ASoC: pcm5102a: replace codec to component
[linux-2.6-block.git] / tools / perf / util / auxtrace.c
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <linux/list.h>
35
36 #include "../perf.h"
37 #include "util.h"
38 #include "evlist.h"
39 #include "dso.h"
40 #include "map.h"
41 #include "pmu.h"
42 #include "evsel.h"
43 #include "cpumap.h"
44 #include "thread_map.h"
45 #include "asm/bug.h"
46 #include "auxtrace.h"
47
48 #include <linux/hash.h>
49
50 #include "event.h"
51 #include "session.h"
52 #include "debug.h"
53 #include <subcmd/parse-options.h>
54
55 #include "cs-etm.h"
56 #include "intel-pt.h"
57 #include "intel-bts.h"
58 #include "arm-spe.h"
59
60 #include "sane_ctype.h"
61 #include "symbol/kallsyms.h"
62
63 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
64                         struct auxtrace_mmap_params *mp,
65                         void *userpg, int fd)
66 {
67         struct perf_event_mmap_page *pc = userpg;
68
69         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
70
71         mm->userpg = userpg;
72         mm->mask = mp->mask;
73         mm->len = mp->len;
74         mm->prev = 0;
75         mm->idx = mp->idx;
76         mm->tid = mp->tid;
77         mm->cpu = mp->cpu;
78
79         if (!mp->len) {
80                 mm->base = NULL;
81                 return 0;
82         }
83
84 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
85         pr_err("Cannot use AUX area tracing mmaps\n");
86         return -1;
87 #endif
88
89         pc->aux_offset = mp->offset;
90         pc->aux_size = mp->len;
91
92         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
93         if (mm->base == MAP_FAILED) {
94                 pr_debug2("failed to mmap AUX area\n");
95                 mm->base = NULL;
96                 return -1;
97         }
98
99         return 0;
100 }
101
102 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
103 {
104         if (mm->base) {
105                 munmap(mm->base, mm->len);
106                 mm->base = NULL;
107         }
108 }
109
110 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
111                                 off_t auxtrace_offset,
112                                 unsigned int auxtrace_pages,
113                                 bool auxtrace_overwrite)
114 {
115         if (auxtrace_pages) {
116                 mp->offset = auxtrace_offset;
117                 mp->len = auxtrace_pages * (size_t)page_size;
118                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
119                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
120                 pr_debug2("AUX area mmap length %zu\n", mp->len);
121         } else {
122                 mp->len = 0;
123         }
124 }
125
126 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
127                                    struct perf_evlist *evlist, int idx,
128                                    bool per_cpu)
129 {
130         mp->idx = idx;
131
132         if (per_cpu) {
133                 mp->cpu = evlist->cpus->map[idx];
134                 if (evlist->threads)
135                         mp->tid = thread_map__pid(evlist->threads, 0);
136                 else
137                         mp->tid = -1;
138         } else {
139                 mp->cpu = -1;
140                 mp->tid = thread_map__pid(evlist->threads, idx);
141         }
142 }
143
144 #define AUXTRACE_INIT_NR_QUEUES 32
145
146 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
147 {
148         struct auxtrace_queue *queue_array;
149         unsigned int max_nr_queues, i;
150
151         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
152         if (nr_queues > max_nr_queues)
153                 return NULL;
154
155         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
156         if (!queue_array)
157                 return NULL;
158
159         for (i = 0; i < nr_queues; i++) {
160                 INIT_LIST_HEAD(&queue_array[i].head);
161                 queue_array[i].priv = NULL;
162         }
163
164         return queue_array;
165 }
166
167 int auxtrace_queues__init(struct auxtrace_queues *queues)
168 {
169         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
170         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
171         if (!queues->queue_array)
172                 return -ENOMEM;
173         return 0;
174 }
175
176 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
177                                  unsigned int new_nr_queues)
178 {
179         unsigned int nr_queues = queues->nr_queues;
180         struct auxtrace_queue *queue_array;
181         unsigned int i;
182
183         if (!nr_queues)
184                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
185
186         while (nr_queues && nr_queues < new_nr_queues)
187                 nr_queues <<= 1;
188
189         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
190                 return -EINVAL;
191
192         queue_array = auxtrace_alloc_queue_array(nr_queues);
193         if (!queue_array)
194                 return -ENOMEM;
195
196         for (i = 0; i < queues->nr_queues; i++) {
197                 list_splice_tail(&queues->queue_array[i].head,
198                                  &queue_array[i].head);
199                 queue_array[i].priv = queues->queue_array[i].priv;
200         }
201
202         queues->nr_queues = nr_queues;
203         queues->queue_array = queue_array;
204
205         return 0;
206 }
207
208 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
209 {
210         int fd = perf_data__fd(session->data);
211         void *p;
212         ssize_t ret;
213
214         if (size > SSIZE_MAX)
215                 return NULL;
216
217         p = malloc(size);
218         if (!p)
219                 return NULL;
220
221         ret = readn(fd, p, size);
222         if (ret != (ssize_t)size) {
223                 free(p);
224                 return NULL;
225         }
226
227         return p;
228 }
229
230 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
231                                        unsigned int idx,
232                                        struct auxtrace_buffer *buffer)
233 {
234         struct auxtrace_queue *queue;
235         int err;
236
237         if (idx >= queues->nr_queues) {
238                 err = auxtrace_queues__grow(queues, idx + 1);
239                 if (err)
240                         return err;
241         }
242
243         queue = &queues->queue_array[idx];
244
245         if (!queue->set) {
246                 queue->set = true;
247                 queue->tid = buffer->tid;
248                 queue->cpu = buffer->cpu;
249         } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
250                 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
251                        queue->cpu, queue->tid, buffer->cpu, buffer->tid);
252                 return -EINVAL;
253         }
254
255         buffer->buffer_nr = queues->next_buffer_nr++;
256
257         list_add_tail(&buffer->list, &queue->head);
258
259         queues->new_data = true;
260         queues->populated = true;
261
262         return 0;
263 }
264
265 /* Limit buffers to 32MiB on 32-bit */
266 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
267
268 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
269                                          unsigned int idx,
270                                          struct auxtrace_buffer *buffer)
271 {
272         u64 sz = buffer->size;
273         bool consecutive = false;
274         struct auxtrace_buffer *b;
275         int err;
276
277         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
278                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
279                 if (!b)
280                         return -ENOMEM;
281                 b->size = BUFFER_LIMIT_FOR_32_BIT;
282                 b->consecutive = consecutive;
283                 err = auxtrace_queues__add_buffer(queues, idx, b);
284                 if (err) {
285                         auxtrace_buffer__free(b);
286                         return err;
287                 }
288                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
289                 sz -= BUFFER_LIMIT_FOR_32_BIT;
290                 consecutive = true;
291         }
292
293         buffer->size = sz;
294         buffer->consecutive = consecutive;
295
296         return 0;
297 }
298
299 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
300                                              struct perf_session *session,
301                                              unsigned int idx,
302                                              struct auxtrace_buffer *buffer)
303 {
304         if (session->one_mmap) {
305                 buffer->data = buffer->data_offset - session->one_mmap_offset +
306                                session->one_mmap_addr;
307         } else if (perf_data__is_pipe(session->data)) {
308                 buffer->data = auxtrace_copy_data(buffer->size, session);
309                 if (!buffer->data)
310                         return -ENOMEM;
311                 buffer->data_needs_freeing = true;
312         } else if (BITS_PER_LONG == 32 &&
313                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
314                 int err;
315
316                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
317                 if (err)
318                         return err;
319         }
320
321         return auxtrace_queues__add_buffer(queues, idx, buffer);
322 }
323
324 static bool filter_cpu(struct perf_session *session, int cpu)
325 {
326         unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
327
328         return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
329 }
330
331 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
332                                struct perf_session *session,
333                                union perf_event *event, off_t data_offset,
334                                struct auxtrace_buffer **buffer_ptr)
335 {
336         struct auxtrace_buffer *buffer;
337         unsigned int idx;
338         int err;
339
340         if (filter_cpu(session, event->auxtrace.cpu))
341                 return 0;
342
343         buffer = zalloc(sizeof(struct auxtrace_buffer));
344         if (!buffer)
345                 return -ENOMEM;
346
347         buffer->pid = -1;
348         buffer->tid = event->auxtrace.tid;
349         buffer->cpu = event->auxtrace.cpu;
350         buffer->data_offset = data_offset;
351         buffer->offset = event->auxtrace.offset;
352         buffer->reference = event->auxtrace.reference;
353         buffer->size = event->auxtrace.size;
354         idx = event->auxtrace.idx;
355
356         err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
357         if (err)
358                 goto out_err;
359
360         if (buffer_ptr)
361                 *buffer_ptr = buffer;
362
363         return 0;
364
365 out_err:
366         auxtrace_buffer__free(buffer);
367         return err;
368 }
369
370 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
371                                               struct perf_session *session,
372                                               off_t file_offset, size_t sz)
373 {
374         union perf_event *event;
375         int err;
376         char buf[PERF_SAMPLE_MAX_SIZE];
377
378         err = perf_session__peek_event(session, file_offset, buf,
379                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
380         if (err)
381                 return err;
382
383         if (event->header.type == PERF_RECORD_AUXTRACE) {
384                 if (event->header.size < sizeof(struct auxtrace_event) ||
385                     event->header.size != sz) {
386                         err = -EINVAL;
387                         goto out;
388                 }
389                 file_offset += event->header.size;
390                 err = auxtrace_queues__add_event(queues, session, event,
391                                                  file_offset, NULL);
392         }
393 out:
394         return err;
395 }
396
397 void auxtrace_queues__free(struct auxtrace_queues *queues)
398 {
399         unsigned int i;
400
401         for (i = 0; i < queues->nr_queues; i++) {
402                 while (!list_empty(&queues->queue_array[i].head)) {
403                         struct auxtrace_buffer *buffer;
404
405                         buffer = list_entry(queues->queue_array[i].head.next,
406                                             struct auxtrace_buffer, list);
407                         list_del(&buffer->list);
408                         auxtrace_buffer__free(buffer);
409                 }
410         }
411
412         zfree(&queues->queue_array);
413         queues->nr_queues = 0;
414 }
415
416 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
417                              unsigned int pos, unsigned int queue_nr,
418                              u64 ordinal)
419 {
420         unsigned int parent;
421
422         while (pos) {
423                 parent = (pos - 1) >> 1;
424                 if (heap_array[parent].ordinal <= ordinal)
425                         break;
426                 heap_array[pos] = heap_array[parent];
427                 pos = parent;
428         }
429         heap_array[pos].queue_nr = queue_nr;
430         heap_array[pos].ordinal = ordinal;
431 }
432
433 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
434                        u64 ordinal)
435 {
436         struct auxtrace_heap_item *heap_array;
437
438         if (queue_nr >= heap->heap_sz) {
439                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
440
441                 while (heap_sz <= queue_nr)
442                         heap_sz <<= 1;
443                 heap_array = realloc(heap->heap_array,
444                                      heap_sz * sizeof(struct auxtrace_heap_item));
445                 if (!heap_array)
446                         return -ENOMEM;
447                 heap->heap_array = heap_array;
448                 heap->heap_sz = heap_sz;
449         }
450
451         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
452
453         return 0;
454 }
455
456 void auxtrace_heap__free(struct auxtrace_heap *heap)
457 {
458         zfree(&heap->heap_array);
459         heap->heap_cnt = 0;
460         heap->heap_sz = 0;
461 }
462
463 void auxtrace_heap__pop(struct auxtrace_heap *heap)
464 {
465         unsigned int pos, last, heap_cnt = heap->heap_cnt;
466         struct auxtrace_heap_item *heap_array;
467
468         if (!heap_cnt)
469                 return;
470
471         heap->heap_cnt -= 1;
472
473         heap_array = heap->heap_array;
474
475         pos = 0;
476         while (1) {
477                 unsigned int left, right;
478
479                 left = (pos << 1) + 1;
480                 if (left >= heap_cnt)
481                         break;
482                 right = left + 1;
483                 if (right >= heap_cnt) {
484                         heap_array[pos] = heap_array[left];
485                         return;
486                 }
487                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
488                         heap_array[pos] = heap_array[left];
489                         pos = left;
490                 } else {
491                         heap_array[pos] = heap_array[right];
492                         pos = right;
493                 }
494         }
495
496         last = heap_cnt - 1;
497         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
498                          heap_array[last].ordinal);
499 }
500
501 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
502                                        struct perf_evlist *evlist)
503 {
504         if (itr)
505                 return itr->info_priv_size(itr, evlist);
506         return 0;
507 }
508
509 static int auxtrace_not_supported(void)
510 {
511         pr_err("AUX area tracing is not supported on this architecture\n");
512         return -EINVAL;
513 }
514
515 int auxtrace_record__info_fill(struct auxtrace_record *itr,
516                                struct perf_session *session,
517                                struct auxtrace_info_event *auxtrace_info,
518                                size_t priv_size)
519 {
520         if (itr)
521                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
522         return auxtrace_not_supported();
523 }
524
525 void auxtrace_record__free(struct auxtrace_record *itr)
526 {
527         if (itr)
528                 itr->free(itr);
529 }
530
531 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
532 {
533         if (itr && itr->snapshot_start)
534                 return itr->snapshot_start(itr);
535         return 0;
536 }
537
538 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
539 {
540         if (itr && itr->snapshot_finish)
541                 return itr->snapshot_finish(itr);
542         return 0;
543 }
544
545 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
546                                    struct auxtrace_mmap *mm,
547                                    unsigned char *data, u64 *head, u64 *old)
548 {
549         if (itr && itr->find_snapshot)
550                 return itr->find_snapshot(itr, idx, mm, data, head, old);
551         return 0;
552 }
553
554 int auxtrace_record__options(struct auxtrace_record *itr,
555                              struct perf_evlist *evlist,
556                              struct record_opts *opts)
557 {
558         if (itr)
559                 return itr->recording_options(itr, evlist, opts);
560         return 0;
561 }
562
563 u64 auxtrace_record__reference(struct auxtrace_record *itr)
564 {
565         if (itr)
566                 return itr->reference(itr);
567         return 0;
568 }
569
570 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
571                                     struct record_opts *opts, const char *str)
572 {
573         if (!str)
574                 return 0;
575
576         if (itr)
577                 return itr->parse_snapshot_options(itr, opts, str);
578
579         pr_err("No AUX area tracing to snapshot\n");
580         return -EINVAL;
581 }
582
583 struct auxtrace_record *__weak
584 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
585 {
586         *err = 0;
587         return NULL;
588 }
589
590 static int auxtrace_index__alloc(struct list_head *head)
591 {
592         struct auxtrace_index *auxtrace_index;
593
594         auxtrace_index = malloc(sizeof(struct auxtrace_index));
595         if (!auxtrace_index)
596                 return -ENOMEM;
597
598         auxtrace_index->nr = 0;
599         INIT_LIST_HEAD(&auxtrace_index->list);
600
601         list_add_tail(&auxtrace_index->list, head);
602
603         return 0;
604 }
605
606 void auxtrace_index__free(struct list_head *head)
607 {
608         struct auxtrace_index *auxtrace_index, *n;
609
610         list_for_each_entry_safe(auxtrace_index, n, head, list) {
611                 list_del(&auxtrace_index->list);
612                 free(auxtrace_index);
613         }
614 }
615
616 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
617 {
618         struct auxtrace_index *auxtrace_index;
619         int err;
620
621         if (list_empty(head)) {
622                 err = auxtrace_index__alloc(head);
623                 if (err)
624                         return NULL;
625         }
626
627         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
628
629         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
630                 err = auxtrace_index__alloc(head);
631                 if (err)
632                         return NULL;
633                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
634                                             list);
635         }
636
637         return auxtrace_index;
638 }
639
640 int auxtrace_index__auxtrace_event(struct list_head *head,
641                                    union perf_event *event, off_t file_offset)
642 {
643         struct auxtrace_index *auxtrace_index;
644         size_t nr;
645
646         auxtrace_index = auxtrace_index__last(head);
647         if (!auxtrace_index)
648                 return -ENOMEM;
649
650         nr = auxtrace_index->nr;
651         auxtrace_index->entries[nr].file_offset = file_offset;
652         auxtrace_index->entries[nr].sz = event->header.size;
653         auxtrace_index->nr += 1;
654
655         return 0;
656 }
657
658 static int auxtrace_index__do_write(int fd,
659                                     struct auxtrace_index *auxtrace_index)
660 {
661         struct auxtrace_index_entry ent;
662         size_t i;
663
664         for (i = 0; i < auxtrace_index->nr; i++) {
665                 ent.file_offset = auxtrace_index->entries[i].file_offset;
666                 ent.sz = auxtrace_index->entries[i].sz;
667                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
668                         return -errno;
669         }
670         return 0;
671 }
672
673 int auxtrace_index__write(int fd, struct list_head *head)
674 {
675         struct auxtrace_index *auxtrace_index;
676         u64 total = 0;
677         int err;
678
679         list_for_each_entry(auxtrace_index, head, list)
680                 total += auxtrace_index->nr;
681
682         if (writen(fd, &total, sizeof(total)) != sizeof(total))
683                 return -errno;
684
685         list_for_each_entry(auxtrace_index, head, list) {
686                 err = auxtrace_index__do_write(fd, auxtrace_index);
687                 if (err)
688                         return err;
689         }
690
691         return 0;
692 }
693
694 static int auxtrace_index__process_entry(int fd, struct list_head *head,
695                                          bool needs_swap)
696 {
697         struct auxtrace_index *auxtrace_index;
698         struct auxtrace_index_entry ent;
699         size_t nr;
700
701         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
702                 return -1;
703
704         auxtrace_index = auxtrace_index__last(head);
705         if (!auxtrace_index)
706                 return -1;
707
708         nr = auxtrace_index->nr;
709         if (needs_swap) {
710                 auxtrace_index->entries[nr].file_offset =
711                                                 bswap_64(ent.file_offset);
712                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
713         } else {
714                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
715                 auxtrace_index->entries[nr].sz = ent.sz;
716         }
717
718         auxtrace_index->nr = nr + 1;
719
720         return 0;
721 }
722
723 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
724                             bool needs_swap)
725 {
726         struct list_head *head = &session->auxtrace_index;
727         u64 nr;
728
729         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
730                 return -1;
731
732         if (needs_swap)
733                 nr = bswap_64(nr);
734
735         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
736                 return -1;
737
738         while (nr--) {
739                 int err;
740
741                 err = auxtrace_index__process_entry(fd, head, needs_swap);
742                 if (err)
743                         return -1;
744         }
745
746         return 0;
747 }
748
749 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
750                                                 struct perf_session *session,
751                                                 struct auxtrace_index_entry *ent)
752 {
753         return auxtrace_queues__add_indexed_event(queues, session,
754                                                   ent->file_offset, ent->sz);
755 }
756
757 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
758                                    struct perf_session *session)
759 {
760         struct auxtrace_index *auxtrace_index;
761         struct auxtrace_index_entry *ent;
762         size_t i;
763         int err;
764
765         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
766                 for (i = 0; i < auxtrace_index->nr; i++) {
767                         ent = &auxtrace_index->entries[i];
768                         err = auxtrace_queues__process_index_entry(queues,
769                                                                    session,
770                                                                    ent);
771                         if (err)
772                                 return err;
773                 }
774         }
775         return 0;
776 }
777
778 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
779                                               struct auxtrace_buffer *buffer)
780 {
781         if (buffer) {
782                 if (list_is_last(&buffer->list, &queue->head))
783                         return NULL;
784                 return list_entry(buffer->list.next, struct auxtrace_buffer,
785                                   list);
786         } else {
787                 if (list_empty(&queue->head))
788                         return NULL;
789                 return list_entry(queue->head.next, struct auxtrace_buffer,
790                                   list);
791         }
792 }
793
794 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
795 {
796         size_t adj = buffer->data_offset & (page_size - 1);
797         size_t size = buffer->size + adj;
798         off_t file_offset = buffer->data_offset - adj;
799         void *addr;
800
801         if (buffer->data)
802                 return buffer->data;
803
804         addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
805         if (addr == MAP_FAILED)
806                 return NULL;
807
808         buffer->mmap_addr = addr;
809         buffer->mmap_size = size;
810
811         buffer->data = addr + adj;
812
813         return buffer->data;
814 }
815
816 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
817 {
818         if (!buffer->data || !buffer->mmap_addr)
819                 return;
820         munmap(buffer->mmap_addr, buffer->mmap_size);
821         buffer->mmap_addr = NULL;
822         buffer->mmap_size = 0;
823         buffer->data = NULL;
824         buffer->use_data = NULL;
825 }
826
827 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
828 {
829         auxtrace_buffer__put_data(buffer);
830         if (buffer->data_needs_freeing) {
831                 buffer->data_needs_freeing = false;
832                 zfree(&buffer->data);
833                 buffer->use_data = NULL;
834                 buffer->size = 0;
835         }
836 }
837
838 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
839 {
840         auxtrace_buffer__drop_data(buffer);
841         free(buffer);
842 }
843
844 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
845                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
846                           const char *msg)
847 {
848         size_t size;
849
850         memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
851
852         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
853         auxtrace_error->type = type;
854         auxtrace_error->code = code;
855         auxtrace_error->cpu = cpu;
856         auxtrace_error->pid = pid;
857         auxtrace_error->tid = tid;
858         auxtrace_error->ip = ip;
859         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
860
861         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
862                strlen(auxtrace_error->msg) + 1;
863         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
864 }
865
866 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
867                                          struct perf_tool *tool,
868                                          struct perf_session *session,
869                                          perf_event__handler_t process)
870 {
871         union perf_event *ev;
872         size_t priv_size;
873         int err;
874
875         pr_debug2("Synthesizing auxtrace information\n");
876         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
877         ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
878         if (!ev)
879                 return -ENOMEM;
880
881         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
882         ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
883                                         priv_size;
884         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
885                                          priv_size);
886         if (err)
887                 goto out_free;
888
889         err = process(tool, ev, NULL, NULL);
890 out_free:
891         free(ev);
892         return err;
893 }
894
895 static bool auxtrace__dont_decode(struct perf_session *session)
896 {
897         return !session->itrace_synth_opts ||
898                session->itrace_synth_opts->dont_decode;
899 }
900
901 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
902                                       union perf_event *event,
903                                       struct perf_session *session)
904 {
905         enum auxtrace_type type = event->auxtrace_info.type;
906
907         if (dump_trace)
908                 fprintf(stdout, " type: %u\n", type);
909
910         switch (type) {
911         case PERF_AUXTRACE_INTEL_PT:
912                 return intel_pt_process_auxtrace_info(event, session);
913         case PERF_AUXTRACE_INTEL_BTS:
914                 return intel_bts_process_auxtrace_info(event, session);
915         case PERF_AUXTRACE_ARM_SPE:
916                 return arm_spe_process_auxtrace_info(event, session);
917         case PERF_AUXTRACE_CS_ETM:
918                 return cs_etm__process_auxtrace_info(event, session);
919         case PERF_AUXTRACE_UNKNOWN:
920         default:
921                 return -EINVAL;
922         }
923 }
924
925 s64 perf_event__process_auxtrace(struct perf_tool *tool,
926                                  union perf_event *event,
927                                  struct perf_session *session)
928 {
929         s64 err;
930
931         if (dump_trace)
932                 fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
933                         event->auxtrace.size, event->auxtrace.offset,
934                         event->auxtrace.reference, event->auxtrace.idx,
935                         event->auxtrace.tid, event->auxtrace.cpu);
936
937         if (auxtrace__dont_decode(session))
938                 return event->auxtrace.size;
939
940         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
941                 return -EINVAL;
942
943         err = session->auxtrace->process_auxtrace_event(session, event, tool);
944         if (err < 0)
945                 return err;
946
947         return event->auxtrace.size;
948 }
949
950 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
951 #define PERF_ITRACE_DEFAULT_PERIOD              100000
952 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
953 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
954 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
955 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
956
957 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
958 {
959         synth_opts->instructions = true;
960         synth_opts->branches = true;
961         synth_opts->transactions = true;
962         synth_opts->ptwrites = true;
963         synth_opts->pwr_events = true;
964         synth_opts->errors = true;
965         synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
966         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
967         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
968         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
969         synth_opts->initial_skip = 0;
970 }
971
972 /*
973  * Please check tools/perf/Documentation/perf-script.txt for information
974  * about the options parsed here, which is introduced after this cset,
975  * when support in 'perf script' for these options is introduced.
976  */
977 int itrace_parse_synth_opts(const struct option *opt, const char *str,
978                             int unset)
979 {
980         struct itrace_synth_opts *synth_opts = opt->value;
981         const char *p;
982         char *endptr;
983         bool period_type_set = false;
984         bool period_set = false;
985
986         synth_opts->set = true;
987
988         if (unset) {
989                 synth_opts->dont_decode = true;
990                 return 0;
991         }
992
993         if (!str) {
994                 itrace_synth_opts__set_default(synth_opts);
995                 return 0;
996         }
997
998         for (p = str; *p;) {
999                 switch (*p++) {
1000                 case 'i':
1001                         synth_opts->instructions = true;
1002                         while (*p == ' ' || *p == ',')
1003                                 p += 1;
1004                         if (isdigit(*p)) {
1005                                 synth_opts->period = strtoull(p, &endptr, 10);
1006                                 period_set = true;
1007                                 p = endptr;
1008                                 while (*p == ' ' || *p == ',')
1009                                         p += 1;
1010                                 switch (*p++) {
1011                                 case 'i':
1012                                         synth_opts->period_type =
1013                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1014                                         period_type_set = true;
1015                                         break;
1016                                 case 't':
1017                                         synth_opts->period_type =
1018                                                 PERF_ITRACE_PERIOD_TICKS;
1019                                         period_type_set = true;
1020                                         break;
1021                                 case 'm':
1022                                         synth_opts->period *= 1000;
1023                                         /* Fall through */
1024                                 case 'u':
1025                                         synth_opts->period *= 1000;
1026                                         /* Fall through */
1027                                 case 'n':
1028                                         if (*p++ != 's')
1029                                                 goto out_err;
1030                                         synth_opts->period_type =
1031                                                 PERF_ITRACE_PERIOD_NANOSECS;
1032                                         period_type_set = true;
1033                                         break;
1034                                 case '\0':
1035                                         goto out;
1036                                 default:
1037                                         goto out_err;
1038                                 }
1039                         }
1040                         break;
1041                 case 'b':
1042                         synth_opts->branches = true;
1043                         break;
1044                 case 'x':
1045                         synth_opts->transactions = true;
1046                         break;
1047                 case 'w':
1048                         synth_opts->ptwrites = true;
1049                         break;
1050                 case 'p':
1051                         synth_opts->pwr_events = true;
1052                         break;
1053                 case 'e':
1054                         synth_opts->errors = true;
1055                         break;
1056                 case 'd':
1057                         synth_opts->log = true;
1058                         break;
1059                 case 'c':
1060                         synth_opts->branches = true;
1061                         synth_opts->calls = true;
1062                         break;
1063                 case 'r':
1064                         synth_opts->branches = true;
1065                         synth_opts->returns = true;
1066                         break;
1067                 case 'g':
1068                         synth_opts->callchain = true;
1069                         synth_opts->callchain_sz =
1070                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1071                         while (*p == ' ' || *p == ',')
1072                                 p += 1;
1073                         if (isdigit(*p)) {
1074                                 unsigned int val;
1075
1076                                 val = strtoul(p, &endptr, 10);
1077                                 p = endptr;
1078                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1079                                         goto out_err;
1080                                 synth_opts->callchain_sz = val;
1081                         }
1082                         break;
1083                 case 'l':
1084                         synth_opts->last_branch = true;
1085                         synth_opts->last_branch_sz =
1086                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1087                         while (*p == ' ' || *p == ',')
1088                                 p += 1;
1089                         if (isdigit(*p)) {
1090                                 unsigned int val;
1091
1092                                 val = strtoul(p, &endptr, 10);
1093                                 p = endptr;
1094                                 if (!val ||
1095                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1096                                         goto out_err;
1097                                 synth_opts->last_branch_sz = val;
1098                         }
1099                         break;
1100                 case 's':
1101                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1102                         if (p == endptr)
1103                                 goto out_err;
1104                         p = endptr;
1105                         break;
1106                 case ' ':
1107                 case ',':
1108                         break;
1109                 default:
1110                         goto out_err;
1111                 }
1112         }
1113 out:
1114         if (synth_opts->instructions) {
1115                 if (!period_type_set)
1116                         synth_opts->period_type =
1117                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1118                 if (!period_set)
1119                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1120         }
1121
1122         return 0;
1123
1124 out_err:
1125         pr_err("Bad Instruction Tracing options '%s'\n", str);
1126         return -EINVAL;
1127 }
1128
1129 static const char * const auxtrace_error_type_name[] = {
1130         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1131 };
1132
1133 static const char *auxtrace_error_name(int type)
1134 {
1135         const char *error_type_name = NULL;
1136
1137         if (type < PERF_AUXTRACE_ERROR_MAX)
1138                 error_type_name = auxtrace_error_type_name[type];
1139         if (!error_type_name)
1140                 error_type_name = "unknown AUX";
1141         return error_type_name;
1142 }
1143
1144 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1145 {
1146         struct auxtrace_error_event *e = &event->auxtrace_error;
1147         int ret;
1148
1149         ret = fprintf(fp, " %s error type %u",
1150                       auxtrace_error_name(e->type), e->type);
1151         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1152                        e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1153         return ret;
1154 }
1155
1156 void perf_session__auxtrace_error_inc(struct perf_session *session,
1157                                       union perf_event *event)
1158 {
1159         struct auxtrace_error_event *e = &event->auxtrace_error;
1160
1161         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1162                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1163 }
1164
1165 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1166 {
1167         int i;
1168
1169         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1170                 if (!stats->nr_auxtrace_errors[i])
1171                         continue;
1172                 ui__warning("%u %s errors\n",
1173                             stats->nr_auxtrace_errors[i],
1174                             auxtrace_error_name(i));
1175         }
1176 }
1177
1178 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1179                                        union perf_event *event,
1180                                        struct perf_session *session)
1181 {
1182         if (auxtrace__dont_decode(session))
1183                 return 0;
1184
1185         perf_event__fprintf_auxtrace_error(event, stdout);
1186         return 0;
1187 }
1188
1189 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1190                                  struct auxtrace_record *itr,
1191                                  struct perf_tool *tool, process_auxtrace_t fn,
1192                                  bool snapshot, size_t snapshot_size)
1193 {
1194         u64 head, old = mm->prev, offset, ref;
1195         unsigned char *data = mm->base;
1196         size_t size, head_off, old_off, len1, len2, padding;
1197         union perf_event ev;
1198         void *data1, *data2;
1199
1200         if (snapshot) {
1201                 head = auxtrace_mmap__read_snapshot_head(mm);
1202                 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1203                                                    &head, &old))
1204                         return -1;
1205         } else {
1206                 head = auxtrace_mmap__read_head(mm);
1207         }
1208
1209         if (old == head)
1210                 return 0;
1211
1212         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1213                   mm->idx, old, head, head - old);
1214
1215         if (mm->mask) {
1216                 head_off = head & mm->mask;
1217                 old_off = old & mm->mask;
1218         } else {
1219                 head_off = head % mm->len;
1220                 old_off = old % mm->len;
1221         }
1222
1223         if (head_off > old_off)
1224                 size = head_off - old_off;
1225         else
1226                 size = mm->len - (old_off - head_off);
1227
1228         if (snapshot && size > snapshot_size)
1229                 size = snapshot_size;
1230
1231         ref = auxtrace_record__reference(itr);
1232
1233         if (head > old || size <= head || mm->mask) {
1234                 offset = head - size;
1235         } else {
1236                 /*
1237                  * When the buffer size is not a power of 2, 'head' wraps at the
1238                  * highest multiple of the buffer size, so we have to subtract
1239                  * the remainder here.
1240                  */
1241                 u64 rem = (0ULL - mm->len) % mm->len;
1242
1243                 offset = head - size - rem;
1244         }
1245
1246         if (size > head_off) {
1247                 len1 = size - head_off;
1248                 data1 = &data[mm->len - len1];
1249                 len2 = head_off;
1250                 data2 = &data[0];
1251         } else {
1252                 len1 = size;
1253                 data1 = &data[head_off - len1];
1254                 len2 = 0;
1255                 data2 = NULL;
1256         }
1257
1258         if (itr->alignment) {
1259                 unsigned int unwanted = len1 % itr->alignment;
1260
1261                 len1 -= unwanted;
1262                 size -= unwanted;
1263         }
1264
1265         /* padding must be written by fn() e.g. record__process_auxtrace() */
1266         padding = size & 7;
1267         if (padding)
1268                 padding = 8 - padding;
1269
1270         memset(&ev, 0, sizeof(ev));
1271         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1272         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1273         ev.auxtrace.size = size + padding;
1274         ev.auxtrace.offset = offset;
1275         ev.auxtrace.reference = ref;
1276         ev.auxtrace.idx = mm->idx;
1277         ev.auxtrace.tid = mm->tid;
1278         ev.auxtrace.cpu = mm->cpu;
1279
1280         if (fn(tool, &ev, data1, len1, data2, len2))
1281                 return -1;
1282
1283         mm->prev = head;
1284
1285         if (!snapshot) {
1286                 auxtrace_mmap__write_tail(mm, head);
1287                 if (itr->read_finish) {
1288                         int err;
1289
1290                         err = itr->read_finish(itr, mm->idx);
1291                         if (err < 0)
1292                                 return err;
1293                 }
1294         }
1295
1296         return 1;
1297 }
1298
1299 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1300                         struct perf_tool *tool, process_auxtrace_t fn)
1301 {
1302         return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1303 }
1304
1305 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1306                                  struct auxtrace_record *itr,
1307                                  struct perf_tool *tool, process_auxtrace_t fn,
1308                                  size_t snapshot_size)
1309 {
1310         return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1311 }
1312
1313 /**
1314  * struct auxtrace_cache - hash table to implement a cache
1315  * @hashtable: the hashtable
1316  * @sz: hashtable size (number of hlists)
1317  * @entry_size: size of an entry
1318  * @limit: limit the number of entries to this maximum, when reached the cache
1319  *         is dropped and caching begins again with an empty cache
1320  * @cnt: current number of entries
1321  * @bits: hashtable size (@sz = 2^@bits)
1322  */
1323 struct auxtrace_cache {
1324         struct hlist_head *hashtable;
1325         size_t sz;
1326         size_t entry_size;
1327         size_t limit;
1328         size_t cnt;
1329         unsigned int bits;
1330 };
1331
1332 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1333                                            unsigned int limit_percent)
1334 {
1335         struct auxtrace_cache *c;
1336         struct hlist_head *ht;
1337         size_t sz, i;
1338
1339         c = zalloc(sizeof(struct auxtrace_cache));
1340         if (!c)
1341                 return NULL;
1342
1343         sz = 1UL << bits;
1344
1345         ht = calloc(sz, sizeof(struct hlist_head));
1346         if (!ht)
1347                 goto out_free;
1348
1349         for (i = 0; i < sz; i++)
1350                 INIT_HLIST_HEAD(&ht[i]);
1351
1352         c->hashtable = ht;
1353         c->sz = sz;
1354         c->entry_size = entry_size;
1355         c->limit = (c->sz * limit_percent) / 100;
1356         c->bits = bits;
1357
1358         return c;
1359
1360 out_free:
1361         free(c);
1362         return NULL;
1363 }
1364
1365 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1366 {
1367         struct auxtrace_cache_entry *entry;
1368         struct hlist_node *tmp;
1369         size_t i;
1370
1371         if (!c)
1372                 return;
1373
1374         for (i = 0; i < c->sz; i++) {
1375                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1376                         hlist_del(&entry->hash);
1377                         auxtrace_cache__free_entry(c, entry);
1378                 }
1379         }
1380
1381         c->cnt = 0;
1382 }
1383
1384 void auxtrace_cache__free(struct auxtrace_cache *c)
1385 {
1386         if (!c)
1387                 return;
1388
1389         auxtrace_cache__drop(c);
1390         free(c->hashtable);
1391         free(c);
1392 }
1393
1394 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1395 {
1396         return malloc(c->entry_size);
1397 }
1398
1399 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1400                                 void *entry)
1401 {
1402         free(entry);
1403 }
1404
1405 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1406                         struct auxtrace_cache_entry *entry)
1407 {
1408         if (c->limit && ++c->cnt > c->limit)
1409                 auxtrace_cache__drop(c);
1410
1411         entry->key = key;
1412         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1413
1414         return 0;
1415 }
1416
1417 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1418 {
1419         struct auxtrace_cache_entry *entry;
1420         struct hlist_head *hlist;
1421
1422         if (!c)
1423                 return NULL;
1424
1425         hlist = &c->hashtable[hash_32(key, c->bits)];
1426         hlist_for_each_entry(entry, hlist, hash) {
1427                 if (entry->key == key)
1428                         return entry;
1429         }
1430
1431         return NULL;
1432 }
1433
1434 static void addr_filter__free_str(struct addr_filter *filt)
1435 {
1436         free(filt->str);
1437         filt->action   = NULL;
1438         filt->sym_from = NULL;
1439         filt->sym_to   = NULL;
1440         filt->filename = NULL;
1441         filt->str      = NULL;
1442 }
1443
1444 static struct addr_filter *addr_filter__new(void)
1445 {
1446         struct addr_filter *filt = zalloc(sizeof(*filt));
1447
1448         if (filt)
1449                 INIT_LIST_HEAD(&filt->list);
1450
1451         return filt;
1452 }
1453
1454 static void addr_filter__free(struct addr_filter *filt)
1455 {
1456         if (filt)
1457                 addr_filter__free_str(filt);
1458         free(filt);
1459 }
1460
1461 static void addr_filters__add(struct addr_filters *filts,
1462                               struct addr_filter *filt)
1463 {
1464         list_add_tail(&filt->list, &filts->head);
1465         filts->cnt += 1;
1466 }
1467
1468 static void addr_filters__del(struct addr_filters *filts,
1469                               struct addr_filter *filt)
1470 {
1471         list_del_init(&filt->list);
1472         filts->cnt -= 1;
1473 }
1474
1475 void addr_filters__init(struct addr_filters *filts)
1476 {
1477         INIT_LIST_HEAD(&filts->head);
1478         filts->cnt = 0;
1479 }
1480
1481 void addr_filters__exit(struct addr_filters *filts)
1482 {
1483         struct addr_filter *filt, *n;
1484
1485         list_for_each_entry_safe(filt, n, &filts->head, list) {
1486                 addr_filters__del(filts, filt);
1487                 addr_filter__free(filt);
1488         }
1489 }
1490
1491 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1492                             const char *str_delim)
1493 {
1494         *inp += strspn(*inp, " ");
1495
1496         if (isdigit(**inp)) {
1497                 char *endptr;
1498
1499                 if (!num)
1500                         return -EINVAL;
1501                 errno = 0;
1502                 *num = strtoull(*inp, &endptr, 0);
1503                 if (errno)
1504                         return -errno;
1505                 if (endptr == *inp)
1506                         return -EINVAL;
1507                 *inp = endptr;
1508         } else {
1509                 size_t n;
1510
1511                 if (!str)
1512                         return -EINVAL;
1513                 *inp += strspn(*inp, " ");
1514                 *str = *inp;
1515                 n = strcspn(*inp, str_delim);
1516                 if (!n)
1517                         return -EINVAL;
1518                 *inp += n;
1519                 if (**inp) {
1520                         **inp = '\0';
1521                         *inp += 1;
1522                 }
1523         }
1524         return 0;
1525 }
1526
1527 static int parse_action(struct addr_filter *filt)
1528 {
1529         if (!strcmp(filt->action, "filter")) {
1530                 filt->start = true;
1531                 filt->range = true;
1532         } else if (!strcmp(filt->action, "start")) {
1533                 filt->start = true;
1534         } else if (!strcmp(filt->action, "stop")) {
1535                 filt->start = false;
1536         } else if (!strcmp(filt->action, "tracestop")) {
1537                 filt->start = false;
1538                 filt->range = true;
1539                 filt->action += 5; /* Change 'tracestop' to 'stop' */
1540         } else {
1541                 return -EINVAL;
1542         }
1543         return 0;
1544 }
1545
1546 static int parse_sym_idx(char **inp, int *idx)
1547 {
1548         *idx = -1;
1549
1550         *inp += strspn(*inp, " ");
1551
1552         if (**inp != '#')
1553                 return 0;
1554
1555         *inp += 1;
1556
1557         if (**inp == 'g' || **inp == 'G') {
1558                 *inp += 1;
1559                 *idx = 0;
1560         } else {
1561                 unsigned long num;
1562                 char *endptr;
1563
1564                 errno = 0;
1565                 num = strtoul(*inp, &endptr, 0);
1566                 if (errno)
1567                         return -errno;
1568                 if (endptr == *inp || num > INT_MAX)
1569                         return -EINVAL;
1570                 *inp = endptr;
1571                 *idx = num;
1572         }
1573
1574         return 0;
1575 }
1576
1577 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1578 {
1579         int err = parse_num_or_str(inp, num, str, " ");
1580
1581         if (!err && *str)
1582                 err = parse_sym_idx(inp, idx);
1583
1584         return err;
1585 }
1586
1587 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1588 {
1589         char *fstr;
1590         int err;
1591
1592         filt->str = fstr = strdup(*filter_inp);
1593         if (!fstr)
1594                 return -ENOMEM;
1595
1596         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1597         if (err)
1598                 goto out_err;
1599
1600         err = parse_action(filt);
1601         if (err)
1602                 goto out_err;
1603
1604         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1605                               &filt->sym_from_idx);
1606         if (err)
1607                 goto out_err;
1608
1609         fstr += strspn(fstr, " ");
1610
1611         if (*fstr == '/') {
1612                 fstr += 1;
1613                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1614                                       &filt->sym_to_idx);
1615                 if (err)
1616                         goto out_err;
1617                 filt->range = true;
1618         }
1619
1620         fstr += strspn(fstr, " ");
1621
1622         if (*fstr == '@') {
1623                 fstr += 1;
1624                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1625                 if (err)
1626                         goto out_err;
1627         }
1628
1629         fstr += strspn(fstr, " ,");
1630
1631         *filter_inp += fstr - filt->str;
1632
1633         return 0;
1634
1635 out_err:
1636         addr_filter__free_str(filt);
1637
1638         return err;
1639 }
1640
1641 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1642                                     const char *filter)
1643 {
1644         struct addr_filter *filt;
1645         const char *fstr = filter;
1646         int err;
1647
1648         while (*fstr) {
1649                 filt = addr_filter__new();
1650                 err = parse_one_filter(filt, &fstr);
1651                 if (err) {
1652                         addr_filter__free(filt);
1653                         addr_filters__exit(filts);
1654                         return err;
1655                 }
1656                 addr_filters__add(filts, filt);
1657         }
1658
1659         return 0;
1660 }
1661
1662 struct sym_args {
1663         const char      *name;
1664         u64             start;
1665         u64             size;
1666         int             idx;
1667         int             cnt;
1668         bool            started;
1669         bool            global;
1670         bool            selected;
1671         bool            duplicate;
1672         bool            near;
1673 };
1674
1675 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1676 {
1677         /* A function with the same name, and global or the n'th found or any */
1678         return symbol_type__is_a(type, MAP__FUNCTION) &&
1679                !strcmp(name, args->name) &&
1680                ((args->global && isupper(type)) ||
1681                 (args->selected && ++(args->cnt) == args->idx) ||
1682                 (!args->global && !args->selected));
1683 }
1684
1685 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1686 {
1687         struct sym_args *args = arg;
1688
1689         if (args->started) {
1690                 if (!args->size)
1691                         args->size = start - args->start;
1692                 if (args->selected) {
1693                         if (args->size)
1694                                 return 1;
1695                 } else if (kern_sym_match(args, name, type)) {
1696                         args->duplicate = true;
1697                         return 1;
1698                 }
1699         } else if (kern_sym_match(args, name, type)) {
1700                 args->started = true;
1701                 args->start = start;
1702         }
1703
1704         return 0;
1705 }
1706
1707 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1708 {
1709         struct sym_args *args = arg;
1710
1711         if (kern_sym_match(args, name, type)) {
1712                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1713                        ++args->cnt, start, type, name);
1714                 args->near = true;
1715         } else if (args->near) {
1716                 args->near = false;
1717                 pr_err("\t\twhich is near\t\t%s\n", name);
1718         }
1719
1720         return 0;
1721 }
1722
1723 static int sym_not_found_error(const char *sym_name, int idx)
1724 {
1725         if (idx > 0) {
1726                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1727                        idx, sym_name);
1728         } else if (!idx) {
1729                 pr_err("Global symbol '%s' not found.\n", sym_name);
1730         } else {
1731                 pr_err("Symbol '%s' not found.\n", sym_name);
1732         }
1733         pr_err("Note that symbols must be functions.\n");
1734
1735         return -EINVAL;
1736 }
1737
1738 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1739 {
1740         struct sym_args args = {
1741                 .name = sym_name,
1742                 .idx = idx,
1743                 .global = !idx,
1744                 .selected = idx > 0,
1745         };
1746         int err;
1747
1748         *start = 0;
1749         *size = 0;
1750
1751         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1752         if (err < 0) {
1753                 pr_err("Failed to parse /proc/kallsyms\n");
1754                 return err;
1755         }
1756
1757         if (args.duplicate) {
1758                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1759                 args.cnt = 0;
1760                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1761                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1762                        sym_name);
1763                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1764                 return -EINVAL;
1765         }
1766
1767         if (!args.started) {
1768                 pr_err("Kernel symbol lookup: ");
1769                 return sym_not_found_error(sym_name, idx);
1770         }
1771
1772         *start = args.start;
1773         *size = args.size;
1774
1775         return 0;
1776 }
1777
1778 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1779                                char type, u64 start)
1780 {
1781         struct sym_args *args = arg;
1782
1783         if (!symbol_type__is_a(type, MAP__FUNCTION))
1784                 return 0;
1785
1786         if (!args->started) {
1787                 args->started = true;
1788                 args->start = start;
1789         }
1790         /* Don't know exactly where the kernel ends, so we add a page */
1791         args->size = round_up(start, page_size) + page_size - args->start;
1792
1793         return 0;
1794 }
1795
1796 static int addr_filter__entire_kernel(struct addr_filter *filt)
1797 {
1798         struct sym_args args = { .started = false };
1799         int err;
1800
1801         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1802         if (err < 0 || !args.started) {
1803                 pr_err("Failed to parse /proc/kallsyms\n");
1804                 return err;
1805         }
1806
1807         filt->addr = args.start;
1808         filt->size = args.size;
1809
1810         return 0;
1811 }
1812
1813 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1814 {
1815         if (start + size >= filt->addr)
1816                 return 0;
1817
1818         if (filt->sym_from) {
1819                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1820                        filt->sym_to, start, filt->sym_from, filt->addr);
1821         } else {
1822                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1823                        filt->sym_to, start, filt->addr);
1824         }
1825
1826         return -EINVAL;
1827 }
1828
1829 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1830 {
1831         bool no_size = false;
1832         u64 start, size;
1833         int err;
1834
1835         if (symbol_conf.kptr_restrict) {
1836                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1837                 return -EINVAL;
1838         }
1839
1840         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1841                 return addr_filter__entire_kernel(filt);
1842
1843         if (filt->sym_from) {
1844                 err = find_kern_sym(filt->sym_from, &start, &size,
1845                                     filt->sym_from_idx);
1846                 if (err)
1847                         return err;
1848                 filt->addr = start;
1849                 if (filt->range && !filt->size && !filt->sym_to) {
1850                         filt->size = size;
1851                         no_size = !size;
1852                 }
1853         }
1854
1855         if (filt->sym_to) {
1856                 err = find_kern_sym(filt->sym_to, &start, &size,
1857                                     filt->sym_to_idx);
1858                 if (err)
1859                         return err;
1860
1861                 err = check_end_after_start(filt, start, size);
1862                 if (err)
1863                         return err;
1864                 filt->size = start + size - filt->addr;
1865                 no_size = !size;
1866         }
1867
1868         /* The very last symbol in kallsyms does not imply a particular size */
1869         if (no_size) {
1870                 pr_err("Cannot determine size of symbol '%s'\n",
1871                        filt->sym_to ? filt->sym_to : filt->sym_from);
1872                 return -EINVAL;
1873         }
1874
1875         return 0;
1876 }
1877
1878 static struct dso *load_dso(const char *name)
1879 {
1880         struct map *map;
1881         struct dso *dso;
1882
1883         map = dso__new_map(name);
1884         if (!map)
1885                 return NULL;
1886
1887         map__load(map);
1888
1889         dso = dso__get(map->dso);
1890
1891         map__put(map);
1892
1893         return dso;
1894 }
1895
1896 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1897                           int idx)
1898 {
1899         /* Same name, and global or the n'th found or any */
1900         return !arch__compare_symbol_names(name, sym->name) &&
1901                ((!idx && sym->binding == STB_GLOBAL) ||
1902                 (idx > 0 && ++*cnt == idx) ||
1903                 idx < 0);
1904 }
1905
1906 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1907 {
1908         struct symbol *sym;
1909         bool near = false;
1910         int cnt = 0;
1911
1912         pr_err("Multiple symbols with name '%s'\n", sym_name);
1913
1914         sym = dso__first_symbol(dso, MAP__FUNCTION);
1915         while (sym) {
1916                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1917                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1918                                ++cnt, sym->start,
1919                                sym->binding == STB_GLOBAL ? 'g' :
1920                                sym->binding == STB_LOCAL  ? 'l' : 'w',
1921                                sym->name);
1922                         near = true;
1923                 } else if (near) {
1924                         near = false;
1925                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
1926                 }
1927                 sym = dso__next_symbol(sym);
1928         }
1929
1930         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1931                sym_name);
1932         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1933 }
1934
1935 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1936                         u64 *size, int idx)
1937 {
1938         struct symbol *sym;
1939         int cnt = 0;
1940
1941         *start = 0;
1942         *size = 0;
1943
1944         sym = dso__first_symbol(dso, MAP__FUNCTION);
1945         while (sym) {
1946                 if (*start) {
1947                         if (!*size)
1948                                 *size = sym->start - *start;
1949                         if (idx > 0) {
1950                                 if (*size)
1951                                         return 1;
1952                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1953                                 print_duplicate_syms(dso, sym_name);
1954                                 return -EINVAL;
1955                         }
1956                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1957                         *start = sym->start;
1958                         *size = sym->end - sym->start;
1959                 }
1960                 sym = dso__next_symbol(sym);
1961         }
1962
1963         if (!*start)
1964                 return sym_not_found_error(sym_name, idx);
1965
1966         return 0;
1967 }
1968
1969 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1970 {
1971         struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1972         struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1973
1974         if (!first_sym || !last_sym) {
1975                 pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1976                        filt->filename);
1977                 return -EINVAL;
1978         }
1979
1980         filt->addr = first_sym->start;
1981         filt->size = last_sym->end - first_sym->start;
1982
1983         return 0;
1984 }
1985
1986 static int addr_filter__resolve_syms(struct addr_filter *filt)
1987 {
1988         u64 start, size;
1989         struct dso *dso;
1990         int err = 0;
1991
1992         if (!filt->sym_from && !filt->sym_to)
1993                 return 0;
1994
1995         if (!filt->filename)
1996                 return addr_filter__resolve_kernel_syms(filt);
1997
1998         dso = load_dso(filt->filename);
1999         if (!dso) {
2000                 pr_err("Failed to load symbols from: %s\n", filt->filename);
2001                 return -EINVAL;
2002         }
2003
2004         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2005                 err = addr_filter__entire_dso(filt, dso);
2006                 goto put_dso;
2007         }
2008
2009         if (filt->sym_from) {
2010                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2011                                    filt->sym_from_idx);
2012                 if (err)
2013                         goto put_dso;
2014                 filt->addr = start;
2015                 if (filt->range && !filt->size && !filt->sym_to)
2016                         filt->size = size;
2017         }
2018
2019         if (filt->sym_to) {
2020                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2021                                    filt->sym_to_idx);
2022                 if (err)
2023                         goto put_dso;
2024
2025                 err = check_end_after_start(filt, start, size);
2026                 if (err)
2027                         return err;
2028
2029                 filt->size = start + size - filt->addr;
2030         }
2031
2032 put_dso:
2033         dso__put(dso);
2034
2035         return err;
2036 }
2037
2038 static char *addr_filter__to_str(struct addr_filter *filt)
2039 {
2040         char filename_buf[PATH_MAX];
2041         const char *at = "";
2042         const char *fn = "";
2043         char *filter;
2044         int err;
2045
2046         if (filt->filename) {
2047                 at = "@";
2048                 fn = realpath(filt->filename, filename_buf);
2049                 if (!fn)
2050                         return NULL;
2051         }
2052
2053         if (filt->range) {
2054                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2055                                filt->action, filt->addr, filt->size, at, fn);
2056         } else {
2057                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2058                                filt->action, filt->addr, at, fn);
2059         }
2060
2061         return err < 0 ? NULL : filter;
2062 }
2063
2064 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2065                              int max_nr)
2066 {
2067         struct addr_filters filts;
2068         struct addr_filter *filt;
2069         int err;
2070
2071         addr_filters__init(&filts);
2072
2073         err = addr_filters__parse_bare_filter(&filts, filter);
2074         if (err)
2075                 goto out_exit;
2076
2077         if (filts.cnt > max_nr) {
2078                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2079                        filts.cnt, max_nr);
2080                 err = -EINVAL;
2081                 goto out_exit;
2082         }
2083
2084         list_for_each_entry(filt, &filts.head, list) {
2085                 char *new_filter;
2086
2087                 err = addr_filter__resolve_syms(filt);
2088                 if (err)
2089                         goto out_exit;
2090
2091                 new_filter = addr_filter__to_str(filt);
2092                 if (!new_filter) {
2093                         err = -ENOMEM;
2094                         goto out_exit;
2095                 }
2096
2097                 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2098                         err = -ENOMEM;
2099                         goto out_exit;
2100                 }
2101         }
2102
2103 out_exit:
2104         addr_filters__exit(&filts);
2105
2106         if (err) {
2107                 pr_err("Failed to parse address filter: '%s'\n", filter);
2108                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2109                 pr_err("Where multiple filters are separated by space or comma.\n");
2110         }
2111
2112         return err;
2113 }
2114
2115 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2116 {
2117         struct perf_pmu *pmu = NULL;
2118
2119         while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2120                 if (pmu->type == evsel->attr.type)
2121                         break;
2122         }
2123
2124         return pmu;
2125 }
2126
2127 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2128 {
2129         struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2130         int nr_addr_filters = 0;
2131
2132         if (!pmu)
2133                 return 0;
2134
2135         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2136
2137         return nr_addr_filters;
2138 }
2139
2140 int auxtrace_parse_filters(struct perf_evlist *evlist)
2141 {
2142         struct perf_evsel *evsel;
2143         char *filter;
2144         int err, max_nr;
2145
2146         evlist__for_each_entry(evlist, evsel) {
2147                 filter = evsel->filter;
2148                 max_nr = perf_evsel__nr_addr_filter(evsel);
2149                 if (!filter || !max_nr)
2150                         continue;
2151                 evsel->filter = NULL;
2152                 err = parse_addr_filter(evsel, filter, max_nr);
2153                 free(filter);
2154                 if (err)
2155                         return err;
2156                 pr_debug("Address filter: %s\n", evsel->filter);
2157         }
2158
2159         return 0;
2160 }