err)
1513                         return err;
1514         }
1515
1516         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1517                 err = intel_pt_synth_transaction_sample(ptq);
1518                 if (err)
1519                         return err;
1520         }
1521
1522         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1523                 err = intel_pt_synth_ptwrite_sample(ptq);
1524                 if (err)
1525                         return err;
1526         }
1527
1528         if (!(state->type & INTEL_PT_BRANCH))
1529                 return 0;
1530
1531         if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1532                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip,
1533                                     state->to_ip, ptq->insn_len,
1534                                     state->trace_nr);
1535         else
1536                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
1537
1538         if (pt->sample_branches) {
1539                 err = intel_pt_synth_branch_sample(ptq);
1540                 if (err)
1541                         return err;
1542         }
1543
1544         if (pt->synth_opts.last_branch)
1545                 intel_pt_update_last_branch_rb(ptq);
1546
1547         if (!ptq->sync_switch)
1548                 return 0;
1549
1550         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1551                 switch (ptq->switch_state) {
1552                 case INTEL_PT_SS_NOT_TRACING:
1553                 case INTEL_PT_SS_UNKNOWN:
1554                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1555                         err = intel_pt_next_tid(pt, ptq);
1556                         if (err)
1557                                 return err;
1558                         ptq->switch_state = INTEL_PT_SS_TRACING;
1559                         break;
1560                 default:
1561                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1562                         return 1;
1563                 }
1564         } else if (!state->to_ip) {
1565                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1566         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1567                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1568         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1569                    state->to_ip == pt->ptss_ip &&
1570                    (ptq->flags & PERF_IP_FLAG_CALL)) {
1571                 ptq->switch_state = INTEL_PT_SS_TRACING;
1572         }
1573
1574         return 0;
1575 }
1576
1577 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1578 {
1579         struct machine *machine = pt->machine;
1580         struct map *map;
1581         struct symbol *sym, *start;
1582         u64 ip, switch_ip = 0;
1583         const char *ptss;
1584
1585         if (ptss_ip)
1586                 *ptss_ip = 0;
1587
1588         map = machine__kernel_map(machine);
1589         if (!map)
1590                 return 0;
1591
1592         if (map__load(map))
1593                 return 0;
1594
1595         start = dso__first_symbol(map->dso);
1596
1597         for (sym = start; sym; sym = dso__next_symbol(sym)) {
1598                 if (sym->binding == STB_GLOBAL &&
1599                     !strcmp(sym->name, "__switch_to")) {
1600                         ip = map->unmap_ip(map, sym->start);
1601                         if (ip >= map->start && ip < map->end) {
1602                                 switch_ip = ip;
1603                                 break;
1604                         }
1605                 }
1606         }
1607
1608         if (!switch_ip || !ptss_ip)
1609                 return 0;
1610
1611         if (pt->have_sched_switch == 1)
1612                 ptss = "perf_trace_sched_switch";
1613         else
1614                 ptss = "__perf_event_task_sched_out";
1615
1616         for (sym = start; sym; sym = dso__next_symbol(sym)) {
1617                 if (!strcmp(sym->name, ptss)) {
1618                         ip = map->unmap_ip(map, sym->start);
1619                         if (ip >= map->start && ip < map->end) {
1620                                 *ptss_ip = ip;
1621                                 break;
1622                         }
1623                 }
1624         }
1625
1626         return switch_ip;
1627 }
1628
1629 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
1630 {
1631         unsigned int i;
1632
1633         pt->sync_switch = true;
1634
1635         for (i = 0; i < pt->queues.nr_queues; i++) {
1636                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1637                 struct intel_pt_queue *ptq = queue->priv;
1638
1639                 if (ptq)
1640                         ptq->sync_switch = true;
1641         }
1642 }
1643
1644 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1645 {
1646         const struct intel_pt_state *state = ptq->state;
1647         struct intel_pt *pt = ptq->pt;
1648         int err;
1649
1650         if (!pt->kernel_start) {
1651                 pt->kernel_start = machine__kernel_start(pt->machine);
1652                 if (pt->per_cpu_mmaps &&
1653                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1654                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1655                     !pt->sampling_mode) {
1656                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1657                         if (pt->switch_ip) {
1658                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1659                                              pt->switch_ip, pt->ptss_ip);
1660                                 intel_pt_enable_sync_switch(pt);
1661                         }
1662                 }
1663         }
1664
1665         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1666                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1667         while (1) {
1668                 err = intel_pt_sample(ptq);
1669                 if (err)
1670                         return err;
1671
1672                 state = intel_pt_decode(ptq->decoder);
1673                 if (state->err) {
1674                         if (state->err == INTEL_PT_ERR_NODATA)
1675                                 return 1;
1676                         if (ptq->sync_switch &&
1677                             state->from_ip >= pt->kernel_start) {
1678                                 ptq->sync_switch = false;
1679                                 intel_pt_next_tid(pt, ptq);
1680                         }
1681                         if (pt->synth_opts.errors) {
1682                                 err = intel_ptq_synth_error(ptq, state);
1683                                 if (err)
1684                                         return err;
1685                         }
1686                         continue;
1687                 }
1688
1689                 ptq->state = state;
1690                 ptq->have_sample = true;
1691                 intel_pt_sample_flags(ptq);
1692
1693                 /* Use estimated TSC upon return to user space */
1694                 if (pt->est_tsc &&
1695                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1696                     state->to_ip && state->to_ip < pt->kernel_start) {
1697                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1698                                      state->timestamp, state->est_timestamp);
1699                         ptq->timestamp = state->est_timestamp;
1700                 /* Use estimated TSC in unknown switch state */
1701                 } else if (ptq->sync_switch &&
1702                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1703                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
1704                            ptq->next_tid == -1) {
1705                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1706                                      state->timestamp, state->est_timestamp);
1707                         ptq->timestamp = state->est_timestamp;
1708                 } else if (state->timestamp > ptq->timestamp) {
1709                         ptq->timestamp = state->timestamp;
1710                 }
1711
1712                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1713                         *timestamp = ptq->timestamp;
1714                         return 0;
1715                 }
1716         }
1717         return 0;
1718 }
1719
1720 static inline int intel_pt_update_queues(struct intel_pt *pt)
1721 {
1722         if (pt->queues.new_data) {
1723                 pt->queues.new_data = false;
1724                 return intel_pt_setup_queues(pt);
1725         }
1726         return 0;
1727 }
1728
1729 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1730 {
1731         unsigned int queue_nr;
1732         u64 ts;
1733         int ret;
1734
1735         while (1) {
1736                 struct auxtrace_queue *queue;
1737                 struct intel_pt_queue *ptq;
1738
1739                 if (!pt->heap.heap_cnt)
1740                         return 0;
1741
1742                 if (pt->heap.heap_array[0].ordinal >= timestamp)
1743                         return 0;
1744
1745                 queue_nr = pt->heap.heap_array[0].queue_nr;
1746                 queue = &pt->queues.queue_array[queue_nr];
1747                 ptq = queue->priv;
1748
1749                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1750                              queue_nr, pt->heap.heap_array[0].ordinal,
1751                              timestamp);
1752
1753                 auxtrace_heap__pop(&pt->heap);
1754
1755                 if (pt->heap.heap_cnt) {
1756                         ts = pt->heap.heap_array[0].ordinal + 1;
1757                         if (ts > timestamp)
1758                                 ts = timestamp;
1759                 } else {
1760                         ts = timestamp;
1761                 }
1762
1763                 intel_pt_set_pid_tid_cpu(pt, queue);
1764
1765                 ret = intel_pt_run_decoder(ptq, &ts);
1766
1767                 if (ret < 0) {
1768                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
1769                         return ret;
1770                 }
1771
1772                 if (!ret) {
1773                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1774                         if (ret < 0)
1775                                 return ret;
1776                 } else {
1777                         ptq->on_heap = false;
1778                 }
1779         }
1780
1781         return 0;
1782 }
1783
1784 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1785                                             u64 time_)
1786 {
1787         struct auxtrace_queues *queues = &pt->queues;
1788         unsigned int i;
1789         u64 ts = 0;
1790
1791         for (i = 0; i < queues->nr_queues; i++) {
1792                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1793                 struct intel_pt_queue *ptq = queue->priv;
1794
1795                 if (ptq && (tid == -1 || ptq->tid == tid)) {
1796                         ptq->time = time_;
1797                         intel_pt_set_pid_tid_cpu(pt, queue);
1798                         intel_pt_run_decoder(ptq, &ts);
1799                 }
1800         }
1801         return 0;
1802 }
1803
1804 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1805 {
1806         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1807                                     sample->pid, sample->tid, 0, sample->time);
1808 }
1809
1810 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1811 {
1812         unsigned i, j;
1813
1814         if (cpu < 0 || !pt->queues.nr_queues)
1815                 return NULL;
1816
1817         if ((unsigned)cpu >= pt->queues.nr_queues)
1818                 i = pt->queues.nr_queues - 1;
1819         else
1820                 i = cpu;
1821
1822         if (pt->queues.queue_array[i].cpu == cpu)
1823                 return pt->queues.queue_array[i].priv;
1824
1825         for (j = 0; i > 0; j++) {
1826                 if (pt->queues.queue_array[--i].cpu == cpu)
1827                         return pt->queues.queue_array[i].priv;
1828         }
1829
1830         for (; j < pt->queues.nr_queues; j++) {
1831                 if (pt->queues.queue_array[j].cpu == cpu)
1832                         return pt->queues.queue_array[j].priv;
1833         }
1834
1835         return NULL;
1836 }
1837
1838 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1839                                 u64 timestamp)
1840 {
1841         struct intel_pt_queue *ptq;
1842         int err;
1843
1844         if (!pt->sync_switch)
1845                 return 1;
1846
1847         ptq = intel_pt_cpu_to_ptq(pt, cpu);
1848         if (!ptq || !ptq->sync_switch)
1849                 return 1;
1850
1851         switch (ptq->switch_state) {
1852         case INTEL_PT_SS_NOT_TRACING:
1853                 ptq->next_tid = -1;
1854                 break;
1855         case INTEL_PT_SS_UNKNOWN:
1856         case INTEL_PT_SS_TRACING:
1857                 ptq->next_tid = tid;
1858                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1859                 return 0;
1860         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1861                 if (!ptq->on_heap) {
1862                         ptq->timestamp = perf_time_to_tsc(timestamp,
1863                                                           &pt->tc);
1864                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1865                                                  ptq->timestamp);
1866                         if (err)
1867                                 return err;
1868                         ptq->on_heap = true;
1869                 }
1870                 ptq->switch_state = INTEL_PT_SS_TRACING;
1871                 break;
1872         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1873                 ptq->next_tid = tid;
1874                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1875                 break;
1876         default:
1877                 break;
1878         }
1879
1880         return 1;
1881 }
1882
1883 static int intel_pt_process_switch(struct intel_pt *pt,
1884                                    struct perf_sample *sample)
1885 {
1886         struct perf_evsel *evsel;
1887         pid_t tid;
1888         int cpu, ret;
1889
1890         evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1891         if (evsel != pt->switch_evsel)
1892                 return 0;
1893
1894         tid = perf_evsel__intval(evsel, sample, "next_pid");
1895         cpu = sample->cpu;
1896
1897         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1898                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1899                      &pt->tc));
1900
1901         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1902         if (ret <= 0)
1903                 return ret;
1904
1905         return machine__set_current_tid(pt->machine, cpu, -1, tid);
1906 }
1907
1908 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1909                                    struct perf_sample *sample)
1910 {
1911         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1912         pid_t pid, tid;
1913         int cpu, ret;
1914
1915         cpu = sample->cpu;
1916
1917         if (pt->have_sched_switch == 3) {
1918                 if (!out)
1919                         return 0;
1920                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1921                         pr_err("Expecting CPU-wide context switch event\n");
1922                         return -EINVAL;
1923                 }
1924                 pid = event->context_switch.next_prev_pid;
1925                 tid = event->context_switch.next_prev_tid;
1926         } else {
1927                 if (out)
1928                         return 0;
1929                 pid = sample->pid;
1930                 tid = sample->tid;
1931         }
1932
1933         if (tid == -1) {
1934                 pr_err("context_switch event has no tid\n");
1935                 return -EINVAL;
1936         }
1937
1938         intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1939                      cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1940                      &pt->tc));
1941
1942         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1943         if (ret <= 0)
1944                 return ret;
1945
1946         return machine__set_current_tid(pt->machine, cpu, pid, tid);
1947 }
1948
1949 static int intel_pt_process_itrace_start(struct intel_pt *pt,
1950                                          union perf_event *event,
1951                                          struct perf_sample *sample)
1952 {
1953         if (!pt->per_cpu_mmaps)
1954                 return 0;
1955
1956         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1957                      sample->cpu, event->itrace_start.pid,
1958                      event->itrace_start.tid, sample->time,
1959                      perf_time_to_tsc(sample->time, &pt->tc));
1960
1961         return machine__set_current_tid(pt->machine, sample->cpu,
1962                                         event->itrace_start.pid,
1963                                         event->itrace_start.tid);
1964 }
1965
1966 static int intel_pt_process_event(struct perf_session *session,
1967                                   union perf_event *event,
1968                                   struct perf_sample *sample,
1969                                   struct perf_tool *tool)
1970 {
1971         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1972                                            auxtrace);
1973         u64 timestamp;
1974         int err = 0;
1975
1976         if (dump_trace)
1977                 return 0;
1978
1979         if (!tool->ordered_events) {
1980                 pr_err("Intel Processor Trace requires ordered events\n");
1981                 return -EINVAL;
1982         }
1983
1984         if (sample->time && sample->time != (u64)-1)
1985                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1986         else
1987                 timestamp = 0;
1988
1989         if (timestamp || pt->timeless_decoding) {
1990                 err = intel_pt_update_queues(pt);
1991                 if (err)
1992                         return err;
1993         }
1994
1995         if (pt->timeless_decoding) {
1996                 if (event->header.type == PERF_RECORD_EXIT) {
1997                         err = intel_pt_process_timeless_queues(pt,
1998                                                                event->fork.tid,
1999                                                                sample->time);
2000                 }
2001         } else if (timestamp) {
2002                 err = intel_pt_process_queues(pt, timestamp);
2003         }
2004         if (err)
2005                 return err;
2006
2007         if (event->header.type == PERF_RECORD_AUX &&
2008             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2009             pt->synth_opts.errors) {
2010                 err = intel_pt_lost(pt, sample);
2011                 if (err)
2012                         return err;
2013         }
2014
2015         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2016                 err = intel_pt_process_switch(pt, sample);
2017         else if (event->header.type == PERF_RECORD_ITRACE_START)
2018                 err = intel_pt_process_itrace_start(pt, event, sample);
2019         else if (event->header.type == PERF_RECORD_SWITCH ||
2020                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2021                 err = intel_pt_context_switch(pt, event, sample);
2022
2023         intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2024                      event->header.type, sample->cpu, sample->time, timestamp);
2025         intel_pt_log_event(event);
2026
2027         return err;
2028 }
2029
2030 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2031 {
2032         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2033                                            auxtrace);
2034         int ret;
2035
2036         if (dump_trace)
2037                 return 0;
2038
2039         if (!tool->ordered_events)
2040                 return -EINVAL;
2041
2042         ret = intel_pt_update_queues(pt);
2043         if (ret < 0)
2044                 return ret;
2045
2046         if (pt->timeless_decoding)
2047                 return intel_pt_process_timeless_queues(pt, -1,
2048                                                         MAX_TIMESTAMP - 1);
2049
2050         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2051 }
2052
2053 static void intel_pt_free_events(struct perf_session *session)
2054 {
2055         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2056                                            auxtrace);
2057         struct auxtrace_queues *queues = &pt->queues;
2058         unsigned int i;
2059
2060         for (i = 0; i < queues->nr_queues; i++) {
2061                 intel_pt_free_queue(queues->queue_array[i].priv);
2062                 queues->queue_array[i].priv = NULL;
2063         }
2064         intel_pt_log_disable();
2065         auxtrace_queues__free(queues);
2066 }
2067
2068 static void intel_pt_free(struct perf_session *session)
2069 {
2070         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2071                                            auxtrace);
2072
2073         auxtrace_heap__free(&pt->heap);
2074         intel_pt_free_events(session);
2075         session->auxtrace = NULL;
2076         thread__put(pt->unknown_thread);
2077         addr_filters__exit(&pt->filts);
2078         zfree(&pt->filter);
2079         free(pt);
2080 }
2081
2082 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2083                                            union perf_event *event,
2084                                            struct perf_tool *tool __maybe_unused)
2085 {
2086         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2087                                            auxtrace);
2088
2089         if (!pt->data_queued) {
2090                 struct auxtrace_buffer *buffer;
2091                 off_t data_offset;
2092                 int fd = perf_data__fd(session->data);
2093                 int err;
2094
2095                 if (perf_data__is_pipe(session->data)) {
2096                         data_offset = 0;
2097                 } else {
2098                         data_offset = lseek(fd, 0, SEEK_CUR);
2099                         if (data_offset == -1)
2100                                 return -errno;
2101                 }
2102
2103                 err = auxtrace_queues__add_event(&pt->queues, session, event,
2104                                                  data_offset, &buffer);
2105                 if (err)
2106                         return err;
2107
2108                 /* Dump here now we have copied a piped trace out of the pipe */
2109                 if (dump_trace) {
2110                         if (auxtrace_buffer__get_data(buffer, fd)) {
2111                                 intel_pt_dump_event(pt, buffer->data,
2112                                                     buffer->size);
2113                                 auxtrace_buffer__put_data(buffer);
2114                         }
2115                 }
2116         }
2117
2118         return 0;
2119 }
2120
2121 struct intel_pt_synth {
2122         struct perf_tool dummy_tool;
2123         struct perf_session *session;
2124 };
2125
2126 static int intel_pt_event_synth(struct perf_tool *tool,
2127                                 union perf_event *event,
2128                                 struct perf_sample *sample __maybe_unused,
2129                                 struct machine *machine __maybe_unused)
2130 {
2131         struct intel_pt_synth *intel_pt_synth =
2132                         container_of(tool, struct intel_pt_synth, dummy_tool);
2133
2134         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2135                                                  NULL);
2136 }
2137
2138 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2139                                 struct perf_event_attr *attr, u64 id)
2140 {
2141         struct intel_pt_synth intel_pt_synth;
2142         int err;
2143
2144         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2145                  name, id, (u64)attr->sample_type);
2146
2147         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2148         intel_pt_synth.session = session;
2149
2150         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2151                                           &id, intel_pt_event_synth);
2152         if (err)
2153                 pr_err("%s: failed to synthesize '%s' event type\n",
2154                        __func__, name);
2155
2156         return err;
2157 }
2158
2159 static void intel_pt_set_event_name(struct perf_evlist *evlist, u64 id,
2160                                     const char *name)
2161 {
2162         struct perf_evsel *evsel;
2163
2164         evlist__for_each_entry(evlist, evsel) {
2165                 if (evsel->id && evsel->id[0] == id) {
2166                         if (evsel->name)
2167                                 zfree(&evsel->name);
2168                         evsel->name = strdup(name);
2169                         break;
2170                 }
2171         }
2172 }
2173
2174 static struct perf_evsel *intel_pt_evsel(struct intel_pt *pt,
2175                                          struct perf_evlist *evlist)
2176 {
2177         struct perf_evsel *evsel;
2178
2179         evlist__for_each_entry(evlist, evsel) {
2180                 if (evsel->attr.type == pt->pmu_type && evsel->ids)
2181                         return evsel;
2182         }
2183
2184         return NULL;
2185 }
2186
2187 static int intel_pt_synth_events(struct intel_pt *pt,
2188                                  struct perf_session *session)
2189 {
2190         struct perf_evlist *evlist = session->evlist;
2191         struct perf_evsel *evsel = intel_pt_evsel(pt, evlist);
2192         struct perf_event_attr attr;
2193         u64 id;
2194         int err;
2195
2196         if (!evsel) {
2197                 pr_debug("There are no selected events with Intel Processor Trace data\n");
2198                 return 0;
2199         }
2200
2201         memset(&attr, 0, sizeof(struct perf_event_attr));
2202         attr.size = sizeof(struct perf_event_attr);
2203         attr.type = PERF_TYPE_HARDWARE;
2204         attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
2205         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2206                             PERF_SAMPLE_PERIOD;
2207         if (pt->timeless_decoding)
2208                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2209         else
2210                 attr.sample_type |= PERF_SAMPLE_TIME;
2211         if (!pt->per_cpu_mmaps)
2212                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2213         attr.exclude_user = evsel->attr.exclude_user;
2214         attr.exclude_kernel = evsel->attr.exclude_kernel;
2215         attr.exclude_hv = evsel->attr.exclude_hv;
2216         attr.exclude_host = evsel->attr.exclude_host;
2217         attr.exclude_guest = evsel->attr.exclude_guest;
2218         attr.sample_id_all = evsel->attr.sample_id_all;
2219         attr.read_format = evsel->attr.read_format;
2220
2221         id = evsel->id[0] + 1000000000;
2222         if (!id)
2223                 id = 1;
2224
2225         if (pt->synth_opts.branches) {
2226                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2227                 attr.sample_period = 1;
2228                 attr.sample_type |= PERF_SAMPLE_ADDR;
2229                 err = intel_pt_synth_event(session, "branches", &attr, id);
2230                 if (err)
2231                         return err;
2232                 pt->sample_branches = true;
2233                 pt->branches_sample_type = attr.sample_type;
2234                 pt->branches_id = id;
2235                 id += 1;
2236                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2237         }
2238
2239         if (pt->synth_opts.callchain)
2240                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2241         if (pt->synth_opts.last_branch)
2242                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2243
2244         if (pt->synth_opts.instructions) {
2245                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2246                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2247                         attr.sample_period =
2248                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2249                 else
2250                         attr.sample_period = pt->synth_opts.period;
2251                 err = intel_pt_synth_event(session, "instructions", &attr, id);
2252                 if (err)
2253                         return err;
2254                 pt->sample_instructions = true;
2255                 pt->instructions_sample_type = attr.sample_type;
2256                 pt->instructions_id = id;
2257                 id += 1;
2258         }
2259
2260         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2261         attr.sample_period = 1;
2262
2263         if (pt->synth_opts.transactions) {
2264                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2265                 err = intel_pt_synth_event(session, "transactions", &attr, id);
2266                 if (err)
2267                         return err;
2268                 pt->sample_transactions = true;
2269                 pt->transactions_sample_type = attr.sample_type;
2270                 pt->transactions_id = id;
2271                 intel_pt_set_event_name(evlist, id, "transactions");
2272                 id += 1;
2273         }
2274
2275         attr.type = PERF_TYPE_SYNTH;
2276         attr.sample_type |= PERF_SAMPLE_RAW;
2277
2278         if (pt->synth_opts.ptwrites) {
2279                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
2280                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2281                 if (err)
2282                         return err;
2283                 pt->sample_ptwrites = true;
2284                 pt->ptwrites_sample_type = attr.sample_type;
2285                 pt->ptwrites_id = id;
2286                 intel_pt_set_event_name(evlist, id, "ptwrite");
2287                 id += 1;
2288         }
2289
2290         if (pt->synth_opts.pwr_events) {
2291                 pt->sample_pwr_events = true;
2292                 pt->pwr_events_sample_type = attr.sample_type;
2293
2294                 attr.config = PERF_SYNTH_INTEL_CBR;
2295                 err = intel_pt_synth_event(session, "cbr", &attr, id);
2296                 if (err)
2297                         return err;
2298                 pt->cbr_id = id;
2299                 intel_pt_set_event_name(evlist, id, "cbr");
2300                 id += 1;
2301         }
2302
2303         if (pt->synth_opts.pwr_events && (evsel->attr.config & 0x10)) {
2304                 attr.config = PERF_SYNTH_INTEL_MWAIT;
2305                 err = intel_pt_synth_event(session, "mwait", &attr, id);
2306                 if (err)
2307                         return err;
2308                 pt->mwait_id = id;
2309                 intel_pt_set_event_name(evlist, id, "mwait");
2310                 id += 1;
2311
2312                 attr.config = PERF_SYNTH_INTEL_PWRE;
2313                 err = intel_pt_synth_event(session, "pwre", &attr, id);
2314                 if (err)
2315                         return err;
2316                 pt->pwre_id = id;
2317                 intel_pt_set_event_name(evlist, id, "pwre");
2318                 id += 1;
2319
2320                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
2321                 err = intel_pt_synth_event(session, "exstop", &attr, id);
2322                 if (err)
2323                         return err;
2324                 pt->exstop_id = id;
2325                 intel_pt_set_event_name(evlist, id, "exstop");
2326                 id += 1;
2327
2328                 attr.config = PERF_SYNTH_INTEL_PWRX;
2329                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
2330                 if (err)
2331                         return err;
2332                 pt->pwrx_id = id;
2333                 intel_pt_set_event_name(evlist, id, "pwrx");
2334                 id += 1;
2335         }
2336
2337         return 0;
2338 }
2339
2340 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
2341 {
2342         struct perf_evsel *evsel;
2343
2344         evlist__for_each_entry_reverse(evlist, evsel) {
2345                 const char *name = perf_evsel__name(evsel);
2346
2347                 if (!strcmp(name, "sched:sched_switch"))
2348                         return evsel;
2349         }
2350
2351         return NULL;
2352 }
2353
2354 static bool intel_pt_find_switch(struct perf_evlist *evlist)
2355 {
2356         struct perf_evsel *evsel;
2357
2358         evlist__for_each_entry(evlist, evsel) {
2359                 if (evsel->attr.context_switch)
2360                         return true;
2361         }
2362
2363         return false;
2364 }
2365
2366 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2367 {
2368         struct intel_pt *pt = data;
2369
2370         if (!strcmp(var, "intel-pt.mispred-all"))
2371                 pt->mispred_all = perf_config_bool(var, value);
2372
2373         return 0;
2374 }
2375
2376 static const char * const intel_pt_info_fmts[] = {
2377         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
2378         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
2379         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
2380         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
2381         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
2382         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
2383         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
2384         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
2385         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
2386         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
2387         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
2388         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
2389         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
2390         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
2391         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
2392         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
2393 };
2394
2395 static void intel_pt_print_info(u64 *arr, int start, int finish)
2396 {
2397         int i;
2398
2399         if (!dump_trace)
2400                 return;
2401
2402         for (i = start; i <= finish; i++)
2403                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
2404 }
2405
2406 static void intel_pt_print_info_str(const char *name, const char *str)
2407 {
2408         if (!dump_trace)
2409                 return;
2410
2411         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
2412 }
2413
2414 static bool intel_pt_has(struct auxtrace_info_event *auxtrace_info, int pos)
2415 {
2416         return auxtrace_info->header.size >=
2417                 sizeof(struct auxtrace_info_event) + (sizeof(u64) * (pos + 1));
2418 }
2419
2420 int intel_pt_process_auxtrace_info(union perf_event *event,
2421                                    struct perf_session *session)
2422 {
2423         struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2424         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
2425         struct intel_pt *pt;
2426         void *info_end;
2427         u64 *info;
2428         int err;
2429
2430         if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
2431                                         min_sz)
2432                 return -EINVAL;
2433
2434         pt = zalloc(sizeof(struct intel_pt));
2435         if (!pt)
2436                 return -ENOMEM;
2437
2438         addr_filters__init(&pt->filts);
2439
2440         err = perf_config(intel_pt_perf_config, pt);
2441         if (err)
2442                 goto err_free;
2443
2444         err = auxtrace_queues__init(&pt->queues);
2445         if (err)
2446                 goto err_free;
2447
2448         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
2449
2450         pt->session = session;
2451         pt->machine = &session->machines.host; /* No kvm support */
2452         pt->auxtrace_type = auxtrace_info->type;
2453         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
2454         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
2455         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
2456         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
2457         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
2458         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
2459         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
2460         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
2461         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
2462         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
2463         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
2464                             INTEL_PT_PER_CPU_MMAPS);
2465
2466         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
2467                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
2468                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
2469                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
2470                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
2471                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
2472                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
2473                                     INTEL_PT_CYC_BIT);
2474         }
2475
2476         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
2477                 pt->max_non_turbo_ratio =
2478                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
2479                 intel_pt_print_info(&auxtrace_info->priv[0],
2480                                     INTEL_PT_MAX_NONTURBO_RATIO,
2481                                     INTEL_PT_MAX_NONTURBO_RATIO);
2482         }
2483
2484         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
2485         info_end = (void *)info + auxtrace_info->header.size;
2486
2487         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
2488                 size_t len;
2489
2490                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
2491                 intel_pt_print_info(&auxtrace_info->priv[0],
2492                                     INTEL_PT_FILTER_STR_LEN,
2493                                     INTEL_PT_FILTER_STR_LEN);
2494                 if (len) {
2495                         const char *filter = (const char *)info;
2496
2497                         len = roundup(len + 1, 8);
2498                         info += len >> 3;
2499                         if ((void *)info > info_end) {
2500                                 pr_err("%s: bad filter string length\n", __func__);
2501                                 err = -EINVAL;
2502                                 goto err_free_queues;
2503                         }
2504                         pt->filter = memdup(filter, len);
2505                         if (!pt->filter) {
2506                                 err = -ENOMEM;
2507                                 goto err_free_queues;
2508                         }
2509                         if (session->header.needs_swap)
2510                                 mem_bswap_64(pt->filter, len);
2511                         if (pt->filter[len - 1]) {
2512                                 pr_err("%s: filter string not null terminated\n", __func__);
2513                                 err = -EINVAL;
2514                                 goto err_free_queues;
2515                         }
2516                         err = addr_filters__parse_bare_filter(&pt->filts,
2517                                                               filter);
2518                         if (err)
2519                                 goto err_free_queues;
2520                 }
2521                 intel_pt_print_info_str("Filter string", pt->filter);
2522         }
2523
2524         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
2525         if (pt->timeless_decoding && !pt->tc.time_mult)
2526                 pt->tc.time_mult = 1;
2527         pt->have_tsc = intel_pt_have_tsc(pt);
2528         pt->sampling_mode = false;
2529         pt->est_tsc = !pt->timeless_decoding;
2530
2531         pt->unknown_thread = thread__new(999999999, 999999999);
2532         if (!pt->unknown_thread) {
2533                 err = -ENOMEM;
2534                 goto err_free_queues;
2535         }
2536
2537         /*
2538          * Since this thread will not be kept in any rbtree not in a
2539          * list, initialize its list node so that at thread__put() the
2540          * current thread lifetime assuption is kept and we don't segfault
2541          * at list_del_init().
2542          */
2543         INIT_LIST_HEAD(&pt->unknown_thread->node);
2544
2545         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
2546         if (err)
2547                 goto err_delete_thread;
2548         if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
2549                 err = -ENOMEM;
2550                 goto err_delete_thread;
2551         }
2552
2553         pt->auxtrace.process_event = intel_pt_process_event;
2554         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
2555         pt->auxtrace.flush_events = intel_pt_flush;
2556         pt->auxtrace.free_events = intel_pt_free_events;
2557         pt->auxtrace.free = intel_pt_free;
2558         session->auxtrace = &pt->auxtrace;
2559
2560         if (dump_trace)
2561                 return 0;
2562
2563         if (pt->have_sched_switch == 1) {
2564                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
2565                 if (!pt->switch_evsel) {
2566                         pr_err("%s: missing sched_switch event\n", __func__);
2567                         err = -EINVAL;
2568                         goto err_delete_thread;
2569                 }
2570         } else if (pt->have_sched_switch == 2 &&
2571                    !intel_pt_find_switch(session->evlist)) {
2572                 pr_err("%s: missing context_switch attribute flag\n", __func__);
2573                 err = -EINVAL;
2574                 goto err_delete_thread;
2575         }
2576
2577         if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2578                 pt->synth_opts = *session->itrace_synth_opts;
2579         } else {
2580                 itrace_synth_opts__set_default(&pt->synth_opts,
2581                                 session->itrace_synth_opts->default_no_sample);
2582                 if (use_browser != -1) {
2583                         pt->synth_opts.branches = false;
2584                         pt->synth_opts.callchain = true;
2585                 }
2586                 if (session->itrace_synth_opts)
2587                         pt->synth_opts.thread_stack =
2588                                 session->itrace_synth_opts->thread_stack;
2589         }
2590
2591         if (pt->synth_opts.log)
2592                 intel_pt_log_enable();
2593
2594         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
2595         if (pt->tc.time_mult) {
2596                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
2597
2598                 if (!pt->max_non_turbo_ratio)
2599                         pt->max_non_turbo_ratio =
2600                                         (tsc_freq + 50000000) / 100000000;
2601                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
2602                 intel_pt_log("Maximum non-turbo ratio %u\n",
2603                              pt->max_non_turbo_ratio);
2604                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
2605         }
2606
2607         if (pt->synth_opts.calls)
2608                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
2609                                        PERF_IP_FLAG_TRACE_END;
2610         if (pt->synth_opts.returns)
2611                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
2612                                        PERF_IP_FLAG_TRACE_BEGIN;
2613
2614         if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2615                 symbol_conf.use_callchain = true;
2616                 if (callchain_register_param(&callchain_param) < 0) {
2617                         symbol_conf.use_callchain = false;
2618                         pt->synth_opts.callchain = false;
2619                 }
2620         }
2621
2622         err = intel_pt_synth_events(pt, session);
2623         if (err)
2624                 goto err_delete_thread;
2625
2626         err = auxtrace_queues__process_index(&pt->queues, session);
2627         if (err)
2628                 goto err_delete_thread;
2629
2630         if (pt->queues.populated)
2631                 pt->data_queued = true;
2632
2633         if (pt->timeless_decoding)
2634                 pr_debug2("Intel PT decoding without timestamps\n");
2635
2636         return 0;
2637
2638 err_delete_thread:
2639         thread__zput(pt->unknown_thread);
2640 err_free_queues:
2641         intel_pt_log_disable();
2642         auxtrace_queues__free(&pt->queues);
2643         session->auxtrace = NULL;
2644 err_free:
2645         addr_filters__exit(&pt->filts);
2646         zfree(&pt->filter);
2647         free(pt);
2648         return err;
2649 }