796a065a500ed30bcb9f0fbf861b94fd08f0384e
[linux-2.6-block.git] / tools / perf / util / cs-etm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40
41 struct cs_etm_auxtrace {
42         struct auxtrace auxtrace;
43         struct auxtrace_queues queues;
44         struct auxtrace_heap heap;
45         struct itrace_synth_opts synth_opts;
46         struct perf_session *session;
47         struct machine *machine;
48         struct thread *unknown_thread;
49
50         u8 timeless_decoding;
51         u8 snapshot_mode;
52         u8 data_queued;
53
54         int num_cpu;
55         u64 latest_kernel_timestamp;
56         u32 auxtrace_type;
57         u64 branches_sample_type;
58         u64 branches_id;
59         u64 instructions_sample_type;
60         u64 instructions_sample_period;
61         u64 instructions_id;
62         u64 **metadata;
63         unsigned int pmu_type;
64 };
65
66 struct cs_etm_traceid_queue {
67         u8 trace_chan_id;
68         pid_t pid, tid;
69         u64 period_instructions;
70         size_t last_branch_pos;
71         union perf_event *event_buf;
72         struct thread *thread;
73         struct branch_stack *last_branch;
74         struct branch_stack *last_branch_rb;
75         struct cs_etm_packet *prev_packet;
76         struct cs_etm_packet *packet;
77         struct cs_etm_packet_queue packet_queue;
78 };
79
80 struct cs_etm_queue {
81         struct cs_etm_auxtrace *etm;
82         struct cs_etm_decoder *decoder;
83         struct auxtrace_buffer *buffer;
84         unsigned int queue_nr;
85         u8 pending_timestamp_chan_id;
86         u64 offset;
87         const unsigned char *buf;
88         size_t buf_len, buf_used;
89         /* Conversion between traceID and index in traceid_queues array */
90         struct intlist *traceid_queues_list;
91         struct cs_etm_traceid_queue **traceid_queues;
92 };
93
94 /* RB tree for quick conversion between traceID and metadata pointers */
95 static struct intlist *traceid_list;
96
97 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
98 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
99                                            pid_t tid);
100 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
101 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
102
103 /* PTMs ETMIDR [11:8] set to b0011 */
104 #define ETMIDR_PTM_VERSION 0x00000300
105
106 /*
107  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
108  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
109  * encode the etm queue number as the upper 16 bit and the channel as
110  * the lower 16 bit.
111  */
112 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
113                       (queue_nr << 16 | trace_chan_id)
114 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
115 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
116
117 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
118 {
119         etmidr &= ETMIDR_PTM_VERSION;
120
121         if (etmidr == ETMIDR_PTM_VERSION)
122                 return CS_ETM_PROTO_PTM;
123
124         return CS_ETM_PROTO_ETMV3;
125 }
126
127 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
128 {
129         struct int_node *inode;
130         u64 *metadata;
131
132         inode = intlist__find(traceid_list, trace_chan_id);
133         if (!inode)
134                 return -EINVAL;
135
136         metadata = inode->priv;
137         *magic = metadata[CS_ETM_MAGIC];
138         return 0;
139 }
140
141 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
142 {
143         struct int_node *inode;
144         u64 *metadata;
145
146         inode = intlist__find(traceid_list, trace_chan_id);
147         if (!inode)
148                 return -EINVAL;
149
150         metadata = inode->priv;
151         *cpu = (int)metadata[CS_ETM_CPU];
152         return 0;
153 }
154
155 /*
156  * The returned PID format is presented by two bits:
157  *
158  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
159  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
160  *
161  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
162  * are enabled at the same time when the session runs on an EL2 kernel.
163  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
164  * recorded in the trace data, the tool will selectively use
165  * CONTEXTIDR_EL2 as PID.
166  */
167 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
168 {
169         struct int_node *inode;
170         u64 *metadata, val;
171
172         inode = intlist__find(traceid_list, trace_chan_id);
173         if (!inode)
174                 return -EINVAL;
175
176         metadata = inode->priv;
177
178         if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
179                 val = metadata[CS_ETM_ETMCR];
180                 /* CONTEXTIDR is traced */
181                 if (val & BIT(ETM_OPT_CTXTID))
182                         *pid_fmt = BIT(ETM_OPT_CTXTID);
183         } else {
184                 val = metadata[CS_ETMV4_TRCCONFIGR];
185                 /* CONTEXTIDR_EL2 is traced */
186                 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
187                         *pid_fmt = BIT(ETM_OPT_CTXTID2);
188                 /* CONTEXTIDR_EL1 is traced */
189                 else if (val & BIT(ETM4_CFG_BIT_CTXTID))
190                         *pid_fmt = BIT(ETM_OPT_CTXTID);
191         }
192
193         return 0;
194 }
195
196 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
197                                               u8 trace_chan_id)
198 {
199         /*
200          * When a timestamp packet is encountered the backend code
201          * is stopped so that the front end has time to process packets
202          * that were accumulated in the traceID queue.  Since there can
203          * be more than one channel per cs_etm_queue, we need to specify
204          * what traceID queue needs servicing.
205          */
206         etmq->pending_timestamp_chan_id = trace_chan_id;
207 }
208
209 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
210                                       u8 *trace_chan_id)
211 {
212         struct cs_etm_packet_queue *packet_queue;
213
214         if (!etmq->pending_timestamp_chan_id)
215                 return 0;
216
217         if (trace_chan_id)
218                 *trace_chan_id = etmq->pending_timestamp_chan_id;
219
220         packet_queue = cs_etm__etmq_get_packet_queue(etmq,
221                                                      etmq->pending_timestamp_chan_id);
222         if (!packet_queue)
223                 return 0;
224
225         /* Acknowledge pending status */
226         etmq->pending_timestamp_chan_id = 0;
227
228         /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
229         return packet_queue->cs_timestamp;
230 }
231
232 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
233 {
234         int i;
235
236         queue->head = 0;
237         queue->tail = 0;
238         queue->packet_count = 0;
239         for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
240                 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
241                 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
242                 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
243                 queue->packet_buffer[i].instr_count = 0;
244                 queue->packet_buffer[i].last_instr_taken_branch = false;
245                 queue->packet_buffer[i].last_instr_size = 0;
246                 queue->packet_buffer[i].last_instr_type = 0;
247                 queue->packet_buffer[i].last_instr_subtype = 0;
248                 queue->packet_buffer[i].last_instr_cond = 0;
249                 queue->packet_buffer[i].flags = 0;
250                 queue->packet_buffer[i].exception_number = UINT32_MAX;
251                 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
252                 queue->packet_buffer[i].cpu = INT_MIN;
253         }
254 }
255
256 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
257 {
258         int idx;
259         struct int_node *inode;
260         struct cs_etm_traceid_queue *tidq;
261         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
262
263         intlist__for_each_entry(inode, traceid_queues_list) {
264                 idx = (int)(intptr_t)inode->priv;
265                 tidq = etmq->traceid_queues[idx];
266                 cs_etm__clear_packet_queue(&tidq->packet_queue);
267         }
268 }
269
270 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
271                                       struct cs_etm_traceid_queue *tidq,
272                                       u8 trace_chan_id)
273 {
274         int rc = -ENOMEM;
275         struct auxtrace_queue *queue;
276         struct cs_etm_auxtrace *etm = etmq->etm;
277
278         cs_etm__clear_packet_queue(&tidq->packet_queue);
279
280         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
281         tidq->tid = queue->tid;
282         tidq->pid = -1;
283         tidq->trace_chan_id = trace_chan_id;
284
285         tidq->packet = zalloc(sizeof(struct cs_etm_packet));
286         if (!tidq->packet)
287                 goto out;
288
289         tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
290         if (!tidq->prev_packet)
291                 goto out_free;
292
293         if (etm->synth_opts.last_branch) {
294                 size_t sz = sizeof(struct branch_stack);
295
296                 sz += etm->synth_opts.last_branch_sz *
297                       sizeof(struct branch_entry);
298                 tidq->last_branch = zalloc(sz);
299                 if (!tidq->last_branch)
300                         goto out_free;
301                 tidq->last_branch_rb = zalloc(sz);
302                 if (!tidq->last_branch_rb)
303                         goto out_free;
304         }
305
306         tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
307         if (!tidq->event_buf)
308                 goto out_free;
309
310         return 0;
311
312 out_free:
313         zfree(&tidq->last_branch_rb);
314         zfree(&tidq->last_branch);
315         zfree(&tidq->prev_packet);
316         zfree(&tidq->packet);
317 out:
318         return rc;
319 }
320
321 static struct cs_etm_traceid_queue
322 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
323 {
324         int idx;
325         struct int_node *inode;
326         struct intlist *traceid_queues_list;
327         struct cs_etm_traceid_queue *tidq, **traceid_queues;
328         struct cs_etm_auxtrace *etm = etmq->etm;
329
330         if (etm->timeless_decoding)
331                 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
332
333         traceid_queues_list = etmq->traceid_queues_list;
334
335         /*
336          * Check if the traceid_queue exist for this traceID by looking
337          * in the queue list.
338          */
339         inode = intlist__find(traceid_queues_list, trace_chan_id);
340         if (inode) {
341                 idx = (int)(intptr_t)inode->priv;
342                 return etmq->traceid_queues[idx];
343         }
344
345         /* We couldn't find a traceid_queue for this traceID, allocate one */
346         tidq = malloc(sizeof(*tidq));
347         if (!tidq)
348                 return NULL;
349
350         memset(tidq, 0, sizeof(*tidq));
351
352         /* Get a valid index for the new traceid_queue */
353         idx = intlist__nr_entries(traceid_queues_list);
354         /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
355         inode = intlist__findnew(traceid_queues_list, trace_chan_id);
356         if (!inode)
357                 goto out_free;
358
359         /* Associate this traceID with this index */
360         inode->priv = (void *)(intptr_t)idx;
361
362         if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
363                 goto out_free;
364
365         /* Grow the traceid_queues array by one unit */
366         traceid_queues = etmq->traceid_queues;
367         traceid_queues = reallocarray(traceid_queues,
368                                       idx + 1,
369                                       sizeof(*traceid_queues));
370
371         /*
372          * On failure reallocarray() returns NULL and the original block of
373          * memory is left untouched.
374          */
375         if (!traceid_queues)
376                 goto out_free;
377
378         traceid_queues[idx] = tidq;
379         etmq->traceid_queues = traceid_queues;
380
381         return etmq->traceid_queues[idx];
382
383 out_free:
384         /*
385          * Function intlist__remove() removes the inode from the list
386          * and delete the memory associated to it.
387          */
388         intlist__remove(traceid_queues_list, inode);
389         free(tidq);
390
391         return NULL;
392 }
393
394 struct cs_etm_packet_queue
395 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
396 {
397         struct cs_etm_traceid_queue *tidq;
398
399         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
400         if (tidq)
401                 return &tidq->packet_queue;
402
403         return NULL;
404 }
405
406 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
407                                 struct cs_etm_traceid_queue *tidq)
408 {
409         struct cs_etm_packet *tmp;
410
411         if (etm->synth_opts.branches || etm->synth_opts.last_branch ||
412             etm->synth_opts.instructions) {
413                 /*
414                  * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
415                  * the next incoming packet.
416                  */
417                 tmp = tidq->packet;
418                 tidq->packet = tidq->prev_packet;
419                 tidq->prev_packet = tmp;
420         }
421 }
422
423 static void cs_etm__packet_dump(const char *pkt_string)
424 {
425         const char *color = PERF_COLOR_BLUE;
426         int len = strlen(pkt_string);
427
428         if (len && (pkt_string[len-1] == '\n'))
429                 color_fprintf(stdout, color, "  %s", pkt_string);
430         else
431                 color_fprintf(stdout, color, "  %s\n", pkt_string);
432
433         fflush(stdout);
434 }
435
436 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
437                                           struct cs_etm_auxtrace *etm, int idx,
438                                           u32 etmidr)
439 {
440         u64 **metadata = etm->metadata;
441
442         t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
443         t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
444         t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
445 }
446
447 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
448                                           struct cs_etm_auxtrace *etm, int idx)
449 {
450         u64 **metadata = etm->metadata;
451
452         t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
453         t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
454         t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
455         t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
456         t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
457         t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
458         t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
459 }
460
461 static void cs_etm__set_trace_param_ete(struct cs_etm_trace_params *t_params,
462                                           struct cs_etm_auxtrace *etm, int idx)
463 {
464         u64 **metadata = etm->metadata;
465
466         t_params[idx].protocol = CS_ETM_PROTO_ETE;
467         t_params[idx].ete.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
468         t_params[idx].ete.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
469         t_params[idx].ete.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
470         t_params[idx].ete.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
471         t_params[idx].ete.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
472         t_params[idx].ete.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
473         t_params[idx].ete.reg_devarch = metadata[idx][CS_ETE_TRCDEVARCH];
474 }
475
476 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
477                                      struct cs_etm_auxtrace *etm,
478                                      int decoders)
479 {
480         int i;
481         u32 etmidr;
482         u64 architecture;
483
484         for (i = 0; i < decoders; i++) {
485                 architecture = etm->metadata[i][CS_ETM_MAGIC];
486
487                 switch (architecture) {
488                 case __perf_cs_etmv3_magic:
489                         etmidr = etm->metadata[i][CS_ETM_ETMIDR];
490                         cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
491                         break;
492                 case __perf_cs_etmv4_magic:
493                         cs_etm__set_trace_param_etmv4(t_params, etm, i);
494                         break;
495                 case __perf_cs_ete_magic:
496                         cs_etm__set_trace_param_ete(t_params, etm, i);
497                         break;
498                 default:
499                         return -EINVAL;
500                 }
501         }
502
503         return 0;
504 }
505
506 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
507                                        struct cs_etm_queue *etmq,
508                                        enum cs_etm_decoder_operation mode,
509                                        bool formatted)
510 {
511         int ret = -EINVAL;
512
513         if (!(mode < CS_ETM_OPERATION_MAX))
514                 goto out;
515
516         d_params->packet_printer = cs_etm__packet_dump;
517         d_params->operation = mode;
518         d_params->data = etmq;
519         d_params->formatted = formatted;
520         d_params->fsyncs = false;
521         d_params->hsyncs = false;
522         d_params->frame_aligned = true;
523
524         ret = 0;
525 out:
526         return ret;
527 }
528
529 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
530                                struct auxtrace_buffer *buffer)
531 {
532         int ret;
533         const char *color = PERF_COLOR_BLUE;
534         size_t buffer_used = 0;
535
536         fprintf(stdout, "\n");
537         color_fprintf(stdout, color,
538                      ". ... CoreSight %s Trace data: size %#zx bytes\n",
539                      cs_etm_decoder__get_name(etmq->decoder), buffer->size);
540
541         do {
542                 size_t consumed;
543
544                 ret = cs_etm_decoder__process_data_block(
545                                 etmq->decoder, buffer->offset,
546                                 &((u8 *)buffer->data)[buffer_used],
547                                 buffer->size - buffer_used, &consumed);
548                 if (ret)
549                         break;
550
551                 buffer_used += consumed;
552         } while (buffer_used < buffer->size);
553
554         cs_etm_decoder__reset(etmq->decoder);
555 }
556
557 static int cs_etm__flush_events(struct perf_session *session,
558                                 struct perf_tool *tool)
559 {
560         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
561                                                    struct cs_etm_auxtrace,
562                                                    auxtrace);
563         if (dump_trace)
564                 return 0;
565
566         if (!tool->ordered_events)
567                 return -EINVAL;
568
569         if (etm->timeless_decoding)
570                 return cs_etm__process_timeless_queues(etm, -1);
571
572         return cs_etm__process_queues(etm);
573 }
574
575 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
576 {
577         int idx;
578         uintptr_t priv;
579         struct int_node *inode, *tmp;
580         struct cs_etm_traceid_queue *tidq;
581         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
582
583         intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
584                 priv = (uintptr_t)inode->priv;
585                 idx = priv;
586
587                 /* Free this traceid_queue from the array */
588                 tidq = etmq->traceid_queues[idx];
589                 thread__zput(tidq->thread);
590                 zfree(&tidq->event_buf);
591                 zfree(&tidq->last_branch);
592                 zfree(&tidq->last_branch_rb);
593                 zfree(&tidq->prev_packet);
594                 zfree(&tidq->packet);
595                 zfree(&tidq);
596
597                 /*
598                  * Function intlist__remove() removes the inode from the list
599                  * and delete the memory associated to it.
600                  */
601                 intlist__remove(traceid_queues_list, inode);
602         }
603
604         /* Then the RB tree itself */
605         intlist__delete(traceid_queues_list);
606         etmq->traceid_queues_list = NULL;
607
608         /* finally free the traceid_queues array */
609         zfree(&etmq->traceid_queues);
610 }
611
612 static void cs_etm__free_queue(void *priv)
613 {
614         struct cs_etm_queue *etmq = priv;
615
616         if (!etmq)
617                 return;
618
619         cs_etm_decoder__free(etmq->decoder);
620         cs_etm__free_traceid_queues(etmq);
621         free(etmq);
622 }
623
624 static void cs_etm__free_events(struct perf_session *session)
625 {
626         unsigned int i;
627         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
628                                                    struct cs_etm_auxtrace,
629                                                    auxtrace);
630         struct auxtrace_queues *queues = &aux->queues;
631
632         for (i = 0; i < queues->nr_queues; i++) {
633                 cs_etm__free_queue(queues->queue_array[i].priv);
634                 queues->queue_array[i].priv = NULL;
635         }
636
637         auxtrace_queues__free(queues);
638 }
639
640 static void cs_etm__free(struct perf_session *session)
641 {
642         int i;
643         struct int_node *inode, *tmp;
644         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
645                                                    struct cs_etm_auxtrace,
646                                                    auxtrace);
647         cs_etm__free_events(session);
648         session->auxtrace = NULL;
649
650         /* First remove all traceID/metadata nodes for the RB tree */
651         intlist__for_each_entry_safe(inode, tmp, traceid_list)
652                 intlist__remove(traceid_list, inode);
653         /* Then the RB tree itself */
654         intlist__delete(traceid_list);
655
656         for (i = 0; i < aux->num_cpu; i++)
657                 zfree(&aux->metadata[i]);
658
659         thread__zput(aux->unknown_thread);
660         zfree(&aux->metadata);
661         zfree(&aux);
662 }
663
664 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
665                                       struct evsel *evsel)
666 {
667         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
668                                                    struct cs_etm_auxtrace,
669                                                    auxtrace);
670
671         return evsel->core.attr.type == aux->pmu_type;
672 }
673
674 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
675 {
676         struct machine *machine;
677
678         machine = etmq->etm->machine;
679
680         if (address >= machine__kernel_start(machine)) {
681                 if (machine__is_host(machine))
682                         return PERF_RECORD_MISC_KERNEL;
683                 else
684                         return PERF_RECORD_MISC_GUEST_KERNEL;
685         } else {
686                 if (machine__is_host(machine))
687                         return PERF_RECORD_MISC_USER;
688                 else if (perf_guest)
689                         return PERF_RECORD_MISC_GUEST_USER;
690                 else
691                         return PERF_RECORD_MISC_HYPERVISOR;
692         }
693 }
694
695 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
696                               u64 address, size_t size, u8 *buffer)
697 {
698         u8  cpumode;
699         u64 offset;
700         int len;
701         struct thread *thread;
702         struct machine *machine;
703         struct addr_location al;
704         struct cs_etm_traceid_queue *tidq;
705
706         if (!etmq)
707                 return 0;
708
709         machine = etmq->etm->machine;
710         cpumode = cs_etm__cpu_mode(etmq, address);
711         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
712         if (!tidq)
713                 return 0;
714
715         thread = tidq->thread;
716         if (!thread) {
717                 if (cpumode != PERF_RECORD_MISC_KERNEL)
718                         return 0;
719                 thread = etmq->etm->unknown_thread;
720         }
721
722         if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
723                 return 0;
724
725         if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
726             dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
727                 return 0;
728
729         offset = al.map->map_ip(al.map, address);
730
731         map__load(al.map);
732
733         len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
734
735         if (len <= 0) {
736                 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
737                                  "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
738                 if (!al.map->dso->auxtrace_warned) {
739                         pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
740                                     address,
741                                     al.map->dso->long_name ? al.map->dso->long_name : "Unknown");
742                         al.map->dso->auxtrace_warned = true;
743                 }
744                 return 0;
745         }
746
747         return len;
748 }
749
750 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
751                                                 bool formatted)
752 {
753         struct cs_etm_decoder_params d_params;
754         struct cs_etm_trace_params  *t_params = NULL;
755         struct cs_etm_queue *etmq;
756         /*
757          * Each queue can only contain data from one CPU when unformatted, so only one decoder is
758          * needed.
759          */
760         int decoders = formatted ? etm->num_cpu : 1;
761
762         etmq = zalloc(sizeof(*etmq));
763         if (!etmq)
764                 return NULL;
765
766         etmq->traceid_queues_list = intlist__new(NULL);
767         if (!etmq->traceid_queues_list)
768                 goto out_free;
769
770         /* Use metadata to fill in trace parameters for trace decoder */
771         t_params = zalloc(sizeof(*t_params) * decoders);
772
773         if (!t_params)
774                 goto out_free;
775
776         if (cs_etm__init_trace_params(t_params, etm, decoders))
777                 goto out_free;
778
779         /* Set decoder parameters to decode trace packets */
780         if (cs_etm__init_decoder_params(&d_params, etmq,
781                                         dump_trace ? CS_ETM_OPERATION_PRINT :
782                                                      CS_ETM_OPERATION_DECODE,
783                                         formatted))
784                 goto out_free;
785
786         etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
787                                             t_params);
788
789         if (!etmq->decoder)
790                 goto out_free;
791
792         /*
793          * Register a function to handle all memory accesses required by
794          * the trace decoder library.
795          */
796         if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
797                                               0x0L, ((u64) -1L),
798                                               cs_etm__mem_access))
799                 goto out_free_decoder;
800
801         zfree(&t_params);
802         return etmq;
803
804 out_free_decoder:
805         cs_etm_decoder__free(etmq->decoder);
806 out_free:
807         intlist__delete(etmq->traceid_queues_list);
808         free(etmq);
809
810         return NULL;
811 }
812
813 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
814                                struct auxtrace_queue *queue,
815                                unsigned int queue_nr,
816                                bool formatted)
817 {
818         struct cs_etm_queue *etmq = queue->priv;
819
820         if (list_empty(&queue->head) || etmq)
821                 return 0;
822
823         etmq = cs_etm__alloc_queue(etm, formatted);
824
825         if (!etmq)
826                 return -ENOMEM;
827
828         queue->priv = etmq;
829         etmq->etm = etm;
830         etmq->queue_nr = queue_nr;
831         etmq->offset = 0;
832
833         return 0;
834 }
835
836 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
837                                             struct cs_etm_queue *etmq,
838                                             unsigned int queue_nr)
839 {
840         int ret = 0;
841         unsigned int cs_queue_nr;
842         u8 trace_chan_id;
843         u64 cs_timestamp;
844
845         /*
846          * We are under a CPU-wide trace scenario.  As such we need to know
847          * when the code that generated the traces started to execute so that
848          * it can be correlated with execution on other CPUs.  So we get a
849          * handle on the beginning of traces and decode until we find a
850          * timestamp.  The timestamp is then added to the auxtrace min heap
851          * in order to know what nibble (of all the etmqs) to decode first.
852          */
853         while (1) {
854                 /*
855                  * Fetch an aux_buffer from this etmq.  Bail if no more
856                  * blocks or an error has been encountered.
857                  */
858                 ret = cs_etm__get_data_block(etmq);
859                 if (ret <= 0)
860                         goto out;
861
862                 /*
863                  * Run decoder on the trace block.  The decoder will stop when
864                  * encountering a CS timestamp, a full packet queue or the end of
865                  * trace for that block.
866                  */
867                 ret = cs_etm__decode_data_block(etmq);
868                 if (ret)
869                         goto out;
870
871                 /*
872                  * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
873                  * the timestamp calculation for us.
874                  */
875                 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
876
877                 /* We found a timestamp, no need to continue. */
878                 if (cs_timestamp)
879                         break;
880
881                 /*
882                  * We didn't find a timestamp so empty all the traceid packet
883                  * queues before looking for another timestamp packet, either
884                  * in the current data block or a new one.  Packets that were
885                  * just decoded are useless since no timestamp has been
886                  * associated with them.  As such simply discard them.
887                  */
888                 cs_etm__clear_all_packet_queues(etmq);
889         }
890
891         /*
892          * We have a timestamp.  Add it to the min heap to reflect when
893          * instructions conveyed by the range packets of this traceID queue
894          * started to execute.  Once the same has been done for all the traceID
895          * queues of each etmq, redenring and decoding can start in
896          * chronological order.
897          *
898          * Note that packets decoded above are still in the traceID's packet
899          * queue and will be processed in cs_etm__process_queues().
900          */
901         cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
902         ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
903 out:
904         return ret;
905 }
906
907 static inline
908 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
909                                  struct cs_etm_traceid_queue *tidq)
910 {
911         struct branch_stack *bs_src = tidq->last_branch_rb;
912         struct branch_stack *bs_dst = tidq->last_branch;
913         size_t nr = 0;
914
915         /*
916          * Set the number of records before early exit: ->nr is used to
917          * determine how many branches to copy from ->entries.
918          */
919         bs_dst->nr = bs_src->nr;
920
921         /*
922          * Early exit when there is nothing to copy.
923          */
924         if (!bs_src->nr)
925                 return;
926
927         /*
928          * As bs_src->entries is a circular buffer, we need to copy from it in
929          * two steps.  First, copy the branches from the most recently inserted
930          * branch ->last_branch_pos until the end of bs_src->entries buffer.
931          */
932         nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
933         memcpy(&bs_dst->entries[0],
934                &bs_src->entries[tidq->last_branch_pos],
935                sizeof(struct branch_entry) * nr);
936
937         /*
938          * If we wrapped around at least once, the branches from the beginning
939          * of the bs_src->entries buffer and until the ->last_branch_pos element
940          * are older valid branches: copy them over.  The total number of
941          * branches copied over will be equal to the number of branches asked by
942          * the user in last_branch_sz.
943          */
944         if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
945                 memcpy(&bs_dst->entries[nr],
946                        &bs_src->entries[0],
947                        sizeof(struct branch_entry) * tidq->last_branch_pos);
948         }
949 }
950
951 static inline
952 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
953 {
954         tidq->last_branch_pos = 0;
955         tidq->last_branch_rb->nr = 0;
956 }
957
958 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
959                                          u8 trace_chan_id, u64 addr)
960 {
961         u8 instrBytes[2];
962
963         cs_etm__mem_access(etmq, trace_chan_id, addr,
964                            ARRAY_SIZE(instrBytes), instrBytes);
965         /*
966          * T32 instruction size is indicated by bits[15:11] of the first
967          * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
968          * denote a 32-bit instruction.
969          */
970         return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
971 }
972
973 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
974 {
975         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
976         if (packet->sample_type == CS_ETM_DISCONTINUITY)
977                 return 0;
978
979         return packet->start_addr;
980 }
981
982 static inline
983 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
984 {
985         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
986         if (packet->sample_type == CS_ETM_DISCONTINUITY)
987                 return 0;
988
989         return packet->end_addr - packet->last_instr_size;
990 }
991
992 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
993                                      u64 trace_chan_id,
994                                      const struct cs_etm_packet *packet,
995                                      u64 offset)
996 {
997         if (packet->isa == CS_ETM_ISA_T32) {
998                 u64 addr = packet->start_addr;
999
1000                 while (offset) {
1001                         addr += cs_etm__t32_instr_size(etmq,
1002                                                        trace_chan_id, addr);
1003                         offset--;
1004                 }
1005                 return addr;
1006         }
1007
1008         /* Assume a 4 byte instruction size (A32/A64) */
1009         return packet->start_addr + offset * 4;
1010 }
1011
1012 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
1013                                           struct cs_etm_traceid_queue *tidq)
1014 {
1015         struct branch_stack *bs = tidq->last_branch_rb;
1016         struct branch_entry *be;
1017
1018         /*
1019          * The branches are recorded in a circular buffer in reverse
1020          * chronological order: we start recording from the last element of the
1021          * buffer down.  After writing the first element of the stack, move the
1022          * insert position back to the end of the buffer.
1023          */
1024         if (!tidq->last_branch_pos)
1025                 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1026
1027         tidq->last_branch_pos -= 1;
1028
1029         be       = &bs->entries[tidq->last_branch_pos];
1030         be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1031         be->to   = cs_etm__first_executed_instr(tidq->packet);
1032         /* No support for mispredict */
1033         be->flags.mispred = 0;
1034         be->flags.predicted = 1;
1035
1036         /*
1037          * Increment bs->nr until reaching the number of last branches asked by
1038          * the user on the command line.
1039          */
1040         if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1041                 bs->nr += 1;
1042 }
1043
1044 static int cs_etm__inject_event(union perf_event *event,
1045                                struct perf_sample *sample, u64 type)
1046 {
1047         event->header.size = perf_event__sample_event_size(sample, type, 0);
1048         return perf_event__synthesize_sample(event, type, 0, sample);
1049 }
1050
1051
1052 static int
1053 cs_etm__get_trace(struct cs_etm_queue *etmq)
1054 {
1055         struct auxtrace_buffer *aux_buffer = etmq->buffer;
1056         struct auxtrace_buffer *old_buffer = aux_buffer;
1057         struct auxtrace_queue *queue;
1058
1059         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1060
1061         aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1062
1063         /* If no more data, drop the previous auxtrace_buffer and return */
1064         if (!aux_buffer) {
1065                 if (old_buffer)
1066                         auxtrace_buffer__drop_data(old_buffer);
1067                 etmq->buf_len = 0;
1068                 return 0;
1069         }
1070
1071         etmq->buffer = aux_buffer;
1072
1073         /* If the aux_buffer doesn't have data associated, try to load it */
1074         if (!aux_buffer->data) {
1075                 /* get the file desc associated with the perf data file */
1076                 int fd = perf_data__fd(etmq->etm->session->data);
1077
1078                 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1079                 if (!aux_buffer->data)
1080                         return -ENOMEM;
1081         }
1082
1083         /* If valid, drop the previous buffer */
1084         if (old_buffer)
1085                 auxtrace_buffer__drop_data(old_buffer);
1086
1087         etmq->buf_used = 0;
1088         etmq->buf_len = aux_buffer->size;
1089         etmq->buf = aux_buffer->data;
1090
1091         return etmq->buf_len;
1092 }
1093
1094 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1095                                     struct cs_etm_traceid_queue *tidq)
1096 {
1097         if ((!tidq->thread) && (tidq->tid != -1))
1098                 tidq->thread = machine__find_thread(etm->machine, -1,
1099                                                     tidq->tid);
1100
1101         if (tidq->thread)
1102                 tidq->pid = tidq->thread->pid_;
1103 }
1104
1105 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1106                          pid_t tid, u8 trace_chan_id)
1107 {
1108         int cpu, err = -EINVAL;
1109         struct cs_etm_auxtrace *etm = etmq->etm;
1110         struct cs_etm_traceid_queue *tidq;
1111
1112         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1113         if (!tidq)
1114                 return err;
1115
1116         if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1117                 return err;
1118
1119         err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1120         if (err)
1121                 return err;
1122
1123         tidq->tid = tid;
1124         thread__zput(tidq->thread);
1125
1126         cs_etm__set_pid_tid_cpu(etm, tidq);
1127         return 0;
1128 }
1129
1130 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1131 {
1132         return !!etmq->etm->timeless_decoding;
1133 }
1134
1135 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1136                               u64 trace_chan_id,
1137                               const struct cs_etm_packet *packet,
1138                               struct perf_sample *sample)
1139 {
1140         /*
1141          * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1142          * packet, so directly bail out with 'insn_len' = 0.
1143          */
1144         if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1145                 sample->insn_len = 0;
1146                 return;
1147         }
1148
1149         /*
1150          * T32 instruction size might be 32-bit or 16-bit, decide by calling
1151          * cs_etm__t32_instr_size().
1152          */
1153         if (packet->isa == CS_ETM_ISA_T32)
1154                 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1155                                                           sample->ip);
1156         /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1157         else
1158                 sample->insn_len = 4;
1159
1160         cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1161                            sample->insn_len, (void *)sample->insn);
1162 }
1163
1164 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1165                                             struct cs_etm_traceid_queue *tidq,
1166                                             u64 addr, u64 period)
1167 {
1168         int ret = 0;
1169         struct cs_etm_auxtrace *etm = etmq->etm;
1170         union perf_event *event = tidq->event_buf;
1171         struct perf_sample sample = {.ip = 0,};
1172
1173         event->sample.header.type = PERF_RECORD_SAMPLE;
1174         event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1175         event->sample.header.size = sizeof(struct perf_event_header);
1176
1177         if (!etm->timeless_decoding)
1178                 sample.time = etm->latest_kernel_timestamp;
1179         sample.ip = addr;
1180         sample.pid = tidq->pid;
1181         sample.tid = tidq->tid;
1182         sample.id = etmq->etm->instructions_id;
1183         sample.stream_id = etmq->etm->instructions_id;
1184         sample.period = period;
1185         sample.cpu = tidq->packet->cpu;
1186         sample.flags = tidq->prev_packet->flags;
1187         sample.cpumode = event->sample.header.misc;
1188
1189         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1190
1191         if (etm->synth_opts.last_branch)
1192                 sample.branch_stack = tidq->last_branch;
1193
1194         if (etm->synth_opts.inject) {
1195                 ret = cs_etm__inject_event(event, &sample,
1196                                            etm->instructions_sample_type);
1197                 if (ret)
1198                         return ret;
1199         }
1200
1201         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1202
1203         if (ret)
1204                 pr_err(
1205                         "CS ETM Trace: failed to deliver instruction event, error %d\n",
1206                         ret);
1207
1208         return ret;
1209 }
1210
1211 /*
1212  * The cs etm packet encodes an instruction range between a branch target
1213  * and the next taken branch. Generate sample accordingly.
1214  */
1215 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1216                                        struct cs_etm_traceid_queue *tidq)
1217 {
1218         int ret = 0;
1219         struct cs_etm_auxtrace *etm = etmq->etm;
1220         struct perf_sample sample = {.ip = 0,};
1221         union perf_event *event = tidq->event_buf;
1222         struct dummy_branch_stack {
1223                 u64                     nr;
1224                 u64                     hw_idx;
1225                 struct branch_entry     entries;
1226         } dummy_bs;
1227         u64 ip;
1228
1229         ip = cs_etm__last_executed_instr(tidq->prev_packet);
1230
1231         event->sample.header.type = PERF_RECORD_SAMPLE;
1232         event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1233         event->sample.header.size = sizeof(struct perf_event_header);
1234
1235         if (!etm->timeless_decoding)
1236                 sample.time = etm->latest_kernel_timestamp;
1237         sample.ip = ip;
1238         sample.pid = tidq->pid;
1239         sample.tid = tidq->tid;
1240         sample.addr = cs_etm__first_executed_instr(tidq->packet);
1241         sample.id = etmq->etm->branches_id;
1242         sample.stream_id = etmq->etm->branches_id;
1243         sample.period = 1;
1244         sample.cpu = tidq->packet->cpu;
1245         sample.flags = tidq->prev_packet->flags;
1246         sample.cpumode = event->sample.header.misc;
1247
1248         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1249                           &sample);
1250
1251         /*
1252          * perf report cannot handle events without a branch stack
1253          */
1254         if (etm->synth_opts.last_branch) {
1255                 dummy_bs = (struct dummy_branch_stack){
1256                         .nr = 1,
1257                         .hw_idx = -1ULL,
1258                         .entries = {
1259                                 .from = sample.ip,
1260                                 .to = sample.addr,
1261                         },
1262                 };
1263                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1264         }
1265
1266         if (etm->synth_opts.inject) {
1267                 ret = cs_etm__inject_event(event, &sample,
1268                                            etm->branches_sample_type);
1269                 if (ret)
1270                         return ret;
1271         }
1272
1273         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1274
1275         if (ret)
1276                 pr_err(
1277                 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1278                 ret);
1279
1280         return ret;
1281 }
1282
1283 struct cs_etm_synth {
1284         struct perf_tool dummy_tool;
1285         struct perf_session *session;
1286 };
1287
1288 static int cs_etm__event_synth(struct perf_tool *tool,
1289                                union perf_event *event,
1290                                struct perf_sample *sample __maybe_unused,
1291                                struct machine *machine __maybe_unused)
1292 {
1293         struct cs_etm_synth *cs_etm_synth =
1294                       container_of(tool, struct cs_etm_synth, dummy_tool);
1295
1296         return perf_session__deliver_synth_event(cs_etm_synth->session,
1297                                                  event, NULL);
1298 }
1299
1300 static int cs_etm__synth_event(struct perf_session *session,
1301                                struct perf_event_attr *attr, u64 id)
1302 {
1303         struct cs_etm_synth cs_etm_synth;
1304
1305         memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1306         cs_etm_synth.session = session;
1307
1308         return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1309                                            &id, cs_etm__event_synth);
1310 }
1311
1312 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1313                                 struct perf_session *session)
1314 {
1315         struct evlist *evlist = session->evlist;
1316         struct evsel *evsel;
1317         struct perf_event_attr attr;
1318         bool found = false;
1319         u64 id;
1320         int err;
1321
1322         evlist__for_each_entry(evlist, evsel) {
1323                 if (evsel->core.attr.type == etm->pmu_type) {
1324                         found = true;
1325                         break;
1326                 }
1327         }
1328
1329         if (!found) {
1330                 pr_debug("No selected events with CoreSight Trace data\n");
1331                 return 0;
1332         }
1333
1334         memset(&attr, 0, sizeof(struct perf_event_attr));
1335         attr.size = sizeof(struct perf_event_attr);
1336         attr.type = PERF_TYPE_HARDWARE;
1337         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1338         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1339                             PERF_SAMPLE_PERIOD;
1340         if (etm->timeless_decoding)
1341                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1342         else
1343                 attr.sample_type |= PERF_SAMPLE_TIME;
1344
1345         attr.exclude_user = evsel->core.attr.exclude_user;
1346         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1347         attr.exclude_hv = evsel->core.attr.exclude_hv;
1348         attr.exclude_host = evsel->core.attr.exclude_host;
1349         attr.exclude_guest = evsel->core.attr.exclude_guest;
1350         attr.sample_id_all = evsel->core.attr.sample_id_all;
1351         attr.read_format = evsel->core.attr.read_format;
1352
1353         /* create new id val to be a fixed offset from evsel id */
1354         id = evsel->core.id[0] + 1000000000;
1355
1356         if (!id)
1357                 id = 1;
1358
1359         if (etm->synth_opts.branches) {
1360                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1361                 attr.sample_period = 1;
1362                 attr.sample_type |= PERF_SAMPLE_ADDR;
1363                 err = cs_etm__synth_event(session, &attr, id);
1364                 if (err)
1365                         return err;
1366                 etm->branches_sample_type = attr.sample_type;
1367                 etm->branches_id = id;
1368                 id += 1;
1369                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1370         }
1371
1372         if (etm->synth_opts.last_branch) {
1373                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1374                 /*
1375                  * We don't use the hardware index, but the sample generation
1376                  * code uses the new format branch_stack with this field,
1377                  * so the event attributes must indicate that it's present.
1378                  */
1379                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1380         }
1381
1382         if (etm->synth_opts.instructions) {
1383                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1384                 attr.sample_period = etm->synth_opts.period;
1385                 etm->instructions_sample_period = attr.sample_period;
1386                 err = cs_etm__synth_event(session, &attr, id);
1387                 if (err)
1388                         return err;
1389                 etm->instructions_sample_type = attr.sample_type;
1390                 etm->instructions_id = id;
1391                 id += 1;
1392         }
1393
1394         return 0;
1395 }
1396
1397 static int cs_etm__sample(struct cs_etm_queue *etmq,
1398                           struct cs_etm_traceid_queue *tidq)
1399 {
1400         struct cs_etm_auxtrace *etm = etmq->etm;
1401         int ret;
1402         u8 trace_chan_id = tidq->trace_chan_id;
1403         u64 instrs_prev;
1404
1405         /* Get instructions remainder from previous packet */
1406         instrs_prev = tidq->period_instructions;
1407
1408         tidq->period_instructions += tidq->packet->instr_count;
1409
1410         /*
1411          * Record a branch when the last instruction in
1412          * PREV_PACKET is a branch.
1413          */
1414         if (etm->synth_opts.last_branch &&
1415             tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1416             tidq->prev_packet->last_instr_taken_branch)
1417                 cs_etm__update_last_branch_rb(etmq, tidq);
1418
1419         if (etm->synth_opts.instructions &&
1420             tidq->period_instructions >= etm->instructions_sample_period) {
1421                 /*
1422                  * Emit instruction sample periodically
1423                  * TODO: allow period to be defined in cycles and clock time
1424                  */
1425
1426                 /*
1427                  * Below diagram demonstrates the instruction samples
1428                  * generation flows:
1429                  *
1430                  *    Instrs     Instrs       Instrs       Instrs
1431                  *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1432                  *    |            |            |            |
1433                  *    V            V            V            V
1434                  *   --------------------------------------------------
1435                  *            ^                                  ^
1436                  *            |                                  |
1437                  *         Period                             Period
1438                  *    instructions(Pi)                   instructions(Pi')
1439                  *
1440                  *            |                                  |
1441                  *            \---------------- -----------------/
1442                  *                             V
1443                  *                 tidq->packet->instr_count
1444                  *
1445                  * Instrs Sample(n...) are the synthesised samples occurring
1446                  * every etm->instructions_sample_period instructions - as
1447                  * defined on the perf command line.  Sample(n) is being the
1448                  * last sample before the current etm packet, n+1 to n+3
1449                  * samples are generated from the current etm packet.
1450                  *
1451                  * tidq->packet->instr_count represents the number of
1452                  * instructions in the current etm packet.
1453                  *
1454                  * Period instructions (Pi) contains the the number of
1455                  * instructions executed after the sample point(n) from the
1456                  * previous etm packet.  This will always be less than
1457                  * etm->instructions_sample_period.
1458                  *
1459                  * When generate new samples, it combines with two parts
1460                  * instructions, one is the tail of the old packet and another
1461                  * is the head of the new coming packet, to generate
1462                  * sample(n+1); sample(n+2) and sample(n+3) consume the
1463                  * instructions with sample period.  After sample(n+3), the rest
1464                  * instructions will be used by later packet and it is assigned
1465                  * to tidq->period_instructions for next round calculation.
1466                  */
1467
1468                 /*
1469                  * Get the initial offset into the current packet instructions;
1470                  * entry conditions ensure that instrs_prev is less than
1471                  * etm->instructions_sample_period.
1472                  */
1473                 u64 offset = etm->instructions_sample_period - instrs_prev;
1474                 u64 addr;
1475
1476                 /* Prepare last branches for instruction sample */
1477                 if (etm->synth_opts.last_branch)
1478                         cs_etm__copy_last_branch_rb(etmq, tidq);
1479
1480                 while (tidq->period_instructions >=
1481                                 etm->instructions_sample_period) {
1482                         /*
1483                          * Calculate the address of the sampled instruction (-1
1484                          * as sample is reported as though instruction has just
1485                          * been executed, but PC has not advanced to next
1486                          * instruction)
1487                          */
1488                         addr = cs_etm__instr_addr(etmq, trace_chan_id,
1489                                                   tidq->packet, offset - 1);
1490                         ret = cs_etm__synth_instruction_sample(
1491                                 etmq, tidq, addr,
1492                                 etm->instructions_sample_period);
1493                         if (ret)
1494                                 return ret;
1495
1496                         offset += etm->instructions_sample_period;
1497                         tidq->period_instructions -=
1498                                 etm->instructions_sample_period;
1499                 }
1500         }
1501
1502         if (etm->synth_opts.branches) {
1503                 bool generate_sample = false;
1504
1505                 /* Generate sample for tracing on packet */
1506                 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1507                         generate_sample = true;
1508
1509                 /* Generate sample for branch taken packet */
1510                 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1511                     tidq->prev_packet->last_instr_taken_branch)
1512                         generate_sample = true;
1513
1514                 if (generate_sample) {
1515                         ret = cs_etm__synth_branch_sample(etmq, tidq);
1516                         if (ret)
1517                                 return ret;
1518                 }
1519         }
1520
1521         cs_etm__packet_swap(etm, tidq);
1522
1523         return 0;
1524 }
1525
1526 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1527 {
1528         /*
1529          * When the exception packet is inserted, whether the last instruction
1530          * in previous range packet is taken branch or not, we need to force
1531          * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1532          * to generate branch sample for the instruction range before the
1533          * exception is trapped to kernel or before the exception returning.
1534          *
1535          * The exception packet includes the dummy address values, so don't
1536          * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1537          * for generating instruction and branch samples.
1538          */
1539         if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1540                 tidq->prev_packet->last_instr_taken_branch = true;
1541
1542         return 0;
1543 }
1544
1545 static int cs_etm__flush(struct cs_etm_queue *etmq,
1546                          struct cs_etm_traceid_queue *tidq)
1547 {
1548         int err = 0;
1549         struct cs_etm_auxtrace *etm = etmq->etm;
1550
1551         /* Handle start tracing packet */
1552         if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1553                 goto swap_packet;
1554
1555         if (etmq->etm->synth_opts.last_branch &&
1556             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1557                 u64 addr;
1558
1559                 /* Prepare last branches for instruction sample */
1560                 cs_etm__copy_last_branch_rb(etmq, tidq);
1561
1562                 /*
1563                  * Generate a last branch event for the branches left in the
1564                  * circular buffer at the end of the trace.
1565                  *
1566                  * Use the address of the end of the last reported execution
1567                  * range
1568                  */
1569                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1570
1571                 err = cs_etm__synth_instruction_sample(
1572                         etmq, tidq, addr,
1573                         tidq->period_instructions);
1574                 if (err)
1575                         return err;
1576
1577                 tidq->period_instructions = 0;
1578
1579         }
1580
1581         if (etm->synth_opts.branches &&
1582             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1583                 err = cs_etm__synth_branch_sample(etmq, tidq);
1584                 if (err)
1585                         return err;
1586         }
1587
1588 swap_packet:
1589         cs_etm__packet_swap(etm, tidq);
1590
1591         /* Reset last branches after flush the trace */
1592         if (etm->synth_opts.last_branch)
1593                 cs_etm__reset_last_branch_rb(tidq);
1594
1595         return err;
1596 }
1597
1598 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1599                              struct cs_etm_traceid_queue *tidq)
1600 {
1601         int err;
1602
1603         /*
1604          * It has no new packet coming and 'etmq->packet' contains the stale
1605          * packet which was set at the previous time with packets swapping;
1606          * so skip to generate branch sample to avoid stale packet.
1607          *
1608          * For this case only flush branch stack and generate a last branch
1609          * event for the branches left in the circular buffer at the end of
1610          * the trace.
1611          */
1612         if (etmq->etm->synth_opts.last_branch &&
1613             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1614                 u64 addr;
1615
1616                 /* Prepare last branches for instruction sample */
1617                 cs_etm__copy_last_branch_rb(etmq, tidq);
1618
1619                 /*
1620                  * Use the address of the end of the last reported execution
1621                  * range.
1622                  */
1623                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1624
1625                 err = cs_etm__synth_instruction_sample(
1626                         etmq, tidq, addr,
1627                         tidq->period_instructions);
1628                 if (err)
1629                         return err;
1630
1631                 tidq->period_instructions = 0;
1632         }
1633
1634         return 0;
1635 }
1636 /*
1637  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1638  *                         if need be.
1639  * Returns:     < 0     if error
1640  *              = 0     if no more auxtrace_buffer to read
1641  *              > 0     if the current buffer isn't empty yet
1642  */
1643 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1644 {
1645         int ret;
1646
1647         if (!etmq->buf_len) {
1648                 ret = cs_etm__get_trace(etmq);
1649                 if (ret <= 0)
1650                         return ret;
1651                 /*
1652                  * We cannot assume consecutive blocks in the data file
1653                  * are contiguous, reset the decoder to force re-sync.
1654                  */
1655                 ret = cs_etm_decoder__reset(etmq->decoder);
1656                 if (ret)
1657                         return ret;
1658         }
1659
1660         return etmq->buf_len;
1661 }
1662
1663 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1664                                  struct cs_etm_packet *packet,
1665                                  u64 end_addr)
1666 {
1667         /* Initialise to keep compiler happy */
1668         u16 instr16 = 0;
1669         u32 instr32 = 0;
1670         u64 addr;
1671
1672         switch (packet->isa) {
1673         case CS_ETM_ISA_T32:
1674                 /*
1675                  * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1676                  *
1677                  *  b'15         b'8
1678                  * +-----------------+--------+
1679                  * | 1 1 0 1 1 1 1 1 |  imm8  |
1680                  * +-----------------+--------+
1681                  *
1682                  * According to the specification, it only defines SVC for T32
1683                  * with 16 bits instruction and has no definition for 32bits;
1684                  * so below only read 2 bytes as instruction size for T32.
1685                  */
1686                 addr = end_addr - 2;
1687                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1688                                    sizeof(instr16), (u8 *)&instr16);
1689                 if ((instr16 & 0xFF00) == 0xDF00)
1690                         return true;
1691
1692                 break;
1693         case CS_ETM_ISA_A32:
1694                 /*
1695                  * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1696                  *
1697                  *  b'31 b'28 b'27 b'24
1698                  * +---------+---------+-------------------------+
1699                  * |  !1111  | 1 1 1 1 |        imm24            |
1700                  * +---------+---------+-------------------------+
1701                  */
1702                 addr = end_addr - 4;
1703                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1704                                    sizeof(instr32), (u8 *)&instr32);
1705                 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1706                     (instr32 & 0xF0000000) != 0xF0000000)
1707                         return true;
1708
1709                 break;
1710         case CS_ETM_ISA_A64:
1711                 /*
1712                  * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1713                  *
1714                  *  b'31               b'21           b'4     b'0
1715                  * +-----------------------+---------+-----------+
1716                  * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1717                  * +-----------------------+---------+-----------+
1718                  */
1719                 addr = end_addr - 4;
1720                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1721                                    sizeof(instr32), (u8 *)&instr32);
1722                 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1723                         return true;
1724
1725                 break;
1726         case CS_ETM_ISA_UNKNOWN:
1727         default:
1728                 break;
1729         }
1730
1731         return false;
1732 }
1733
1734 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1735                                struct cs_etm_traceid_queue *tidq, u64 magic)
1736 {
1737         u8 trace_chan_id = tidq->trace_chan_id;
1738         struct cs_etm_packet *packet = tidq->packet;
1739         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1740
1741         if (magic == __perf_cs_etmv3_magic)
1742                 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1743                         return true;
1744
1745         /*
1746          * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1747          * HVC cases; need to check if it's SVC instruction based on
1748          * packet address.
1749          */
1750         if (magic == __perf_cs_etmv4_magic) {
1751                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1752                     cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1753                                          prev_packet->end_addr))
1754                         return true;
1755         }
1756
1757         return false;
1758 }
1759
1760 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1761                                        u64 magic)
1762 {
1763         struct cs_etm_packet *packet = tidq->packet;
1764
1765         if (magic == __perf_cs_etmv3_magic)
1766                 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1767                     packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1768                     packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1769                     packet->exception_number == CS_ETMV3_EXC_IRQ ||
1770                     packet->exception_number == CS_ETMV3_EXC_FIQ)
1771                         return true;
1772
1773         if (magic == __perf_cs_etmv4_magic)
1774                 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1775                     packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1776                     packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1777                     packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1778                     packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1779                     packet->exception_number == CS_ETMV4_EXC_IRQ ||
1780                     packet->exception_number == CS_ETMV4_EXC_FIQ)
1781                         return true;
1782
1783         return false;
1784 }
1785
1786 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1787                                       struct cs_etm_traceid_queue *tidq,
1788                                       u64 magic)
1789 {
1790         u8 trace_chan_id = tidq->trace_chan_id;
1791         struct cs_etm_packet *packet = tidq->packet;
1792         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1793
1794         if (magic == __perf_cs_etmv3_magic)
1795                 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1796                     packet->exception_number == CS_ETMV3_EXC_HYP ||
1797                     packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1798                     packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1799                     packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1800                     packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1801                     packet->exception_number == CS_ETMV3_EXC_GENERIC)
1802                         return true;
1803
1804         if (magic == __perf_cs_etmv4_magic) {
1805                 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1806                     packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1807                     packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1808                     packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1809                         return true;
1810
1811                 /*
1812                  * For CS_ETMV4_EXC_CALL, except SVC other instructions
1813                  * (SMC, HVC) are taken as sync exceptions.
1814                  */
1815                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1816                     !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1817                                           prev_packet->end_addr))
1818                         return true;
1819
1820                 /*
1821                  * ETMv4 has 5 bits for exception number; if the numbers
1822                  * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1823                  * they are implementation defined exceptions.
1824                  *
1825                  * For this case, simply take it as sync exception.
1826                  */
1827                 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1828                     packet->exception_number <= CS_ETMV4_EXC_END)
1829                         return true;
1830         }
1831
1832         return false;
1833 }
1834
1835 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1836                                     struct cs_etm_traceid_queue *tidq)
1837 {
1838         struct cs_etm_packet *packet = tidq->packet;
1839         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1840         u8 trace_chan_id = tidq->trace_chan_id;
1841         u64 magic;
1842         int ret;
1843
1844         switch (packet->sample_type) {
1845         case CS_ETM_RANGE:
1846                 /*
1847                  * Immediate branch instruction without neither link nor
1848                  * return flag, it's normal branch instruction within
1849                  * the function.
1850                  */
1851                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1852                     packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1853                         packet->flags = PERF_IP_FLAG_BRANCH;
1854
1855                         if (packet->last_instr_cond)
1856                                 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1857                 }
1858
1859                 /*
1860                  * Immediate branch instruction with link (e.g. BL), this is
1861                  * branch instruction for function call.
1862                  */
1863                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1864                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1865                         packet->flags = PERF_IP_FLAG_BRANCH |
1866                                         PERF_IP_FLAG_CALL;
1867
1868                 /*
1869                  * Indirect branch instruction with link (e.g. BLR), this is
1870                  * branch instruction for function call.
1871                  */
1872                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1873                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1874                         packet->flags = PERF_IP_FLAG_BRANCH |
1875                                         PERF_IP_FLAG_CALL;
1876
1877                 /*
1878                  * Indirect branch instruction with subtype of
1879                  * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1880                  * function return for A32/T32.
1881                  */
1882                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1883                     packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1884                         packet->flags = PERF_IP_FLAG_BRANCH |
1885                                         PERF_IP_FLAG_RETURN;
1886
1887                 /*
1888                  * Indirect branch instruction without link (e.g. BR), usually
1889                  * this is used for function return, especially for functions
1890                  * within dynamic link lib.
1891                  */
1892                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1893                     packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1894                         packet->flags = PERF_IP_FLAG_BRANCH |
1895                                         PERF_IP_FLAG_RETURN;
1896
1897                 /* Return instruction for function return. */
1898                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1899                     packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1900                         packet->flags = PERF_IP_FLAG_BRANCH |
1901                                         PERF_IP_FLAG_RETURN;
1902
1903                 /*
1904                  * Decoder might insert a discontinuity in the middle of
1905                  * instruction packets, fixup prev_packet with flag
1906                  * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1907                  */
1908                 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1909                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1910                                               PERF_IP_FLAG_TRACE_BEGIN;
1911
1912                 /*
1913                  * If the previous packet is an exception return packet
1914                  * and the return address just follows SVC instruction,
1915                  * it needs to calibrate the previous packet sample flags
1916                  * as PERF_IP_FLAG_SYSCALLRET.
1917                  */
1918                 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1919                                            PERF_IP_FLAG_RETURN |
1920                                            PERF_IP_FLAG_INTERRUPT) &&
1921                     cs_etm__is_svc_instr(etmq, trace_chan_id,
1922                                          packet, packet->start_addr))
1923                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
1924                                              PERF_IP_FLAG_RETURN |
1925                                              PERF_IP_FLAG_SYSCALLRET;
1926                 break;
1927         case CS_ETM_DISCONTINUITY:
1928                 /*
1929                  * The trace is discontinuous, if the previous packet is
1930                  * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1931                  * for previous packet.
1932                  */
1933                 if (prev_packet->sample_type == CS_ETM_RANGE)
1934                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1935                                               PERF_IP_FLAG_TRACE_END;
1936                 break;
1937         case CS_ETM_EXCEPTION:
1938                 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1939                 if (ret)
1940                         return ret;
1941
1942                 /* The exception is for system call. */
1943                 if (cs_etm__is_syscall(etmq, tidq, magic))
1944                         packet->flags = PERF_IP_FLAG_BRANCH |
1945                                         PERF_IP_FLAG_CALL |
1946                                         PERF_IP_FLAG_SYSCALLRET;
1947                 /*
1948                  * The exceptions are triggered by external signals from bus,
1949                  * interrupt controller, debug module, PE reset or halt.
1950                  */
1951                 else if (cs_etm__is_async_exception(tidq, magic))
1952                         packet->flags = PERF_IP_FLAG_BRANCH |
1953                                         PERF_IP_FLAG_CALL |
1954                                         PERF_IP_FLAG_ASYNC |
1955                                         PERF_IP_FLAG_INTERRUPT;
1956                 /*
1957                  * Otherwise, exception is caused by trap, instruction &
1958                  * data fault, or alignment errors.
1959                  */
1960                 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1961                         packet->flags = PERF_IP_FLAG_BRANCH |
1962                                         PERF_IP_FLAG_CALL |
1963                                         PERF_IP_FLAG_INTERRUPT;
1964
1965                 /*
1966                  * When the exception packet is inserted, since exception
1967                  * packet is not used standalone for generating samples
1968                  * and it's affiliation to the previous instruction range
1969                  * packet; so set previous range packet flags to tell perf
1970                  * it is an exception taken branch.
1971                  */
1972                 if (prev_packet->sample_type == CS_ETM_RANGE)
1973                         prev_packet->flags = packet->flags;
1974                 break;
1975         case CS_ETM_EXCEPTION_RET:
1976                 /*
1977                  * When the exception return packet is inserted, since
1978                  * exception return packet is not used standalone for
1979                  * generating samples and it's affiliation to the previous
1980                  * instruction range packet; so set previous range packet
1981                  * flags to tell perf it is an exception return branch.
1982                  *
1983                  * The exception return can be for either system call or
1984                  * other exception types; unfortunately the packet doesn't
1985                  * contain exception type related info so we cannot decide
1986                  * the exception type purely based on exception return packet.
1987                  * If we record the exception number from exception packet and
1988                  * reuse it for exception return packet, this is not reliable
1989                  * due the trace can be discontinuity or the interrupt can
1990                  * be nested, thus the recorded exception number cannot be
1991                  * used for exception return packet for these two cases.
1992                  *
1993                  * For exception return packet, we only need to distinguish the
1994                  * packet is for system call or for other types.  Thus the
1995                  * decision can be deferred when receive the next packet which
1996                  * contains the return address, based on the return address we
1997                  * can read out the previous instruction and check if it's a
1998                  * system call instruction and then calibrate the sample flag
1999                  * as needed.
2000                  */
2001                 if (prev_packet->sample_type == CS_ETM_RANGE)
2002                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
2003                                              PERF_IP_FLAG_RETURN |
2004                                              PERF_IP_FLAG_INTERRUPT;
2005                 break;
2006         case CS_ETM_EMPTY:
2007         default:
2008                 break;
2009         }
2010
2011         return 0;
2012 }
2013
2014 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2015 {
2016         int ret = 0;
2017         size_t processed = 0;
2018
2019         /*
2020          * Packets are decoded and added to the decoder's packet queue
2021          * until the decoder packet processing callback has requested that
2022          * processing stops or there is nothing left in the buffer.  Normal
2023          * operations that stop processing are a timestamp packet or a full
2024          * decoder buffer queue.
2025          */
2026         ret = cs_etm_decoder__process_data_block(etmq->decoder,
2027                                                  etmq->offset,
2028                                                  &etmq->buf[etmq->buf_used],
2029                                                  etmq->buf_len,
2030                                                  &processed);
2031         if (ret)
2032                 goto out;
2033
2034         etmq->offset += processed;
2035         etmq->buf_used += processed;
2036         etmq->buf_len -= processed;
2037
2038 out:
2039         return ret;
2040 }
2041
2042 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2043                                          struct cs_etm_traceid_queue *tidq)
2044 {
2045         int ret;
2046         struct cs_etm_packet_queue *packet_queue;
2047
2048         packet_queue = &tidq->packet_queue;
2049
2050         /* Process each packet in this chunk */
2051         while (1) {
2052                 ret = cs_etm_decoder__get_packet(packet_queue,
2053                                                  tidq->packet);
2054                 if (ret <= 0)
2055                         /*
2056                          * Stop processing this chunk on
2057                          * end of data or error
2058                          */
2059                         break;
2060
2061                 /*
2062                  * Since packet addresses are swapped in packet
2063                  * handling within below switch() statements,
2064                  * thus setting sample flags must be called
2065                  * prior to switch() statement to use address
2066                  * information before packets swapping.
2067                  */
2068                 ret = cs_etm__set_sample_flags(etmq, tidq);
2069                 if (ret < 0)
2070                         break;
2071
2072                 switch (tidq->packet->sample_type) {
2073                 case CS_ETM_RANGE:
2074                         /*
2075                          * If the packet contains an instruction
2076                          * range, generate instruction sequence
2077                          * events.
2078                          */
2079                         cs_etm__sample(etmq, tidq);
2080                         break;
2081                 case CS_ETM_EXCEPTION:
2082                 case CS_ETM_EXCEPTION_RET:
2083                         /*
2084                          * If the exception packet is coming,
2085                          * make sure the previous instruction
2086                          * range packet to be handled properly.
2087                          */
2088                         cs_etm__exception(tidq);
2089                         break;
2090                 case CS_ETM_DISCONTINUITY:
2091                         /*
2092                          * Discontinuity in trace, flush
2093                          * previous branch stack
2094                          */
2095                         cs_etm__flush(etmq, tidq);
2096                         break;
2097                 case CS_ETM_EMPTY:
2098                         /*
2099                          * Should not receive empty packet,
2100                          * report error.
2101                          */
2102                         pr_err("CS ETM Trace: empty packet\n");
2103                         return -EINVAL;
2104                 default:
2105                         break;
2106                 }
2107         }
2108
2109         return ret;
2110 }
2111
2112 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2113 {
2114         int idx;
2115         struct int_node *inode;
2116         struct cs_etm_traceid_queue *tidq;
2117         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2118
2119         intlist__for_each_entry(inode, traceid_queues_list) {
2120                 idx = (int)(intptr_t)inode->priv;
2121                 tidq = etmq->traceid_queues[idx];
2122
2123                 /* Ignore return value */
2124                 cs_etm__process_traceid_queue(etmq, tidq);
2125
2126                 /*
2127                  * Generate an instruction sample with the remaining
2128                  * branchstack entries.
2129                  */
2130                 cs_etm__flush(etmq, tidq);
2131         }
2132 }
2133
2134 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2135 {
2136         int err = 0;
2137         struct cs_etm_traceid_queue *tidq;
2138
2139         tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2140         if (!tidq)
2141                 return -EINVAL;
2142
2143         /* Go through each buffer in the queue and decode them one by one */
2144         while (1) {
2145                 err = cs_etm__get_data_block(etmq);
2146                 if (err <= 0)
2147                         return err;
2148
2149                 /* Run trace decoder until buffer consumed or end of trace */
2150                 do {
2151                         err = cs_etm__decode_data_block(etmq);
2152                         if (err)
2153                                 return err;
2154
2155                         /*
2156                          * Process each packet in this chunk, nothing to do if
2157                          * an error occurs other than hoping the next one will
2158                          * be better.
2159                          */
2160                         err = cs_etm__process_traceid_queue(etmq, tidq);
2161
2162                 } while (etmq->buf_len);
2163
2164                 if (err == 0)
2165                         /* Flush any remaining branch stack entries */
2166                         err = cs_etm__end_block(etmq, tidq);
2167         }
2168
2169         return err;
2170 }
2171
2172 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2173                                            pid_t tid)
2174 {
2175         unsigned int i;
2176         struct auxtrace_queues *queues = &etm->queues;
2177
2178         for (i = 0; i < queues->nr_queues; i++) {
2179                 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2180                 struct cs_etm_queue *etmq = queue->priv;
2181                 struct cs_etm_traceid_queue *tidq;
2182
2183                 if (!etmq)
2184                         continue;
2185
2186                 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2187                                                 CS_ETM_PER_THREAD_TRACEID);
2188
2189                 if (!tidq)
2190                         continue;
2191
2192                 if ((tid == -1) || (tidq->tid == tid)) {
2193                         cs_etm__set_pid_tid_cpu(etm, tidq);
2194                         cs_etm__run_decoder(etmq);
2195                 }
2196         }
2197
2198         return 0;
2199 }
2200
2201 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2202 {
2203         int ret = 0;
2204         unsigned int cs_queue_nr, queue_nr, i;
2205         u8 trace_chan_id;
2206         u64 cs_timestamp;
2207         struct auxtrace_queue *queue;
2208         struct cs_etm_queue *etmq;
2209         struct cs_etm_traceid_queue *tidq;
2210
2211         /*
2212          * Pre-populate the heap with one entry from each queue so that we can
2213          * start processing in time order across all queues.
2214          */
2215         for (i = 0; i < etm->queues.nr_queues; i++) {
2216                 etmq = etm->queues.queue_array[i].priv;
2217                 if (!etmq)
2218                         continue;
2219
2220                 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2221                 if (ret)
2222                         return ret;
2223         }
2224
2225         while (1) {
2226                 if (!etm->heap.heap_cnt)
2227                         goto out;
2228
2229                 /* Take the entry at the top of the min heap */
2230                 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2231                 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2232                 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2233                 queue = &etm->queues.queue_array[queue_nr];
2234                 etmq = queue->priv;
2235
2236                 /*
2237                  * Remove the top entry from the heap since we are about
2238                  * to process it.
2239                  */
2240                 auxtrace_heap__pop(&etm->heap);
2241
2242                 tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2243                 if (!tidq) {
2244                         /*
2245                          * No traceID queue has been allocated for this traceID,
2246                          * which means something somewhere went very wrong.  No
2247                          * other choice than simply exit.
2248                          */
2249                         ret = -EINVAL;
2250                         goto out;
2251                 }
2252
2253                 /*
2254                  * Packets associated with this timestamp are already in
2255                  * the etmq's traceID queue, so process them.
2256                  */
2257                 ret = cs_etm__process_traceid_queue(etmq, tidq);
2258                 if (ret < 0)
2259                         goto out;
2260
2261                 /*
2262                  * Packets for this timestamp have been processed, time to
2263                  * move on to the next timestamp, fetching a new auxtrace_buffer
2264                  * if need be.
2265                  */
2266 refetch:
2267                 ret = cs_etm__get_data_block(etmq);
2268                 if (ret < 0)
2269                         goto out;
2270
2271                 /*
2272                  * No more auxtrace_buffers to process in this etmq, simply
2273                  * move on to another entry in the auxtrace_heap.
2274                  */
2275                 if (!ret)
2276                         continue;
2277
2278                 ret = cs_etm__decode_data_block(etmq);
2279                 if (ret)
2280                         goto out;
2281
2282                 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2283
2284                 if (!cs_timestamp) {
2285                         /*
2286                          * Function cs_etm__decode_data_block() returns when
2287                          * there is no more traces to decode in the current
2288                          * auxtrace_buffer OR when a timestamp has been
2289                          * encountered on any of the traceID queues.  Since we
2290                          * did not get a timestamp, there is no more traces to
2291                          * process in this auxtrace_buffer.  As such empty and
2292                          * flush all traceID queues.
2293                          */
2294                         cs_etm__clear_all_traceid_queues(etmq);
2295
2296                         /* Fetch another auxtrace_buffer for this etmq */
2297                         goto refetch;
2298                 }
2299
2300                 /*
2301                  * Add to the min heap the timestamp for packets that have
2302                  * just been decoded.  They will be processed and synthesized
2303                  * during the next call to cs_etm__process_traceid_queue() for
2304                  * this queue/traceID.
2305                  */
2306                 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2307                 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2308         }
2309
2310 out:
2311         return ret;
2312 }
2313
2314 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2315                                         union perf_event *event)
2316 {
2317         struct thread *th;
2318
2319         if (etm->timeless_decoding)
2320                 return 0;
2321
2322         /*
2323          * Add the tid/pid to the log so that we can get a match when
2324          * we get a contextID from the decoder.
2325          */
2326         th = machine__findnew_thread(etm->machine,
2327                                      event->itrace_start.pid,
2328                                      event->itrace_start.tid);
2329         if (!th)
2330                 return -ENOMEM;
2331
2332         thread__put(th);
2333
2334         return 0;
2335 }
2336
2337 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2338                                            union perf_event *event)
2339 {
2340         struct thread *th;
2341         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2342
2343         /*
2344          * Context switch in per-thread mode are irrelevant since perf
2345          * will start/stop tracing as the process is scheduled.
2346          */
2347         if (etm->timeless_decoding)
2348                 return 0;
2349
2350         /*
2351          * SWITCH_IN events carry the next process to be switched out while
2352          * SWITCH_OUT events carry the process to be switched in.  As such
2353          * we don't care about IN events.
2354          */
2355         if (!out)
2356                 return 0;
2357
2358         /*
2359          * Add the tid/pid to the log so that we can get a match when
2360          * we get a contextID from the decoder.
2361          */
2362         th = machine__findnew_thread(etm->machine,
2363                                      event->context_switch.next_prev_pid,
2364                                      event->context_switch.next_prev_tid);
2365         if (!th)
2366                 return -ENOMEM;
2367
2368         thread__put(th);
2369
2370         return 0;
2371 }
2372
2373 static int cs_etm__process_event(struct perf_session *session,
2374                                  union perf_event *event,
2375                                  struct perf_sample *sample,
2376                                  struct perf_tool *tool)
2377 {
2378         u64 sample_kernel_timestamp;
2379         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2380                                                    struct cs_etm_auxtrace,
2381                                                    auxtrace);
2382
2383         if (dump_trace)
2384                 return 0;
2385
2386         if (!tool->ordered_events) {
2387                 pr_err("CoreSight ETM Trace requires ordered events\n");
2388                 return -EINVAL;
2389         }
2390
2391         if (sample->time && (sample->time != (u64) -1))
2392                 sample_kernel_timestamp = sample->time;
2393         else
2394                 sample_kernel_timestamp = 0;
2395
2396         /*
2397          * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2398          * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2399          * ETM_OPT_CTXTID is not enabled.
2400          */
2401         if (etm->timeless_decoding &&
2402             event->header.type == PERF_RECORD_EXIT)
2403                 return cs_etm__process_timeless_queues(etm,
2404                                                        event->fork.tid);
2405
2406         if (event->header.type == PERF_RECORD_ITRACE_START)
2407                 return cs_etm__process_itrace_start(etm, event);
2408         else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2409                 return cs_etm__process_switch_cpu_wide(etm, event);
2410
2411         if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2412                 /*
2413                  * Record the latest kernel timestamp available in the header
2414                  * for samples so that synthesised samples occur from this point
2415                  * onwards.
2416                  */
2417                 etm->latest_kernel_timestamp = sample_kernel_timestamp;
2418         }
2419
2420         return 0;
2421 }
2422
2423 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2424                              struct perf_record_auxtrace *event)
2425 {
2426         struct auxtrace_buffer *buf;
2427         unsigned int i;
2428         /*
2429          * Find all buffers with same reference in the queues and dump them.
2430          * This is because the queues can contain multiple entries of the same
2431          * buffer that were split on aux records.
2432          */
2433         for (i = 0; i < etm->queues.nr_queues; ++i)
2434                 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2435                         if (buf->reference == event->reference)
2436                                 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2437 }
2438
2439 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2440                                           union perf_event *event,
2441                                           struct perf_tool *tool __maybe_unused)
2442 {
2443         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2444                                                    struct cs_etm_auxtrace,
2445                                                    auxtrace);
2446         if (!etm->data_queued) {
2447                 struct auxtrace_buffer *buffer;
2448                 off_t  data_offset;
2449                 int fd = perf_data__fd(session->data);
2450                 bool is_pipe = perf_data__is_pipe(session->data);
2451                 int err;
2452                 int idx = event->auxtrace.idx;
2453
2454                 if (is_pipe)
2455                         data_offset = 0;
2456                 else {
2457                         data_offset = lseek(fd, 0, SEEK_CUR);
2458                         if (data_offset == -1)
2459                                 return -errno;
2460                 }
2461
2462                 err = auxtrace_queues__add_event(&etm->queues, session,
2463                                                  event, data_offset, &buffer);
2464                 if (err)
2465                         return err;
2466
2467                 /*
2468                  * Knowing if the trace is formatted or not requires a lookup of
2469                  * the aux record so only works in non-piped mode where data is
2470                  * queued in cs_etm__queue_aux_records(). Always assume
2471                  * formatted in piped mode (true).
2472                  */
2473                 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2474                                           idx, true);
2475                 if (err)
2476                         return err;
2477
2478                 if (dump_trace)
2479                         if (auxtrace_buffer__get_data(buffer, fd)) {
2480                                 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2481                                 auxtrace_buffer__put_data(buffer);
2482                         }
2483         } else if (dump_trace)
2484                 dump_queued_data(etm, &event->auxtrace);
2485
2486         return 0;
2487 }
2488
2489 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2490 {
2491         struct evsel *evsel;
2492         struct evlist *evlist = etm->session->evlist;
2493         bool timeless_decoding = true;
2494
2495         /* Override timeless mode with user input from --itrace=Z */
2496         if (etm->synth_opts.timeless_decoding)
2497                 return true;
2498
2499         /*
2500          * Circle through the list of event and complain if we find one
2501          * with the time bit set.
2502          */
2503         evlist__for_each_entry(evlist, evsel) {
2504                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2505                         timeless_decoding = false;
2506         }
2507
2508         return timeless_decoding;
2509 }
2510
2511 static const char * const cs_etm_global_header_fmts[] = {
2512         [CS_HEADER_VERSION]     = "     Header version                 %llx\n",
2513         [CS_PMU_TYPE_CPUS]      = "     PMU type/num cpus              %llx\n",
2514         [CS_ETM_SNAPSHOT]       = "     Snapshot                       %llx\n",
2515 };
2516
2517 static const char * const cs_etm_priv_fmts[] = {
2518         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2519         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2520         [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2521         [CS_ETM_ETMCR]          = "     ETMCR                          %llx\n",
2522         [CS_ETM_ETMTRACEIDR]    = "     ETMTRACEIDR                    %llx\n",
2523         [CS_ETM_ETMCCER]        = "     ETMCCER                        %llx\n",
2524         [CS_ETM_ETMIDR]         = "     ETMIDR                         %llx\n",
2525 };
2526
2527 static const char * const cs_etmv4_priv_fmts[] = {
2528         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2529         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2530         [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2531         [CS_ETMV4_TRCCONFIGR]   = "     TRCCONFIGR                     %llx\n",
2532         [CS_ETMV4_TRCTRACEIDR]  = "     TRCTRACEIDR                    %llx\n",
2533         [CS_ETMV4_TRCIDR0]      = "     TRCIDR0                        %llx\n",
2534         [CS_ETMV4_TRCIDR1]      = "     TRCIDR1                        %llx\n",
2535         [CS_ETMV4_TRCIDR2]      = "     TRCIDR2                        %llx\n",
2536         [CS_ETMV4_TRCIDR8]      = "     TRCIDR8                        %llx\n",
2537         [CS_ETMV4_TRCAUTHSTATUS] = "    TRCAUTHSTATUS                  %llx\n",
2538         [CS_ETE_TRCDEVARCH]     = "     TRCDEVARCH                     %llx\n"
2539 };
2540
2541 static const char * const param_unk_fmt =
2542         "       Unknown parameter [%d]         %llx\n";
2543 static const char * const magic_unk_fmt =
2544         "       Magic number Unknown           %llx\n";
2545
2546 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2547 {
2548         int i = *offset, j, nr_params = 0, fmt_offset;
2549         __u64 magic;
2550
2551         /* check magic value */
2552         magic = val[i + CS_ETM_MAGIC];
2553         if ((magic != __perf_cs_etmv3_magic) &&
2554             (magic != __perf_cs_etmv4_magic)) {
2555                 /* failure - note bad magic value */
2556                 fprintf(stdout, magic_unk_fmt, magic);
2557                 return -EINVAL;
2558         }
2559
2560         /* print common header block */
2561         fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2562         fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2563
2564         if (magic == __perf_cs_etmv3_magic) {
2565                 nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2566                 fmt_offset = CS_ETM_ETMCR;
2567                 /* after common block, offset format index past NR_PARAMS */
2568                 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2569                         fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2570         } else if (magic == __perf_cs_etmv4_magic) {
2571                 nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2572                 fmt_offset = CS_ETMV4_TRCCONFIGR;
2573                 /* after common block, offset format index past NR_PARAMS */
2574                 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2575                         fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2576         }
2577         *offset = i;
2578         return 0;
2579 }
2580
2581 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2582 {
2583         int i = *offset, j, total_params = 0;
2584         __u64 magic;
2585
2586         magic = val[i + CS_ETM_MAGIC];
2587         /* total params to print is NR_PARAMS + common block size for v1 */
2588         total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2589
2590         if (magic == __perf_cs_etmv3_magic) {
2591                 for (j = 0; j < total_params; j++, i++) {
2592                         /* if newer record - could be excess params */
2593                         if (j >= CS_ETM_PRIV_MAX)
2594                                 fprintf(stdout, param_unk_fmt, j, val[i]);
2595                         else
2596                                 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2597                 }
2598         } else if (magic == __perf_cs_etmv4_magic || magic == __perf_cs_ete_magic) {
2599                 /*
2600                  * ETE and ETMv4 can be printed in the same block because the number of parameters
2601                  * is saved and they share the list of parameter names. ETE is also only supported
2602                  * in V1 files.
2603                  */
2604                 for (j = 0; j < total_params; j++, i++) {
2605                         /* if newer record - could be excess params */
2606                         if (j >= CS_ETE_PRIV_MAX)
2607                                 fprintf(stdout, param_unk_fmt, j, val[i]);
2608                         else
2609                                 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2610                 }
2611         } else {
2612                 /* failure - note bad magic value and error out */
2613                 fprintf(stdout, magic_unk_fmt, magic);
2614                 return -EINVAL;
2615         }
2616         *offset = i;
2617         return 0;
2618 }
2619
2620 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2621 {
2622         int i, cpu = 0, version, err;
2623
2624         /* bail out early on bad header version */
2625         version = val[0];
2626         if (version > CS_HEADER_CURRENT_VERSION) {
2627                 /* failure.. return */
2628                 fprintf(stdout, "       Unknown Header Version = %x, ", version);
2629                 fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2630                 return;
2631         }
2632
2633         for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2634                 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2635
2636         for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2637                 if (version == 0)
2638                         err = cs_etm__print_cpu_metadata_v0(val, &i);
2639                 else if (version == 1)
2640                         err = cs_etm__print_cpu_metadata_v1(val, &i);
2641                 if (err)
2642                         return;
2643         }
2644 }
2645
2646 /*
2647  * Read a single cpu parameter block from the auxtrace_info priv block.
2648  *
2649  * For version 1 there is a per cpu nr_params entry. If we are handling
2650  * version 1 file, then there may be less, the same, or more params
2651  * indicated by this value than the compile time number we understand.
2652  *
2653  * For a version 0 info block, there are a fixed number, and we need to
2654  * fill out the nr_param value in the metadata we create.
2655  */
2656 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2657                                     int out_blk_size, int nr_params_v0)
2658 {
2659         u64 *metadata = NULL;
2660         int hdr_version;
2661         int nr_in_params, nr_out_params, nr_cmn_params;
2662         int i, k;
2663
2664         metadata = zalloc(sizeof(*metadata) * out_blk_size);
2665         if (!metadata)
2666                 return NULL;
2667
2668         /* read block current index & version */
2669         i = *buff_in_offset;
2670         hdr_version = buff_in[CS_HEADER_VERSION];
2671
2672         if (!hdr_version) {
2673         /* read version 0 info block into a version 1 metadata block  */
2674                 nr_in_params = nr_params_v0;
2675                 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2676                 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2677                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2678                 /* remaining block params at offset +1 from source */
2679                 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2680                         metadata[k + 1] = buff_in[i + k];
2681                 /* version 0 has 2 common params */
2682                 nr_cmn_params = 2;
2683         } else {
2684         /* read version 1 info block - input and output nr_params may differ */
2685                 /* version 1 has 3 common params */
2686                 nr_cmn_params = 3;
2687                 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2688
2689                 /* if input has more params than output - skip excess */
2690                 nr_out_params = nr_in_params + nr_cmn_params;
2691                 if (nr_out_params > out_blk_size)
2692                         nr_out_params = out_blk_size;
2693
2694                 for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2695                         metadata[k] = buff_in[i + k];
2696
2697                 /* record the actual nr params we copied */
2698                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2699         }
2700
2701         /* adjust in offset by number of in params used */
2702         i += nr_in_params + nr_cmn_params;
2703         *buff_in_offset = i;
2704         return metadata;
2705 }
2706
2707 /**
2708  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2709  * on the bounds of aux_event, if it matches with the buffer that's at
2710  * file_offset.
2711  *
2712  * Normally, whole auxtrace buffers would be added to the queue. But we
2713  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2714  * is reset across each buffer, so splitting the buffers up in advance has
2715  * the same effect.
2716  */
2717 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2718                                       struct perf_record_aux *aux_event, struct perf_sample *sample)
2719 {
2720         int err;
2721         char buf[PERF_SAMPLE_MAX_SIZE];
2722         union perf_event *auxtrace_event_union;
2723         struct perf_record_auxtrace *auxtrace_event;
2724         union perf_event auxtrace_fragment;
2725         __u64 aux_offset, aux_size;
2726         __u32 idx;
2727         bool formatted;
2728
2729         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2730                                                    struct cs_etm_auxtrace,
2731                                                    auxtrace);
2732
2733         /*
2734          * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2735          * from looping through the auxtrace index.
2736          */
2737         err = perf_session__peek_event(session, file_offset, buf,
2738                                        PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2739         if (err)
2740                 return err;
2741         auxtrace_event = &auxtrace_event_union->auxtrace;
2742         if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2743                 return -EINVAL;
2744
2745         if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2746                 auxtrace_event->header.size != sz) {
2747                 return -EINVAL;
2748         }
2749
2750         /*
2751          * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2752          * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2753          */
2754         if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2755                         auxtrace_event->cpu != sample->cpu)
2756                 return 1;
2757
2758         if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2759                 /*
2760                  * Clamp size in snapshot mode. The buffer size is clamped in
2761                  * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2762                  * the buffer size.
2763                  */
2764                 aux_size = min(aux_event->aux_size, auxtrace_event->size);
2765
2766                 /*
2767                  * In this mode, the head also points to the end of the buffer so aux_offset
2768                  * needs to have the size subtracted so it points to the beginning as in normal mode
2769                  */
2770                 aux_offset = aux_event->aux_offset - aux_size;
2771         } else {
2772                 aux_size = aux_event->aux_size;
2773                 aux_offset = aux_event->aux_offset;
2774         }
2775
2776         if (aux_offset >= auxtrace_event->offset &&
2777             aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2778                 /*
2779                  * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2780                  * based on the sizes of the aux event, and queue that fragment.
2781                  */
2782                 auxtrace_fragment.auxtrace = *auxtrace_event;
2783                 auxtrace_fragment.auxtrace.size = aux_size;
2784                 auxtrace_fragment.auxtrace.offset = aux_offset;
2785                 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2786
2787                 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2788                           " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2789                 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2790                                                  file_offset, NULL);
2791                 if (err)
2792                         return err;
2793
2794                 idx = auxtrace_event->idx;
2795                 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
2796                 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2797                                            idx, formatted);
2798         }
2799
2800         /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2801         return 1;
2802 }
2803
2804 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2805                                         u64 offset __maybe_unused, void *data __maybe_unused)
2806 {
2807         struct perf_sample sample;
2808         int ret;
2809         struct auxtrace_index_entry *ent;
2810         struct auxtrace_index *auxtrace_index;
2811         struct evsel *evsel;
2812         size_t i;
2813
2814         /* Don't care about any other events, we're only queuing buffers for AUX events */
2815         if (event->header.type != PERF_RECORD_AUX)
2816                 return 0;
2817
2818         if (event->header.size < sizeof(struct perf_record_aux))
2819                 return -EINVAL;
2820
2821         /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2822         if (!event->aux.aux_size)
2823                 return 0;
2824
2825         /*
2826          * Parse the sample, we need the sample_id_all data that comes after the event so that the
2827          * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2828          */
2829         evsel = evlist__event2evsel(session->evlist, event);
2830         if (!evsel)
2831                 return -EINVAL;
2832         ret = evsel__parse_sample(evsel, event, &sample);
2833         if (ret)
2834                 return ret;
2835
2836         /*
2837          * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2838          */
2839         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2840                 for (i = 0; i < auxtrace_index->nr; i++) {
2841                         ent = &auxtrace_index->entries[i];
2842                         ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2843                                                          ent->sz, &event->aux, &sample);
2844                         /*
2845                          * Stop search on error or successful values. Continue search on
2846                          * 1 ('not found')
2847                          */
2848                         if (ret != 1)
2849                                 return ret;
2850                 }
2851         }
2852
2853         /*
2854          * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2855          * don't exit with an error because it will still be possible to decode other aux records.
2856          */
2857         pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2858                " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2859         return 0;
2860 }
2861
2862 static int cs_etm__queue_aux_records(struct perf_session *session)
2863 {
2864         struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2865                                                                 struct auxtrace_index, list);
2866         if (index && index->nr > 0)
2867                 return perf_session__peek_events(session, session->header.data_offset,
2868                                                  session->header.data_size,
2869                                                  cs_etm__queue_aux_records_cb, NULL);
2870
2871         /*
2872          * We would get here if there are no entries in the index (either no auxtrace
2873          * buffers or no index at all). Fail silently as there is the possibility of
2874          * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2875          * false.
2876          *
2877          * In that scenario, buffers will not be split by AUX records.
2878          */
2879         return 0;
2880 }
2881
2882 int cs_etm__process_auxtrace_info(union perf_event *event,
2883                                   struct perf_session *session)
2884 {
2885         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2886         struct cs_etm_auxtrace *etm = NULL;
2887         struct int_node *inode;
2888         unsigned int pmu_type;
2889         int event_header_size = sizeof(struct perf_event_header);
2890         int info_header_size;
2891         int total_size = auxtrace_info->header.size;
2892         int priv_size = 0;
2893         int num_cpu, trcidr_idx;
2894         int err = 0;
2895         int i, j;
2896         u64 *ptr, *hdr = NULL;
2897         u64 **metadata = NULL;
2898         u64 hdr_version;
2899
2900         /*
2901          * sizeof(auxtrace_info_event::type) +
2902          * sizeof(auxtrace_info_event::reserved) == 8
2903          */
2904         info_header_size = 8;
2905
2906         if (total_size < (event_header_size + info_header_size))
2907                 return -EINVAL;
2908
2909         priv_size = total_size - event_header_size - info_header_size;
2910
2911         /* First the global part */
2912         ptr = (u64 *) auxtrace_info->priv;
2913
2914         /* Look for version of the header */
2915         hdr_version = ptr[0];
2916         if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2917                 /* print routine will print an error on bad version */
2918                 if (dump_trace)
2919                         cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2920                 return -EINVAL;
2921         }
2922
2923         hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2924         if (!hdr)
2925                 return -ENOMEM;
2926
2927         /* Extract header information - see cs-etm.h for format */
2928         for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2929                 hdr[i] = ptr[i];
2930         num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2931         pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2932                                     0xffffffff);
2933
2934         /*
2935          * Create an RB tree for traceID-metadata tuple.  Since the conversion
2936          * has to be made for each packet that gets decoded, optimizing access
2937          * in anything other than a sequential array is worth doing.
2938          */
2939         traceid_list = intlist__new(NULL);
2940         if (!traceid_list) {
2941                 err = -ENOMEM;
2942                 goto err_free_hdr;
2943         }
2944
2945         metadata = zalloc(sizeof(*metadata) * num_cpu);
2946         if (!metadata) {
2947                 err = -ENOMEM;
2948                 goto err_free_traceid_list;
2949         }
2950
2951         /*
2952          * The metadata is stored in the auxtrace_info section and encodes
2953          * the configuration of the ARM embedded trace macrocell which is
2954          * required by the trace decoder to properly decode the trace due
2955          * to its highly compressed nature.
2956          */
2957         for (j = 0; j < num_cpu; j++) {
2958                 if (ptr[i] == __perf_cs_etmv3_magic) {
2959                         metadata[j] =
2960                                 cs_etm__create_meta_blk(ptr, &i,
2961                                                         CS_ETM_PRIV_MAX,
2962                                                         CS_ETM_NR_TRC_PARAMS_V0);
2963
2964                         /* The traceID is our handle */
2965                         trcidr_idx = CS_ETM_ETMTRACEIDR;
2966
2967                 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2968                         metadata[j] =
2969                                 cs_etm__create_meta_blk(ptr, &i,
2970                                                         CS_ETMV4_PRIV_MAX,
2971                                                         CS_ETMV4_NR_TRC_PARAMS_V0);
2972
2973                         /* The traceID is our handle */
2974                         trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2975                 } else if (ptr[i] == __perf_cs_ete_magic) {
2976                         metadata[j] = cs_etm__create_meta_blk(ptr, &i, CS_ETE_PRIV_MAX, -1);
2977
2978                         /* ETE shares first part of metadata with ETMv4 */
2979                         trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2980                 } else {
2981                         ui__error("CS ETM Trace: Unrecognised magic number %#"PRIx64". File could be from a newer version of perf.\n",
2982                                   ptr[i]);
2983                         err = -EINVAL;
2984                         goto err_free_metadata;
2985                 }
2986
2987                 if (!metadata[j]) {
2988                         err = -ENOMEM;
2989                         goto err_free_metadata;
2990                 }
2991
2992                 /* Get an RB node for this CPU */
2993                 inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2994
2995                 /* Something went wrong, no need to continue */
2996                 if (!inode) {
2997                         err = -ENOMEM;
2998                         goto err_free_metadata;
2999                 }
3000
3001                 /*
3002                  * The node for that CPU should not be taken.
3003                  * Back out if that's the case.
3004                  */
3005                 if (inode->priv) {
3006                         err = -EINVAL;
3007                         goto err_free_metadata;
3008                 }
3009                 /* All good, associate the traceID with the metadata pointer */
3010                 inode->priv = metadata[j];
3011         }
3012
3013         /*
3014          * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
3015          * CS_ETMV4_PRIV_MAX mark how many double words are in the
3016          * global metadata, and each cpu's metadata respectively.
3017          * The following tests if the correct number of double words was
3018          * present in the auxtrace info section.
3019          */
3020         if (i * 8 != priv_size) {
3021                 err = -EINVAL;
3022                 goto err_free_metadata;
3023         }
3024
3025         etm = zalloc(sizeof(*etm));
3026
3027         if (!etm) {
3028                 err = -ENOMEM;
3029                 goto err_free_metadata;
3030         }
3031
3032         err = auxtrace_queues__init(&etm->queues);
3033         if (err)
3034                 goto err_free_etm;
3035
3036         if (session->itrace_synth_opts->set) {
3037                 etm->synth_opts = *session->itrace_synth_opts;
3038         } else {
3039                 itrace_synth_opts__set_default(&etm->synth_opts,
3040                                 session->itrace_synth_opts->default_no_sample);
3041                 etm->synth_opts.callchain = false;
3042         }
3043
3044         etm->session = session;
3045         etm->machine = &session->machines.host;
3046
3047         etm->num_cpu = num_cpu;
3048         etm->pmu_type = pmu_type;
3049         etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
3050         etm->metadata = metadata;
3051         etm->auxtrace_type = auxtrace_info->type;
3052         etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
3053
3054         etm->auxtrace.process_event = cs_etm__process_event;
3055         etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3056         etm->auxtrace.flush_events = cs_etm__flush_events;
3057         etm->auxtrace.free_events = cs_etm__free_events;
3058         etm->auxtrace.free = cs_etm__free;
3059         etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3060         session->auxtrace = &etm->auxtrace;
3061
3062         etm->unknown_thread = thread__new(999999999, 999999999);
3063         if (!etm->unknown_thread) {
3064                 err = -ENOMEM;
3065                 goto err_free_queues;
3066         }
3067
3068         /*
3069          * Initialize list node so that at thread__zput() we can avoid
3070          * segmentation fault at list_del_init().
3071          */
3072         INIT_LIST_HEAD(&etm->unknown_thread->node);
3073
3074         err = thread__set_comm(etm->unknown_thread, "unknown", 0);
3075         if (err)
3076                 goto err_delete_thread;
3077
3078         if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3079                 err = -ENOMEM;
3080                 goto err_delete_thread;
3081         }
3082
3083         if (dump_trace) {
3084                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3085         }
3086
3087         err = cs_etm__synth_events(etm, session);
3088         if (err)
3089                 goto err_delete_thread;
3090
3091         err = cs_etm__queue_aux_records(session);
3092         if (err)
3093                 goto err_delete_thread;
3094
3095         etm->data_queued = etm->queues.populated;
3096         /*
3097          * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
3098          * cs_etm__queue_aux_fragment() for details relating to limitations.
3099          */
3100         if (!etm->data_queued)
3101                 pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
3102                            "Continuing with best effort decoding in piped mode.\n\n");
3103
3104         return 0;
3105
3106 err_delete_thread:
3107         thread__zput(etm->unknown_thread);
3108 err_free_queues:
3109         auxtrace_queues__free(&etm->queues);
3110         session->auxtrace = NULL;
3111 err_free_etm:
3112         zfree(&etm);
3113 err_free_metadata:
3114         /* No need to check @metadata[j], free(NULL) is supported */
3115         for (j = 0; j < num_cpu; j++)
3116                 zfree(&metadata[j]);
3117         zfree(&metadata);
3118 err_free_traceid_list:
3119         intlist__delete(traceid_list);
3120 err_free_hdr:
3121         zfree(&hdr);
3122         /*
3123          * At this point, as a minimum we have valid header. Dump the rest of
3124          * the info section - the print routines will error out on structural
3125          * issues.
3126          */
3127         if (dump_trace)
3128                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3129         return err;
3130 }