Merge tag 'drm-intel-gt-next-2024-04-26' of https://anongit.freedesktop.org/git/drm...
[linux-2.6-block.git] / tools / perf / util / auxtrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42
43 #include <linux/hash.h>
44
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58
59 #include <linux/ctype.h>
60 #include "symbol/kallsyms.h"
61 #include <internal/lib.h>
62 #include "util/sample.h"
63
64 /*
65  * Make a group from 'leader' to 'last', requiring that the events were not
66  * already grouped to a different leader.
67  */
68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
69 {
70         struct evsel *evsel;
71         bool grp;
72
73         if (!evsel__is_group_leader(leader))
74                 return -EINVAL;
75
76         grp = false;
77         evlist__for_each_entry(evlist, evsel) {
78                 if (grp) {
79                         if (!(evsel__leader(evsel) == leader ||
80                              (evsel__leader(evsel) == evsel &&
81                               evsel->core.nr_members <= 1)))
82                                 return -EINVAL;
83                 } else if (evsel == leader) {
84                         grp = true;
85                 }
86                 if (evsel == last)
87                         break;
88         }
89
90         grp = false;
91         evlist__for_each_entry(evlist, evsel) {
92                 if (grp) {
93                         if (!evsel__has_leader(evsel, leader)) {
94                                 evsel__set_leader(evsel, leader);
95                                 if (leader->core.nr_members < 1)
96                                         leader->core.nr_members = 1;
97                                 leader->core.nr_members += 1;
98                         }
99                 } else if (evsel == leader) {
100                         grp = true;
101                 }
102                 if (evsel == last)
103                         break;
104         }
105
106         return 0;
107 }
108
109 static bool auxtrace__dont_decode(struct perf_session *session)
110 {
111         return !session->itrace_synth_opts ||
112                session->itrace_synth_opts->dont_decode;
113 }
114
115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
116                         struct auxtrace_mmap_params *mp,
117                         void *userpg, int fd)
118 {
119         struct perf_event_mmap_page *pc = userpg;
120
121         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
122
123         mm->userpg = userpg;
124         mm->mask = mp->mask;
125         mm->len = mp->len;
126         mm->prev = 0;
127         mm->idx = mp->idx;
128         mm->tid = mp->tid;
129         mm->cpu = mp->cpu.cpu;
130
131         if (!mp->len || !mp->mmap_needed) {
132                 mm->base = NULL;
133                 return 0;
134         }
135
136         pc->aux_offset = mp->offset;
137         pc->aux_size = mp->len;
138
139         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
140         if (mm->base == MAP_FAILED) {
141                 pr_debug2("failed to mmap AUX area\n");
142                 mm->base = NULL;
143                 return -1;
144         }
145
146         return 0;
147 }
148
149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
150 {
151         if (mm->base) {
152                 munmap(mm->base, mm->len);
153                 mm->base = NULL;
154         }
155 }
156
157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
158                                 off_t auxtrace_offset,
159                                 unsigned int auxtrace_pages,
160                                 bool auxtrace_overwrite)
161 {
162         if (auxtrace_pages) {
163                 mp->offset = auxtrace_offset;
164                 mp->len = auxtrace_pages * (size_t)page_size;
165                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
166                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
167                 pr_debug2("AUX area mmap length %zu\n", mp->len);
168         } else {
169                 mp->len = 0;
170         }
171 }
172
173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
174                                    struct evlist *evlist,
175                                    struct evsel *evsel, int idx)
176 {
177         bool per_cpu = !perf_cpu_map__has_any_cpu_or_is_empty(evlist->core.user_requested_cpus);
178
179         mp->mmap_needed = evsel->needs_auxtrace_mmap;
180
181         if (!mp->mmap_needed)
182                 return;
183
184         mp->idx = idx;
185
186         if (per_cpu) {
187                 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
188                 if (evlist->core.threads)
189                         mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
190                 else
191                         mp->tid = -1;
192         } else {
193                 mp->cpu.cpu = -1;
194                 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
195         }
196 }
197
198 #define AUXTRACE_INIT_NR_QUEUES 32
199
200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
201 {
202         struct auxtrace_queue *queue_array;
203         unsigned int max_nr_queues, i;
204
205         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
206         if (nr_queues > max_nr_queues)
207                 return NULL;
208
209         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
210         if (!queue_array)
211                 return NULL;
212
213         for (i = 0; i < nr_queues; i++) {
214                 INIT_LIST_HEAD(&queue_array[i].head);
215                 queue_array[i].priv = NULL;
216         }
217
218         return queue_array;
219 }
220
221 int auxtrace_queues__init(struct auxtrace_queues *queues)
222 {
223         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
224         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
225         if (!queues->queue_array)
226                 return -ENOMEM;
227         return 0;
228 }
229
230 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
231                                  unsigned int new_nr_queues)
232 {
233         unsigned int nr_queues = queues->nr_queues;
234         struct auxtrace_queue *queue_array;
235         unsigned int i;
236
237         if (!nr_queues)
238                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
239
240         while (nr_queues && nr_queues < new_nr_queues)
241                 nr_queues <<= 1;
242
243         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
244                 return -EINVAL;
245
246         queue_array = auxtrace_alloc_queue_array(nr_queues);
247         if (!queue_array)
248                 return -ENOMEM;
249
250         for (i = 0; i < queues->nr_queues; i++) {
251                 list_splice_tail(&queues->queue_array[i].head,
252                                  &queue_array[i].head);
253                 queue_array[i].tid = queues->queue_array[i].tid;
254                 queue_array[i].cpu = queues->queue_array[i].cpu;
255                 queue_array[i].set = queues->queue_array[i].set;
256                 queue_array[i].priv = queues->queue_array[i].priv;
257         }
258
259         queues->nr_queues = nr_queues;
260         queues->queue_array = queue_array;
261
262         return 0;
263 }
264
265 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
266 {
267         int fd = perf_data__fd(session->data);
268         void *p;
269         ssize_t ret;
270
271         if (size > SSIZE_MAX)
272                 return NULL;
273
274         p = malloc(size);
275         if (!p)
276                 return NULL;
277
278         ret = readn(fd, p, size);
279         if (ret != (ssize_t)size) {
280                 free(p);
281                 return NULL;
282         }
283
284         return p;
285 }
286
287 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
288                                          unsigned int idx,
289                                          struct auxtrace_buffer *buffer)
290 {
291         struct auxtrace_queue *queue;
292         int err;
293
294         if (idx >= queues->nr_queues) {
295                 err = auxtrace_queues__grow(queues, idx + 1);
296                 if (err)
297                         return err;
298         }
299
300         queue = &queues->queue_array[idx];
301
302         if (!queue->set) {
303                 queue->set = true;
304                 queue->tid = buffer->tid;
305                 queue->cpu = buffer->cpu.cpu;
306         }
307
308         buffer->buffer_nr = queues->next_buffer_nr++;
309
310         list_add_tail(&buffer->list, &queue->head);
311
312         queues->new_data = true;
313         queues->populated = true;
314
315         return 0;
316 }
317
318 /* Limit buffers to 32MiB on 32-bit */
319 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
320
321 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
322                                          unsigned int idx,
323                                          struct auxtrace_buffer *buffer)
324 {
325         u64 sz = buffer->size;
326         bool consecutive = false;
327         struct auxtrace_buffer *b;
328         int err;
329
330         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
331                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
332                 if (!b)
333                         return -ENOMEM;
334                 b->size = BUFFER_LIMIT_FOR_32_BIT;
335                 b->consecutive = consecutive;
336                 err = auxtrace_queues__queue_buffer(queues, idx, b);
337                 if (err) {
338                         auxtrace_buffer__free(b);
339                         return err;
340                 }
341                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
342                 sz -= BUFFER_LIMIT_FOR_32_BIT;
343                 consecutive = true;
344         }
345
346         buffer->size = sz;
347         buffer->consecutive = consecutive;
348
349         return 0;
350 }
351
352 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
353 {
354         unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
355
356         return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
357 }
358
359 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
360                                        struct perf_session *session,
361                                        unsigned int idx,
362                                        struct auxtrace_buffer *buffer,
363                                        struct auxtrace_buffer **buffer_ptr)
364 {
365         int err = -ENOMEM;
366
367         if (filter_cpu(session, buffer->cpu))
368                 return 0;
369
370         buffer = memdup(buffer, sizeof(*buffer));
371         if (!buffer)
372                 return -ENOMEM;
373
374         if (session->one_mmap) {
375                 buffer->data = buffer->data_offset - session->one_mmap_offset +
376                                session->one_mmap_addr;
377         } else if (perf_data__is_pipe(session->data)) {
378                 buffer->data = auxtrace_copy_data(buffer->size, session);
379                 if (!buffer->data)
380                         goto out_free;
381                 buffer->data_needs_freeing = true;
382         } else if (BITS_PER_LONG == 32 &&
383                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
384                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
385                 if (err)
386                         goto out_free;
387         }
388
389         err = auxtrace_queues__queue_buffer(queues, idx, buffer);
390         if (err)
391                 goto out_free;
392
393         /* FIXME: Doesn't work for split buffer */
394         if (buffer_ptr)
395                 *buffer_ptr = buffer;
396
397         return 0;
398
399 out_free:
400         auxtrace_buffer__free(buffer);
401         return err;
402 }
403
404 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
405                                struct perf_session *session,
406                                union perf_event *event, off_t data_offset,
407                                struct auxtrace_buffer **buffer_ptr)
408 {
409         struct auxtrace_buffer buffer = {
410                 .pid = -1,
411                 .tid = event->auxtrace.tid,
412                 .cpu = { event->auxtrace.cpu },
413                 .data_offset = data_offset,
414                 .offset = event->auxtrace.offset,
415                 .reference = event->auxtrace.reference,
416                 .size = event->auxtrace.size,
417         };
418         unsigned int idx = event->auxtrace.idx;
419
420         return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
421                                            buffer_ptr);
422 }
423
424 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
425                                               struct perf_session *session,
426                                               off_t file_offset, size_t sz)
427 {
428         union perf_event *event;
429         int err;
430         char buf[PERF_SAMPLE_MAX_SIZE];
431
432         err = perf_session__peek_event(session, file_offset, buf,
433                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
434         if (err)
435                 return err;
436
437         if (event->header.type == PERF_RECORD_AUXTRACE) {
438                 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
439                     event->header.size != sz) {
440                         err = -EINVAL;
441                         goto out;
442                 }
443                 file_offset += event->header.size;
444                 err = auxtrace_queues__add_event(queues, session, event,
445                                                  file_offset, NULL);
446         }
447 out:
448         return err;
449 }
450
451 void auxtrace_queues__free(struct auxtrace_queues *queues)
452 {
453         unsigned int i;
454
455         for (i = 0; i < queues->nr_queues; i++) {
456                 while (!list_empty(&queues->queue_array[i].head)) {
457                         struct auxtrace_buffer *buffer;
458
459                         buffer = list_entry(queues->queue_array[i].head.next,
460                                             struct auxtrace_buffer, list);
461                         list_del_init(&buffer->list);
462                         auxtrace_buffer__free(buffer);
463                 }
464         }
465
466         zfree(&queues->queue_array);
467         queues->nr_queues = 0;
468 }
469
470 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
471                              unsigned int pos, unsigned int queue_nr,
472                              u64 ordinal)
473 {
474         unsigned int parent;
475
476         while (pos) {
477                 parent = (pos - 1) >> 1;
478                 if (heap_array[parent].ordinal <= ordinal)
479                         break;
480                 heap_array[pos] = heap_array[parent];
481                 pos = parent;
482         }
483         heap_array[pos].queue_nr = queue_nr;
484         heap_array[pos].ordinal = ordinal;
485 }
486
487 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
488                        u64 ordinal)
489 {
490         struct auxtrace_heap_item *heap_array;
491
492         if (queue_nr >= heap->heap_sz) {
493                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
494
495                 while (heap_sz <= queue_nr)
496                         heap_sz <<= 1;
497                 heap_array = realloc(heap->heap_array,
498                                      heap_sz * sizeof(struct auxtrace_heap_item));
499                 if (!heap_array)
500                         return -ENOMEM;
501                 heap->heap_array = heap_array;
502                 heap->heap_sz = heap_sz;
503         }
504
505         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
506
507         return 0;
508 }
509
510 void auxtrace_heap__free(struct auxtrace_heap *heap)
511 {
512         zfree(&heap->heap_array);
513         heap->heap_cnt = 0;
514         heap->heap_sz = 0;
515 }
516
517 void auxtrace_heap__pop(struct auxtrace_heap *heap)
518 {
519         unsigned int pos, last, heap_cnt = heap->heap_cnt;
520         struct auxtrace_heap_item *heap_array;
521
522         if (!heap_cnt)
523                 return;
524
525         heap->heap_cnt -= 1;
526
527         heap_array = heap->heap_array;
528
529         pos = 0;
530         while (1) {
531                 unsigned int left, right;
532
533                 left = (pos << 1) + 1;
534                 if (left >= heap_cnt)
535                         break;
536                 right = left + 1;
537                 if (right >= heap_cnt) {
538                         heap_array[pos] = heap_array[left];
539                         return;
540                 }
541                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
542                         heap_array[pos] = heap_array[left];
543                         pos = left;
544                 } else {
545                         heap_array[pos] = heap_array[right];
546                         pos = right;
547                 }
548         }
549
550         last = heap_cnt - 1;
551         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
552                          heap_array[last].ordinal);
553 }
554
555 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
556                                        struct evlist *evlist)
557 {
558         if (itr)
559                 return itr->info_priv_size(itr, evlist);
560         return 0;
561 }
562
563 static int auxtrace_not_supported(void)
564 {
565         pr_err("AUX area tracing is not supported on this architecture\n");
566         return -EINVAL;
567 }
568
569 int auxtrace_record__info_fill(struct auxtrace_record *itr,
570                                struct perf_session *session,
571                                struct perf_record_auxtrace_info *auxtrace_info,
572                                size_t priv_size)
573 {
574         if (itr)
575                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
576         return auxtrace_not_supported();
577 }
578
579 void auxtrace_record__free(struct auxtrace_record *itr)
580 {
581         if (itr)
582                 itr->free(itr);
583 }
584
585 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
586 {
587         if (itr && itr->snapshot_start)
588                 return itr->snapshot_start(itr);
589         return 0;
590 }
591
592 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
593 {
594         if (!on_exit && itr && itr->snapshot_finish)
595                 return itr->snapshot_finish(itr);
596         return 0;
597 }
598
599 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
600                                    struct auxtrace_mmap *mm,
601                                    unsigned char *data, u64 *head, u64 *old)
602 {
603         if (itr && itr->find_snapshot)
604                 return itr->find_snapshot(itr, idx, mm, data, head, old);
605         return 0;
606 }
607
608 int auxtrace_record__options(struct auxtrace_record *itr,
609                              struct evlist *evlist,
610                              struct record_opts *opts)
611 {
612         if (itr) {
613                 itr->evlist = evlist;
614                 return itr->recording_options(itr, evlist, opts);
615         }
616         return 0;
617 }
618
619 u64 auxtrace_record__reference(struct auxtrace_record *itr)
620 {
621         if (itr)
622                 return itr->reference(itr);
623         return 0;
624 }
625
626 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
627                                     struct record_opts *opts, const char *str)
628 {
629         if (!str)
630                 return 0;
631
632         /* PMU-agnostic options */
633         switch (*str) {
634         case 'e':
635                 opts->auxtrace_snapshot_on_exit = true;
636                 str++;
637                 break;
638         default:
639                 break;
640         }
641
642         if (itr && itr->parse_snapshot_options)
643                 return itr->parse_snapshot_options(itr, opts, str);
644
645         pr_err("No AUX area tracing to snapshot\n");
646         return -EINVAL;
647 }
648
649 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
650 {
651         bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu_or_is_empty(evlist->core.user_requested_cpus);
652
653         if (per_cpu_mmaps) {
654                 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
655                 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
656
657                 if (cpu_map_idx == -1)
658                         return -EINVAL;
659                 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
660         }
661
662         return perf_evsel__enable_thread(&evsel->core, idx);
663 }
664
665 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
666 {
667         struct evsel *evsel;
668
669         if (!itr->evlist || !itr->pmu)
670                 return -EINVAL;
671
672         evlist__for_each_entry(itr->evlist, evsel) {
673                 if (evsel->core.attr.type == itr->pmu->type) {
674                         if (evsel->disabled)
675                                 return 0;
676                         return evlist__enable_event_idx(itr->evlist, evsel, idx);
677                 }
678         }
679         return -EINVAL;
680 }
681
682 /*
683  * Event record size is 16-bit which results in a maximum size of about 64KiB.
684  * Allow about 4KiB for the rest of the sample record, to give a maximum
685  * AUX area sample size of 60KiB.
686  */
687 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
688
689 /* Arbitrary default size if no other default provided */
690 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
691
692 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
693                                              struct record_opts *opts)
694 {
695         struct evsel *evsel;
696         bool has_aux_leader = false;
697         u32 sz;
698
699         evlist__for_each_entry(evlist, evsel) {
700                 sz = evsel->core.attr.aux_sample_size;
701                 if (evsel__is_group_leader(evsel)) {
702                         has_aux_leader = evsel__is_aux_event(evsel);
703                         if (sz) {
704                                 if (has_aux_leader)
705                                         pr_err("Cannot add AUX area sampling to an AUX area event\n");
706                                 else
707                                         pr_err("Cannot add AUX area sampling to a group leader\n");
708                                 return -EINVAL;
709                         }
710                 }
711                 if (sz > MAX_AUX_SAMPLE_SIZE) {
712                         pr_err("AUX area sample size %u too big, max. %d\n",
713                                sz, MAX_AUX_SAMPLE_SIZE);
714                         return -EINVAL;
715                 }
716                 if (sz) {
717                         if (!has_aux_leader) {
718                                 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
719                                 return -EINVAL;
720                         }
721                         evsel__set_sample_bit(evsel, AUX);
722                         opts->auxtrace_sample_mode = true;
723                 } else {
724                         evsel__reset_sample_bit(evsel, AUX);
725                 }
726         }
727
728         if (!opts->auxtrace_sample_mode) {
729                 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
730                 return -EINVAL;
731         }
732
733         if (!perf_can_aux_sample()) {
734                 pr_err("AUX area sampling is not supported by kernel\n");
735                 return -EINVAL;
736         }
737
738         return 0;
739 }
740
741 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
742                                   struct evlist *evlist,
743                                   struct record_opts *opts, const char *str)
744 {
745         struct evsel_config_term *term;
746         struct evsel *aux_evsel;
747         bool has_aux_sample_size = false;
748         bool has_aux_leader = false;
749         struct evsel *evsel;
750         char *endptr;
751         unsigned long sz;
752
753         if (!str)
754                 goto no_opt;
755
756         if (!itr) {
757                 pr_err("No AUX area event to sample\n");
758                 return -EINVAL;
759         }
760
761         sz = strtoul(str, &endptr, 0);
762         if (*endptr || sz > UINT_MAX) {
763                 pr_err("Bad AUX area sampling option: '%s'\n", str);
764                 return -EINVAL;
765         }
766
767         if (!sz)
768                 sz = itr->default_aux_sample_size;
769
770         if (!sz)
771                 sz = DEFAULT_AUX_SAMPLE_SIZE;
772
773         /* Set aux_sample_size based on --aux-sample option */
774         evlist__for_each_entry(evlist, evsel) {
775                 if (evsel__is_group_leader(evsel)) {
776                         has_aux_leader = evsel__is_aux_event(evsel);
777                 } else if (has_aux_leader) {
778                         evsel->core.attr.aux_sample_size = sz;
779                 }
780         }
781 no_opt:
782         aux_evsel = NULL;
783         /* Override with aux_sample_size from config term */
784         evlist__for_each_entry(evlist, evsel) {
785                 if (evsel__is_aux_event(evsel))
786                         aux_evsel = evsel;
787                 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
788                 if (term) {
789                         has_aux_sample_size = true;
790                         evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
791                         /* If possible, group with the AUX event */
792                         if (aux_evsel && evsel->core.attr.aux_sample_size)
793                                 evlist__regroup(evlist, aux_evsel, evsel);
794                 }
795         }
796
797         if (!str && !has_aux_sample_size)
798                 return 0;
799
800         if (!itr) {
801                 pr_err("No AUX area event to sample\n");
802                 return -EINVAL;
803         }
804
805         return auxtrace_validate_aux_sample_size(evlist, opts);
806 }
807
808 void auxtrace_regroup_aux_output(struct evlist *evlist)
809 {
810         struct evsel *evsel, *aux_evsel = NULL;
811         struct evsel_config_term *term;
812
813         evlist__for_each_entry(evlist, evsel) {
814                 if (evsel__is_aux_event(evsel))
815                         aux_evsel = evsel;
816                 term = evsel__get_config_term(evsel, AUX_OUTPUT);
817                 /* If possible, group with the AUX event */
818                 if (term && aux_evsel)
819                         evlist__regroup(evlist, aux_evsel, evsel);
820         }
821 }
822
823 struct auxtrace_record *__weak
824 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
825 {
826         *err = 0;
827         return NULL;
828 }
829
830 static int auxtrace_index__alloc(struct list_head *head)
831 {
832         struct auxtrace_index *auxtrace_index;
833
834         auxtrace_index = malloc(sizeof(struct auxtrace_index));
835         if (!auxtrace_index)
836                 return -ENOMEM;
837
838         auxtrace_index->nr = 0;
839         INIT_LIST_HEAD(&auxtrace_index->list);
840
841         list_add_tail(&auxtrace_index->list, head);
842
843         return 0;
844 }
845
846 void auxtrace_index__free(struct list_head *head)
847 {
848         struct auxtrace_index *auxtrace_index, *n;
849
850         list_for_each_entry_safe(auxtrace_index, n, head, list) {
851                 list_del_init(&auxtrace_index->list);
852                 free(auxtrace_index);
853         }
854 }
855
856 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
857 {
858         struct auxtrace_index *auxtrace_index;
859         int err;
860
861         if (list_empty(head)) {
862                 err = auxtrace_index__alloc(head);
863                 if (err)
864                         return NULL;
865         }
866
867         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
868
869         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
870                 err = auxtrace_index__alloc(head);
871                 if (err)
872                         return NULL;
873                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
874                                             list);
875         }
876
877         return auxtrace_index;
878 }
879
880 int auxtrace_index__auxtrace_event(struct list_head *head,
881                                    union perf_event *event, off_t file_offset)
882 {
883         struct auxtrace_index *auxtrace_index;
884         size_t nr;
885
886         auxtrace_index = auxtrace_index__last(head);
887         if (!auxtrace_index)
888                 return -ENOMEM;
889
890         nr = auxtrace_index->nr;
891         auxtrace_index->entries[nr].file_offset = file_offset;
892         auxtrace_index->entries[nr].sz = event->header.size;
893         auxtrace_index->nr += 1;
894
895         return 0;
896 }
897
898 static int auxtrace_index__do_write(int fd,
899                                     struct auxtrace_index *auxtrace_index)
900 {
901         struct auxtrace_index_entry ent;
902         size_t i;
903
904         for (i = 0; i < auxtrace_index->nr; i++) {
905                 ent.file_offset = auxtrace_index->entries[i].file_offset;
906                 ent.sz = auxtrace_index->entries[i].sz;
907                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
908                         return -errno;
909         }
910         return 0;
911 }
912
913 int auxtrace_index__write(int fd, struct list_head *head)
914 {
915         struct auxtrace_index *auxtrace_index;
916         u64 total = 0;
917         int err;
918
919         list_for_each_entry(auxtrace_index, head, list)
920                 total += auxtrace_index->nr;
921
922         if (writen(fd, &total, sizeof(total)) != sizeof(total))
923                 return -errno;
924
925         list_for_each_entry(auxtrace_index, head, list) {
926                 err = auxtrace_index__do_write(fd, auxtrace_index);
927                 if (err)
928                         return err;
929         }
930
931         return 0;
932 }
933
934 static int auxtrace_index__process_entry(int fd, struct list_head *head,
935                                          bool needs_swap)
936 {
937         struct auxtrace_index *auxtrace_index;
938         struct auxtrace_index_entry ent;
939         size_t nr;
940
941         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
942                 return -1;
943
944         auxtrace_index = auxtrace_index__last(head);
945         if (!auxtrace_index)
946                 return -1;
947
948         nr = auxtrace_index->nr;
949         if (needs_swap) {
950                 auxtrace_index->entries[nr].file_offset =
951                                                 bswap_64(ent.file_offset);
952                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
953         } else {
954                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
955                 auxtrace_index->entries[nr].sz = ent.sz;
956         }
957
958         auxtrace_index->nr = nr + 1;
959
960         return 0;
961 }
962
963 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
964                             bool needs_swap)
965 {
966         struct list_head *head = &session->auxtrace_index;
967         u64 nr;
968
969         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
970                 return -1;
971
972         if (needs_swap)
973                 nr = bswap_64(nr);
974
975         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
976                 return -1;
977
978         while (nr--) {
979                 int err;
980
981                 err = auxtrace_index__process_entry(fd, head, needs_swap);
982                 if (err)
983                         return -1;
984         }
985
986         return 0;
987 }
988
989 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
990                                                 struct perf_session *session,
991                                                 struct auxtrace_index_entry *ent)
992 {
993         return auxtrace_queues__add_indexed_event(queues, session,
994                                                   ent->file_offset, ent->sz);
995 }
996
997 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
998                                    struct perf_session *session)
999 {
1000         struct auxtrace_index *auxtrace_index;
1001         struct auxtrace_index_entry *ent;
1002         size_t i;
1003         int err;
1004
1005         if (auxtrace__dont_decode(session))
1006                 return 0;
1007
1008         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1009                 for (i = 0; i < auxtrace_index->nr; i++) {
1010                         ent = &auxtrace_index->entries[i];
1011                         err = auxtrace_queues__process_index_entry(queues,
1012                                                                    session,
1013                                                                    ent);
1014                         if (err)
1015                                 return err;
1016                 }
1017         }
1018         return 0;
1019 }
1020
1021 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1022                                               struct auxtrace_buffer *buffer)
1023 {
1024         if (buffer) {
1025                 if (list_is_last(&buffer->list, &queue->head))
1026                         return NULL;
1027                 return list_entry(buffer->list.next, struct auxtrace_buffer,
1028                                   list);
1029         } else {
1030                 if (list_empty(&queue->head))
1031                         return NULL;
1032                 return list_entry(queue->head.next, struct auxtrace_buffer,
1033                                   list);
1034         }
1035 }
1036
1037 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1038                                                      struct perf_sample *sample,
1039                                                      struct perf_session *session)
1040 {
1041         struct perf_sample_id *sid;
1042         unsigned int idx;
1043         u64 id;
1044
1045         id = sample->id;
1046         if (!id)
1047                 return NULL;
1048
1049         sid = evlist__id2sid(session->evlist, id);
1050         if (!sid)
1051                 return NULL;
1052
1053         idx = sid->idx;
1054
1055         if (idx >= queues->nr_queues)
1056                 return NULL;
1057
1058         return &queues->queue_array[idx];
1059 }
1060
1061 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1062                                 struct perf_session *session,
1063                                 struct perf_sample *sample, u64 data_offset,
1064                                 u64 reference)
1065 {
1066         struct auxtrace_buffer buffer = {
1067                 .pid = -1,
1068                 .data_offset = data_offset,
1069                 .reference = reference,
1070                 .size = sample->aux_sample.size,
1071         };
1072         struct perf_sample_id *sid;
1073         u64 id = sample->id;
1074         unsigned int idx;
1075
1076         if (!id)
1077                 return -EINVAL;
1078
1079         sid = evlist__id2sid(session->evlist, id);
1080         if (!sid)
1081                 return -ENOENT;
1082
1083         idx = sid->idx;
1084         buffer.tid = sid->tid;
1085         buffer.cpu = sid->cpu;
1086
1087         return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1088 }
1089
1090 struct queue_data {
1091         bool samples;
1092         bool events;
1093 };
1094
1095 static int auxtrace_queue_data_cb(struct perf_session *session,
1096                                   union perf_event *event, u64 offset,
1097                                   void *data)
1098 {
1099         struct queue_data *qd = data;
1100         struct perf_sample sample;
1101         int err;
1102
1103         if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1104                 if (event->header.size < sizeof(struct perf_record_auxtrace))
1105                         return -EINVAL;
1106                 offset += event->header.size;
1107                 return session->auxtrace->queue_data(session, NULL, event,
1108                                                      offset);
1109         }
1110
1111         if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1112                 return 0;
1113
1114         err = evlist__parse_sample(session->evlist, event, &sample);
1115         if (err)
1116                 return err;
1117
1118         if (!sample.aux_sample.size)
1119                 return 0;
1120
1121         offset += sample.aux_sample.data - (void *)event;
1122
1123         return session->auxtrace->queue_data(session, &sample, NULL, offset);
1124 }
1125
1126 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1127 {
1128         struct queue_data qd = {
1129                 .samples = samples,
1130                 .events = events,
1131         };
1132
1133         if (auxtrace__dont_decode(session))
1134                 return 0;
1135
1136         if (perf_data__is_pipe(session->data))
1137                 return 0;
1138
1139         if (!session->auxtrace || !session->auxtrace->queue_data)
1140                 return -EINVAL;
1141
1142         return perf_session__peek_events(session, session->header.data_offset,
1143                                          session->header.data_size,
1144                                          auxtrace_queue_data_cb, &qd);
1145 }
1146
1147 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1148 {
1149         int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1150         size_t adj = buffer->data_offset & (page_size - 1);
1151         size_t size = buffer->size + adj;
1152         off_t file_offset = buffer->data_offset - adj;
1153         void *addr;
1154
1155         if (buffer->data)
1156                 return buffer->data;
1157
1158         addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1159         if (addr == MAP_FAILED)
1160                 return NULL;
1161
1162         buffer->mmap_addr = addr;
1163         buffer->mmap_size = size;
1164
1165         buffer->data = addr + adj;
1166
1167         return buffer->data;
1168 }
1169
1170 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1171 {
1172         if (!buffer->data || !buffer->mmap_addr)
1173                 return;
1174         munmap(buffer->mmap_addr, buffer->mmap_size);
1175         buffer->mmap_addr = NULL;
1176         buffer->mmap_size = 0;
1177         buffer->data = NULL;
1178         buffer->use_data = NULL;
1179 }
1180
1181 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1182 {
1183         auxtrace_buffer__put_data(buffer);
1184         if (buffer->data_needs_freeing) {
1185                 buffer->data_needs_freeing = false;
1186                 zfree(&buffer->data);
1187                 buffer->use_data = NULL;
1188                 buffer->size = 0;
1189         }
1190 }
1191
1192 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1193 {
1194         auxtrace_buffer__drop_data(buffer);
1195         free(buffer);
1196 }
1197
1198 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1199                                 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1200                                 const char *msg, u64 timestamp,
1201                                 pid_t machine_pid, int vcpu)
1202 {
1203         size_t size;
1204
1205         memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1206
1207         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1208         auxtrace_error->type = type;
1209         auxtrace_error->code = code;
1210         auxtrace_error->cpu = cpu;
1211         auxtrace_error->pid = pid;
1212         auxtrace_error->tid = tid;
1213         auxtrace_error->fmt = 1;
1214         auxtrace_error->ip = ip;
1215         auxtrace_error->time = timestamp;
1216         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1217         if (machine_pid) {
1218                 auxtrace_error->fmt = 2;
1219                 auxtrace_error->machine_pid = machine_pid;
1220                 auxtrace_error->vcpu = vcpu;
1221                 size = sizeof(*auxtrace_error);
1222         } else {
1223                 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1224                        strlen(auxtrace_error->msg) + 1;
1225         }
1226         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1227 }
1228
1229 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1230                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1231                           const char *msg, u64 timestamp)
1232 {
1233         auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1234                                    ip, msg, timestamp, 0, -1);
1235 }
1236
1237 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1238                                          struct perf_tool *tool,
1239                                          struct perf_session *session,
1240                                          perf_event__handler_t process)
1241 {
1242         union perf_event *ev;
1243         size_t priv_size;
1244         int err;
1245
1246         pr_debug2("Synthesizing auxtrace information\n");
1247         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1248         ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1249         if (!ev)
1250                 return -ENOMEM;
1251
1252         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1253         ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1254                                         priv_size;
1255         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1256                                          priv_size);
1257         if (err)
1258                 goto out_free;
1259
1260         err = process(tool, ev, NULL, NULL);
1261 out_free:
1262         free(ev);
1263         return err;
1264 }
1265
1266 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1267 {
1268         struct evsel *new_leader = NULL;
1269         struct evsel *evsel;
1270
1271         /* Find new leader for the group */
1272         evlist__for_each_entry(evlist, evsel) {
1273                 if (!evsel__has_leader(evsel, leader) || evsel == leader)
1274                         continue;
1275                 if (!new_leader)
1276                         new_leader = evsel;
1277                 evsel__set_leader(evsel, new_leader);
1278         }
1279
1280         /* Update group information */
1281         if (new_leader) {
1282                 zfree(&new_leader->group_name);
1283                 new_leader->group_name = leader->group_name;
1284                 leader->group_name = NULL;
1285
1286                 new_leader->core.nr_members = leader->core.nr_members - 1;
1287                 leader->core.nr_members = 1;
1288         }
1289 }
1290
1291 static void unleader_auxtrace(struct perf_session *session)
1292 {
1293         struct evsel *evsel;
1294
1295         evlist__for_each_entry(session->evlist, evsel) {
1296                 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1297                     evsel__is_group_leader(evsel)) {
1298                         unleader_evsel(session->evlist, evsel);
1299                 }
1300         }
1301 }
1302
1303 int perf_event__process_auxtrace_info(struct perf_session *session,
1304                                       union perf_event *event)
1305 {
1306         enum auxtrace_type type = event->auxtrace_info.type;
1307         int err;
1308
1309         if (dump_trace)
1310                 fprintf(stdout, " type: %u\n", type);
1311
1312         switch (type) {
1313         case PERF_AUXTRACE_INTEL_PT:
1314                 err = intel_pt_process_auxtrace_info(event, session);
1315                 break;
1316         case PERF_AUXTRACE_INTEL_BTS:
1317                 err = intel_bts_process_auxtrace_info(event, session);
1318                 break;
1319         case PERF_AUXTRACE_ARM_SPE:
1320                 err = arm_spe_process_auxtrace_info(event, session);
1321                 break;
1322         case PERF_AUXTRACE_CS_ETM:
1323                 err = cs_etm__process_auxtrace_info(event, session);
1324                 break;
1325         case PERF_AUXTRACE_S390_CPUMSF:
1326                 err = s390_cpumsf_process_auxtrace_info(event, session);
1327                 break;
1328         case PERF_AUXTRACE_HISI_PTT:
1329                 err = hisi_ptt_process_auxtrace_info(event, session);
1330                 break;
1331         case PERF_AUXTRACE_UNKNOWN:
1332         default:
1333                 return -EINVAL;
1334         }
1335
1336         if (err)
1337                 return err;
1338
1339         unleader_auxtrace(session);
1340
1341         return 0;
1342 }
1343
1344 s64 perf_event__process_auxtrace(struct perf_session *session,
1345                                  union perf_event *event)
1346 {
1347         s64 err;
1348
1349         if (dump_trace)
1350                 fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1351                         event->auxtrace.size, event->auxtrace.offset,
1352                         event->auxtrace.reference, event->auxtrace.idx,
1353                         event->auxtrace.tid, event->auxtrace.cpu);
1354
1355         if (auxtrace__dont_decode(session))
1356                 return event->auxtrace.size;
1357
1358         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1359                 return -EINVAL;
1360
1361         err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1362         if (err < 0)
1363                 return err;
1364
1365         return event->auxtrace.size;
1366 }
1367
1368 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
1369 #define PERF_ITRACE_DEFAULT_PERIOD              100000
1370 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
1371 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
1372 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
1373 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
1374
1375 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1376                                     bool no_sample)
1377 {
1378         synth_opts->branches = true;
1379         synth_opts->transactions = true;
1380         synth_opts->ptwrites = true;
1381         synth_opts->pwr_events = true;
1382         synth_opts->other_events = true;
1383         synth_opts->intr_events = true;
1384         synth_opts->errors = true;
1385         synth_opts->flc = true;
1386         synth_opts->llc = true;
1387         synth_opts->tlb = true;
1388         synth_opts->mem = true;
1389         synth_opts->remote_access = true;
1390
1391         if (no_sample) {
1392                 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1393                 synth_opts->period = 1;
1394                 synth_opts->calls = true;
1395         } else {
1396                 synth_opts->instructions = true;
1397                 synth_opts->cycles = true;
1398                 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1399                 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1400         }
1401         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1402         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1403         synth_opts->initial_skip = 0;
1404 }
1405
1406 static int get_flag(const char **ptr, unsigned int *flags)
1407 {
1408         while (1) {
1409                 char c = **ptr;
1410
1411                 if (c >= 'a' && c <= 'z') {
1412                         *flags |= 1 << (c - 'a');
1413                         ++*ptr;
1414                         return 0;
1415                 } else if (c == ' ') {
1416                         ++*ptr;
1417                         continue;
1418                 } else {
1419                         return -1;
1420                 }
1421         }
1422 }
1423
1424 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1425 {
1426         while (1) {
1427                 switch (**ptr) {
1428                 case '+':
1429                         ++*ptr;
1430                         if (get_flag(ptr, plus_flags))
1431                                 return -1;
1432                         break;
1433                 case '-':
1434                         ++*ptr;
1435                         if (get_flag(ptr, minus_flags))
1436                                 return -1;
1437                         break;
1438                 case ' ':
1439                         ++*ptr;
1440                         break;
1441                 default:
1442                         return 0;
1443                 }
1444         }
1445 }
1446
1447 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1448
1449 static unsigned int itrace_log_on_error_size(void)
1450 {
1451         unsigned int sz = 0;
1452
1453         perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1454         return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1455 }
1456
1457 /*
1458  * Please check tools/perf/Documentation/perf-script.txt for information
1459  * about the options parsed here, which is introduced after this cset,
1460  * when support in 'perf script' for these options is introduced.
1461  */
1462 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1463                                const char *str, int unset)
1464 {
1465         const char *p;
1466         char *endptr;
1467         bool period_type_set = false;
1468         bool period_set = false;
1469
1470         synth_opts->set = true;
1471
1472         if (unset) {
1473                 synth_opts->dont_decode = true;
1474                 return 0;
1475         }
1476
1477         if (!str) {
1478                 itrace_synth_opts__set_default(synth_opts,
1479                                                synth_opts->default_no_sample);
1480                 return 0;
1481         }
1482
1483         for (p = str; *p;) {
1484                 switch (*p++) {
1485                 case 'i':
1486                 case 'y':
1487                         if (p[-1] == 'y')
1488                                 synth_opts->cycles = true;
1489                         else
1490                                 synth_opts->instructions = true;
1491                         while (*p == ' ' || *p == ',')
1492                                 p += 1;
1493                         if (isdigit(*p)) {
1494                                 synth_opts->period = strtoull(p, &endptr, 10);
1495                                 period_set = true;
1496                                 p = endptr;
1497                                 while (*p == ' ' || *p == ',')
1498                                         p += 1;
1499                                 switch (*p++) {
1500                                 case 'i':
1501                                         synth_opts->period_type =
1502                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1503                                         period_type_set = true;
1504                                         break;
1505                                 case 't':
1506                                         synth_opts->period_type =
1507                                                 PERF_ITRACE_PERIOD_TICKS;
1508                                         period_type_set = true;
1509                                         break;
1510                                 case 'm':
1511                                         synth_opts->period *= 1000;
1512                                         /* Fall through */
1513                                 case 'u':
1514                                         synth_opts->period *= 1000;
1515                                         /* Fall through */
1516                                 case 'n':
1517                                         if (*p++ != 's')
1518                                                 goto out_err;
1519                                         synth_opts->period_type =
1520                                                 PERF_ITRACE_PERIOD_NANOSECS;
1521                                         period_type_set = true;
1522                                         break;
1523                                 case '\0':
1524                                         goto out;
1525                                 default:
1526                                         goto out_err;
1527                                 }
1528                         }
1529                         break;
1530                 case 'b':
1531                         synth_opts->branches = true;
1532                         break;
1533                 case 'x':
1534                         synth_opts->transactions = true;
1535                         break;
1536                 case 'w':
1537                         synth_opts->ptwrites = true;
1538                         break;
1539                 case 'p':
1540                         synth_opts->pwr_events = true;
1541                         break;
1542                 case 'o':
1543                         synth_opts->other_events = true;
1544                         break;
1545                 case 'I':
1546                         synth_opts->intr_events = true;
1547                         break;
1548                 case 'e':
1549                         synth_opts->errors = true;
1550                         if (get_flags(&p, &synth_opts->error_plus_flags,
1551                                       &synth_opts->error_minus_flags))
1552                                 goto out_err;
1553                         break;
1554                 case 'd':
1555                         synth_opts->log = true;
1556                         if (get_flags(&p, &synth_opts->log_plus_flags,
1557                                       &synth_opts->log_minus_flags))
1558                                 goto out_err;
1559                         if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1560                                 synth_opts->log_on_error_size = itrace_log_on_error_size();
1561                         break;
1562                 case 'c':
1563                         synth_opts->branches = true;
1564                         synth_opts->calls = true;
1565                         break;
1566                 case 'r':
1567                         synth_opts->branches = true;
1568                         synth_opts->returns = true;
1569                         break;
1570                 case 'G':
1571                 case 'g':
1572                         if (p[-1] == 'G')
1573                                 synth_opts->add_callchain = true;
1574                         else
1575                                 synth_opts->callchain = true;
1576                         synth_opts->callchain_sz =
1577                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1578                         while (*p == ' ' || *p == ',')
1579                                 p += 1;
1580                         if (isdigit(*p)) {
1581                                 unsigned int val;
1582
1583                                 val = strtoul(p, &endptr, 10);
1584                                 p = endptr;
1585                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1586                                         goto out_err;
1587                                 synth_opts->callchain_sz = val;
1588                         }
1589                         break;
1590                 case 'L':
1591                 case 'l':
1592                         if (p[-1] == 'L')
1593                                 synth_opts->add_last_branch = true;
1594                         else
1595                                 synth_opts->last_branch = true;
1596                         synth_opts->last_branch_sz =
1597                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1598                         while (*p == ' ' || *p == ',')
1599                                 p += 1;
1600                         if (isdigit(*p)) {
1601                                 unsigned int val;
1602
1603                                 val = strtoul(p, &endptr, 10);
1604                                 p = endptr;
1605                                 if (!val ||
1606                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1607                                         goto out_err;
1608                                 synth_opts->last_branch_sz = val;
1609                         }
1610                         break;
1611                 case 's':
1612                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1613                         if (p == endptr)
1614                                 goto out_err;
1615                         p = endptr;
1616                         break;
1617                 case 'f':
1618                         synth_opts->flc = true;
1619                         break;
1620                 case 'm':
1621                         synth_opts->llc = true;
1622                         break;
1623                 case 't':
1624                         synth_opts->tlb = true;
1625                         break;
1626                 case 'a':
1627                         synth_opts->remote_access = true;
1628                         break;
1629                 case 'M':
1630                         synth_opts->mem = true;
1631                         break;
1632                 case 'q':
1633                         synth_opts->quick += 1;
1634                         break;
1635                 case 'A':
1636                         synth_opts->approx_ipc = true;
1637                         break;
1638                 case 'Z':
1639                         synth_opts->timeless_decoding = true;
1640                         break;
1641                 case 'T':
1642                         synth_opts->use_timestamp = true;
1643                         break;
1644                 case ' ':
1645                 case ',':
1646                         break;
1647                 default:
1648                         goto out_err;
1649                 }
1650         }
1651 out:
1652         if (synth_opts->instructions || synth_opts->cycles) {
1653                 if (!period_type_set)
1654                         synth_opts->period_type =
1655                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1656                 if (!period_set)
1657                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1658         }
1659
1660         return 0;
1661
1662 out_err:
1663         pr_err("Bad Instruction Tracing options '%s'\n", str);
1664         return -EINVAL;
1665 }
1666
1667 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1668 {
1669         return itrace_do_parse_synth_opts(opt->value, str, unset);
1670 }
1671
1672 static const char * const auxtrace_error_type_name[] = {
1673         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1674 };
1675
1676 static const char *auxtrace_error_name(int type)
1677 {
1678         const char *error_type_name = NULL;
1679
1680         if (type < PERF_AUXTRACE_ERROR_MAX)
1681                 error_type_name = auxtrace_error_type_name[type];
1682         if (!error_type_name)
1683                 error_type_name = "unknown AUX";
1684         return error_type_name;
1685 }
1686
1687 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1688 {
1689         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1690         unsigned long long nsecs = e->time;
1691         const char *msg = e->msg;
1692         int ret;
1693
1694         ret = fprintf(fp, " %s error type %u",
1695                       auxtrace_error_name(e->type), e->type);
1696
1697         if (e->fmt && nsecs) {
1698                 unsigned long secs = nsecs / NSEC_PER_SEC;
1699
1700                 nsecs -= secs * NSEC_PER_SEC;
1701                 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1702         } else {
1703                 ret += fprintf(fp, " time 0");
1704         }
1705
1706         if (!e->fmt)
1707                 msg = (const char *)&e->time;
1708
1709         if (e->fmt >= 2 && e->machine_pid)
1710                 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1711
1712         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1713                        e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1714         return ret;
1715 }
1716
1717 void perf_session__auxtrace_error_inc(struct perf_session *session,
1718                                       union perf_event *event)
1719 {
1720         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1721
1722         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1723                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1724 }
1725
1726 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1727 {
1728         int i;
1729
1730         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1731                 if (!stats->nr_auxtrace_errors[i])
1732                         continue;
1733                 ui__warning("%u %s errors\n",
1734                             stats->nr_auxtrace_errors[i],
1735                             auxtrace_error_name(i));
1736         }
1737 }
1738
1739 int perf_event__process_auxtrace_error(struct perf_session *session,
1740                                        union perf_event *event)
1741 {
1742         if (auxtrace__dont_decode(session))
1743                 return 0;
1744
1745         perf_event__fprintf_auxtrace_error(event, stdout);
1746         return 0;
1747 }
1748
1749 /*
1750  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1751  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1752  * the issues caused by the below sequence on multiple CPUs: when perf tool
1753  * accesses either the load operation or the store operation for 64-bit value,
1754  * on some architectures the operation is divided into two instructions, one
1755  * is for accessing the low 32-bit value and another is for the high 32-bit;
1756  * thus these two user operations can give the kernel chances to access the
1757  * 64-bit value, and thus leads to the unexpected load values.
1758  *
1759  *   kernel (64-bit)                        user (32-bit)
1760  *
1761  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1762  *       STORE $aux_data      |       ,--->
1763  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1764  *       STORE ->aux_head   --|-------`     smp_rmb()
1765  *   }                        |             LOAD $data
1766  *                            |             smp_mb()
1767  *                            |             STORE ->aux_tail_lo
1768  *                            `----------->
1769  *                                          STORE ->aux_tail_hi
1770  *
1771  * For this reason, it's impossible for the perf tool to work correctly when
1772  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1773  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1774  * the pointers can be increased monotonically, whatever the buffer size it is,
1775  * at the end the head and tail can be bigger than 4GB and carry out to the
1776  * high 32-bit.
1777  *
1778  * To mitigate the issues and improve the user experience, we can allow the
1779  * perf tool working in certain conditions and bail out with error if detect
1780  * any overflow cannot be handled.
1781  *
1782  * For reading the AUX head, it reads out the values for three times, and
1783  * compares the high 4 bytes of the values between the first time and the last
1784  * time, if there has no change for high 4 bytes injected by the kernel during
1785  * the user reading sequence, it's safe for use the second value.
1786  *
1787  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1788  * 32 bits, it means there have two store operations in user space and it cannot
1789  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1790  * the caller an overflow error has happened.
1791  */
1792 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1793 {
1794         struct perf_event_mmap_page *pc = mm->userpg;
1795         u64 first, second, last;
1796         u64 mask = (u64)(UINT32_MAX) << 32;
1797
1798         do {
1799                 first = READ_ONCE(pc->aux_head);
1800                 /* Ensure all reads are done after we read the head */
1801                 smp_rmb();
1802                 second = READ_ONCE(pc->aux_head);
1803                 /* Ensure all reads are done after we read the head */
1804                 smp_rmb();
1805                 last = READ_ONCE(pc->aux_head);
1806         } while ((first & mask) != (last & mask));
1807
1808         return second;
1809 }
1810
1811 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1812 {
1813         struct perf_event_mmap_page *pc = mm->userpg;
1814         u64 mask = (u64)(UINT32_MAX) << 32;
1815
1816         if (tail & mask)
1817                 return -1;
1818
1819         /* Ensure all reads are done before we write the tail out */
1820         smp_mb();
1821         WRITE_ONCE(pc->aux_tail, tail);
1822         return 0;
1823 }
1824
1825 static int __auxtrace_mmap__read(struct mmap *map,
1826                                  struct auxtrace_record *itr,
1827                                  struct perf_tool *tool, process_auxtrace_t fn,
1828                                  bool snapshot, size_t snapshot_size)
1829 {
1830         struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1831         u64 head, old = mm->prev, offset, ref;
1832         unsigned char *data = mm->base;
1833         size_t size, head_off, old_off, len1, len2, padding;
1834         union perf_event ev;
1835         void *data1, *data2;
1836         int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1837
1838         head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1839
1840         if (snapshot &&
1841             auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1842                 return -1;
1843
1844         if (old == head)
1845                 return 0;
1846
1847         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1848                   mm->idx, old, head, head - old);
1849
1850         if (mm->mask) {
1851                 head_off = head & mm->mask;
1852                 old_off = old & mm->mask;
1853         } else {
1854                 head_off = head % mm->len;
1855                 old_off = old % mm->len;
1856         }
1857
1858         if (head_off > old_off)
1859                 size = head_off - old_off;
1860         else
1861                 size = mm->len - (old_off - head_off);
1862
1863         if (snapshot && size > snapshot_size)
1864                 size = snapshot_size;
1865
1866         ref = auxtrace_record__reference(itr);
1867
1868         if (head > old || size <= head || mm->mask) {
1869                 offset = head - size;
1870         } else {
1871                 /*
1872                  * When the buffer size is not a power of 2, 'head' wraps at the
1873                  * highest multiple of the buffer size, so we have to subtract
1874                  * the remainder here.
1875                  */
1876                 u64 rem = (0ULL - mm->len) % mm->len;
1877
1878                 offset = head - size - rem;
1879         }
1880
1881         if (size > head_off) {
1882                 len1 = size - head_off;
1883                 data1 = &data[mm->len - len1];
1884                 len2 = head_off;
1885                 data2 = &data[0];
1886         } else {
1887                 len1 = size;
1888                 data1 = &data[head_off - len1];
1889                 len2 = 0;
1890                 data2 = NULL;
1891         }
1892
1893         if (itr->alignment) {
1894                 unsigned int unwanted = len1 % itr->alignment;
1895
1896                 len1 -= unwanted;
1897                 size -= unwanted;
1898         }
1899
1900         /* padding must be written by fn() e.g. record__process_auxtrace() */
1901         padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1902         if (padding)
1903                 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1904
1905         memset(&ev, 0, sizeof(ev));
1906         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1907         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1908         ev.auxtrace.size = size + padding;
1909         ev.auxtrace.offset = offset;
1910         ev.auxtrace.reference = ref;
1911         ev.auxtrace.idx = mm->idx;
1912         ev.auxtrace.tid = mm->tid;
1913         ev.auxtrace.cpu = mm->cpu;
1914
1915         if (fn(tool, map, &ev, data1, len1, data2, len2))
1916                 return -1;
1917
1918         mm->prev = head;
1919
1920         if (!snapshot) {
1921                 int err;
1922
1923                 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1924                 if (err < 0)
1925                         return err;
1926
1927                 if (itr->read_finish) {
1928                         err = itr->read_finish(itr, mm->idx);
1929                         if (err < 0)
1930                                 return err;
1931                 }
1932         }
1933
1934         return 1;
1935 }
1936
1937 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1938                         struct perf_tool *tool, process_auxtrace_t fn)
1939 {
1940         return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1941 }
1942
1943 int auxtrace_mmap__read_snapshot(struct mmap *map,
1944                                  struct auxtrace_record *itr,
1945                                  struct perf_tool *tool, process_auxtrace_t fn,
1946                                  size_t snapshot_size)
1947 {
1948         return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1949 }
1950
1951 /**
1952  * struct auxtrace_cache - hash table to implement a cache
1953  * @hashtable: the hashtable
1954  * @sz: hashtable size (number of hlists)
1955  * @entry_size: size of an entry
1956  * @limit: limit the number of entries to this maximum, when reached the cache
1957  *         is dropped and caching begins again with an empty cache
1958  * @cnt: current number of entries
1959  * @bits: hashtable size (@sz = 2^@bits)
1960  */
1961 struct auxtrace_cache {
1962         struct hlist_head *hashtable;
1963         size_t sz;
1964         size_t entry_size;
1965         size_t limit;
1966         size_t cnt;
1967         unsigned int bits;
1968 };
1969
1970 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1971                                            unsigned int limit_percent)
1972 {
1973         struct auxtrace_cache *c;
1974         struct hlist_head *ht;
1975         size_t sz, i;
1976
1977         c = zalloc(sizeof(struct auxtrace_cache));
1978         if (!c)
1979                 return NULL;
1980
1981         sz = 1UL << bits;
1982
1983         ht = calloc(sz, sizeof(struct hlist_head));
1984         if (!ht)
1985                 goto out_free;
1986
1987         for (i = 0; i < sz; i++)
1988                 INIT_HLIST_HEAD(&ht[i]);
1989
1990         c->hashtable = ht;
1991         c->sz = sz;
1992         c->entry_size = entry_size;
1993         c->limit = (c->sz * limit_percent) / 100;
1994         c->bits = bits;
1995
1996         return c;
1997
1998 out_free:
1999         free(c);
2000         return NULL;
2001 }
2002
2003 static void auxtrace_cache__drop(struct auxtrace_cache *c)
2004 {
2005         struct auxtrace_cache_entry *entry;
2006         struct hlist_node *tmp;
2007         size_t i;
2008
2009         if (!c)
2010                 return;
2011
2012         for (i = 0; i < c->sz; i++) {
2013                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2014                         hlist_del(&entry->hash);
2015                         auxtrace_cache__free_entry(c, entry);
2016                 }
2017         }
2018
2019         c->cnt = 0;
2020 }
2021
2022 void auxtrace_cache__free(struct auxtrace_cache *c)
2023 {
2024         if (!c)
2025                 return;
2026
2027         auxtrace_cache__drop(c);
2028         zfree(&c->hashtable);
2029         free(c);
2030 }
2031
2032 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2033 {
2034         return malloc(c->entry_size);
2035 }
2036
2037 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2038                                 void *entry)
2039 {
2040         free(entry);
2041 }
2042
2043 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2044                         struct auxtrace_cache_entry *entry)
2045 {
2046         if (c->limit && ++c->cnt > c->limit)
2047                 auxtrace_cache__drop(c);
2048
2049         entry->key = key;
2050         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2051
2052         return 0;
2053 }
2054
2055 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2056                                                        u32 key)
2057 {
2058         struct auxtrace_cache_entry *entry;
2059         struct hlist_head *hlist;
2060         struct hlist_node *n;
2061
2062         if (!c)
2063                 return NULL;
2064
2065         hlist = &c->hashtable[hash_32(key, c->bits)];
2066         hlist_for_each_entry_safe(entry, n, hlist, hash) {
2067                 if (entry->key == key) {
2068                         hlist_del(&entry->hash);
2069                         return entry;
2070                 }
2071         }
2072
2073         return NULL;
2074 }
2075
2076 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2077 {
2078         struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2079
2080         auxtrace_cache__free_entry(c, entry);
2081 }
2082
2083 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2084 {
2085         struct auxtrace_cache_entry *entry;
2086         struct hlist_head *hlist;
2087
2088         if (!c)
2089                 return NULL;
2090
2091         hlist = &c->hashtable[hash_32(key, c->bits)];
2092         hlist_for_each_entry(entry, hlist, hash) {
2093                 if (entry->key == key)
2094                         return entry;
2095         }
2096
2097         return NULL;
2098 }
2099
2100 static void addr_filter__free_str(struct addr_filter *filt)
2101 {
2102         zfree(&filt->str);
2103         filt->action   = NULL;
2104         filt->sym_from = NULL;
2105         filt->sym_to   = NULL;
2106         filt->filename = NULL;
2107 }
2108
2109 static struct addr_filter *addr_filter__new(void)
2110 {
2111         struct addr_filter *filt = zalloc(sizeof(*filt));
2112
2113         if (filt)
2114                 INIT_LIST_HEAD(&filt->list);
2115
2116         return filt;
2117 }
2118
2119 static void addr_filter__free(struct addr_filter *filt)
2120 {
2121         if (filt)
2122                 addr_filter__free_str(filt);
2123         free(filt);
2124 }
2125
2126 static void addr_filters__add(struct addr_filters *filts,
2127                               struct addr_filter *filt)
2128 {
2129         list_add_tail(&filt->list, &filts->head);
2130         filts->cnt += 1;
2131 }
2132
2133 static void addr_filters__del(struct addr_filters *filts,
2134                               struct addr_filter *filt)
2135 {
2136         list_del_init(&filt->list);
2137         filts->cnt -= 1;
2138 }
2139
2140 void addr_filters__init(struct addr_filters *filts)
2141 {
2142         INIT_LIST_HEAD(&filts->head);
2143         filts->cnt = 0;
2144 }
2145
2146 void addr_filters__exit(struct addr_filters *filts)
2147 {
2148         struct addr_filter *filt, *n;
2149
2150         list_for_each_entry_safe(filt, n, &filts->head, list) {
2151                 addr_filters__del(filts, filt);
2152                 addr_filter__free(filt);
2153         }
2154 }
2155
2156 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2157                             const char *str_delim)
2158 {
2159         *inp += strspn(*inp, " ");
2160
2161         if (isdigit(**inp)) {
2162                 char *endptr;
2163
2164                 if (!num)
2165                         return -EINVAL;
2166                 errno = 0;
2167                 *num = strtoull(*inp, &endptr, 0);
2168                 if (errno)
2169                         return -errno;
2170                 if (endptr == *inp)
2171                         return -EINVAL;
2172                 *inp = endptr;
2173         } else {
2174                 size_t n;
2175
2176                 if (!str)
2177                         return -EINVAL;
2178                 *inp += strspn(*inp, " ");
2179                 *str = *inp;
2180                 n = strcspn(*inp, str_delim);
2181                 if (!n)
2182                         return -EINVAL;
2183                 *inp += n;
2184                 if (**inp) {
2185                         **inp = '\0';
2186                         *inp += 1;
2187                 }
2188         }
2189         return 0;
2190 }
2191
2192 static int parse_action(struct addr_filter *filt)
2193 {
2194         if (!strcmp(filt->action, "filter")) {
2195                 filt->start = true;
2196                 filt->range = true;
2197         } else if (!strcmp(filt->action, "start")) {
2198                 filt->start = true;
2199         } else if (!strcmp(filt->action, "stop")) {
2200                 filt->start = false;
2201         } else if (!strcmp(filt->action, "tracestop")) {
2202                 filt->start = false;
2203                 filt->range = true;
2204                 filt->action += 5; /* Change 'tracestop' to 'stop' */
2205         } else {
2206                 return -EINVAL;
2207         }
2208         return 0;
2209 }
2210
2211 static int parse_sym_idx(char **inp, int *idx)
2212 {
2213         *idx = -1;
2214
2215         *inp += strspn(*inp, " ");
2216
2217         if (**inp != '#')
2218                 return 0;
2219
2220         *inp += 1;
2221
2222         if (**inp == 'g' || **inp == 'G') {
2223                 *inp += 1;
2224                 *idx = 0;
2225         } else {
2226                 unsigned long num;
2227                 char *endptr;
2228
2229                 errno = 0;
2230                 num = strtoul(*inp, &endptr, 0);
2231                 if (errno)
2232                         return -errno;
2233                 if (endptr == *inp || num > INT_MAX)
2234                         return -EINVAL;
2235                 *inp = endptr;
2236                 *idx = num;
2237         }
2238
2239         return 0;
2240 }
2241
2242 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2243 {
2244         int err = parse_num_or_str(inp, num, str, " ");
2245
2246         if (!err && *str)
2247                 err = parse_sym_idx(inp, idx);
2248
2249         return err;
2250 }
2251
2252 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2253 {
2254         char *fstr;
2255         int err;
2256
2257         filt->str = fstr = strdup(*filter_inp);
2258         if (!fstr)
2259                 return -ENOMEM;
2260
2261         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2262         if (err)
2263                 goto out_err;
2264
2265         err = parse_action(filt);
2266         if (err)
2267                 goto out_err;
2268
2269         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2270                               &filt->sym_from_idx);
2271         if (err)
2272                 goto out_err;
2273
2274         fstr += strspn(fstr, " ");
2275
2276         if (*fstr == '/') {
2277                 fstr += 1;
2278                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2279                                       &filt->sym_to_idx);
2280                 if (err)
2281                         goto out_err;
2282                 filt->range = true;
2283         }
2284
2285         fstr += strspn(fstr, " ");
2286
2287         if (*fstr == '@') {
2288                 fstr += 1;
2289                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2290                 if (err)
2291                         goto out_err;
2292         }
2293
2294         fstr += strspn(fstr, " ,");
2295
2296         *filter_inp += fstr - filt->str;
2297
2298         return 0;
2299
2300 out_err:
2301         addr_filter__free_str(filt);
2302
2303         return err;
2304 }
2305
2306 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2307                                     const char *filter)
2308 {
2309         struct addr_filter *filt;
2310         const char *fstr = filter;
2311         int err;
2312
2313         while (*fstr) {
2314                 filt = addr_filter__new();
2315                 err = parse_one_filter(filt, &fstr);
2316                 if (err) {
2317                         addr_filter__free(filt);
2318                         addr_filters__exit(filts);
2319                         return err;
2320                 }
2321                 addr_filters__add(filts, filt);
2322         }
2323
2324         return 0;
2325 }
2326
2327 struct sym_args {
2328         const char      *name;
2329         u64             start;
2330         u64             size;
2331         int             idx;
2332         int             cnt;
2333         bool            started;
2334         bool            global;
2335         bool            selected;
2336         bool            duplicate;
2337         bool            near;
2338 };
2339
2340 static bool kern_sym_name_match(const char *kname, const char *name)
2341 {
2342         size_t n = strlen(name);
2343
2344         return !strcmp(kname, name) ||
2345                (!strncmp(kname, name, n) && kname[n] == '\t');
2346 }
2347
2348 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2349 {
2350         /* A function with the same name, and global or the n'th found or any */
2351         return kallsyms__is_function(type) &&
2352                kern_sym_name_match(name, args->name) &&
2353                ((args->global && isupper(type)) ||
2354                 (args->selected && ++(args->cnt) == args->idx) ||
2355                 (!args->global && !args->selected));
2356 }
2357
2358 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2359 {
2360         struct sym_args *args = arg;
2361
2362         if (args->started) {
2363                 if (!args->size)
2364                         args->size = start - args->start;
2365                 if (args->selected) {
2366                         if (args->size)
2367                                 return 1;
2368                 } else if (kern_sym_match(args, name, type)) {
2369                         args->duplicate = true;
2370                         return 1;
2371                 }
2372         } else if (kern_sym_match(args, name, type)) {
2373                 args->started = true;
2374                 args->start = start;
2375         }
2376
2377         return 0;
2378 }
2379
2380 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2381 {
2382         struct sym_args *args = arg;
2383
2384         if (kern_sym_match(args, name, type)) {
2385                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2386                        ++args->cnt, start, type, name);
2387                 args->near = true;
2388         } else if (args->near) {
2389                 args->near = false;
2390                 pr_err("\t\twhich is near\t\t%s\n", name);
2391         }
2392
2393         return 0;
2394 }
2395
2396 static int sym_not_found_error(const char *sym_name, int idx)
2397 {
2398         if (idx > 0) {
2399                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2400                        idx, sym_name);
2401         } else if (!idx) {
2402                 pr_err("Global symbol '%s' not found.\n", sym_name);
2403         } else {
2404                 pr_err("Symbol '%s' not found.\n", sym_name);
2405         }
2406         pr_err("Note that symbols must be functions.\n");
2407
2408         return -EINVAL;
2409 }
2410
2411 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2412 {
2413         struct sym_args args = {
2414                 .name = sym_name,
2415                 .idx = idx,
2416                 .global = !idx,
2417                 .selected = idx > 0,
2418         };
2419         int err;
2420
2421         *start = 0;
2422         *size = 0;
2423
2424         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2425         if (err < 0) {
2426                 pr_err("Failed to parse /proc/kallsyms\n");
2427                 return err;
2428         }
2429
2430         if (args.duplicate) {
2431                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2432                 args.cnt = 0;
2433                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2434                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2435                        sym_name);
2436                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2437                 return -EINVAL;
2438         }
2439
2440         if (!args.started) {
2441                 pr_err("Kernel symbol lookup: ");
2442                 return sym_not_found_error(sym_name, idx);
2443         }
2444
2445         *start = args.start;
2446         *size = args.size;
2447
2448         return 0;
2449 }
2450
2451 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2452                                char type, u64 start)
2453 {
2454         struct sym_args *args = arg;
2455         u64 size;
2456
2457         if (!kallsyms__is_function(type))
2458                 return 0;
2459
2460         if (!args->started) {
2461                 args->started = true;
2462                 args->start = start;
2463         }
2464         /* Don't know exactly where the kernel ends, so we add a page */
2465         size = round_up(start, page_size) + page_size - args->start;
2466         if (size > args->size)
2467                 args->size = size;
2468
2469         return 0;
2470 }
2471
2472 static int addr_filter__entire_kernel(struct addr_filter *filt)
2473 {
2474         struct sym_args args = { .started = false };
2475         int err;
2476
2477         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2478         if (err < 0 || !args.started) {
2479                 pr_err("Failed to parse /proc/kallsyms\n");
2480                 return err;
2481         }
2482
2483         filt->addr = args.start;
2484         filt->size = args.size;
2485
2486         return 0;
2487 }
2488
2489 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2490 {
2491         if (start + size >= filt->addr)
2492                 return 0;
2493
2494         if (filt->sym_from) {
2495                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2496                        filt->sym_to, start, filt->sym_from, filt->addr);
2497         } else {
2498                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2499                        filt->sym_to, start, filt->addr);
2500         }
2501
2502         return -EINVAL;
2503 }
2504
2505 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2506 {
2507         bool no_size = false;
2508         u64 start, size;
2509         int err;
2510
2511         if (symbol_conf.kptr_restrict) {
2512                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2513                 return -EINVAL;
2514         }
2515
2516         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2517                 return addr_filter__entire_kernel(filt);
2518
2519         if (filt->sym_from) {
2520                 err = find_kern_sym(filt->sym_from, &start, &size,
2521                                     filt->sym_from_idx);
2522                 if (err)
2523                         return err;
2524                 filt->addr = start;
2525                 if (filt->range && !filt->size && !filt->sym_to) {
2526                         filt->size = size;
2527                         no_size = !size;
2528                 }
2529         }
2530
2531         if (filt->sym_to) {
2532                 err = find_kern_sym(filt->sym_to, &start, &size,
2533                                     filt->sym_to_idx);
2534                 if (err)
2535                         return err;
2536
2537                 err = check_end_after_start(filt, start, size);
2538                 if (err)
2539                         return err;
2540                 filt->size = start + size - filt->addr;
2541                 no_size = !size;
2542         }
2543
2544         /* The very last symbol in kallsyms does not imply a particular size */
2545         if (no_size) {
2546                 pr_err("Cannot determine size of symbol '%s'\n",
2547                        filt->sym_to ? filt->sym_to : filt->sym_from);
2548                 return -EINVAL;
2549         }
2550
2551         return 0;
2552 }
2553
2554 static struct dso *load_dso(const char *name)
2555 {
2556         struct map *map;
2557         struct dso *dso;
2558
2559         map = dso__new_map(name);
2560         if (!map)
2561                 return NULL;
2562
2563         if (map__load(map) < 0)
2564                 pr_err("File '%s' not found or has no symbols.\n", name);
2565
2566         dso = dso__get(map__dso(map));
2567
2568         map__put(map);
2569
2570         return dso;
2571 }
2572
2573 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2574                           int idx)
2575 {
2576         /* Same name, and global or the n'th found or any */
2577         return !arch__compare_symbol_names(name, sym->name) &&
2578                ((!idx && sym->binding == STB_GLOBAL) ||
2579                 (idx > 0 && ++*cnt == idx) ||
2580                 idx < 0);
2581 }
2582
2583 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2584 {
2585         struct symbol *sym;
2586         bool near = false;
2587         int cnt = 0;
2588
2589         pr_err("Multiple symbols with name '%s'\n", sym_name);
2590
2591         sym = dso__first_symbol(dso);
2592         while (sym) {
2593                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2594                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2595                                ++cnt, sym->start,
2596                                sym->binding == STB_GLOBAL ? 'g' :
2597                                sym->binding == STB_LOCAL  ? 'l' : 'w',
2598                                sym->name);
2599                         near = true;
2600                 } else if (near) {
2601                         near = false;
2602                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
2603                 }
2604                 sym = dso__next_symbol(sym);
2605         }
2606
2607         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2608                sym_name);
2609         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2610 }
2611
2612 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2613                         u64 *size, int idx)
2614 {
2615         struct symbol *sym;
2616         int cnt = 0;
2617
2618         *start = 0;
2619         *size = 0;
2620
2621         sym = dso__first_symbol(dso);
2622         while (sym) {
2623                 if (*start) {
2624                         if (!*size)
2625                                 *size = sym->start - *start;
2626                         if (idx > 0) {
2627                                 if (*size)
2628                                         return 0;
2629                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2630                                 print_duplicate_syms(dso, sym_name);
2631                                 return -EINVAL;
2632                         }
2633                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2634                         *start = sym->start;
2635                         *size = sym->end - sym->start;
2636                 }
2637                 sym = dso__next_symbol(sym);
2638         }
2639
2640         if (!*start)
2641                 return sym_not_found_error(sym_name, idx);
2642
2643         return 0;
2644 }
2645
2646 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2647 {
2648         if (dso__data_file_size(dso, NULL)) {
2649                 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2650                        filt->filename);
2651                 return -EINVAL;
2652         }
2653
2654         filt->addr = 0;
2655         filt->size = dso->data.file_size;
2656
2657         return 0;
2658 }
2659
2660 static int addr_filter__resolve_syms(struct addr_filter *filt)
2661 {
2662         u64 start, size;
2663         struct dso *dso;
2664         int err = 0;
2665
2666         if (!filt->sym_from && !filt->sym_to)
2667                 return 0;
2668
2669         if (!filt->filename)
2670                 return addr_filter__resolve_kernel_syms(filt);
2671
2672         dso = load_dso(filt->filename);
2673         if (!dso) {
2674                 pr_err("Failed to load symbols from: %s\n", filt->filename);
2675                 return -EINVAL;
2676         }
2677
2678         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2679                 err = addr_filter__entire_dso(filt, dso);
2680                 goto put_dso;
2681         }
2682
2683         if (filt->sym_from) {
2684                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2685                                    filt->sym_from_idx);
2686                 if (err)
2687                         goto put_dso;
2688                 filt->addr = start;
2689                 if (filt->range && !filt->size && !filt->sym_to)
2690                         filt->size = size;
2691         }
2692
2693         if (filt->sym_to) {
2694                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2695                                    filt->sym_to_idx);
2696                 if (err)
2697                         goto put_dso;
2698
2699                 err = check_end_after_start(filt, start, size);
2700                 if (err)
2701                         return err;
2702
2703                 filt->size = start + size - filt->addr;
2704         }
2705
2706 put_dso:
2707         dso__put(dso);
2708
2709         return err;
2710 }
2711
2712 static char *addr_filter__to_str(struct addr_filter *filt)
2713 {
2714         char filename_buf[PATH_MAX];
2715         const char *at = "";
2716         const char *fn = "";
2717         char *filter;
2718         int err;
2719
2720         if (filt->filename) {
2721                 at = "@";
2722                 fn = realpath(filt->filename, filename_buf);
2723                 if (!fn)
2724                         return NULL;
2725         }
2726
2727         if (filt->range) {
2728                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2729                                filt->action, filt->addr, filt->size, at, fn);
2730         } else {
2731                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2732                                filt->action, filt->addr, at, fn);
2733         }
2734
2735         return err < 0 ? NULL : filter;
2736 }
2737
2738 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2739                              int max_nr)
2740 {
2741         struct addr_filters filts;
2742         struct addr_filter *filt;
2743         int err;
2744
2745         addr_filters__init(&filts);
2746
2747         err = addr_filters__parse_bare_filter(&filts, filter);
2748         if (err)
2749                 goto out_exit;
2750
2751         if (filts.cnt > max_nr) {
2752                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2753                        filts.cnt, max_nr);
2754                 err = -EINVAL;
2755                 goto out_exit;
2756         }
2757
2758         list_for_each_entry(filt, &filts.head, list) {
2759                 char *new_filter;
2760
2761                 err = addr_filter__resolve_syms(filt);
2762                 if (err)
2763                         goto out_exit;
2764
2765                 new_filter = addr_filter__to_str(filt);
2766                 if (!new_filter) {
2767                         err = -ENOMEM;
2768                         goto out_exit;
2769                 }
2770
2771                 if (evsel__append_addr_filter(evsel, new_filter)) {
2772                         err = -ENOMEM;
2773                         goto out_exit;
2774                 }
2775         }
2776
2777 out_exit:
2778         addr_filters__exit(&filts);
2779
2780         if (err) {
2781                 pr_err("Failed to parse address filter: '%s'\n", filter);
2782                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2783                 pr_err("Where multiple filters are separated by space or comma.\n");
2784         }
2785
2786         return err;
2787 }
2788
2789 static int evsel__nr_addr_filter(struct evsel *evsel)
2790 {
2791         struct perf_pmu *pmu = evsel__find_pmu(evsel);
2792         int nr_addr_filters = 0;
2793
2794         if (!pmu)
2795                 return 0;
2796
2797         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2798
2799         return nr_addr_filters;
2800 }
2801
2802 int auxtrace_parse_filters(struct evlist *evlist)
2803 {
2804         struct evsel *evsel;
2805         char *filter;
2806         int err, max_nr;
2807
2808         evlist__for_each_entry(evlist, evsel) {
2809                 filter = evsel->filter;
2810                 max_nr = evsel__nr_addr_filter(evsel);
2811                 if (!filter || !max_nr)
2812                         continue;
2813                 evsel->filter = NULL;
2814                 err = parse_addr_filter(evsel, filter, max_nr);
2815                 free(filter);
2816                 if (err)
2817                         return err;
2818                 pr_debug("Address filter: %s\n", evsel->filter);
2819         }
2820
2821         return 0;
2822 }
2823
2824 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2825                             struct perf_sample *sample, struct perf_tool *tool)
2826 {
2827         if (!session->auxtrace)
2828                 return 0;
2829
2830         return session->auxtrace->process_event(session, event, sample, tool);
2831 }
2832
2833 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2834                                     struct perf_sample *sample)
2835 {
2836         if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2837             auxtrace__dont_decode(session))
2838                 return;
2839
2840         session->auxtrace->dump_auxtrace_sample(session, sample);
2841 }
2842
2843 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2844 {
2845         if (!session->auxtrace)
2846                 return 0;
2847
2848         return session->auxtrace->flush_events(session, tool);
2849 }
2850
2851 void auxtrace__free_events(struct perf_session *session)
2852 {
2853         if (!session->auxtrace)
2854                 return;
2855
2856         return session->auxtrace->free_events(session);
2857 }
2858
2859 void auxtrace__free(struct perf_session *session)
2860 {
2861         if (!session->auxtrace)
2862                 return;
2863
2864         return session->auxtrace->free(session);
2865 }
2866
2867 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2868                                  struct evsel *evsel)
2869 {
2870         if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2871                 return false;
2872
2873         return session->auxtrace->evsel_is_auxtrace(session, evsel);
2874 }