Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-block.git] / tools / perf / util / bpf_counter.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2019 Facebook */
4
5 #include <assert.h>
6 #include <limits.h>
7 #include <unistd.h>
8 #include <sys/file.h>
9 #include <sys/time.h>
10 #include <linux/err.h>
11 #include <linux/zalloc.h>
12 #include <api/fs/fs.h>
13 #include <perf/bpf_perf.h>
14
15 #include "bpf_counter.h"
16 #include "bpf-utils.h"
17 #include "counts.h"
18 #include "debug.h"
19 #include "evsel.h"
20 #include "evlist.h"
21 #include "target.h"
22 #include "cgroup.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25
26 #include "bpf_skel/bpf_prog_profiler.skel.h"
27 #include "bpf_skel/bperf_u.h"
28 #include "bpf_skel/bperf_leader.skel.h"
29 #include "bpf_skel/bperf_follower.skel.h"
30
31 #define ATTR_MAP_SIZE 16
32
33 static inline void *u64_to_ptr(__u64 ptr)
34 {
35         return (void *)(unsigned long)ptr;
36 }
37
38 static struct bpf_counter *bpf_counter_alloc(void)
39 {
40         struct bpf_counter *counter;
41
42         counter = zalloc(sizeof(*counter));
43         if (counter)
44                 INIT_LIST_HEAD(&counter->list);
45         return counter;
46 }
47
48 static int bpf_program_profiler__destroy(struct evsel *evsel)
49 {
50         struct bpf_counter *counter, *tmp;
51
52         list_for_each_entry_safe(counter, tmp,
53                                  &evsel->bpf_counter_list, list) {
54                 list_del_init(&counter->list);
55                 bpf_prog_profiler_bpf__destroy(counter->skel);
56                 free(counter);
57         }
58         assert(list_empty(&evsel->bpf_counter_list));
59
60         return 0;
61 }
62
63 static char *bpf_target_prog_name(int tgt_fd)
64 {
65         struct bpf_func_info *func_info;
66         struct perf_bpil *info_linear;
67         const struct btf_type *t;
68         struct btf *btf = NULL;
69         char *name = NULL;
70
71         info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO);
72         if (IS_ERR_OR_NULL(info_linear)) {
73                 pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
74                 return NULL;
75         }
76
77         if (info_linear->info.btf_id == 0) {
78                 pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
79                 goto out;
80         }
81
82         btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
83         if (libbpf_get_error(btf)) {
84                 pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
85                 goto out;
86         }
87
88         func_info = u64_to_ptr(info_linear->info.func_info);
89         t = btf__type_by_id(btf, func_info[0].type_id);
90         if (!t) {
91                 pr_debug("btf %d doesn't have type %d\n",
92                          info_linear->info.btf_id, func_info[0].type_id);
93                 goto out;
94         }
95         name = strdup(btf__name_by_offset(btf, t->name_off));
96 out:
97         btf__free(btf);
98         free(info_linear);
99         return name;
100 }
101
102 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
103 {
104         struct bpf_prog_profiler_bpf *skel;
105         struct bpf_counter *counter;
106         struct bpf_program *prog;
107         char *prog_name = NULL;
108         int prog_fd;
109         int err;
110
111         prog_fd = bpf_prog_get_fd_by_id(prog_id);
112         if (prog_fd < 0) {
113                 pr_err("Failed to open fd for bpf prog %u\n", prog_id);
114                 return -1;
115         }
116         counter = bpf_counter_alloc();
117         if (!counter) {
118                 close(prog_fd);
119                 return -1;
120         }
121
122         skel = bpf_prog_profiler_bpf__open();
123         if (!skel) {
124                 pr_err("Failed to open bpf skeleton\n");
125                 goto err_out;
126         }
127
128         skel->rodata->num_cpu = evsel__nr_cpus(evsel);
129
130         bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel));
131         bpf_map__set_max_entries(skel->maps.fentry_readings, 1);
132         bpf_map__set_max_entries(skel->maps.accum_readings, 1);
133
134         prog_name = bpf_target_prog_name(prog_fd);
135         if (!prog_name) {
136                 pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
137                 goto err_out;
138         }
139
140         bpf_object__for_each_program(prog, skel->obj) {
141                 err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
142                 if (err) {
143                         pr_err("bpf_program__set_attach_target failed.\n"
144                                "Does bpf prog %u have BTF?\n", prog_id);
145                         goto err_out;
146                 }
147         }
148         set_max_rlimit();
149         err = bpf_prog_profiler_bpf__load(skel);
150         if (err) {
151                 pr_err("bpf_prog_profiler_bpf__load failed\n");
152                 goto err_out;
153         }
154
155         assert(skel != NULL);
156         counter->skel = skel;
157         list_add(&counter->list, &evsel->bpf_counter_list);
158         free(prog_name);
159         close(prog_fd);
160         return 0;
161 err_out:
162         bpf_prog_profiler_bpf__destroy(skel);
163         free(prog_name);
164         free(counter);
165         close(prog_fd);
166         return -1;
167 }
168
169 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
170 {
171         char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
172         u32 prog_id;
173         int ret;
174
175         bpf_str_ = bpf_str = strdup(target->bpf_str);
176         if (!bpf_str)
177                 return -1;
178
179         while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
180                 prog_id = strtoul(tok, &p, 10);
181                 if (prog_id == 0 || prog_id == UINT_MAX ||
182                     (*p != '\0' && *p != ',')) {
183                         pr_err("Failed to parse bpf prog ids %s\n",
184                                target->bpf_str);
185                         free(bpf_str_);
186                         return -1;
187                 }
188
189                 ret = bpf_program_profiler_load_one(evsel, prog_id);
190                 if (ret) {
191                         bpf_program_profiler__destroy(evsel);
192                         free(bpf_str_);
193                         return -1;
194                 }
195                 bpf_str = NULL;
196         }
197         free(bpf_str_);
198         return 0;
199 }
200
201 static int bpf_program_profiler__enable(struct evsel *evsel)
202 {
203         struct bpf_counter *counter;
204         int ret;
205
206         list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
207                 assert(counter->skel != NULL);
208                 ret = bpf_prog_profiler_bpf__attach(counter->skel);
209                 if (ret) {
210                         bpf_program_profiler__destroy(evsel);
211                         return ret;
212                 }
213         }
214         return 0;
215 }
216
217 static int bpf_program_profiler__disable(struct evsel *evsel)
218 {
219         struct bpf_counter *counter;
220
221         list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
222                 assert(counter->skel != NULL);
223                 bpf_prog_profiler_bpf__detach(counter->skel);
224         }
225         return 0;
226 }
227
228 static int bpf_program_profiler__read(struct evsel *evsel)
229 {
230         // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
231         // Sometimes possible > online, like on a Ryzen 3900X that has 24
232         // threads but its possible showed 0-31 -acme
233         int num_cpu_bpf = libbpf_num_possible_cpus();
234         struct bpf_perf_event_value values[num_cpu_bpf];
235         struct bpf_counter *counter;
236         struct perf_counts_values *counts;
237         int reading_map_fd;
238         __u32 key = 0;
239         int err, idx, bpf_cpu;
240
241         if (list_empty(&evsel->bpf_counter_list))
242                 return -EAGAIN;
243
244         perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
245                 counts = perf_counts(evsel->counts, idx, 0);
246                 counts->val = 0;
247                 counts->ena = 0;
248                 counts->run = 0;
249         }
250         list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
251                 struct bpf_prog_profiler_bpf *skel = counter->skel;
252
253                 assert(skel != NULL);
254                 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
255
256                 err = bpf_map_lookup_elem(reading_map_fd, &key, values);
257                 if (err) {
258                         pr_err("failed to read value\n");
259                         return err;
260                 }
261
262                 for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) {
263                         idx = perf_cpu_map__idx(evsel__cpus(evsel),
264                                                 (struct perf_cpu){.cpu = bpf_cpu});
265                         if (idx == -1)
266                                 continue;
267                         counts = perf_counts(evsel->counts, idx, 0);
268                         counts->val += values[bpf_cpu].counter;
269                         counts->ena += values[bpf_cpu].enabled;
270                         counts->run += values[bpf_cpu].running;
271                 }
272         }
273         return 0;
274 }
275
276 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx,
277                                             int fd)
278 {
279         struct bpf_prog_profiler_bpf *skel;
280         struct bpf_counter *counter;
281         int ret;
282
283         list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
284                 skel = counter->skel;
285                 assert(skel != NULL);
286
287                 ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
288                                           &cpu_map_idx, &fd, BPF_ANY);
289                 if (ret)
290                         return ret;
291         }
292         return 0;
293 }
294
295 struct bpf_counter_ops bpf_program_profiler_ops = {
296         .load       = bpf_program_profiler__load,
297         .enable     = bpf_program_profiler__enable,
298         .disable    = bpf_program_profiler__disable,
299         .read       = bpf_program_profiler__read,
300         .destroy    = bpf_program_profiler__destroy,
301         .install_pe = bpf_program_profiler__install_pe,
302 };
303
304 static bool bperf_attr_map_compatible(int attr_map_fd)
305 {
306         struct bpf_map_info map_info = {0};
307         __u32 map_info_len = sizeof(map_info);
308         int err;
309
310         err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
311
312         if (err)
313                 return false;
314         return (map_info.key_size == sizeof(struct perf_event_attr)) &&
315                 (map_info.value_size == sizeof(struct perf_event_attr_map_entry));
316 }
317
318 static int bperf_lock_attr_map(struct target *target)
319 {
320         char path[PATH_MAX];
321         int map_fd, err;
322
323         if (target->attr_map) {
324                 scnprintf(path, PATH_MAX, "%s", target->attr_map);
325         } else {
326                 scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
327                           BPF_PERF_DEFAULT_ATTR_MAP_PATH);
328         }
329
330         if (access(path, F_OK)) {
331                 map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL,
332                                         sizeof(struct perf_event_attr),
333                                         sizeof(struct perf_event_attr_map_entry),
334                                         ATTR_MAP_SIZE, NULL);
335                 if (map_fd < 0)
336                         return -1;
337
338                 err = bpf_obj_pin(map_fd, path);
339                 if (err) {
340                         /* someone pinned the map in parallel? */
341                         close(map_fd);
342                         map_fd = bpf_obj_get(path);
343                         if (map_fd < 0)
344                                 return -1;
345                 }
346         } else {
347                 map_fd = bpf_obj_get(path);
348                 if (map_fd < 0)
349                         return -1;
350         }
351
352         if (!bperf_attr_map_compatible(map_fd)) {
353                 close(map_fd);
354                 return -1;
355
356         }
357         err = flock(map_fd, LOCK_EX);
358         if (err) {
359                 close(map_fd);
360                 return -1;
361         }
362         return map_fd;
363 }
364
365 static int bperf_check_target(struct evsel *evsel,
366                               struct target *target,
367                               enum bperf_filter_type *filter_type,
368                               __u32 *filter_entry_cnt)
369 {
370         if (evsel->core.leader->nr_members > 1) {
371                 pr_err("bpf managed perf events do not yet support groups.\n");
372                 return -1;
373         }
374
375         /* determine filter type based on target */
376         if (target->system_wide) {
377                 *filter_type = BPERF_FILTER_GLOBAL;
378                 *filter_entry_cnt = 1;
379         } else if (target->cpu_list) {
380                 *filter_type = BPERF_FILTER_CPU;
381                 *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
382         } else if (target->tid) {
383                 *filter_type = BPERF_FILTER_PID;
384                 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
385         } else if (target->pid || evsel->evlist->workload.pid != -1) {
386                 *filter_type = BPERF_FILTER_TGID;
387                 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
388         } else {
389                 pr_err("bpf managed perf events do not yet support these targets.\n");
390                 return -1;
391         }
392
393         return 0;
394 }
395
396 static  struct perf_cpu_map *all_cpu_map;
397
398 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
399                                        struct perf_event_attr_map_entry *entry)
400 {
401         struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
402         int link_fd, diff_map_fd, err;
403         struct bpf_link *link = NULL;
404
405         if (!skel) {
406                 pr_err("Failed to open leader skeleton\n");
407                 return -1;
408         }
409
410         bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus());
411         err = bperf_leader_bpf__load(skel);
412         if (err) {
413                 pr_err("Failed to load leader skeleton\n");
414                 goto out;
415         }
416
417         link = bpf_program__attach(skel->progs.on_switch);
418         if (IS_ERR(link)) {
419                 pr_err("Failed to attach leader program\n");
420                 err = PTR_ERR(link);
421                 goto out;
422         }
423
424         link_fd = bpf_link__fd(link);
425         diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
426         entry->link_id = bpf_link_get_id(link_fd);
427         entry->diff_map_id = bpf_map_get_id(diff_map_fd);
428         err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
429         assert(err == 0);
430
431         evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
432         assert(evsel->bperf_leader_link_fd >= 0);
433
434         /*
435          * save leader_skel for install_pe, which is called within
436          * following evsel__open_per_cpu call
437          */
438         evsel->leader_skel = skel;
439         evsel__open_per_cpu(evsel, all_cpu_map, -1);
440
441 out:
442         bperf_leader_bpf__destroy(skel);
443         bpf_link__destroy(link);
444         return err;
445 }
446
447 static int bperf__load(struct evsel *evsel, struct target *target)
448 {
449         struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
450         int attr_map_fd, diff_map_fd = -1, err;
451         enum bperf_filter_type filter_type;
452         __u32 filter_entry_cnt, i;
453
454         if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
455                 return -1;
456
457         if (!all_cpu_map) {
458                 all_cpu_map = perf_cpu_map__new_online_cpus();
459                 if (!all_cpu_map)
460                         return -1;
461         }
462
463         evsel->bperf_leader_prog_fd = -1;
464         evsel->bperf_leader_link_fd = -1;
465
466         /*
467          * Step 1: hold a fd on the leader program and the bpf_link, if
468          * the program is not already gone, reload the program.
469          * Use flock() to ensure exclusive access to the perf_event_attr
470          * map.
471          */
472         attr_map_fd = bperf_lock_attr_map(target);
473         if (attr_map_fd < 0) {
474                 pr_err("Failed to lock perf_event_attr map\n");
475                 return -1;
476         }
477
478         err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
479         if (err) {
480                 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
481                 if (err)
482                         goto out;
483         }
484
485         evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
486         if (evsel->bperf_leader_link_fd < 0 &&
487             bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
488                 err = -1;
489                 goto out;
490         }
491         /*
492          * The bpf_link holds reference to the leader program, and the
493          * leader program holds reference to the maps. Therefore, if
494          * link_id is valid, diff_map_id should also be valid.
495          */
496         evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
497                 bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
498         assert(evsel->bperf_leader_prog_fd >= 0);
499
500         diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
501         assert(diff_map_fd >= 0);
502
503         /*
504          * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
505          * whether the kernel support it
506          */
507         err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
508         if (err) {
509                 pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
510                        "Therefore, --use-bpf might show inaccurate readings\n");
511                 goto out;
512         }
513
514         /* Step 2: load the follower skeleton */
515         evsel->follower_skel = bperf_follower_bpf__open();
516         if (!evsel->follower_skel) {
517                 err = -1;
518                 pr_err("Failed to open follower skeleton\n");
519                 goto out;
520         }
521
522         /* attach fexit program to the leader program */
523         bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
524                                        evsel->bperf_leader_prog_fd, "on_switch");
525
526         /* connect to leader diff_reading map */
527         bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
528
529         /* set up reading map */
530         bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
531                                  filter_entry_cnt);
532         /* set up follower filter based on target */
533         bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
534                                  filter_entry_cnt);
535         err = bperf_follower_bpf__load(evsel->follower_skel);
536         if (err) {
537                 pr_err("Failed to load follower skeleton\n");
538                 bperf_follower_bpf__destroy(evsel->follower_skel);
539                 evsel->follower_skel = NULL;
540                 goto out;
541         }
542
543         for (i = 0; i < filter_entry_cnt; i++) {
544                 int filter_map_fd;
545                 __u32 key;
546
547                 if (filter_type == BPERF_FILTER_PID ||
548                     filter_type == BPERF_FILTER_TGID)
549                         key = perf_thread_map__pid(evsel->core.threads, i);
550                 else if (filter_type == BPERF_FILTER_CPU)
551                         key = perf_cpu_map__cpu(evsel->core.cpus, i).cpu;
552                 else
553                         break;
554
555                 filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
556                 bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
557         }
558
559         evsel->follower_skel->bss->type = filter_type;
560
561         err = bperf_follower_bpf__attach(evsel->follower_skel);
562
563 out:
564         if (err && evsel->bperf_leader_link_fd >= 0)
565                 close(evsel->bperf_leader_link_fd);
566         if (err && evsel->bperf_leader_prog_fd >= 0)
567                 close(evsel->bperf_leader_prog_fd);
568         if (diff_map_fd >= 0)
569                 close(diff_map_fd);
570
571         flock(attr_map_fd, LOCK_UN);
572         close(attr_map_fd);
573
574         return err;
575 }
576
577 static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
578 {
579         struct bperf_leader_bpf *skel = evsel->leader_skel;
580
581         return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
582                                    &cpu_map_idx, &fd, BPF_ANY);
583 }
584
585 /*
586  * trigger the leader prog on each cpu, so the accum_reading map could get
587  * the latest readings.
588  */
589 static int bperf_sync_counters(struct evsel *evsel)
590 {
591         int num_cpu, i, cpu;
592
593         num_cpu = perf_cpu_map__nr(all_cpu_map);
594         for (i = 0; i < num_cpu; i++) {
595                 cpu = perf_cpu_map__cpu(all_cpu_map, i).cpu;
596                 bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
597         }
598         return 0;
599 }
600
601 static int bperf__enable(struct evsel *evsel)
602 {
603         evsel->follower_skel->bss->enabled = 1;
604         return 0;
605 }
606
607 static int bperf__disable(struct evsel *evsel)
608 {
609         evsel->follower_skel->bss->enabled = 0;
610         return 0;
611 }
612
613 static int bperf__read(struct evsel *evsel)
614 {
615         struct bperf_follower_bpf *skel = evsel->follower_skel;
616         __u32 num_cpu_bpf = cpu__max_cpu().cpu;
617         struct bpf_perf_event_value values[num_cpu_bpf];
618         struct perf_counts_values *counts;
619         int reading_map_fd, err = 0;
620         __u32 i;
621         int j;
622
623         bperf_sync_counters(evsel);
624         reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
625
626         for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
627                 struct perf_cpu entry;
628                 __u32 cpu;
629
630                 err = bpf_map_lookup_elem(reading_map_fd, &i, values);
631                 if (err)
632                         goto out;
633                 switch (evsel->follower_skel->bss->type) {
634                 case BPERF_FILTER_GLOBAL:
635                         assert(i == 0);
636
637                         perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) {
638                                 counts = perf_counts(evsel->counts, j, 0);
639                                 counts->val = values[entry.cpu].counter;
640                                 counts->ena = values[entry.cpu].enabled;
641                                 counts->run = values[entry.cpu].running;
642                         }
643                         break;
644                 case BPERF_FILTER_CPU:
645                         cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu;
646                         assert(cpu >= 0);
647                         counts = perf_counts(evsel->counts, i, 0);
648                         counts->val = values[cpu].counter;
649                         counts->ena = values[cpu].enabled;
650                         counts->run = values[cpu].running;
651                         break;
652                 case BPERF_FILTER_PID:
653                 case BPERF_FILTER_TGID:
654                         counts = perf_counts(evsel->counts, 0, i);
655                         counts->val = 0;
656                         counts->ena = 0;
657                         counts->run = 0;
658
659                         for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
660                                 counts->val += values[cpu].counter;
661                                 counts->ena += values[cpu].enabled;
662                                 counts->run += values[cpu].running;
663                         }
664                         break;
665                 default:
666                         break;
667                 }
668         }
669 out:
670         return err;
671 }
672
673 static int bperf__destroy(struct evsel *evsel)
674 {
675         bperf_follower_bpf__destroy(evsel->follower_skel);
676         close(evsel->bperf_leader_prog_fd);
677         close(evsel->bperf_leader_link_fd);
678         return 0;
679 }
680
681 /*
682  * bperf: share hardware PMCs with BPF
683  *
684  * perf uses performance monitoring counters (PMC) to monitor system
685  * performance. The PMCs are limited hardware resources. For example,
686  * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
687  *
688  * Modern data center systems use these PMCs in many different ways:
689  * system level monitoring, (maybe nested) container level monitoring, per
690  * process monitoring, profiling (in sample mode), etc. In some cases,
691  * there are more active perf_events than available hardware PMCs. To allow
692  * all perf_events to have a chance to run, it is necessary to do expensive
693  * time multiplexing of events.
694  *
695  * On the other hand, many monitoring tools count the common metrics
696  * (cycles, instructions). It is a waste to have multiple tools create
697  * multiple perf_events of "cycles" and occupy multiple PMCs.
698  *
699  * bperf tries to reduce such wastes by allowing multiple perf_events of
700  * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
701  * of having each perf-stat session to read its own perf_events, bperf uses
702  * BPF programs to read the perf_events and aggregate readings to BPF maps.
703  * Then, the perf-stat session(s) reads the values from these BPF maps.
704  *
705  *                                ||
706  *       shared progs and maps <- || -> per session progs and maps
707  *                                ||
708  *   ---------------              ||
709  *   | perf_events |              ||
710  *   ---------------       fexit  ||      -----------------
711  *          |             --------||----> | follower prog |
712  *       --------------- /        || ---  -----------------
713  * cs -> | leader prog |/         ||/        |         |
714  *   --> ---------------         /||  --------------  ------------------
715  *  /       |         |         / ||  | filter map |  | accum_readings |
716  * /  ------------  ------------  ||  --------------  ------------------
717  * |  | prev map |  | diff map |  ||                        |
718  * |  ------------  ------------  ||                        |
719  *  \                             ||                        |
720  * = \ ==================================================== | ============
721  *    \                                                    /   user space
722  *     \                                                  /
723  *      \                                                /
724  *    BPF_PROG_TEST_RUN                    BPF_MAP_LOOKUP_ELEM
725  *        \                                            /
726  *         \                                          /
727  *          \------  perf-stat ----------------------/
728  *
729  * The figure above shows the architecture of bperf. Note that the figure
730  * is divided into 3 regions: shared progs and maps (top left), per session
731  * progs and maps (top right), and user space (bottom).
732  *
733  * The leader prog is triggered on each context switch (cs). The leader
734  * prog reads perf_events and stores the difference (current_reading -
735  * previous_reading) to the diff map. For the same metric, e.g. "cycles",
736  * multiple perf-stat sessions share the same leader prog.
737  *
738  * Each perf-stat session creates a follower prog as fexit program to the
739  * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
740  * follower progs to the same leader prog. The follower prog checks current
741  * task and processor ID to decide whether to add the value from the diff
742  * map to its accumulated reading map (accum_readings).
743  *
744  * Finally, perf-stat user space reads the value from accum_reading map.
745  *
746  * Besides context switch, it is also necessary to trigger the leader prog
747  * before perf-stat reads the value. Otherwise, the accum_reading map may
748  * not have the latest reading from the perf_events. This is achieved by
749  * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
750  *
751  * Comment before the definition of struct perf_event_attr_map_entry
752  * describes how different sessions of perf-stat share information about
753  * the leader prog.
754  */
755
756 struct bpf_counter_ops bperf_ops = {
757         .load       = bperf__load,
758         .enable     = bperf__enable,
759         .disable    = bperf__disable,
760         .read       = bperf__read,
761         .install_pe = bperf__install_pe,
762         .destroy    = bperf__destroy,
763 };
764
765 extern struct bpf_counter_ops bperf_cgrp_ops;
766
767 static inline bool bpf_counter_skip(struct evsel *evsel)
768 {
769         return evsel->bpf_counter_ops == NULL;
770 }
771
772 int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
773 {
774         if (bpf_counter_skip(evsel))
775                 return 0;
776         return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd);
777 }
778
779 int bpf_counter__load(struct evsel *evsel, struct target *target)
780 {
781         if (target->bpf_str)
782                 evsel->bpf_counter_ops = &bpf_program_profiler_ops;
783         else if (cgrp_event_expanded && target->use_bpf)
784                 evsel->bpf_counter_ops = &bperf_cgrp_ops;
785         else if (target->use_bpf || evsel->bpf_counter ||
786                  evsel__match_bpf_counter_events(evsel->name))
787                 evsel->bpf_counter_ops = &bperf_ops;
788
789         if (evsel->bpf_counter_ops)
790                 return evsel->bpf_counter_ops->load(evsel, target);
791         return 0;
792 }
793
794 int bpf_counter__enable(struct evsel *evsel)
795 {
796         if (bpf_counter_skip(evsel))
797                 return 0;
798         return evsel->bpf_counter_ops->enable(evsel);
799 }
800
801 int bpf_counter__disable(struct evsel *evsel)
802 {
803         if (bpf_counter_skip(evsel))
804                 return 0;
805         return evsel->bpf_counter_ops->disable(evsel);
806 }
807
808 int bpf_counter__read(struct evsel *evsel)
809 {
810         if (bpf_counter_skip(evsel))
811                 return -EAGAIN;
812         return evsel->bpf_counter_ops->read(evsel);
813 }
814
815 void bpf_counter__destroy(struct evsel *evsel)
816 {
817         if (bpf_counter_skip(evsel))
818                 return;
819         evsel->bpf_counter_ops->destroy(evsel);
820         evsel->bpf_counter_ops = NULL;
821         evsel->bpf_skel = NULL;
822 }