Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-block.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <lk/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26
27 static struct {
28         bool sample_id_all;
29         bool exclude_guest;
30         bool mmap2;
31 } perf_missing_features;
32
33 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
34
35 int __perf_evsel__sample_size(u64 sample_type)
36 {
37         u64 mask = sample_type & PERF_SAMPLE_MASK;
38         int size = 0;
39         int i;
40
41         for (i = 0; i < 64; i++) {
42                 if (mask & (1ULL << i))
43                         size++;
44         }
45
46         size *= sizeof(u64);
47
48         return size;
49 }
50
51 /**
52  * __perf_evsel__calc_id_pos - calculate id_pos.
53  * @sample_type: sample type
54  *
55  * This function returns the position of the event id (PERF_SAMPLE_ID or
56  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
57  * sample_event.
58  */
59 static int __perf_evsel__calc_id_pos(u64 sample_type)
60 {
61         int idx = 0;
62
63         if (sample_type & PERF_SAMPLE_IDENTIFIER)
64                 return 0;
65
66         if (!(sample_type & PERF_SAMPLE_ID))
67                 return -1;
68
69         if (sample_type & PERF_SAMPLE_IP)
70                 idx += 1;
71
72         if (sample_type & PERF_SAMPLE_TID)
73                 idx += 1;
74
75         if (sample_type & PERF_SAMPLE_TIME)
76                 idx += 1;
77
78         if (sample_type & PERF_SAMPLE_ADDR)
79                 idx += 1;
80
81         return idx;
82 }
83
84 /**
85  * __perf_evsel__calc_is_pos - calculate is_pos.
86  * @sample_type: sample type
87  *
88  * This function returns the position (counting backwards) of the event id
89  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
90  * sample_id_all is used there is an id sample appended to non-sample events.
91  */
92 static int __perf_evsel__calc_is_pos(u64 sample_type)
93 {
94         int idx = 1;
95
96         if (sample_type & PERF_SAMPLE_IDENTIFIER)
97                 return 1;
98
99         if (!(sample_type & PERF_SAMPLE_ID))
100                 return -1;
101
102         if (sample_type & PERF_SAMPLE_CPU)
103                 idx += 1;
104
105         if (sample_type & PERF_SAMPLE_STREAM_ID)
106                 idx += 1;
107
108         return idx;
109 }
110
111 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
112 {
113         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
114         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
115 }
116
117 void hists__init(struct hists *hists)
118 {
119         memset(hists, 0, sizeof(*hists));
120         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
121         hists->entries_in = &hists->entries_in_array[0];
122         hists->entries_collapsed = RB_ROOT;
123         hists->entries = RB_ROOT;
124         pthread_mutex_init(&hists->lock, NULL);
125 }
126
127 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
128                                   enum perf_event_sample_format bit)
129 {
130         if (!(evsel->attr.sample_type & bit)) {
131                 evsel->attr.sample_type |= bit;
132                 evsel->sample_size += sizeof(u64);
133                 perf_evsel__calc_id_pos(evsel);
134         }
135 }
136
137 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
138                                     enum perf_event_sample_format bit)
139 {
140         if (evsel->attr.sample_type & bit) {
141                 evsel->attr.sample_type &= ~bit;
142                 evsel->sample_size -= sizeof(u64);
143                 perf_evsel__calc_id_pos(evsel);
144         }
145 }
146
147 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
148                                bool can_sample_identifier)
149 {
150         if (can_sample_identifier) {
151                 perf_evsel__reset_sample_bit(evsel, ID);
152                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
153         } else {
154                 perf_evsel__set_sample_bit(evsel, ID);
155         }
156         evsel->attr.read_format |= PERF_FORMAT_ID;
157 }
158
159 void perf_evsel__init(struct perf_evsel *evsel,
160                       struct perf_event_attr *attr, int idx)
161 {
162         evsel->idx         = idx;
163         evsel->attr        = *attr;
164         evsel->leader      = evsel;
165         INIT_LIST_HEAD(&evsel->node);
166         hists__init(&evsel->hists);
167         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
168         perf_evsel__calc_id_pos(evsel);
169 }
170
171 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
172 {
173         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
174
175         if (evsel != NULL)
176                 perf_evsel__init(evsel, attr, idx);
177
178         return evsel;
179 }
180
181 struct event_format *event_format__new(const char *sys, const char *name)
182 {
183         int fd, n;
184         char *filename;
185         void *bf = NULL, *nbf;
186         size_t size = 0, alloc_size = 0;
187         struct event_format *format = NULL;
188
189         if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
190                 goto out;
191
192         fd = open(filename, O_RDONLY);
193         if (fd < 0)
194                 goto out_free_filename;
195
196         do {
197                 if (size == alloc_size) {
198                         alloc_size += BUFSIZ;
199                         nbf = realloc(bf, alloc_size);
200                         if (nbf == NULL)
201                                 goto out_free_bf;
202                         bf = nbf;
203                 }
204
205                 n = read(fd, bf + size, alloc_size - size);
206                 if (n < 0)
207                         goto out_free_bf;
208                 size += n;
209         } while (n > 0);
210
211         pevent_parse_format(&format, bf, size, sys);
212
213 out_free_bf:
214         free(bf);
215         close(fd);
216 out_free_filename:
217         free(filename);
218 out:
219         return format;
220 }
221
222 struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx)
223 {
224         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
225
226         if (evsel != NULL) {
227                 struct perf_event_attr attr = {
228                         .type          = PERF_TYPE_TRACEPOINT,
229                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
230                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
231                 };
232
233                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
234                         goto out_free;
235
236                 evsel->tp_format = event_format__new(sys, name);
237                 if (evsel->tp_format == NULL)
238                         goto out_free;
239
240                 event_attr_init(&attr);
241                 attr.config = evsel->tp_format->id;
242                 attr.sample_period = 1;
243                 perf_evsel__init(evsel, &attr, idx);
244         }
245
246         return evsel;
247
248 out_free:
249         free(evsel->name);
250         free(evsel);
251         return NULL;
252 }
253
254 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
255         "cycles",
256         "instructions",
257         "cache-references",
258         "cache-misses",
259         "branches",
260         "branch-misses",
261         "bus-cycles",
262         "stalled-cycles-frontend",
263         "stalled-cycles-backend",
264         "ref-cycles",
265 };
266
267 static const char *__perf_evsel__hw_name(u64 config)
268 {
269         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
270                 return perf_evsel__hw_names[config];
271
272         return "unknown-hardware";
273 }
274
275 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
276 {
277         int colon = 0, r = 0;
278         struct perf_event_attr *attr = &evsel->attr;
279         bool exclude_guest_default = false;
280
281 #define MOD_PRINT(context, mod) do {                                    \
282                 if (!attr->exclude_##context) {                         \
283                         if (!colon) colon = ++r;                        \
284                         r += scnprintf(bf + r, size - r, "%c", mod);    \
285                 } } while(0)
286
287         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
288                 MOD_PRINT(kernel, 'k');
289                 MOD_PRINT(user, 'u');
290                 MOD_PRINT(hv, 'h');
291                 exclude_guest_default = true;
292         }
293
294         if (attr->precise_ip) {
295                 if (!colon)
296                         colon = ++r;
297                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
298                 exclude_guest_default = true;
299         }
300
301         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
302                 MOD_PRINT(host, 'H');
303                 MOD_PRINT(guest, 'G');
304         }
305 #undef MOD_PRINT
306         if (colon)
307                 bf[colon - 1] = ':';
308         return r;
309 }
310
311 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
312 {
313         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
314         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
315 }
316
317 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
318         "cpu-clock",
319         "task-clock",
320         "page-faults",
321         "context-switches",
322         "cpu-migrations",
323         "minor-faults",
324         "major-faults",
325         "alignment-faults",
326         "emulation-faults",
327         "dummy",
328 };
329
330 static const char *__perf_evsel__sw_name(u64 config)
331 {
332         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
333                 return perf_evsel__sw_names[config];
334         return "unknown-software";
335 }
336
337 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
338 {
339         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
340         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
341 }
342
343 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
344 {
345         int r;
346
347         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
348
349         if (type & HW_BREAKPOINT_R)
350                 r += scnprintf(bf + r, size - r, "r");
351
352         if (type & HW_BREAKPOINT_W)
353                 r += scnprintf(bf + r, size - r, "w");
354
355         if (type & HW_BREAKPOINT_X)
356                 r += scnprintf(bf + r, size - r, "x");
357
358         return r;
359 }
360
361 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
362 {
363         struct perf_event_attr *attr = &evsel->attr;
364         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
365         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
366 }
367
368 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
369                                 [PERF_EVSEL__MAX_ALIASES] = {
370  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
371  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
372  { "LLC",       "L2",                                                   },
373  { "dTLB",      "d-tlb",        "Data-TLB",                             },
374  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
375  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
376  { "node",                                                              },
377 };
378
379 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
380                                    [PERF_EVSEL__MAX_ALIASES] = {
381  { "load",      "loads",        "read",                                 },
382  { "store",     "stores",       "write",                                },
383  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
384 };
385
386 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
387                                        [PERF_EVSEL__MAX_ALIASES] = {
388  { "refs",      "Reference",    "ops",          "access",               },
389  { "misses",    "miss",                                                 },
390 };
391
392 #define C(x)            PERF_COUNT_HW_CACHE_##x
393 #define CACHE_READ      (1 << C(OP_READ))
394 #define CACHE_WRITE     (1 << C(OP_WRITE))
395 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
396 #define COP(x)          (1 << x)
397
398 /*
399  * cache operartion stat
400  * L1I : Read and prefetch only
401  * ITLB and BPU : Read-only
402  */
403 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
404  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
406  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
408  [C(ITLB)]      = (CACHE_READ),
409  [C(BPU)]       = (CACHE_READ),
410  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
411 };
412
413 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
414 {
415         if (perf_evsel__hw_cache_stat[type] & COP(op))
416                 return true;    /* valid */
417         else
418                 return false;   /* invalid */
419 }
420
421 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
422                                             char *bf, size_t size)
423 {
424         if (result) {
425                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
426                                  perf_evsel__hw_cache_op[op][0],
427                                  perf_evsel__hw_cache_result[result][0]);
428         }
429
430         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
431                          perf_evsel__hw_cache_op[op][1]);
432 }
433
434 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
435 {
436         u8 op, result, type = (config >>  0) & 0xff;
437         const char *err = "unknown-ext-hardware-cache-type";
438
439         if (type > PERF_COUNT_HW_CACHE_MAX)
440                 goto out_err;
441
442         op = (config >>  8) & 0xff;
443         err = "unknown-ext-hardware-cache-op";
444         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
445                 goto out_err;
446
447         result = (config >> 16) & 0xff;
448         err = "unknown-ext-hardware-cache-result";
449         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
450                 goto out_err;
451
452         err = "invalid-cache";
453         if (!perf_evsel__is_cache_op_valid(type, op))
454                 goto out_err;
455
456         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
457 out_err:
458         return scnprintf(bf, size, "%s", err);
459 }
460
461 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
462 {
463         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
464         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
465 }
466
467 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
468 {
469         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
470         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
471 }
472
473 const char *perf_evsel__name(struct perf_evsel *evsel)
474 {
475         char bf[128];
476
477         if (evsel->name)
478                 return evsel->name;
479
480         switch (evsel->attr.type) {
481         case PERF_TYPE_RAW:
482                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
483                 break;
484
485         case PERF_TYPE_HARDWARE:
486                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
487                 break;
488
489         case PERF_TYPE_HW_CACHE:
490                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
491                 break;
492
493         case PERF_TYPE_SOFTWARE:
494                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
495                 break;
496
497         case PERF_TYPE_TRACEPOINT:
498                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
499                 break;
500
501         case PERF_TYPE_BREAKPOINT:
502                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
503                 break;
504
505         default:
506                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
507                           evsel->attr.type);
508                 break;
509         }
510
511         evsel->name = strdup(bf);
512
513         return evsel->name ?: "unknown";
514 }
515
516 const char *perf_evsel__group_name(struct perf_evsel *evsel)
517 {
518         return evsel->group_name ?: "anon group";
519 }
520
521 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
522 {
523         int ret;
524         struct perf_evsel *pos;
525         const char *group_name = perf_evsel__group_name(evsel);
526
527         ret = scnprintf(buf, size, "%s", group_name);
528
529         ret += scnprintf(buf + ret, size - ret, " { %s",
530                          perf_evsel__name(evsel));
531
532         for_each_group_member(pos, evsel)
533                 ret += scnprintf(buf + ret, size - ret, ", %s",
534                                  perf_evsel__name(pos));
535
536         ret += scnprintf(buf + ret, size - ret, " }");
537
538         return ret;
539 }
540
541 /*
542  * The enable_on_exec/disabled value strategy:
543  *
544  *  1) For any type of traced program:
545  *    - all independent events and group leaders are disabled
546  *    - all group members are enabled
547  *
548  *     Group members are ruled by group leaders. They need to
549  *     be enabled, because the group scheduling relies on that.
550  *
551  *  2) For traced programs executed by perf:
552  *     - all independent events and group leaders have
553  *       enable_on_exec set
554  *     - we don't specifically enable or disable any event during
555  *       the record command
556  *
557  *     Independent events and group leaders are initially disabled
558  *     and get enabled by exec. Group members are ruled by group
559  *     leaders as stated in 1).
560  *
561  *  3) For traced programs attached by perf (pid/tid):
562  *     - we specifically enable or disable all events during
563  *       the record command
564  *
565  *     When attaching events to already running traced we
566  *     enable/disable events specifically, as there's no
567  *     initial traced exec call.
568  */
569 void perf_evsel__config(struct perf_evsel *evsel,
570                         struct perf_record_opts *opts)
571 {
572         struct perf_evsel *leader = evsel->leader;
573         struct perf_event_attr *attr = &evsel->attr;
574         int track = !evsel->idx; /* only the first counter needs these */
575
576         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
577         attr->inherit       = !opts->no_inherit;
578
579         perf_evsel__set_sample_bit(evsel, IP);
580         perf_evsel__set_sample_bit(evsel, TID);
581
582         if (evsel->sample_read) {
583                 perf_evsel__set_sample_bit(evsel, READ);
584
585                 /*
586                  * We need ID even in case of single event, because
587                  * PERF_SAMPLE_READ process ID specific data.
588                  */
589                 perf_evsel__set_sample_id(evsel, false);
590
591                 /*
592                  * Apply group format only if we belong to group
593                  * with more than one members.
594                  */
595                 if (leader->nr_members > 1) {
596                         attr->read_format |= PERF_FORMAT_GROUP;
597                         attr->inherit = 0;
598                 }
599         }
600
601         /*
602          * We default some events to a 1 default interval. But keep
603          * it a weak assumption overridable by the user.
604          */
605         if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
606                                      opts->user_interval != ULLONG_MAX)) {
607                 if (opts->freq) {
608                         perf_evsel__set_sample_bit(evsel, PERIOD);
609                         attr->freq              = 1;
610                         attr->sample_freq       = opts->freq;
611                 } else {
612                         attr->sample_period = opts->default_interval;
613                 }
614         }
615
616         /*
617          * Disable sampling for all group members other
618          * than leader in case leader 'leads' the sampling.
619          */
620         if ((leader != evsel) && leader->sample_read) {
621                 attr->sample_freq   = 0;
622                 attr->sample_period = 0;
623         }
624
625         if (opts->no_samples)
626                 attr->sample_freq = 0;
627
628         if (opts->inherit_stat)
629                 attr->inherit_stat = 1;
630
631         if (opts->sample_address) {
632                 perf_evsel__set_sample_bit(evsel, ADDR);
633                 attr->mmap_data = track;
634         }
635
636         if (opts->call_graph) {
637                 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
638
639                 if (opts->call_graph == CALLCHAIN_DWARF) {
640                         perf_evsel__set_sample_bit(evsel, REGS_USER);
641                         perf_evsel__set_sample_bit(evsel, STACK_USER);
642                         attr->sample_regs_user = PERF_REGS_MASK;
643                         attr->sample_stack_user = opts->stack_dump_size;
644                         attr->exclude_callchain_user = 1;
645                 }
646         }
647
648         if (perf_target__has_cpu(&opts->target))
649                 perf_evsel__set_sample_bit(evsel, CPU);
650
651         if (opts->period)
652                 perf_evsel__set_sample_bit(evsel, PERIOD);
653
654         if (!perf_missing_features.sample_id_all &&
655             (opts->sample_time || !opts->no_inherit ||
656              perf_target__has_cpu(&opts->target)))
657                 perf_evsel__set_sample_bit(evsel, TIME);
658
659         if (opts->raw_samples) {
660                 perf_evsel__set_sample_bit(evsel, TIME);
661                 perf_evsel__set_sample_bit(evsel, RAW);
662                 perf_evsel__set_sample_bit(evsel, CPU);
663         }
664
665         if (opts->sample_address)
666                 attr->sample_type       |= PERF_SAMPLE_DATA_SRC;
667
668         if (opts->no_delay) {
669                 attr->watermark = 0;
670                 attr->wakeup_events = 1;
671         }
672         if (opts->branch_stack) {
673                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
674                 attr->branch_sample_type = opts->branch_stack;
675         }
676
677         if (opts->sample_weight)
678                 attr->sample_type       |= PERF_SAMPLE_WEIGHT;
679
680         attr->mmap  = track;
681         attr->mmap2 = track && !perf_missing_features.mmap2;
682         attr->comm  = track;
683
684         /*
685          * XXX see the function comment above
686          *
687          * Disabling only independent events or group leaders,
688          * keeping group members enabled.
689          */
690         if (perf_evsel__is_group_leader(evsel))
691                 attr->disabled = 1;
692
693         /*
694          * Setting enable_on_exec for independent events and
695          * group leaders for traced executed by perf.
696          */
697         if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
698                 attr->enable_on_exec = 1;
699 }
700
701 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
702 {
703         int cpu, thread;
704         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
705
706         if (evsel->fd) {
707                 for (cpu = 0; cpu < ncpus; cpu++) {
708                         for (thread = 0; thread < nthreads; thread++) {
709                                 FD(evsel, cpu, thread) = -1;
710                         }
711                 }
712         }
713
714         return evsel->fd != NULL ? 0 : -ENOMEM;
715 }
716
717 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
718                           int ioc,  void *arg)
719 {
720         int cpu, thread;
721
722         for (cpu = 0; cpu < ncpus; cpu++) {
723                 for (thread = 0; thread < nthreads; thread++) {
724                         int fd = FD(evsel, cpu, thread),
725                             err = ioctl(fd, ioc, arg);
726
727                         if (err)
728                                 return err;
729                 }
730         }
731
732         return 0;
733 }
734
735 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
736                            const char *filter)
737 {
738         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
739                                      PERF_EVENT_IOC_SET_FILTER,
740                                      (void *)filter);
741 }
742
743 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
744 {
745         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
746                                      PERF_EVENT_IOC_ENABLE,
747                                      0);
748 }
749
750 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
751 {
752         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
753         if (evsel->sample_id == NULL)
754                 return -ENOMEM;
755
756         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
757         if (evsel->id == NULL) {
758                 xyarray__delete(evsel->sample_id);
759                 evsel->sample_id = NULL;
760                 return -ENOMEM;
761         }
762
763         return 0;
764 }
765
766 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
767 {
768         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
769                                  (ncpus * sizeof(struct perf_counts_values))));
770 }
771
772 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
773 {
774         evsel->counts = zalloc((sizeof(*evsel->counts) +
775                                 (ncpus * sizeof(struct perf_counts_values))));
776         return evsel->counts != NULL ? 0 : -ENOMEM;
777 }
778
779 void perf_evsel__free_fd(struct perf_evsel *evsel)
780 {
781         xyarray__delete(evsel->fd);
782         evsel->fd = NULL;
783 }
784
785 void perf_evsel__free_id(struct perf_evsel *evsel)
786 {
787         xyarray__delete(evsel->sample_id);
788         evsel->sample_id = NULL;
789         free(evsel->id);
790         evsel->id = NULL;
791 }
792
793 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
794 {
795         int cpu, thread;
796
797         for (cpu = 0; cpu < ncpus; cpu++)
798                 for (thread = 0; thread < nthreads; ++thread) {
799                         close(FD(evsel, cpu, thread));
800                         FD(evsel, cpu, thread) = -1;
801                 }
802 }
803
804 void perf_evsel__free_counts(struct perf_evsel *evsel)
805 {
806         free(evsel->counts);
807 }
808
809 void perf_evsel__exit(struct perf_evsel *evsel)
810 {
811         assert(list_empty(&evsel->node));
812         perf_evsel__free_fd(evsel);
813         perf_evsel__free_id(evsel);
814 }
815
816 void perf_evsel__delete(struct perf_evsel *evsel)
817 {
818         perf_evsel__exit(evsel);
819         close_cgroup(evsel->cgrp);
820         free(evsel->group_name);
821         if (evsel->tp_format)
822                 pevent_free_format(evsel->tp_format);
823         free(evsel->name);
824         free(evsel);
825 }
826
827 static inline void compute_deltas(struct perf_evsel *evsel,
828                                   int cpu,
829                                   struct perf_counts_values *count)
830 {
831         struct perf_counts_values tmp;
832
833         if (!evsel->prev_raw_counts)
834                 return;
835
836         if (cpu == -1) {
837                 tmp = evsel->prev_raw_counts->aggr;
838                 evsel->prev_raw_counts->aggr = *count;
839         } else {
840                 tmp = evsel->prev_raw_counts->cpu[cpu];
841                 evsel->prev_raw_counts->cpu[cpu] = *count;
842         }
843
844         count->val = count->val - tmp.val;
845         count->ena = count->ena - tmp.ena;
846         count->run = count->run - tmp.run;
847 }
848
849 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
850                               int cpu, int thread, bool scale)
851 {
852         struct perf_counts_values count;
853         size_t nv = scale ? 3 : 1;
854
855         if (FD(evsel, cpu, thread) < 0)
856                 return -EINVAL;
857
858         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
859                 return -ENOMEM;
860
861         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
862                 return -errno;
863
864         compute_deltas(evsel, cpu, &count);
865
866         if (scale) {
867                 if (count.run == 0)
868                         count.val = 0;
869                 else if (count.run < count.ena)
870                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
871         } else
872                 count.ena = count.run = 0;
873
874         evsel->counts->cpu[cpu] = count;
875         return 0;
876 }
877
878 int __perf_evsel__read(struct perf_evsel *evsel,
879                        int ncpus, int nthreads, bool scale)
880 {
881         size_t nv = scale ? 3 : 1;
882         int cpu, thread;
883         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
884
885         aggr->val = aggr->ena = aggr->run = 0;
886
887         for (cpu = 0; cpu < ncpus; cpu++) {
888                 for (thread = 0; thread < nthreads; thread++) {
889                         if (FD(evsel, cpu, thread) < 0)
890                                 continue;
891
892                         if (readn(FD(evsel, cpu, thread),
893                                   &count, nv * sizeof(u64)) < 0)
894                                 return -errno;
895
896                         aggr->val += count.val;
897                         if (scale) {
898                                 aggr->ena += count.ena;
899                                 aggr->run += count.run;
900                         }
901                 }
902         }
903
904         compute_deltas(evsel, -1, aggr);
905
906         evsel->counts->scaled = 0;
907         if (scale) {
908                 if (aggr->run == 0) {
909                         evsel->counts->scaled = -1;
910                         aggr->val = 0;
911                         return 0;
912                 }
913
914                 if (aggr->run < aggr->ena) {
915                         evsel->counts->scaled = 1;
916                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
917                 }
918         } else
919                 aggr->ena = aggr->run = 0;
920
921         return 0;
922 }
923
924 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
925 {
926         struct perf_evsel *leader = evsel->leader;
927         int fd;
928
929         if (perf_evsel__is_group_leader(evsel))
930                 return -1;
931
932         /*
933          * Leader must be already processed/open,
934          * if not it's a bug.
935          */
936         BUG_ON(!leader->fd);
937
938         fd = FD(leader, cpu, thread);
939         BUG_ON(fd == -1);
940
941         return fd;
942 }
943
944 #define __PRINT_ATTR(fmt, cast, field)  \
945         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
946
947 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
948 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
949 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
950 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
951
952 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
953         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
954         name1, attr->field1, name2, attr->field2)
955
956 #define PRINT_ATTR2(field1, field2) \
957         PRINT_ATTR2N(#field1, field1, #field2, field2)
958
959 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
960 {
961         size_t ret = 0;
962
963         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
964         ret += fprintf(fp, "perf_event_attr:\n");
965
966         ret += PRINT_ATTR_U32(type);
967         ret += PRINT_ATTR_U32(size);
968         ret += PRINT_ATTR_X64(config);
969         ret += PRINT_ATTR_U64(sample_period);
970         ret += PRINT_ATTR_U64(sample_freq);
971         ret += PRINT_ATTR_X64(sample_type);
972         ret += PRINT_ATTR_X64(read_format);
973
974         ret += PRINT_ATTR2(disabled, inherit);
975         ret += PRINT_ATTR2(pinned, exclusive);
976         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
977         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
978         ret += PRINT_ATTR2(mmap, comm);
979         ret += PRINT_ATTR2(freq, inherit_stat);
980         ret += PRINT_ATTR2(enable_on_exec, task);
981         ret += PRINT_ATTR2(watermark, precise_ip);
982         ret += PRINT_ATTR2(mmap_data, sample_id_all);
983         ret += PRINT_ATTR2(exclude_host, exclude_guest);
984         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
985                             "excl.callchain_user", exclude_callchain_user);
986
987         ret += PRINT_ATTR_U32(wakeup_events);
988         ret += PRINT_ATTR_U32(wakeup_watermark);
989         ret += PRINT_ATTR_X32(bp_type);
990         ret += PRINT_ATTR_X64(bp_addr);
991         ret += PRINT_ATTR_X64(config1);
992         ret += PRINT_ATTR_U64(bp_len);
993         ret += PRINT_ATTR_X64(config2);
994         ret += PRINT_ATTR_X64(branch_sample_type);
995         ret += PRINT_ATTR_X64(sample_regs_user);
996         ret += PRINT_ATTR_U32(sample_stack_user);
997
998         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
999
1000         return ret;
1001 }
1002
1003 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1004                               struct thread_map *threads)
1005 {
1006         int cpu, thread;
1007         unsigned long flags = 0;
1008         int pid = -1, err;
1009         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1010
1011         if (evsel->fd == NULL &&
1012             perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1013                 return -ENOMEM;
1014
1015         if (evsel->cgrp) {
1016                 flags = PERF_FLAG_PID_CGROUP;
1017                 pid = evsel->cgrp->fd;
1018         }
1019
1020 fallback_missing_features:
1021         if (perf_missing_features.mmap2)
1022                 evsel->attr.mmap2 = 0;
1023         if (perf_missing_features.exclude_guest)
1024                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1025 retry_sample_id:
1026         if (perf_missing_features.sample_id_all)
1027                 evsel->attr.sample_id_all = 0;
1028
1029         if (verbose >= 2)
1030                 perf_event_attr__fprintf(&evsel->attr, stderr);
1031
1032         for (cpu = 0; cpu < cpus->nr; cpu++) {
1033
1034                 for (thread = 0; thread < threads->nr; thread++) {
1035                         int group_fd;
1036
1037                         if (!evsel->cgrp)
1038                                 pid = threads->map[thread];
1039
1040                         group_fd = get_group_fd(evsel, cpu, thread);
1041 retry_open:
1042                         pr_debug2("perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1043                                   pid, cpus->map[cpu], group_fd, flags);
1044
1045                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1046                                                                      pid,
1047                                                                      cpus->map[cpu],
1048                                                                      group_fd, flags);
1049                         if (FD(evsel, cpu, thread) < 0) {
1050                                 err = -errno;
1051                                 goto try_fallback;
1052                         }
1053                         set_rlimit = NO_CHANGE;
1054                 }
1055         }
1056
1057         return 0;
1058
1059 try_fallback:
1060         /*
1061          * perf stat needs between 5 and 22 fds per CPU. When we run out
1062          * of them try to increase the limits.
1063          */
1064         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1065                 struct rlimit l;
1066                 int old_errno = errno;
1067
1068                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1069                         if (set_rlimit == NO_CHANGE)
1070                                 l.rlim_cur = l.rlim_max;
1071                         else {
1072                                 l.rlim_cur = l.rlim_max + 1000;
1073                                 l.rlim_max = l.rlim_cur;
1074                         }
1075                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1076                                 set_rlimit++;
1077                                 errno = old_errno;
1078                                 goto retry_open;
1079                         }
1080                 }
1081                 errno = old_errno;
1082         }
1083
1084         if (err != -EINVAL || cpu > 0 || thread > 0)
1085                 goto out_close;
1086
1087         if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1088                 perf_missing_features.mmap2 = true;
1089                 goto fallback_missing_features;
1090         } else if (!perf_missing_features.exclude_guest &&
1091                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1092                 perf_missing_features.exclude_guest = true;
1093                 goto fallback_missing_features;
1094         } else if (!perf_missing_features.sample_id_all) {
1095                 perf_missing_features.sample_id_all = true;
1096                 goto retry_sample_id;
1097         }
1098
1099 out_close:
1100         do {
1101                 while (--thread >= 0) {
1102                         close(FD(evsel, cpu, thread));
1103                         FD(evsel, cpu, thread) = -1;
1104                 }
1105                 thread = threads->nr;
1106         } while (--cpu >= 0);
1107         return err;
1108 }
1109
1110 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1111 {
1112         if (evsel->fd == NULL)
1113                 return;
1114
1115         perf_evsel__close_fd(evsel, ncpus, nthreads);
1116         perf_evsel__free_fd(evsel);
1117         evsel->fd = NULL;
1118 }
1119
1120 static struct {
1121         struct cpu_map map;
1122         int cpus[1];
1123 } empty_cpu_map = {
1124         .map.nr = 1,
1125         .cpus   = { -1, },
1126 };
1127
1128 static struct {
1129         struct thread_map map;
1130         int threads[1];
1131 } empty_thread_map = {
1132         .map.nr  = 1,
1133         .threads = { -1, },
1134 };
1135
1136 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1137                      struct thread_map *threads)
1138 {
1139         if (cpus == NULL) {
1140                 /* Work around old compiler warnings about strict aliasing */
1141                 cpus = &empty_cpu_map.map;
1142         }
1143
1144         if (threads == NULL)
1145                 threads = &empty_thread_map.map;
1146
1147         return __perf_evsel__open(evsel, cpus, threads);
1148 }
1149
1150 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1151                              struct cpu_map *cpus)
1152 {
1153         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1154 }
1155
1156 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1157                                 struct thread_map *threads)
1158 {
1159         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1160 }
1161
1162 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1163                                        const union perf_event *event,
1164                                        struct perf_sample *sample)
1165 {
1166         u64 type = evsel->attr.sample_type;
1167         const u64 *array = event->sample.array;
1168         bool swapped = evsel->needs_swap;
1169         union u64_swap u;
1170
1171         array += ((event->header.size -
1172                    sizeof(event->header)) / sizeof(u64)) - 1;
1173
1174         if (type & PERF_SAMPLE_IDENTIFIER) {
1175                 sample->id = *array;
1176                 array--;
1177         }
1178
1179         if (type & PERF_SAMPLE_CPU) {
1180                 u.val64 = *array;
1181                 if (swapped) {
1182                         /* undo swap of u64, then swap on individual u32s */
1183                         u.val64 = bswap_64(u.val64);
1184                         u.val32[0] = bswap_32(u.val32[0]);
1185                 }
1186
1187                 sample->cpu = u.val32[0];
1188                 array--;
1189         }
1190
1191         if (type & PERF_SAMPLE_STREAM_ID) {
1192                 sample->stream_id = *array;
1193                 array--;
1194         }
1195
1196         if (type & PERF_SAMPLE_ID) {
1197                 sample->id = *array;
1198                 array--;
1199         }
1200
1201         if (type & PERF_SAMPLE_TIME) {
1202                 sample->time = *array;
1203                 array--;
1204         }
1205
1206         if (type & PERF_SAMPLE_TID) {
1207                 u.val64 = *array;
1208                 if (swapped) {
1209                         /* undo swap of u64, then swap on individual u32s */
1210                         u.val64 = bswap_64(u.val64);
1211                         u.val32[0] = bswap_32(u.val32[0]);
1212                         u.val32[1] = bswap_32(u.val32[1]);
1213                 }
1214
1215                 sample->pid = u.val32[0];
1216                 sample->tid = u.val32[1];
1217         }
1218
1219         return 0;
1220 }
1221
1222 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1223                             u64 size)
1224 {
1225         return size > max_size || offset + size > endp;
1226 }
1227
1228 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1229         do {                                                            \
1230                 if (overflow(endp, (max_size), (offset), (size)))       \
1231                         return -EFAULT;                                 \
1232         } while (0)
1233
1234 #define OVERFLOW_CHECK_u64(offset) \
1235         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1236
1237 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1238                              struct perf_sample *data)
1239 {
1240         u64 type = evsel->attr.sample_type;
1241         bool swapped = evsel->needs_swap;
1242         const u64 *array;
1243         u16 max_size = event->header.size;
1244         const void *endp = (void *)event + max_size;
1245         u64 sz;
1246
1247         /*
1248          * used for cross-endian analysis. See git commit 65014ab3
1249          * for why this goofiness is needed.
1250          */
1251         union u64_swap u;
1252
1253         memset(data, 0, sizeof(*data));
1254         data->cpu = data->pid = data->tid = -1;
1255         data->stream_id = data->id = data->time = -1ULL;
1256         data->period = 1;
1257         data->weight = 0;
1258
1259         if (event->header.type != PERF_RECORD_SAMPLE) {
1260                 if (!evsel->attr.sample_id_all)
1261                         return 0;
1262                 return perf_evsel__parse_id_sample(evsel, event, data);
1263         }
1264
1265         array = event->sample.array;
1266
1267         /*
1268          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1269          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1270          * check the format does not go past the end of the event.
1271          */
1272         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1273                 return -EFAULT;
1274
1275         data->id = -1ULL;
1276         if (type & PERF_SAMPLE_IDENTIFIER) {
1277                 data->id = *array;
1278                 array++;
1279         }
1280
1281         if (type & PERF_SAMPLE_IP) {
1282                 data->ip = *array;
1283                 array++;
1284         }
1285
1286         if (type & PERF_SAMPLE_TID) {
1287                 u.val64 = *array;
1288                 if (swapped) {
1289                         /* undo swap of u64, then swap on individual u32s */
1290                         u.val64 = bswap_64(u.val64);
1291                         u.val32[0] = bswap_32(u.val32[0]);
1292                         u.val32[1] = bswap_32(u.val32[1]);
1293                 }
1294
1295                 data->pid = u.val32[0];
1296                 data->tid = u.val32[1];
1297                 array++;
1298         }
1299
1300         if (type & PERF_SAMPLE_TIME) {
1301                 data->time = *array;
1302                 array++;
1303         }
1304
1305         data->addr = 0;
1306         if (type & PERF_SAMPLE_ADDR) {
1307                 data->addr = *array;
1308                 array++;
1309         }
1310
1311         if (type & PERF_SAMPLE_ID) {
1312                 data->id = *array;
1313                 array++;
1314         }
1315
1316         if (type & PERF_SAMPLE_STREAM_ID) {
1317                 data->stream_id = *array;
1318                 array++;
1319         }
1320
1321         if (type & PERF_SAMPLE_CPU) {
1322
1323                 u.val64 = *array;
1324                 if (swapped) {
1325                         /* undo swap of u64, then swap on individual u32s */
1326                         u.val64 = bswap_64(u.val64);
1327                         u.val32[0] = bswap_32(u.val32[0]);
1328                 }
1329
1330                 data->cpu = u.val32[0];
1331                 array++;
1332         }
1333
1334         if (type & PERF_SAMPLE_PERIOD) {
1335                 data->period = *array;
1336                 array++;
1337         }
1338
1339         if (type & PERF_SAMPLE_READ) {
1340                 u64 read_format = evsel->attr.read_format;
1341
1342                 OVERFLOW_CHECK_u64(array);
1343                 if (read_format & PERF_FORMAT_GROUP)
1344                         data->read.group.nr = *array;
1345                 else
1346                         data->read.one.value = *array;
1347
1348                 array++;
1349
1350                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1351                         OVERFLOW_CHECK_u64(array);
1352                         data->read.time_enabled = *array;
1353                         array++;
1354                 }
1355
1356                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1357                         OVERFLOW_CHECK_u64(array);
1358                         data->read.time_running = *array;
1359                         array++;
1360                 }
1361
1362                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1363                 if (read_format & PERF_FORMAT_GROUP) {
1364                         const u64 max_group_nr = UINT64_MAX /
1365                                         sizeof(struct sample_read_value);
1366
1367                         if (data->read.group.nr > max_group_nr)
1368                                 return -EFAULT;
1369                         sz = data->read.group.nr *
1370                              sizeof(struct sample_read_value);
1371                         OVERFLOW_CHECK(array, sz, max_size);
1372                         data->read.group.values =
1373                                         (struct sample_read_value *)array;
1374                         array = (void *)array + sz;
1375                 } else {
1376                         OVERFLOW_CHECK_u64(array);
1377                         data->read.one.id = *array;
1378                         array++;
1379                 }
1380         }
1381
1382         if (type & PERF_SAMPLE_CALLCHAIN) {
1383                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1384
1385                 OVERFLOW_CHECK_u64(array);
1386                 data->callchain = (struct ip_callchain *)array++;
1387                 if (data->callchain->nr > max_callchain_nr)
1388                         return -EFAULT;
1389                 sz = data->callchain->nr * sizeof(u64);
1390                 OVERFLOW_CHECK(array, sz, max_size);
1391                 array = (void *)array + sz;
1392         }
1393
1394         if (type & PERF_SAMPLE_RAW) {
1395                 OVERFLOW_CHECK_u64(array);
1396                 u.val64 = *array;
1397                 if (WARN_ONCE(swapped,
1398                               "Endianness of raw data not corrected!\n")) {
1399                         /* undo swap of u64, then swap on individual u32s */
1400                         u.val64 = bswap_64(u.val64);
1401                         u.val32[0] = bswap_32(u.val32[0]);
1402                         u.val32[1] = bswap_32(u.val32[1]);
1403                 }
1404                 data->raw_size = u.val32[0];
1405                 array = (void *)array + sizeof(u32);
1406
1407                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1408                 data->raw_data = (void *)array;
1409                 array = (void *)array + data->raw_size;
1410         }
1411
1412         if (type & PERF_SAMPLE_BRANCH_STACK) {
1413                 const u64 max_branch_nr = UINT64_MAX /
1414                                           sizeof(struct branch_entry);
1415
1416                 OVERFLOW_CHECK_u64(array);
1417                 data->branch_stack = (struct branch_stack *)array++;
1418
1419                 if (data->branch_stack->nr > max_branch_nr)
1420                         return -EFAULT;
1421                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1422                 OVERFLOW_CHECK(array, sz, max_size);
1423                 array = (void *)array + sz;
1424         }
1425
1426         if (type & PERF_SAMPLE_REGS_USER) {
1427                 OVERFLOW_CHECK_u64(array);
1428                 data->user_regs.abi = *array;
1429                 array++;
1430
1431                 if (data->user_regs.abi) {
1432                         u64 regs_user = evsel->attr.sample_regs_user;
1433
1434                         sz = hweight_long(regs_user) * sizeof(u64);
1435                         OVERFLOW_CHECK(array, sz, max_size);
1436                         data->user_regs.regs = (u64 *)array;
1437                         array = (void *)array + sz;
1438                 }
1439         }
1440
1441         if (type & PERF_SAMPLE_STACK_USER) {
1442                 OVERFLOW_CHECK_u64(array);
1443                 sz = *array++;
1444
1445                 data->user_stack.offset = ((char *)(array - 1)
1446                                           - (char *) event);
1447
1448                 if (!sz) {
1449                         data->user_stack.size = 0;
1450                 } else {
1451                         OVERFLOW_CHECK(array, sz, max_size);
1452                         data->user_stack.data = (char *)array;
1453                         array = (void *)array + sz;
1454                         OVERFLOW_CHECK_u64(array);
1455                         data->user_stack.size = *array++;
1456                 }
1457         }
1458
1459         data->weight = 0;
1460         if (type & PERF_SAMPLE_WEIGHT) {
1461                 OVERFLOW_CHECK_u64(array);
1462                 data->weight = *array;
1463                 array++;
1464         }
1465
1466         data->data_src = PERF_MEM_DATA_SRC_NONE;
1467         if (type & PERF_SAMPLE_DATA_SRC) {
1468                 OVERFLOW_CHECK_u64(array);
1469                 data->data_src = *array;
1470                 array++;
1471         }
1472
1473         return 0;
1474 }
1475
1476 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1477                                      u64 sample_regs_user, u64 read_format)
1478 {
1479         size_t sz, result = sizeof(struct sample_event);
1480
1481         if (type & PERF_SAMPLE_IDENTIFIER)
1482                 result += sizeof(u64);
1483
1484         if (type & PERF_SAMPLE_IP)
1485                 result += sizeof(u64);
1486
1487         if (type & PERF_SAMPLE_TID)
1488                 result += sizeof(u64);
1489
1490         if (type & PERF_SAMPLE_TIME)
1491                 result += sizeof(u64);
1492
1493         if (type & PERF_SAMPLE_ADDR)
1494                 result += sizeof(u64);
1495
1496         if (type & PERF_SAMPLE_ID)
1497                 result += sizeof(u64);
1498
1499         if (type & PERF_SAMPLE_STREAM_ID)
1500                 result += sizeof(u64);
1501
1502         if (type & PERF_SAMPLE_CPU)
1503                 result += sizeof(u64);
1504
1505         if (type & PERF_SAMPLE_PERIOD)
1506                 result += sizeof(u64);
1507
1508         if (type & PERF_SAMPLE_READ) {
1509                 result += sizeof(u64);
1510                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1511                         result += sizeof(u64);
1512                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1513                         result += sizeof(u64);
1514                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1515                 if (read_format & PERF_FORMAT_GROUP) {
1516                         sz = sample->read.group.nr *
1517                              sizeof(struct sample_read_value);
1518                         result += sz;
1519                 } else {
1520                         result += sizeof(u64);
1521                 }
1522         }
1523
1524         if (type & PERF_SAMPLE_CALLCHAIN) {
1525                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1526                 result += sz;
1527         }
1528
1529         if (type & PERF_SAMPLE_RAW) {
1530                 result += sizeof(u32);
1531                 result += sample->raw_size;
1532         }
1533
1534         if (type & PERF_SAMPLE_BRANCH_STACK) {
1535                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1536                 sz += sizeof(u64);
1537                 result += sz;
1538         }
1539
1540         if (type & PERF_SAMPLE_REGS_USER) {
1541                 if (sample->user_regs.abi) {
1542                         result += sizeof(u64);
1543                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1544                         result += sz;
1545                 } else {
1546                         result += sizeof(u64);
1547                 }
1548         }
1549
1550         if (type & PERF_SAMPLE_STACK_USER) {
1551                 sz = sample->user_stack.size;
1552                 result += sizeof(u64);
1553                 if (sz) {
1554                         result += sz;
1555                         result += sizeof(u64);
1556                 }
1557         }
1558
1559         if (type & PERF_SAMPLE_WEIGHT)
1560                 result += sizeof(u64);
1561
1562         if (type & PERF_SAMPLE_DATA_SRC)
1563                 result += sizeof(u64);
1564
1565         return result;
1566 }
1567
1568 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1569                                   u64 sample_regs_user, u64 read_format,
1570                                   const struct perf_sample *sample,
1571                                   bool swapped)
1572 {
1573         u64 *array;
1574         size_t sz;
1575         /*
1576          * used for cross-endian analysis. See git commit 65014ab3
1577          * for why this goofiness is needed.
1578          */
1579         union u64_swap u;
1580
1581         array = event->sample.array;
1582
1583         if (type & PERF_SAMPLE_IDENTIFIER) {
1584                 *array = sample->id;
1585                 array++;
1586         }
1587
1588         if (type & PERF_SAMPLE_IP) {
1589                 *array = sample->ip;
1590                 array++;
1591         }
1592
1593         if (type & PERF_SAMPLE_TID) {
1594                 u.val32[0] = sample->pid;
1595                 u.val32[1] = sample->tid;
1596                 if (swapped) {
1597                         /*
1598                          * Inverse of what is done in perf_evsel__parse_sample
1599                          */
1600                         u.val32[0] = bswap_32(u.val32[0]);
1601                         u.val32[1] = bswap_32(u.val32[1]);
1602                         u.val64 = bswap_64(u.val64);
1603                 }
1604
1605                 *array = u.val64;
1606                 array++;
1607         }
1608
1609         if (type & PERF_SAMPLE_TIME) {
1610                 *array = sample->time;
1611                 array++;
1612         }
1613
1614         if (type & PERF_SAMPLE_ADDR) {
1615                 *array = sample->addr;
1616                 array++;
1617         }
1618
1619         if (type & PERF_SAMPLE_ID) {
1620                 *array = sample->id;
1621                 array++;
1622         }
1623
1624         if (type & PERF_SAMPLE_STREAM_ID) {
1625                 *array = sample->stream_id;
1626                 array++;
1627         }
1628
1629         if (type & PERF_SAMPLE_CPU) {
1630                 u.val32[0] = sample->cpu;
1631                 if (swapped) {
1632                         /*
1633                          * Inverse of what is done in perf_evsel__parse_sample
1634                          */
1635                         u.val32[0] = bswap_32(u.val32[0]);
1636                         u.val64 = bswap_64(u.val64);
1637                 }
1638                 *array = u.val64;
1639                 array++;
1640         }
1641
1642         if (type & PERF_SAMPLE_PERIOD) {
1643                 *array = sample->period;
1644                 array++;
1645         }
1646
1647         if (type & PERF_SAMPLE_READ) {
1648                 if (read_format & PERF_FORMAT_GROUP)
1649                         *array = sample->read.group.nr;
1650                 else
1651                         *array = sample->read.one.value;
1652                 array++;
1653
1654                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1655                         *array = sample->read.time_enabled;
1656                         array++;
1657                 }
1658
1659                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1660                         *array = sample->read.time_running;
1661                         array++;
1662                 }
1663
1664                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1665                 if (read_format & PERF_FORMAT_GROUP) {
1666                         sz = sample->read.group.nr *
1667                              sizeof(struct sample_read_value);
1668                         memcpy(array, sample->read.group.values, sz);
1669                         array = (void *)array + sz;
1670                 } else {
1671                         *array = sample->read.one.id;
1672                         array++;
1673                 }
1674         }
1675
1676         if (type & PERF_SAMPLE_CALLCHAIN) {
1677                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1678                 memcpy(array, sample->callchain, sz);
1679                 array = (void *)array + sz;
1680         }
1681
1682         if (type & PERF_SAMPLE_RAW) {
1683                 u.val32[0] = sample->raw_size;
1684                 if (WARN_ONCE(swapped,
1685                               "Endianness of raw data not corrected!\n")) {
1686                         /*
1687                          * Inverse of what is done in perf_evsel__parse_sample
1688                          */
1689                         u.val32[0] = bswap_32(u.val32[0]);
1690                         u.val32[1] = bswap_32(u.val32[1]);
1691                         u.val64 = bswap_64(u.val64);
1692                 }
1693                 *array = u.val64;
1694                 array = (void *)array + sizeof(u32);
1695
1696                 memcpy(array, sample->raw_data, sample->raw_size);
1697                 array = (void *)array + sample->raw_size;
1698         }
1699
1700         if (type & PERF_SAMPLE_BRANCH_STACK) {
1701                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1702                 sz += sizeof(u64);
1703                 memcpy(array, sample->branch_stack, sz);
1704                 array = (void *)array + sz;
1705         }
1706
1707         if (type & PERF_SAMPLE_REGS_USER) {
1708                 if (sample->user_regs.abi) {
1709                         *array++ = sample->user_regs.abi;
1710                         sz = hweight_long(sample_regs_user) * sizeof(u64);
1711                         memcpy(array, sample->user_regs.regs, sz);
1712                         array = (void *)array + sz;
1713                 } else {
1714                         *array++ = 0;
1715                 }
1716         }
1717
1718         if (type & PERF_SAMPLE_STACK_USER) {
1719                 sz = sample->user_stack.size;
1720                 *array++ = sz;
1721                 if (sz) {
1722                         memcpy(array, sample->user_stack.data, sz);
1723                         array = (void *)array + sz;
1724                         *array++ = sz;
1725                 }
1726         }
1727
1728         if (type & PERF_SAMPLE_WEIGHT) {
1729                 *array = sample->weight;
1730                 array++;
1731         }
1732
1733         if (type & PERF_SAMPLE_DATA_SRC) {
1734                 *array = sample->data_src;
1735                 array++;
1736         }
1737
1738         return 0;
1739 }
1740
1741 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1742 {
1743         return pevent_find_field(evsel->tp_format, name);
1744 }
1745
1746 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1747                          const char *name)
1748 {
1749         struct format_field *field = perf_evsel__field(evsel, name);
1750         int offset;
1751
1752         if (!field)
1753                 return NULL;
1754
1755         offset = field->offset;
1756
1757         if (field->flags & FIELD_IS_DYNAMIC) {
1758                 offset = *(int *)(sample->raw_data + field->offset);
1759                 offset &= 0xffff;
1760         }
1761
1762         return sample->raw_data + offset;
1763 }
1764
1765 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1766                        const char *name)
1767 {
1768         struct format_field *field = perf_evsel__field(evsel, name);
1769         void *ptr;
1770         u64 value;
1771
1772         if (!field)
1773                 return 0;
1774
1775         ptr = sample->raw_data + field->offset;
1776
1777         switch (field->size) {
1778         case 1:
1779                 return *(u8 *)ptr;
1780         case 2:
1781                 value = *(u16 *)ptr;
1782                 break;
1783         case 4:
1784                 value = *(u32 *)ptr;
1785                 break;
1786         case 8:
1787                 value = *(u64 *)ptr;
1788                 break;
1789         default:
1790                 return 0;
1791         }
1792
1793         if (!evsel->needs_swap)
1794                 return value;
1795
1796         switch (field->size) {
1797         case 2:
1798                 return bswap_16(value);
1799         case 4:
1800                 return bswap_32(value);
1801         case 8:
1802                 return bswap_64(value);
1803         default:
1804                 return 0;
1805         }
1806
1807         return 0;
1808 }
1809
1810 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1811 {
1812         va_list args;
1813         int ret = 0;
1814
1815         if (!*first) {
1816                 ret += fprintf(fp, ",");
1817         } else {
1818                 ret += fprintf(fp, ":");
1819                 *first = false;
1820         }
1821
1822         va_start(args, fmt);
1823         ret += vfprintf(fp, fmt, args);
1824         va_end(args);
1825         return ret;
1826 }
1827
1828 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1829 {
1830         if (value == 0)
1831                 return 0;
1832
1833         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1834 }
1835
1836 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1837
1838 struct bit_names {
1839         int bit;
1840         const char *name;
1841 };
1842
1843 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1844                          struct bit_names *bits, bool *first)
1845 {
1846         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1847         bool first_bit = true;
1848
1849         do {
1850                 if (value & bits[i].bit) {
1851                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1852                         first_bit = false;
1853                 }
1854         } while (bits[++i].name != NULL);
1855
1856         return printed;
1857 }
1858
1859 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1860 {
1861 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1862         struct bit_names bits[] = {
1863                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1864                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1865                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1866                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1867                 bit_name(IDENTIFIER),
1868                 { .name = NULL, }
1869         };
1870 #undef bit_name
1871         return bits__fprintf(fp, "sample_type", value, bits, first);
1872 }
1873
1874 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1875 {
1876 #define bit_name(n) { PERF_FORMAT_##n, #n }
1877         struct bit_names bits[] = {
1878                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1879                 bit_name(ID), bit_name(GROUP),
1880                 { .name = NULL, }
1881         };
1882 #undef bit_name
1883         return bits__fprintf(fp, "read_format", value, bits, first);
1884 }
1885
1886 int perf_evsel__fprintf(struct perf_evsel *evsel,
1887                         struct perf_attr_details *details, FILE *fp)
1888 {
1889         bool first = true;
1890         int printed = 0;
1891
1892         if (details->event_group) {
1893                 struct perf_evsel *pos;
1894
1895                 if (!perf_evsel__is_group_leader(evsel))
1896                         return 0;
1897
1898                 if (evsel->nr_members > 1)
1899                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1900
1901                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1902                 for_each_group_member(pos, evsel)
1903                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1904
1905                 if (evsel->nr_members > 1)
1906                         printed += fprintf(fp, "}");
1907                 goto out;
1908         }
1909
1910         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1911
1912         if (details->verbose || details->freq) {
1913                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1914                                          (u64)evsel->attr.sample_freq);
1915         }
1916
1917         if (details->verbose) {
1918                 if_print(type);
1919                 if_print(config);
1920                 if_print(config1);
1921                 if_print(config2);
1922                 if_print(size);
1923                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1924                 if (evsel->attr.read_format)
1925                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1926                 if_print(disabled);
1927                 if_print(inherit);
1928                 if_print(pinned);
1929                 if_print(exclusive);
1930                 if_print(exclude_user);
1931                 if_print(exclude_kernel);
1932                 if_print(exclude_hv);
1933                 if_print(exclude_idle);
1934                 if_print(mmap);
1935                 if_print(mmap2);
1936                 if_print(comm);
1937                 if_print(freq);
1938                 if_print(inherit_stat);
1939                 if_print(enable_on_exec);
1940                 if_print(task);
1941                 if_print(watermark);
1942                 if_print(precise_ip);
1943                 if_print(mmap_data);
1944                 if_print(sample_id_all);
1945                 if_print(exclude_host);
1946                 if_print(exclude_guest);
1947                 if_print(__reserved_1);
1948                 if_print(wakeup_events);
1949                 if_print(bp_type);
1950                 if_print(branch_sample_type);
1951         }
1952 out:
1953         fputc('\n', fp);
1954         return ++printed;
1955 }
1956
1957 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1958                           char *msg, size_t msgsize)
1959 {
1960         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1961             evsel->attr.type   == PERF_TYPE_HARDWARE &&
1962             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1963                 /*
1964                  * If it's cycles then fall back to hrtimer based
1965                  * cpu-clock-tick sw counter, which is always available even if
1966                  * no PMU support.
1967                  *
1968                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1969                  * b0a873e).
1970                  */
1971                 scnprintf(msg, msgsize, "%s",
1972 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1973
1974                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
1975                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1976
1977                 free(evsel->name);
1978                 evsel->name = NULL;
1979                 return true;
1980         }
1981
1982         return false;
1983 }
1984
1985 int perf_evsel__open_strerror(struct perf_evsel *evsel,
1986                               struct perf_target *target,
1987                               int err, char *msg, size_t size)
1988 {
1989         switch (err) {
1990         case EPERM:
1991         case EACCES:
1992                 return scnprintf(msg, size,
1993                  "You may not have permission to collect %sstats.\n"
1994                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1995                  " -1 - Not paranoid at all\n"
1996                  "  0 - Disallow raw tracepoint access for unpriv\n"
1997                  "  1 - Disallow cpu events for unpriv\n"
1998                  "  2 - Disallow kernel profiling for unpriv",
1999                                  target->system_wide ? "system-wide " : "");
2000         case ENOENT:
2001                 return scnprintf(msg, size, "The %s event is not supported.",
2002                                  perf_evsel__name(evsel));
2003         case EMFILE:
2004                 return scnprintf(msg, size, "%s",
2005                          "Too many events are opened.\n"
2006                          "Try again after reducing the number of events.");
2007         case ENODEV:
2008                 if (target->cpu_list)
2009                         return scnprintf(msg, size, "%s",
2010          "No such device - did you specify an out-of-range profile CPU?\n");
2011                 break;
2012         case EOPNOTSUPP:
2013                 if (evsel->attr.precise_ip)
2014                         return scnprintf(msg, size, "%s",
2015         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2016 #if defined(__i386__) || defined(__x86_64__)
2017                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2018                         return scnprintf(msg, size, "%s",
2019         "No hardware sampling interrupt available.\n"
2020         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2021 #endif
2022                 break;
2023         default:
2024                 break;
2025         }
2026
2027         return scnprintf(msg, size,
2028         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).  \n"
2029         "/bin/dmesg may provide additional information.\n"
2030         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2031                          err, strerror(err), perf_evsel__name(evsel));
2032 }