26ece6e9bfd167b3bc9357cfe8048af9b1c372e5
[linux-2.6-block.git] / tools / perf / builtin-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4 #include "perf-sys.h"
5
6 #include "util/cpumap.h"
7 #include "util/evlist.h"
8 #include "util/evsel.h"
9 #include "util/evsel_fprintf.h"
10 #include "util/mutex.h"
11 #include "util/symbol.h"
12 #include "util/thread.h"
13 #include "util/header.h"
14 #include "util/session.h"
15 #include "util/tool.h"
16 #include "util/cloexec.h"
17 #include "util/thread_map.h"
18 #include "util/color.h"
19 #include "util/stat.h"
20 #include "util/string2.h"
21 #include "util/callchain.h"
22 #include "util/time-utils.h"
23
24 #include <subcmd/pager.h>
25 #include <subcmd/parse-options.h>
26 #include "util/trace-event.h"
27
28 #include "util/debug.h"
29 #include "util/event.h"
30 #include "util/util.h"
31
32 #include <linux/kernel.h>
33 #include <linux/log2.h>
34 #include <linux/zalloc.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <inttypes.h>
38
39 #include <errno.h>
40 #include <semaphore.h>
41 #include <pthread.h>
42 #include <math.h>
43 #include <api/fs/fs.h>
44 #include <perf/cpumap.h>
45 #include <linux/time64.h>
46 #include <linux/err.h>
47
48 #include <linux/ctype.h>
49
50 #define PR_SET_NAME             15               /* Set process name */
51 #define MAX_CPUS                4096
52 #define COMM_LEN                20
53 #define SYM_LEN                 129
54 #define MAX_PID                 1024000
55 #define MAX_PRIO                140
56
57 static const char *cpu_list;
58 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
59
60 struct sched_atom;
61
62 struct task_desc {
63         unsigned long           nr;
64         unsigned long           pid;
65         char                    comm[COMM_LEN];
66
67         unsigned long           nr_events;
68         unsigned long           curr_event;
69         struct sched_atom       **atoms;
70
71         pthread_t               thread;
72
73         sem_t                   ready_for_work;
74         sem_t                   work_done_sem;
75
76         u64                     cpu_usage;
77 };
78
79 enum sched_event_type {
80         SCHED_EVENT_RUN,
81         SCHED_EVENT_SLEEP,
82         SCHED_EVENT_WAKEUP,
83 };
84
85 struct sched_atom {
86         enum sched_event_type   type;
87         u64                     timestamp;
88         u64                     duration;
89         unsigned long           nr;
90         sem_t                   *wait_sem;
91         struct task_desc        *wakee;
92 };
93
94 enum thread_state {
95         THREAD_SLEEPING = 0,
96         THREAD_WAIT_CPU,
97         THREAD_SCHED_IN,
98         THREAD_IGNORE
99 };
100
101 struct work_atom {
102         struct list_head        list;
103         enum thread_state       state;
104         u64                     sched_out_time;
105         u64                     wake_up_time;
106         u64                     sched_in_time;
107         u64                     runtime;
108 };
109
110 struct work_atoms {
111         struct list_head        work_list;
112         struct thread           *thread;
113         struct rb_node          node;
114         u64                     max_lat;
115         u64                     max_lat_start;
116         u64                     max_lat_end;
117         u64                     total_lat;
118         u64                     nb_atoms;
119         u64                     total_runtime;
120         int                     num_merged;
121 };
122
123 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
124
125 struct perf_sched;
126
127 struct trace_sched_handler {
128         int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
129                             struct perf_sample *sample, struct machine *machine);
130
131         int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
132                              struct perf_sample *sample, struct machine *machine);
133
134         int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
135                             struct perf_sample *sample, struct machine *machine);
136
137         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
138         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
139                           struct machine *machine);
140
141         int (*migrate_task_event)(struct perf_sched *sched,
142                                   struct evsel *evsel,
143                                   struct perf_sample *sample,
144                                   struct machine *machine);
145 };
146
147 #define COLOR_PIDS PERF_COLOR_BLUE
148 #define COLOR_CPUS PERF_COLOR_BG_RED
149
150 struct perf_sched_map {
151         DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
152         struct perf_cpu         *comp_cpus;
153         bool                     comp;
154         struct perf_thread_map *color_pids;
155         const char              *color_pids_str;
156         struct perf_cpu_map     *color_cpus;
157         const char              *color_cpus_str;
158         const char              *task_name;
159         struct strlist          *task_names;
160         bool                    fuzzy;
161         struct perf_cpu_map     *cpus;
162         const char              *cpus_str;
163 };
164
165 struct perf_sched {
166         struct perf_tool tool;
167         const char       *sort_order;
168         unsigned long    nr_tasks;
169         struct task_desc **pid_to_task;
170         struct task_desc **tasks;
171         const struct trace_sched_handler *tp_handler;
172         struct mutex     start_work_mutex;
173         struct mutex     work_done_wait_mutex;
174         int              profile_cpu;
175 /*
176  * Track the current task - that way we can know whether there's any
177  * weird events, such as a task being switched away that is not current.
178  */
179         struct perf_cpu  max_cpu;
180         u32              *curr_pid;
181         struct thread    **curr_thread;
182         struct thread    **curr_out_thread;
183         char             next_shortname1;
184         char             next_shortname2;
185         unsigned int     replay_repeat;
186         unsigned long    nr_run_events;
187         unsigned long    nr_sleep_events;
188         unsigned long    nr_wakeup_events;
189         unsigned long    nr_sleep_corrections;
190         unsigned long    nr_run_events_optimized;
191         unsigned long    targetless_wakeups;
192         unsigned long    multitarget_wakeups;
193         unsigned long    nr_runs;
194         unsigned long    nr_timestamps;
195         unsigned long    nr_unordered_timestamps;
196         unsigned long    nr_context_switch_bugs;
197         unsigned long    nr_events;
198         unsigned long    nr_lost_chunks;
199         unsigned long    nr_lost_events;
200         u64              run_measurement_overhead;
201         u64              sleep_measurement_overhead;
202         u64              start_time;
203         u64              cpu_usage;
204         u64              runavg_cpu_usage;
205         u64              parent_cpu_usage;
206         u64              runavg_parent_cpu_usage;
207         u64              sum_runtime;
208         u64              sum_fluct;
209         u64              run_avg;
210         u64              all_runtime;
211         u64              all_count;
212         u64              *cpu_last_switched;
213         struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
214         struct list_head sort_list, cmp_pid;
215         bool force;
216         bool skip_merge;
217         struct perf_sched_map map;
218
219         /* options for timehist command */
220         bool            summary;
221         bool            summary_only;
222         bool            idle_hist;
223         bool            show_callchain;
224         unsigned int    max_stack;
225         bool            show_cpu_visual;
226         bool            show_wakeups;
227         bool            show_next;
228         bool            show_migrations;
229         bool            pre_migrations;
230         bool            show_state;
231         bool            show_prio;
232         u64             skipped_samples;
233         const char      *time_str;
234         struct perf_time_interval ptime;
235         struct perf_time_interval hist_time;
236         volatile bool   thread_funcs_exit;
237         const char      *prio_str;
238         DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
239 };
240
241 /* per thread run time data */
242 struct thread_runtime {
243         u64 last_time;      /* time of previous sched in/out event */
244         u64 dt_run;         /* run time */
245         u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
246         u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
247         u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
248         u64 dt_delay;       /* time between wakeup and sched-in */
249         u64 dt_pre_mig;     /* time between migration and wakeup */
250         u64 ready_to_run;   /* time of wakeup */
251         u64 migrated;       /* time when a thread is migrated */
252
253         struct stats run_stats;
254         u64 total_run_time;
255         u64 total_sleep_time;
256         u64 total_iowait_time;
257         u64 total_preempt_time;
258         u64 total_delay_time;
259         u64 total_pre_mig_time;
260
261         char last_state;
262
263         char shortname[3];
264         bool comm_changed;
265
266         u64 migrations;
267
268         int prio;
269 };
270
271 /* per event run time data */
272 struct evsel_runtime {
273         u64 *last_time; /* time this event was last seen per cpu */
274         u32 ncpu;       /* highest cpu slot allocated */
275 };
276
277 /* per cpu idle time data */
278 struct idle_thread_runtime {
279         struct thread_runtime   tr;
280         struct thread           *last_thread;
281         struct rb_root_cached   sorted_root;
282         struct callchain_root   callchain;
283         struct callchain_cursor cursor;
284 };
285
286 /* track idle times per cpu */
287 static struct thread **idle_threads;
288 static int idle_max_cpu;
289 static char idle_comm[] = "<idle>";
290
291 static u64 get_nsecs(void)
292 {
293         struct timespec ts;
294
295         clock_gettime(CLOCK_MONOTONIC, &ts);
296
297         return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
298 }
299
300 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
301 {
302         u64 T0 = get_nsecs(), T1;
303
304         do {
305                 T1 = get_nsecs();
306         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
307 }
308
309 static void sleep_nsecs(u64 nsecs)
310 {
311         struct timespec ts;
312
313         ts.tv_nsec = nsecs % 999999999;
314         ts.tv_sec = nsecs / 999999999;
315
316         nanosleep(&ts, NULL);
317 }
318
319 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
320 {
321         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
322         int i;
323
324         for (i = 0; i < 10; i++) {
325                 T0 = get_nsecs();
326                 burn_nsecs(sched, 0);
327                 T1 = get_nsecs();
328                 delta = T1-T0;
329                 min_delta = min(min_delta, delta);
330         }
331         sched->run_measurement_overhead = min_delta;
332
333         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
334 }
335
336 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
337 {
338         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
339         int i;
340
341         for (i = 0; i < 10; i++) {
342                 T0 = get_nsecs();
343                 sleep_nsecs(10000);
344                 T1 = get_nsecs();
345                 delta = T1-T0;
346                 min_delta = min(min_delta, delta);
347         }
348         min_delta -= 10000;
349         sched->sleep_measurement_overhead = min_delta;
350
351         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
352 }
353
354 static struct sched_atom *
355 get_new_event(struct task_desc *task, u64 timestamp)
356 {
357         struct sched_atom *event = zalloc(sizeof(*event));
358         unsigned long idx = task->nr_events;
359         size_t size;
360
361         event->timestamp = timestamp;
362         event->nr = idx;
363
364         task->nr_events++;
365         size = sizeof(struct sched_atom *) * task->nr_events;
366         task->atoms = realloc(task->atoms, size);
367         BUG_ON(!task->atoms);
368
369         task->atoms[idx] = event;
370
371         return event;
372 }
373
374 static struct sched_atom *last_event(struct task_desc *task)
375 {
376         if (!task->nr_events)
377                 return NULL;
378
379         return task->atoms[task->nr_events - 1];
380 }
381
382 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
383                                 u64 timestamp, u64 duration)
384 {
385         struct sched_atom *event, *curr_event = last_event(task);
386
387         /*
388          * optimize an existing RUN event by merging this one
389          * to it:
390          */
391         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
392                 sched->nr_run_events_optimized++;
393                 curr_event->duration += duration;
394                 return;
395         }
396
397         event = get_new_event(task, timestamp);
398
399         event->type = SCHED_EVENT_RUN;
400         event->duration = duration;
401
402         sched->nr_run_events++;
403 }
404
405 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
406                                    u64 timestamp, struct task_desc *wakee)
407 {
408         struct sched_atom *event, *wakee_event;
409
410         event = get_new_event(task, timestamp);
411         event->type = SCHED_EVENT_WAKEUP;
412         event->wakee = wakee;
413
414         wakee_event = last_event(wakee);
415         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
416                 sched->targetless_wakeups++;
417                 return;
418         }
419         if (wakee_event->wait_sem) {
420                 sched->multitarget_wakeups++;
421                 return;
422         }
423
424         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
425         sem_init(wakee_event->wait_sem, 0, 0);
426         event->wait_sem = wakee_event->wait_sem;
427
428         sched->nr_wakeup_events++;
429 }
430
431 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
432                                   u64 timestamp)
433 {
434         struct sched_atom *event = get_new_event(task, timestamp);
435
436         event->type = SCHED_EVENT_SLEEP;
437
438         sched->nr_sleep_events++;
439 }
440
441 static struct task_desc *register_pid(struct perf_sched *sched,
442                                       unsigned long pid, const char *comm)
443 {
444         struct task_desc *task;
445         static int pid_max;
446
447         if (sched->pid_to_task == NULL) {
448                 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
449                         pid_max = MAX_PID;
450                 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
451         }
452         if (pid >= (unsigned long)pid_max) {
453                 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
454                         sizeof(struct task_desc *))) == NULL);
455                 while (pid >= (unsigned long)pid_max)
456                         sched->pid_to_task[pid_max++] = NULL;
457         }
458
459         task = sched->pid_to_task[pid];
460
461         if (task)
462                 return task;
463
464         task = zalloc(sizeof(*task));
465         task->pid = pid;
466         task->nr = sched->nr_tasks;
467         strcpy(task->comm, comm);
468         /*
469          * every task starts in sleeping state - this gets ignored
470          * if there's no wakeup pointing to this sleep state:
471          */
472         add_sched_event_sleep(sched, task, 0);
473
474         sched->pid_to_task[pid] = task;
475         sched->nr_tasks++;
476         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
477         BUG_ON(!sched->tasks);
478         sched->tasks[task->nr] = task;
479
480         if (verbose > 0)
481                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
482
483         return task;
484 }
485
486
487 static void print_task_traces(struct perf_sched *sched)
488 {
489         struct task_desc *task;
490         unsigned long i;
491
492         for (i = 0; i < sched->nr_tasks; i++) {
493                 task = sched->tasks[i];
494                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
495                         task->nr, task->comm, task->pid, task->nr_events);
496         }
497 }
498
499 static void add_cross_task_wakeups(struct perf_sched *sched)
500 {
501         struct task_desc *task1, *task2;
502         unsigned long i, j;
503
504         for (i = 0; i < sched->nr_tasks; i++) {
505                 task1 = sched->tasks[i];
506                 j = i + 1;
507                 if (j == sched->nr_tasks)
508                         j = 0;
509                 task2 = sched->tasks[j];
510                 add_sched_event_wakeup(sched, task1, 0, task2);
511         }
512 }
513
514 static void perf_sched__process_event(struct perf_sched *sched,
515                                       struct sched_atom *atom)
516 {
517         int ret = 0;
518
519         switch (atom->type) {
520                 case SCHED_EVENT_RUN:
521                         burn_nsecs(sched, atom->duration);
522                         break;
523                 case SCHED_EVENT_SLEEP:
524                         if (atom->wait_sem)
525                                 ret = sem_wait(atom->wait_sem);
526                         BUG_ON(ret);
527                         break;
528                 case SCHED_EVENT_WAKEUP:
529                         if (atom->wait_sem)
530                                 ret = sem_post(atom->wait_sem);
531                         BUG_ON(ret);
532                         break;
533                 default:
534                         BUG_ON(1);
535         }
536 }
537
538 static u64 get_cpu_usage_nsec_parent(void)
539 {
540         struct rusage ru;
541         u64 sum;
542         int err;
543
544         err = getrusage(RUSAGE_SELF, &ru);
545         BUG_ON(err);
546
547         sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
548         sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
549
550         return sum;
551 }
552
553 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
554 {
555         struct perf_event_attr attr;
556         char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
557         int fd;
558         struct rlimit limit;
559         bool need_privilege = false;
560
561         memset(&attr, 0, sizeof(attr));
562
563         attr.type = PERF_TYPE_SOFTWARE;
564         attr.config = PERF_COUNT_SW_TASK_CLOCK;
565
566 force_again:
567         fd = sys_perf_event_open(&attr, 0, -1, -1,
568                                  perf_event_open_cloexec_flag());
569
570         if (fd < 0) {
571                 if (errno == EMFILE) {
572                         if (sched->force) {
573                                 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
574                                 limit.rlim_cur += sched->nr_tasks - cur_task;
575                                 if (limit.rlim_cur > limit.rlim_max) {
576                                         limit.rlim_max = limit.rlim_cur;
577                                         need_privilege = true;
578                                 }
579                                 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
580                                         if (need_privilege && errno == EPERM)
581                                                 strcpy(info, "Need privilege\n");
582                                 } else
583                                         goto force_again;
584                         } else
585                                 strcpy(info, "Have a try with -f option\n");
586                 }
587                 pr_err("Error: sys_perf_event_open() syscall returned "
588                        "with %d (%s)\n%s", fd,
589                        str_error_r(errno, sbuf, sizeof(sbuf)), info);
590                 exit(EXIT_FAILURE);
591         }
592         return fd;
593 }
594
595 static u64 get_cpu_usage_nsec_self(int fd)
596 {
597         u64 runtime;
598         int ret;
599
600         ret = read(fd, &runtime, sizeof(runtime));
601         BUG_ON(ret != sizeof(runtime));
602
603         return runtime;
604 }
605
606 struct sched_thread_parms {
607         struct task_desc  *task;
608         struct perf_sched *sched;
609         int fd;
610 };
611
612 static void *thread_func(void *ctx)
613 {
614         struct sched_thread_parms *parms = ctx;
615         struct task_desc *this_task = parms->task;
616         struct perf_sched *sched = parms->sched;
617         u64 cpu_usage_0, cpu_usage_1;
618         unsigned long i, ret;
619         char comm2[22];
620         int fd = parms->fd;
621
622         zfree(&parms);
623
624         sprintf(comm2, ":%s", this_task->comm);
625         prctl(PR_SET_NAME, comm2);
626         if (fd < 0)
627                 return NULL;
628
629         while (!sched->thread_funcs_exit) {
630                 ret = sem_post(&this_task->ready_for_work);
631                 BUG_ON(ret);
632                 mutex_lock(&sched->start_work_mutex);
633                 mutex_unlock(&sched->start_work_mutex);
634
635                 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
636
637                 for (i = 0; i < this_task->nr_events; i++) {
638                         this_task->curr_event = i;
639                         perf_sched__process_event(sched, this_task->atoms[i]);
640                 }
641
642                 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
643                 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
644                 ret = sem_post(&this_task->work_done_sem);
645                 BUG_ON(ret);
646
647                 mutex_lock(&sched->work_done_wait_mutex);
648                 mutex_unlock(&sched->work_done_wait_mutex);
649         }
650         return NULL;
651 }
652
653 static void create_tasks(struct perf_sched *sched)
654         EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
655         EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
656 {
657         struct task_desc *task;
658         pthread_attr_t attr;
659         unsigned long i;
660         int err;
661
662         err = pthread_attr_init(&attr);
663         BUG_ON(err);
664         err = pthread_attr_setstacksize(&attr,
665                         (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
666         BUG_ON(err);
667         mutex_lock(&sched->start_work_mutex);
668         mutex_lock(&sched->work_done_wait_mutex);
669         for (i = 0; i < sched->nr_tasks; i++) {
670                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
671                 BUG_ON(parms == NULL);
672                 parms->task = task = sched->tasks[i];
673                 parms->sched = sched;
674                 parms->fd = self_open_counters(sched, i);
675                 sem_init(&task->ready_for_work, 0, 0);
676                 sem_init(&task->work_done_sem, 0, 0);
677                 task->curr_event = 0;
678                 err = pthread_create(&task->thread, &attr, thread_func, parms);
679                 BUG_ON(err);
680         }
681 }
682
683 static void destroy_tasks(struct perf_sched *sched)
684         UNLOCK_FUNCTION(sched->start_work_mutex)
685         UNLOCK_FUNCTION(sched->work_done_wait_mutex)
686 {
687         struct task_desc *task;
688         unsigned long i;
689         int err;
690
691         mutex_unlock(&sched->start_work_mutex);
692         mutex_unlock(&sched->work_done_wait_mutex);
693         /* Get rid of threads so they won't be upset by mutex destrunction */
694         for (i = 0; i < sched->nr_tasks; i++) {
695                 task = sched->tasks[i];
696                 err = pthread_join(task->thread, NULL);
697                 BUG_ON(err);
698                 sem_destroy(&task->ready_for_work);
699                 sem_destroy(&task->work_done_sem);
700         }
701 }
702
703 static void wait_for_tasks(struct perf_sched *sched)
704         EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
705         EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
706 {
707         u64 cpu_usage_0, cpu_usage_1;
708         struct task_desc *task;
709         unsigned long i, ret;
710
711         sched->start_time = get_nsecs();
712         sched->cpu_usage = 0;
713         mutex_unlock(&sched->work_done_wait_mutex);
714
715         for (i = 0; i < sched->nr_tasks; i++) {
716                 task = sched->tasks[i];
717                 ret = sem_wait(&task->ready_for_work);
718                 BUG_ON(ret);
719                 sem_init(&task->ready_for_work, 0, 0);
720         }
721         mutex_lock(&sched->work_done_wait_mutex);
722
723         cpu_usage_0 = get_cpu_usage_nsec_parent();
724
725         mutex_unlock(&sched->start_work_mutex);
726
727         for (i = 0; i < sched->nr_tasks; i++) {
728                 task = sched->tasks[i];
729                 ret = sem_wait(&task->work_done_sem);
730                 BUG_ON(ret);
731                 sem_init(&task->work_done_sem, 0, 0);
732                 sched->cpu_usage += task->cpu_usage;
733                 task->cpu_usage = 0;
734         }
735
736         cpu_usage_1 = get_cpu_usage_nsec_parent();
737         if (!sched->runavg_cpu_usage)
738                 sched->runavg_cpu_usage = sched->cpu_usage;
739         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
740
741         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
742         if (!sched->runavg_parent_cpu_usage)
743                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
744         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
745                                          sched->parent_cpu_usage)/sched->replay_repeat;
746
747         mutex_lock(&sched->start_work_mutex);
748
749         for (i = 0; i < sched->nr_tasks; i++) {
750                 task = sched->tasks[i];
751                 task->curr_event = 0;
752         }
753 }
754
755 static void run_one_test(struct perf_sched *sched)
756         EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
757         EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
758 {
759         u64 T0, T1, delta, avg_delta, fluct;
760
761         T0 = get_nsecs();
762         wait_for_tasks(sched);
763         T1 = get_nsecs();
764
765         delta = T1 - T0;
766         sched->sum_runtime += delta;
767         sched->nr_runs++;
768
769         avg_delta = sched->sum_runtime / sched->nr_runs;
770         if (delta < avg_delta)
771                 fluct = avg_delta - delta;
772         else
773                 fluct = delta - avg_delta;
774         sched->sum_fluct += fluct;
775         if (!sched->run_avg)
776                 sched->run_avg = delta;
777         sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
778
779         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
780
781         printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
782
783         printf("cpu: %0.2f / %0.2f",
784                 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
785
786 #if 0
787         /*
788          * rusage statistics done by the parent, these are less
789          * accurate than the sched->sum_exec_runtime based statistics:
790          */
791         printf(" [%0.2f / %0.2f]",
792                 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
793                 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
794 #endif
795
796         printf("\n");
797
798         if (sched->nr_sleep_corrections)
799                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
800         sched->nr_sleep_corrections = 0;
801 }
802
803 static void test_calibrations(struct perf_sched *sched)
804 {
805         u64 T0, T1;
806
807         T0 = get_nsecs();
808         burn_nsecs(sched, NSEC_PER_MSEC);
809         T1 = get_nsecs();
810
811         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
812
813         T0 = get_nsecs();
814         sleep_nsecs(NSEC_PER_MSEC);
815         T1 = get_nsecs();
816
817         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
818 }
819
820 static int
821 replay_wakeup_event(struct perf_sched *sched,
822                     struct evsel *evsel, struct perf_sample *sample,
823                     struct machine *machine __maybe_unused)
824 {
825         const char *comm = evsel__strval(evsel, sample, "comm");
826         const u32 pid    = evsel__intval(evsel, sample, "pid");
827         struct task_desc *waker, *wakee;
828
829         if (verbose > 0) {
830                 printf("sched_wakeup event %p\n", evsel);
831
832                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
833         }
834
835         waker = register_pid(sched, sample->tid, "<unknown>");
836         wakee = register_pid(sched, pid, comm);
837
838         add_sched_event_wakeup(sched, waker, sample->time, wakee);
839         return 0;
840 }
841
842 static int replay_switch_event(struct perf_sched *sched,
843                                struct evsel *evsel,
844                                struct perf_sample *sample,
845                                struct machine *machine __maybe_unused)
846 {
847         const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
848                    *next_comm  = evsel__strval(evsel, sample, "next_comm");
849         const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
850                   next_pid = evsel__intval(evsel, sample, "next_pid");
851         struct task_desc *prev, __maybe_unused *next;
852         u64 timestamp0, timestamp = sample->time;
853         int cpu = sample->cpu;
854         s64 delta;
855
856         if (verbose > 0)
857                 printf("sched_switch event %p\n", evsel);
858
859         if (cpu >= MAX_CPUS || cpu < 0)
860                 return 0;
861
862         timestamp0 = sched->cpu_last_switched[cpu];
863         if (timestamp0)
864                 delta = timestamp - timestamp0;
865         else
866                 delta = 0;
867
868         if (delta < 0) {
869                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
870                 return -1;
871         }
872
873         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
874                  prev_comm, prev_pid, next_comm, next_pid, delta);
875
876         prev = register_pid(sched, prev_pid, prev_comm);
877         next = register_pid(sched, next_pid, next_comm);
878
879         sched->cpu_last_switched[cpu] = timestamp;
880
881         add_sched_event_run(sched, prev, timestamp, delta);
882         add_sched_event_sleep(sched, prev, timestamp);
883
884         return 0;
885 }
886
887 static int replay_fork_event(struct perf_sched *sched,
888                              union perf_event *event,
889                              struct machine *machine)
890 {
891         struct thread *child, *parent;
892
893         child = machine__findnew_thread(machine, event->fork.pid,
894                                         event->fork.tid);
895         parent = machine__findnew_thread(machine, event->fork.ppid,
896                                          event->fork.ptid);
897
898         if (child == NULL || parent == NULL) {
899                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
900                                  child, parent);
901                 goto out_put;
902         }
903
904         if (verbose > 0) {
905                 printf("fork event\n");
906                 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
907                 printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
908         }
909
910         register_pid(sched, thread__tid(parent), thread__comm_str(parent));
911         register_pid(sched, thread__tid(child), thread__comm_str(child));
912 out_put:
913         thread__put(child);
914         thread__put(parent);
915         return 0;
916 }
917
918 struct sort_dimension {
919         const char              *name;
920         sort_fn_t               cmp;
921         struct list_head        list;
922 };
923
924 static inline void init_prio(struct thread_runtime *r)
925 {
926         r->prio = -1;
927 }
928
929 /*
930  * handle runtime stats saved per thread
931  */
932 static struct thread_runtime *thread__init_runtime(struct thread *thread)
933 {
934         struct thread_runtime *r;
935
936         r = zalloc(sizeof(struct thread_runtime));
937         if (!r)
938                 return NULL;
939
940         init_stats(&r->run_stats);
941         init_prio(r);
942         thread__set_priv(thread, r);
943
944         return r;
945 }
946
947 static struct thread_runtime *thread__get_runtime(struct thread *thread)
948 {
949         struct thread_runtime *tr;
950
951         tr = thread__priv(thread);
952         if (tr == NULL) {
953                 tr = thread__init_runtime(thread);
954                 if (tr == NULL)
955                         pr_debug("Failed to malloc memory for runtime data.\n");
956         }
957
958         return tr;
959 }
960
961 static int
962 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
963 {
964         struct sort_dimension *sort;
965         int ret = 0;
966
967         BUG_ON(list_empty(list));
968
969         list_for_each_entry(sort, list, list) {
970                 ret = sort->cmp(l, r);
971                 if (ret)
972                         return ret;
973         }
974
975         return ret;
976 }
977
978 static struct work_atoms *
979 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
980                          struct list_head *sort_list)
981 {
982         struct rb_node *node = root->rb_root.rb_node;
983         struct work_atoms key = { .thread = thread };
984
985         while (node) {
986                 struct work_atoms *atoms;
987                 int cmp;
988
989                 atoms = container_of(node, struct work_atoms, node);
990
991                 cmp = thread_lat_cmp(sort_list, &key, atoms);
992                 if (cmp > 0)
993                         node = node->rb_left;
994                 else if (cmp < 0)
995                         node = node->rb_right;
996                 else {
997                         BUG_ON(thread != atoms->thread);
998                         return atoms;
999                 }
1000         }
1001         return NULL;
1002 }
1003
1004 static void
1005 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1006                          struct list_head *sort_list)
1007 {
1008         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1009         bool leftmost = true;
1010
1011         while (*new) {
1012                 struct work_atoms *this;
1013                 int cmp;
1014
1015                 this = container_of(*new, struct work_atoms, node);
1016                 parent = *new;
1017
1018                 cmp = thread_lat_cmp(sort_list, data, this);
1019
1020                 if (cmp > 0)
1021                         new = &((*new)->rb_left);
1022                 else {
1023                         new = &((*new)->rb_right);
1024                         leftmost = false;
1025                 }
1026         }
1027
1028         rb_link_node(&data->node, parent, new);
1029         rb_insert_color_cached(&data->node, root, leftmost);
1030 }
1031
1032 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1033 {
1034         struct work_atoms *atoms = zalloc(sizeof(*atoms));
1035         if (!atoms) {
1036                 pr_err("No memory at %s\n", __func__);
1037                 return -1;
1038         }
1039
1040         atoms->thread = thread__get(thread);
1041         INIT_LIST_HEAD(&atoms->work_list);
1042         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1043         return 0;
1044 }
1045
1046 static int
1047 add_sched_out_event(struct work_atoms *atoms,
1048                     char run_state,
1049                     u64 timestamp)
1050 {
1051         struct work_atom *atom = zalloc(sizeof(*atom));
1052         if (!atom) {
1053                 pr_err("Non memory at %s", __func__);
1054                 return -1;
1055         }
1056
1057         atom->sched_out_time = timestamp;
1058
1059         if (run_state == 'R') {
1060                 atom->state = THREAD_WAIT_CPU;
1061                 atom->wake_up_time = atom->sched_out_time;
1062         }
1063
1064         list_add_tail(&atom->list, &atoms->work_list);
1065         return 0;
1066 }
1067
1068 static void
1069 add_runtime_event(struct work_atoms *atoms, u64 delta,
1070                   u64 timestamp __maybe_unused)
1071 {
1072         struct work_atom *atom;
1073
1074         BUG_ON(list_empty(&atoms->work_list));
1075
1076         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1077
1078         atom->runtime += delta;
1079         atoms->total_runtime += delta;
1080 }
1081
1082 static void
1083 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1084 {
1085         struct work_atom *atom;
1086         u64 delta;
1087
1088         if (list_empty(&atoms->work_list))
1089                 return;
1090
1091         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092
1093         if (atom->state != THREAD_WAIT_CPU)
1094                 return;
1095
1096         if (timestamp < atom->wake_up_time) {
1097                 atom->state = THREAD_IGNORE;
1098                 return;
1099         }
1100
1101         atom->state = THREAD_SCHED_IN;
1102         atom->sched_in_time = timestamp;
1103
1104         delta = atom->sched_in_time - atom->wake_up_time;
1105         atoms->total_lat += delta;
1106         if (delta > atoms->max_lat) {
1107                 atoms->max_lat = delta;
1108                 atoms->max_lat_start = atom->wake_up_time;
1109                 atoms->max_lat_end = timestamp;
1110         }
1111         atoms->nb_atoms++;
1112 }
1113
1114 static int latency_switch_event(struct perf_sched *sched,
1115                                 struct evsel *evsel,
1116                                 struct perf_sample *sample,
1117                                 struct machine *machine)
1118 {
1119         const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1120                   next_pid = evsel__intval(evsel, sample, "next_pid");
1121         const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1122         struct work_atoms *out_events, *in_events;
1123         struct thread *sched_out, *sched_in;
1124         u64 timestamp0, timestamp = sample->time;
1125         int cpu = sample->cpu, err = -1;
1126         s64 delta;
1127
1128         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1129
1130         timestamp0 = sched->cpu_last_switched[cpu];
1131         sched->cpu_last_switched[cpu] = timestamp;
1132         if (timestamp0)
1133                 delta = timestamp - timestamp0;
1134         else
1135                 delta = 0;
1136
1137         if (delta < 0) {
1138                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1139                 return -1;
1140         }
1141
1142         sched_out = machine__findnew_thread(machine, -1, prev_pid);
1143         sched_in = machine__findnew_thread(machine, -1, next_pid);
1144         if (sched_out == NULL || sched_in == NULL)
1145                 goto out_put;
1146
1147         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1148         if (!out_events) {
1149                 if (thread_atoms_insert(sched, sched_out))
1150                         goto out_put;
1151                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1152                 if (!out_events) {
1153                         pr_err("out-event: Internal tree error");
1154                         goto out_put;
1155                 }
1156         }
1157         if (add_sched_out_event(out_events, prev_state, timestamp))
1158                 return -1;
1159
1160         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1161         if (!in_events) {
1162                 if (thread_atoms_insert(sched, sched_in))
1163                         goto out_put;
1164                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1165                 if (!in_events) {
1166                         pr_err("in-event: Internal tree error");
1167                         goto out_put;
1168                 }
1169                 /*
1170                  * Take came in we have not heard about yet,
1171                  * add in an initial atom in runnable state:
1172                  */
1173                 if (add_sched_out_event(in_events, 'R', timestamp))
1174                         goto out_put;
1175         }
1176         add_sched_in_event(in_events, timestamp);
1177         err = 0;
1178 out_put:
1179         thread__put(sched_out);
1180         thread__put(sched_in);
1181         return err;
1182 }
1183
1184 static int latency_runtime_event(struct perf_sched *sched,
1185                                  struct evsel *evsel,
1186                                  struct perf_sample *sample,
1187                                  struct machine *machine)
1188 {
1189         const u32 pid      = evsel__intval(evsel, sample, "pid");
1190         const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1191         struct thread *thread = machine__findnew_thread(machine, -1, pid);
1192         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1193         u64 timestamp = sample->time;
1194         int cpu = sample->cpu, err = -1;
1195
1196         if (thread == NULL)
1197                 return -1;
1198
1199         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1200         if (!atoms) {
1201                 if (thread_atoms_insert(sched, thread))
1202                         goto out_put;
1203                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1204                 if (!atoms) {
1205                         pr_err("in-event: Internal tree error");
1206                         goto out_put;
1207                 }
1208                 if (add_sched_out_event(atoms, 'R', timestamp))
1209                         goto out_put;
1210         }
1211
1212         add_runtime_event(atoms, runtime, timestamp);
1213         err = 0;
1214 out_put:
1215         thread__put(thread);
1216         return err;
1217 }
1218
1219 static int latency_wakeup_event(struct perf_sched *sched,
1220                                 struct evsel *evsel,
1221                                 struct perf_sample *sample,
1222                                 struct machine *machine)
1223 {
1224         const u32 pid     = evsel__intval(evsel, sample, "pid");
1225         struct work_atoms *atoms;
1226         struct work_atom *atom;
1227         struct thread *wakee;
1228         u64 timestamp = sample->time;
1229         int err = -1;
1230
1231         wakee = machine__findnew_thread(machine, -1, pid);
1232         if (wakee == NULL)
1233                 return -1;
1234         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1235         if (!atoms) {
1236                 if (thread_atoms_insert(sched, wakee))
1237                         goto out_put;
1238                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1239                 if (!atoms) {
1240                         pr_err("wakeup-event: Internal tree error");
1241                         goto out_put;
1242                 }
1243                 if (add_sched_out_event(atoms, 'S', timestamp))
1244                         goto out_put;
1245         }
1246
1247         BUG_ON(list_empty(&atoms->work_list));
1248
1249         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1250
1251         /*
1252          * As we do not guarantee the wakeup event happens when
1253          * task is out of run queue, also may happen when task is
1254          * on run queue and wakeup only change ->state to TASK_RUNNING,
1255          * then we should not set the ->wake_up_time when wake up a
1256          * task which is on run queue.
1257          *
1258          * You WILL be missing events if you've recorded only
1259          * one CPU, or are only looking at only one, so don't
1260          * skip in this case.
1261          */
1262         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1263                 goto out_ok;
1264
1265         sched->nr_timestamps++;
1266         if (atom->sched_out_time > timestamp) {
1267                 sched->nr_unordered_timestamps++;
1268                 goto out_ok;
1269         }
1270
1271         atom->state = THREAD_WAIT_CPU;
1272         atom->wake_up_time = timestamp;
1273 out_ok:
1274         err = 0;
1275 out_put:
1276         thread__put(wakee);
1277         return err;
1278 }
1279
1280 static int latency_migrate_task_event(struct perf_sched *sched,
1281                                       struct evsel *evsel,
1282                                       struct perf_sample *sample,
1283                                       struct machine *machine)
1284 {
1285         const u32 pid = evsel__intval(evsel, sample, "pid");
1286         u64 timestamp = sample->time;
1287         struct work_atoms *atoms;
1288         struct work_atom *atom;
1289         struct thread *migrant;
1290         int err = -1;
1291
1292         /*
1293          * Only need to worry about migration when profiling one CPU.
1294          */
1295         if (sched->profile_cpu == -1)
1296                 return 0;
1297
1298         migrant = machine__findnew_thread(machine, -1, pid);
1299         if (migrant == NULL)
1300                 return -1;
1301         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1302         if (!atoms) {
1303                 if (thread_atoms_insert(sched, migrant))
1304                         goto out_put;
1305                 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1306                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1307                 if (!atoms) {
1308                         pr_err("migration-event: Internal tree error");
1309                         goto out_put;
1310                 }
1311                 if (add_sched_out_event(atoms, 'R', timestamp))
1312                         goto out_put;
1313         }
1314
1315         BUG_ON(list_empty(&atoms->work_list));
1316
1317         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1318         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1319
1320         sched->nr_timestamps++;
1321
1322         if (atom->sched_out_time > timestamp)
1323                 sched->nr_unordered_timestamps++;
1324         err = 0;
1325 out_put:
1326         thread__put(migrant);
1327         return err;
1328 }
1329
1330 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1331 {
1332         int i;
1333         int ret;
1334         u64 avg;
1335         char max_lat_start[32], max_lat_end[32];
1336
1337         if (!work_list->nb_atoms)
1338                 return;
1339         /*
1340          * Ignore idle threads:
1341          */
1342         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1343                 return;
1344
1345         sched->all_runtime += work_list->total_runtime;
1346         sched->all_count   += work_list->nb_atoms;
1347
1348         if (work_list->num_merged > 1) {
1349                 ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1350                              work_list->num_merged);
1351         } else {
1352                 ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1353                              thread__tid(work_list->thread));
1354         }
1355
1356         for (i = 0; i < 24 - ret; i++)
1357                 printf(" ");
1358
1359         avg = work_list->total_lat / work_list->nb_atoms;
1360         timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1361         timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1362
1363         printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1364               (double)work_list->total_runtime / NSEC_PER_MSEC,
1365                  work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1366                  (double)work_list->max_lat / NSEC_PER_MSEC,
1367                  max_lat_start, max_lat_end);
1368 }
1369
1370 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1371 {
1372         pid_t l_tid, r_tid;
1373
1374         if (RC_CHK_EQUAL(l->thread, r->thread))
1375                 return 0;
1376         l_tid = thread__tid(l->thread);
1377         r_tid = thread__tid(r->thread);
1378         if (l_tid < r_tid)
1379                 return -1;
1380         if (l_tid > r_tid)
1381                 return 1;
1382         return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1383 }
1384
1385 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1386 {
1387         u64 avgl, avgr;
1388
1389         if (!l->nb_atoms)
1390                 return -1;
1391
1392         if (!r->nb_atoms)
1393                 return 1;
1394
1395         avgl = l->total_lat / l->nb_atoms;
1396         avgr = r->total_lat / r->nb_atoms;
1397
1398         if (avgl < avgr)
1399                 return -1;
1400         if (avgl > avgr)
1401                 return 1;
1402
1403         return 0;
1404 }
1405
1406 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1407 {
1408         if (l->max_lat < r->max_lat)
1409                 return -1;
1410         if (l->max_lat > r->max_lat)
1411                 return 1;
1412
1413         return 0;
1414 }
1415
1416 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1417 {
1418         if (l->nb_atoms < r->nb_atoms)
1419                 return -1;
1420         if (l->nb_atoms > r->nb_atoms)
1421                 return 1;
1422
1423         return 0;
1424 }
1425
1426 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1427 {
1428         if (l->total_runtime < r->total_runtime)
1429                 return -1;
1430         if (l->total_runtime > r->total_runtime)
1431                 return 1;
1432
1433         return 0;
1434 }
1435
1436 static int sort_dimension__add(const char *tok, struct list_head *list)
1437 {
1438         size_t i;
1439         static struct sort_dimension avg_sort_dimension = {
1440                 .name = "avg",
1441                 .cmp  = avg_cmp,
1442         };
1443         static struct sort_dimension max_sort_dimension = {
1444                 .name = "max",
1445                 .cmp  = max_cmp,
1446         };
1447         static struct sort_dimension pid_sort_dimension = {
1448                 .name = "pid",
1449                 .cmp  = pid_cmp,
1450         };
1451         static struct sort_dimension runtime_sort_dimension = {
1452                 .name = "runtime",
1453                 .cmp  = runtime_cmp,
1454         };
1455         static struct sort_dimension switch_sort_dimension = {
1456                 .name = "switch",
1457                 .cmp  = switch_cmp,
1458         };
1459         struct sort_dimension *available_sorts[] = {
1460                 &pid_sort_dimension,
1461                 &avg_sort_dimension,
1462                 &max_sort_dimension,
1463                 &switch_sort_dimension,
1464                 &runtime_sort_dimension,
1465         };
1466
1467         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1468                 if (!strcmp(available_sorts[i]->name, tok)) {
1469                         list_add_tail(&available_sorts[i]->list, list);
1470
1471                         return 0;
1472                 }
1473         }
1474
1475         return -1;
1476 }
1477
1478 static void perf_sched__sort_lat(struct perf_sched *sched)
1479 {
1480         struct rb_node *node;
1481         struct rb_root_cached *root = &sched->atom_root;
1482 again:
1483         for (;;) {
1484                 struct work_atoms *data;
1485                 node = rb_first_cached(root);
1486                 if (!node)
1487                         break;
1488
1489                 rb_erase_cached(node, root);
1490                 data = rb_entry(node, struct work_atoms, node);
1491                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1492         }
1493         if (root == &sched->atom_root) {
1494                 root = &sched->merged_atom_root;
1495                 goto again;
1496         }
1497 }
1498
1499 static int process_sched_wakeup_event(const struct perf_tool *tool,
1500                                       struct evsel *evsel,
1501                                       struct perf_sample *sample,
1502                                       struct machine *machine)
1503 {
1504         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1505
1506         if (sched->tp_handler->wakeup_event)
1507                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1508
1509         return 0;
1510 }
1511
1512 static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1513                                       struct evsel *evsel __maybe_unused,
1514                                       struct perf_sample *sample __maybe_unused,
1515                                       struct machine *machine __maybe_unused)
1516 {
1517         return 0;
1518 }
1519
1520 union map_priv {
1521         void    *ptr;
1522         bool     color;
1523 };
1524
1525 static bool thread__has_color(struct thread *thread)
1526 {
1527         union map_priv priv = {
1528                 .ptr = thread__priv(thread),
1529         };
1530
1531         return priv.color;
1532 }
1533
1534 static struct thread*
1535 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1536 {
1537         struct thread *thread = machine__findnew_thread(machine, pid, tid);
1538         union map_priv priv = {
1539                 .color = false,
1540         };
1541
1542         if (!sched->map.color_pids || !thread || thread__priv(thread))
1543                 return thread;
1544
1545         if (thread_map__has(sched->map.color_pids, tid))
1546                 priv.color = true;
1547
1548         thread__set_priv(thread, priv.ptr);
1549         return thread;
1550 }
1551
1552 static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1553 {
1554         bool fuzzy_match = sched->map.fuzzy;
1555         struct strlist *task_names = sched->map.task_names;
1556         struct str_node *node;
1557
1558         strlist__for_each_entry(node, task_names) {
1559                 bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1560                                                         !strcmp(comm_str, node->s);
1561                 if (match_found)
1562                         return true;
1563         }
1564
1565         return false;
1566 }
1567
1568 static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1569                                                                 const char *color, bool sched_out)
1570 {
1571         for (int i = 0; i < cpus_nr; i++) {
1572                 struct perf_cpu cpu = {
1573                         .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1574                 };
1575                 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1576                 struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1577                 struct thread_runtime *curr_tr;
1578                 const char *pid_color = color;
1579                 const char *cpu_color = color;
1580                 char symbol = ' ';
1581                 struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1582
1583                 if (thread_to_check && thread__has_color(thread_to_check))
1584                         pid_color = COLOR_PIDS;
1585
1586                 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1587                         cpu_color = COLOR_CPUS;
1588
1589                 if (cpu.cpu == this_cpu.cpu)
1590                         symbol = '*';
1591
1592                 color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1593
1594                 thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1595                                                                 sched->curr_thread[cpu.cpu];
1596
1597                 if (thread_to_check) {
1598                         curr_tr = thread__get_runtime(thread_to_check);
1599                         if (curr_tr == NULL)
1600                                 return;
1601
1602                         if (sched_out) {
1603                                 if (cpu.cpu == this_cpu.cpu)
1604                                         color_fprintf(stdout, color, "-  ");
1605                                 else {
1606                                         curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1607                                         if (curr_tr != NULL)
1608                                                 color_fprintf(stdout, pid_color, "%2s ",
1609                                                                                 curr_tr->shortname);
1610                                 }
1611                         } else
1612                                 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1613                 } else
1614                         color_fprintf(stdout, color, "   ");
1615         }
1616 }
1617
1618 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1619                             struct perf_sample *sample, struct machine *machine)
1620 {
1621         const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1622         const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1623         struct thread *sched_in, *sched_out;
1624         struct thread_runtime *tr;
1625         int new_shortname;
1626         u64 timestamp0, timestamp = sample->time;
1627         s64 delta;
1628         struct perf_cpu this_cpu = {
1629                 .cpu = sample->cpu,
1630         };
1631         int cpus_nr;
1632         int proceed;
1633         bool new_cpu = false;
1634         const char *color = PERF_COLOR_NORMAL;
1635         char stimestamp[32];
1636         const char *str;
1637
1638         BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1639
1640         if (this_cpu.cpu > sched->max_cpu.cpu)
1641                 sched->max_cpu = this_cpu;
1642
1643         if (sched->map.comp) {
1644                 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1645                 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1646                         sched->map.comp_cpus[cpus_nr++] = this_cpu;
1647                         new_cpu = true;
1648                 }
1649         } else
1650                 cpus_nr = sched->max_cpu.cpu;
1651
1652         timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1653         sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1654         if (timestamp0)
1655                 delta = timestamp - timestamp0;
1656         else
1657                 delta = 0;
1658
1659         if (delta < 0) {
1660                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1661                 return -1;
1662         }
1663
1664         sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1665         sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1666         if (sched_in == NULL || sched_out == NULL)
1667                 return -1;
1668
1669         tr = thread__get_runtime(sched_in);
1670         if (tr == NULL) {
1671                 thread__put(sched_in);
1672                 return -1;
1673         }
1674
1675         sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1676         sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1677
1678         str = thread__comm_str(sched_in);
1679         new_shortname = 0;
1680         if (!tr->shortname[0]) {
1681                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1682                         /*
1683                          * Don't allocate a letter-number for swapper:0
1684                          * as a shortname. Instead, we use '.' for it.
1685                          */
1686                         tr->shortname[0] = '.';
1687                         tr->shortname[1] = ' ';
1688                 } else if (!sched->map.task_name || sched_match_task(sched, str)) {
1689                         tr->shortname[0] = sched->next_shortname1;
1690                         tr->shortname[1] = sched->next_shortname2;
1691
1692                         if (sched->next_shortname1 < 'Z') {
1693                                 sched->next_shortname1++;
1694                         } else {
1695                                 sched->next_shortname1 = 'A';
1696                                 if (sched->next_shortname2 < '9')
1697                                         sched->next_shortname2++;
1698                                 else
1699                                         sched->next_shortname2 = '0';
1700                         }
1701                 } else {
1702                         tr->shortname[0] = '-';
1703                         tr->shortname[1] = ' ';
1704                 }
1705                 new_shortname = 1;
1706         }
1707
1708         if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1709                 goto out;
1710
1711         proceed = 0;
1712         str = thread__comm_str(sched_in);
1713         /*
1714          * Check which of sched_in and sched_out matches the passed --task-name
1715          * arguments and call the corresponding print_sched_map.
1716          */
1717         if (sched->map.task_name && !sched_match_task(sched, str)) {
1718                 if (!sched_match_task(sched, thread__comm_str(sched_out)))
1719                         goto out;
1720                 else
1721                         goto sched_out;
1722
1723         } else {
1724                 str = thread__comm_str(sched_out);
1725                 if (!(sched->map.task_name && !sched_match_task(sched, str)))
1726                         proceed = 1;
1727         }
1728
1729         printf("  ");
1730
1731         print_sched_map(sched, this_cpu, cpus_nr, color, false);
1732
1733         timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1734         color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1735         if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1736                 const char *pid_color = color;
1737
1738                 if (thread__has_color(sched_in))
1739                         pid_color = COLOR_PIDS;
1740
1741                 color_fprintf(stdout, pid_color, "%s => %s:%d",
1742                         tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1743                 tr->comm_changed = false;
1744         }
1745
1746         if (sched->map.comp && new_cpu)
1747                 color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1748
1749         if (proceed != 1) {
1750                 color_fprintf(stdout, color, "\n");
1751                 goto out;
1752         }
1753
1754 sched_out:
1755         if (sched->map.task_name) {
1756                 tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1757                 if (strcmp(tr->shortname, "") == 0)
1758                         goto out;
1759
1760                 if (proceed == 1)
1761                         color_fprintf(stdout, color, "\n");
1762
1763                 printf("  ");
1764                 print_sched_map(sched, this_cpu, cpus_nr, color, true);
1765                 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1766                 color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1767         }
1768
1769         color_fprintf(stdout, color, "\n");
1770
1771 out:
1772         if (sched->map.task_name)
1773                 thread__put(sched_out);
1774
1775         thread__put(sched_in);
1776
1777         return 0;
1778 }
1779
1780 static int process_sched_switch_event(const struct perf_tool *tool,
1781                                       struct evsel *evsel,
1782                                       struct perf_sample *sample,
1783                                       struct machine *machine)
1784 {
1785         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1786         int this_cpu = sample->cpu, err = 0;
1787         u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1788             next_pid = evsel__intval(evsel, sample, "next_pid");
1789
1790         if (sched->curr_pid[this_cpu] != (u32)-1) {
1791                 /*
1792                  * Are we trying to switch away a PID that is
1793                  * not current?
1794                  */
1795                 if (sched->curr_pid[this_cpu] != prev_pid)
1796                         sched->nr_context_switch_bugs++;
1797         }
1798
1799         if (sched->tp_handler->switch_event)
1800                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1801
1802         sched->curr_pid[this_cpu] = next_pid;
1803         return err;
1804 }
1805
1806 static int process_sched_runtime_event(const struct perf_tool *tool,
1807                                        struct evsel *evsel,
1808                                        struct perf_sample *sample,
1809                                        struct machine *machine)
1810 {
1811         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1812
1813         if (sched->tp_handler->runtime_event)
1814                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1815
1816         return 0;
1817 }
1818
1819 static int perf_sched__process_fork_event(const struct perf_tool *tool,
1820                                           union perf_event *event,
1821                                           struct perf_sample *sample,
1822                                           struct machine *machine)
1823 {
1824         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1825
1826         /* run the fork event through the perf machinery */
1827         perf_event__process_fork(tool, event, sample, machine);
1828
1829         /* and then run additional processing needed for this command */
1830         if (sched->tp_handler->fork_event)
1831                 return sched->tp_handler->fork_event(sched, event, machine);
1832
1833         return 0;
1834 }
1835
1836 static int process_sched_migrate_task_event(const struct perf_tool *tool,
1837                                             struct evsel *evsel,
1838                                             struct perf_sample *sample,
1839                                             struct machine *machine)
1840 {
1841         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1842
1843         if (sched->tp_handler->migrate_task_event)
1844                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1845
1846         return 0;
1847 }
1848
1849 typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1850                                   struct evsel *evsel,
1851                                   struct perf_sample *sample,
1852                                   struct machine *machine);
1853
1854 static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1855                                                  union perf_event *event __maybe_unused,
1856                                                  struct perf_sample *sample,
1857                                                  struct evsel *evsel,
1858                                                  struct machine *machine)
1859 {
1860         int err = 0;
1861
1862         if (evsel->handler != NULL) {
1863                 tracepoint_handler f = evsel->handler;
1864                 err = f(tool, evsel, sample, machine);
1865         }
1866
1867         return err;
1868 }
1869
1870 static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1871                                     union perf_event *event,
1872                                     struct perf_sample *sample,
1873                                     struct machine *machine)
1874 {
1875         struct thread *thread;
1876         struct thread_runtime *tr;
1877         int err;
1878
1879         err = perf_event__process_comm(tool, event, sample, machine);
1880         if (err)
1881                 return err;
1882
1883         thread = machine__find_thread(machine, sample->pid, sample->tid);
1884         if (!thread) {
1885                 pr_err("Internal error: can't find thread\n");
1886                 return -1;
1887         }
1888
1889         tr = thread__get_runtime(thread);
1890         if (tr == NULL) {
1891                 thread__put(thread);
1892                 return -1;
1893         }
1894
1895         tr->comm_changed = true;
1896         thread__put(thread);
1897
1898         return 0;
1899 }
1900
1901 static int perf_sched__read_events(struct perf_sched *sched)
1902 {
1903         struct evsel_str_handler handlers[] = {
1904                 { "sched:sched_switch",       process_sched_switch_event, },
1905                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1906                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1907                 { "sched:sched_waking",       process_sched_wakeup_event, },
1908                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1909                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1910         };
1911         struct perf_session *session;
1912         struct perf_data data = {
1913                 .path  = input_name,
1914                 .mode  = PERF_DATA_MODE_READ,
1915                 .force = sched->force,
1916         };
1917         int rc = -1;
1918
1919         session = perf_session__new(&data, &sched->tool);
1920         if (IS_ERR(session)) {
1921                 pr_debug("Error creating perf session");
1922                 return PTR_ERR(session);
1923         }
1924
1925         symbol__init(&session->header.env);
1926
1927         /* prefer sched_waking if it is captured */
1928         if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1929                 handlers[2].handler = process_sched_wakeup_ignore;
1930
1931         if (perf_session__set_tracepoints_handlers(session, handlers))
1932                 goto out_delete;
1933
1934         if (perf_session__has_traces(session, "record -R")) {
1935                 int err = perf_session__process_events(session);
1936                 if (err) {
1937                         pr_err("Failed to process events, error %d", err);
1938                         goto out_delete;
1939                 }
1940
1941                 sched->nr_events      = session->evlist->stats.nr_events[0];
1942                 sched->nr_lost_events = session->evlist->stats.total_lost;
1943                 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1944         }
1945
1946         rc = 0;
1947 out_delete:
1948         perf_session__delete(session);
1949         return rc;
1950 }
1951
1952 /*
1953  * scheduling times are printed as msec.usec
1954  */
1955 static inline void print_sched_time(unsigned long long nsecs, int width)
1956 {
1957         unsigned long msecs;
1958         unsigned long usecs;
1959
1960         msecs  = nsecs / NSEC_PER_MSEC;
1961         nsecs -= msecs * NSEC_PER_MSEC;
1962         usecs  = nsecs / NSEC_PER_USEC;
1963         printf("%*lu.%03lu ", width, msecs, usecs);
1964 }
1965
1966 /*
1967  * returns runtime data for event, allocating memory for it the
1968  * first time it is used.
1969  */
1970 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1971 {
1972         struct evsel_runtime *r = evsel->priv;
1973
1974         if (r == NULL) {
1975                 r = zalloc(sizeof(struct evsel_runtime));
1976                 evsel->priv = r;
1977         }
1978
1979         return r;
1980 }
1981
1982 /*
1983  * save last time event was seen per cpu
1984  */
1985 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1986 {
1987         struct evsel_runtime *r = evsel__get_runtime(evsel);
1988
1989         if (r == NULL)
1990                 return;
1991
1992         if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1993                 int i, n = __roundup_pow_of_two(cpu+1);
1994                 void *p = r->last_time;
1995
1996                 p = realloc(r->last_time, n * sizeof(u64));
1997                 if (!p)
1998                         return;
1999
2000                 r->last_time = p;
2001                 for (i = r->ncpu; i < n; ++i)
2002                         r->last_time[i] = (u64) 0;
2003
2004                 r->ncpu = n;
2005         }
2006
2007         r->last_time[cpu] = timestamp;
2008 }
2009
2010 /* returns last time this event was seen on the given cpu */
2011 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2012 {
2013         struct evsel_runtime *r = evsel__get_runtime(evsel);
2014
2015         if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2016                 return 0;
2017
2018         return r->last_time[cpu];
2019 }
2020
2021 static int comm_width = 30;
2022
2023 static char *timehist_get_commstr(struct thread *thread)
2024 {
2025         static char str[32];
2026         const char *comm = thread__comm_str(thread);
2027         pid_t tid = thread__tid(thread);
2028         pid_t pid = thread__pid(thread);
2029         int n;
2030
2031         if (pid == 0)
2032                 n = scnprintf(str, sizeof(str), "%s", comm);
2033
2034         else if (tid != pid)
2035                 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2036
2037         else
2038                 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2039
2040         if (n > comm_width)
2041                 comm_width = n;
2042
2043         return str;
2044 }
2045
2046 /* prio field format: xxx or xxx->yyy */
2047 #define MAX_PRIO_STR_LEN 8
2048 static char *timehist_get_priostr(struct evsel *evsel,
2049                                   struct thread *thread,
2050                                   struct perf_sample *sample)
2051 {
2052         static char prio_str[16];
2053         int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2054         struct thread_runtime *tr = thread__priv(thread);
2055
2056         if (tr->prio != prev_prio && tr->prio != -1)
2057                 scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2058         else
2059                 scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2060
2061         return prio_str;
2062 }
2063
2064 static void timehist_header(struct perf_sched *sched)
2065 {
2066         u32 ncpus = sched->max_cpu.cpu + 1;
2067         u32 i, j;
2068
2069         printf("%15s %6s ", "time", "cpu");
2070
2071         if (sched->show_cpu_visual) {
2072                 printf(" ");
2073                 for (i = 0, j = 0; i < ncpus; ++i) {
2074                         printf("%x", j++);
2075                         if (j > 15)
2076                                 j = 0;
2077                 }
2078                 printf(" ");
2079         }
2080
2081         printf(" %-*s", comm_width, "task name");
2082
2083         if (sched->show_prio)
2084                 printf("  %-*s", MAX_PRIO_STR_LEN, "prio");
2085
2086         printf("  %9s  %9s  %9s", "wait time", "sch delay", "run time");
2087
2088         if (sched->pre_migrations)
2089                 printf("  %9s", "pre-mig time");
2090
2091         if (sched->show_state)
2092                 printf("  %s", "state");
2093
2094         printf("\n");
2095
2096         /*
2097          * units row
2098          */
2099         printf("%15s %-6s ", "", "");
2100
2101         if (sched->show_cpu_visual)
2102                 printf(" %*s ", ncpus, "");
2103
2104         printf(" %-*s", comm_width, "[tid/pid]");
2105
2106         if (sched->show_prio)
2107                 printf("  %-*s", MAX_PRIO_STR_LEN, "");
2108
2109         printf("  %9s  %9s  %9s", "(msec)", "(msec)", "(msec)");
2110
2111         if (sched->pre_migrations)
2112                 printf("  %9s", "(msec)");
2113
2114         printf("\n");
2115
2116         /*
2117          * separator
2118          */
2119         printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2120
2121         if (sched->show_cpu_visual)
2122                 printf(" %.*s ", ncpus, graph_dotted_line);
2123
2124         printf(" %.*s", comm_width, graph_dotted_line);
2125
2126         if (sched->show_prio)
2127                 printf("  %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2128
2129         printf("  %.9s  %.9s  %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2130
2131         if (sched->pre_migrations)
2132                 printf("  %.9s", graph_dotted_line);
2133
2134         if (sched->show_state)
2135                 printf("  %.5s", graph_dotted_line);
2136
2137         printf("\n");
2138 }
2139
2140 static void timehist_print_sample(struct perf_sched *sched,
2141                                   struct evsel *evsel,
2142                                   struct perf_sample *sample,
2143                                   struct addr_location *al,
2144                                   struct thread *thread,
2145                                   u64 t, const char state)
2146 {
2147         struct thread_runtime *tr = thread__priv(thread);
2148         const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2149         const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2150         u32 max_cpus = sched->max_cpu.cpu + 1;
2151         char tstr[64];
2152         char nstr[30];
2153         u64 wait_time;
2154
2155         if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2156                 return;
2157
2158         timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2159         printf("%15s [%04d] ", tstr, sample->cpu);
2160
2161         if (sched->show_cpu_visual) {
2162                 u32 i;
2163                 char c;
2164
2165                 printf(" ");
2166                 for (i = 0; i < max_cpus; ++i) {
2167                         /* flag idle times with 'i'; others are sched events */
2168                         if (i == sample->cpu)
2169                                 c = (thread__tid(thread) == 0) ? 'i' : 's';
2170                         else
2171                                 c = ' ';
2172                         printf("%c", c);
2173                 }
2174                 printf(" ");
2175         }
2176
2177         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2178
2179         if (sched->show_prio)
2180                 printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2181
2182         wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2183         print_sched_time(wait_time, 6);
2184
2185         print_sched_time(tr->dt_delay, 6);
2186         print_sched_time(tr->dt_run, 6);
2187         if (sched->pre_migrations)
2188                 print_sched_time(tr->dt_pre_mig, 6);
2189
2190         if (sched->show_state)
2191                 printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2192
2193         if (sched->show_next) {
2194                 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2195                 printf(" %-*s", comm_width, nstr);
2196         }
2197
2198         if (sched->show_wakeups && !sched->show_next)
2199                 printf("  %-*s", comm_width, "");
2200
2201         if (thread__tid(thread) == 0)
2202                 goto out;
2203
2204         if (sched->show_callchain)
2205                 printf("  ");
2206
2207         sample__fprintf_sym(sample, al, 0,
2208                             EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2209                             EVSEL__PRINT_CALLCHAIN_ARROW |
2210                             EVSEL__PRINT_SKIP_IGNORED,
2211                             get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2212
2213 out:
2214         printf("\n");
2215 }
2216
2217 /*
2218  * Explanation of delta-time stats:
2219  *
2220  *            t = time of current schedule out event
2221  *        tprev = time of previous sched out event
2222  *                also time of schedule-in event for current task
2223  *    last_time = time of last sched change event for current task
2224  *                (i.e, time process was last scheduled out)
2225  * ready_to_run = time of wakeup for current task
2226  *     migrated = time of task migration to another CPU
2227  *
2228  * -----|-------------|-------------|-------------|-------------|-----
2229  *    last         ready         migrated       tprev           t
2230  *    time         to run
2231  *
2232  *      |---------------- dt_wait ----------------|
2233  *                   |--------- dt_delay ---------|-- dt_run --|
2234  *                   |- dt_pre_mig -|
2235  *
2236  *     dt_run = run time of current task
2237  *    dt_wait = time between last schedule out event for task and tprev
2238  *              represents time spent off the cpu
2239  *   dt_delay = time between wakeup and schedule-in of task
2240  * dt_pre_mig = time between wakeup and migration to another CPU
2241  */
2242
2243 static void timehist_update_runtime_stats(struct thread_runtime *r,
2244                                          u64 t, u64 tprev)
2245 {
2246         r->dt_delay   = 0;
2247         r->dt_sleep   = 0;
2248         r->dt_iowait  = 0;
2249         r->dt_preempt = 0;
2250         r->dt_run     = 0;
2251         r->dt_pre_mig = 0;
2252
2253         if (tprev) {
2254                 r->dt_run = t - tprev;
2255                 if (r->ready_to_run) {
2256                         if (r->ready_to_run > tprev)
2257                                 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2258                         else
2259                                 r->dt_delay = tprev - r->ready_to_run;
2260
2261                         if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2262                                 r->dt_pre_mig = r->migrated - r->ready_to_run;
2263                 }
2264
2265                 if (r->last_time > tprev)
2266                         pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2267                 else if (r->last_time) {
2268                         u64 dt_wait = tprev - r->last_time;
2269
2270                         if (r->last_state == 'R')
2271                                 r->dt_preempt = dt_wait;
2272                         else if (r->last_state == 'D')
2273                                 r->dt_iowait = dt_wait;
2274                         else
2275                                 r->dt_sleep = dt_wait;
2276                 }
2277         }
2278
2279         update_stats(&r->run_stats, r->dt_run);
2280
2281         r->total_run_time     += r->dt_run;
2282         r->total_delay_time   += r->dt_delay;
2283         r->total_sleep_time   += r->dt_sleep;
2284         r->total_iowait_time  += r->dt_iowait;
2285         r->total_preempt_time += r->dt_preempt;
2286         r->total_pre_mig_time += r->dt_pre_mig;
2287 }
2288
2289 static bool is_idle_sample(struct perf_sample *sample,
2290                            struct evsel *evsel)
2291 {
2292         /* pid 0 == swapper == idle task */
2293         if (evsel__name_is(evsel, "sched:sched_switch"))
2294                 return evsel__intval(evsel, sample, "prev_pid") == 0;
2295
2296         return sample->pid == 0;
2297 }
2298
2299 static void save_task_callchain(struct perf_sched *sched,
2300                                 struct perf_sample *sample,
2301                                 struct evsel *evsel,
2302                                 struct machine *machine)
2303 {
2304         struct callchain_cursor *cursor;
2305         struct thread *thread;
2306
2307         /* want main thread for process - has maps */
2308         thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2309         if (thread == NULL) {
2310                 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2311                 return;
2312         }
2313
2314         if (!sched->show_callchain || sample->callchain == NULL)
2315                 return;
2316
2317         cursor = get_tls_callchain_cursor();
2318
2319         if (thread__resolve_callchain(thread, cursor, evsel, sample,
2320                                       NULL, NULL, sched->max_stack + 2) != 0) {
2321                 if (verbose > 0)
2322                         pr_err("Failed to resolve callchain. Skipping\n");
2323
2324                 return;
2325         }
2326
2327         callchain_cursor_commit(cursor);
2328
2329         while (true) {
2330                 struct callchain_cursor_node *node;
2331                 struct symbol *sym;
2332
2333                 node = callchain_cursor_current(cursor);
2334                 if (node == NULL)
2335                         break;
2336
2337                 sym = node->ms.sym;
2338                 if (sym) {
2339                         if (!strcmp(sym->name, "schedule") ||
2340                             !strcmp(sym->name, "__schedule") ||
2341                             !strcmp(sym->name, "preempt_schedule"))
2342                                 sym->ignore = 1;
2343                 }
2344
2345                 callchain_cursor_advance(cursor);
2346         }
2347 }
2348
2349 static int init_idle_thread(struct thread *thread)
2350 {
2351         struct idle_thread_runtime *itr;
2352
2353         thread__set_comm(thread, idle_comm, 0);
2354
2355         itr = zalloc(sizeof(*itr));
2356         if (itr == NULL)
2357                 return -ENOMEM;
2358
2359         init_prio(&itr->tr);
2360         init_stats(&itr->tr.run_stats);
2361         callchain_init(&itr->callchain);
2362         callchain_cursor_reset(&itr->cursor);
2363         thread__set_priv(thread, itr);
2364
2365         return 0;
2366 }
2367
2368 /*
2369  * Track idle stats per cpu by maintaining a local thread
2370  * struct for the idle task on each cpu.
2371  */
2372 static int init_idle_threads(int ncpu)
2373 {
2374         int i, ret;
2375
2376         idle_threads = zalloc(ncpu * sizeof(struct thread *));
2377         if (!idle_threads)
2378                 return -ENOMEM;
2379
2380         idle_max_cpu = ncpu;
2381
2382         /* allocate the actual thread struct if needed */
2383         for (i = 0; i < ncpu; ++i) {
2384                 idle_threads[i] = thread__new(0, 0);
2385                 if (idle_threads[i] == NULL)
2386                         return -ENOMEM;
2387
2388                 ret = init_idle_thread(idle_threads[i]);
2389                 if (ret < 0)
2390                         return ret;
2391         }
2392
2393         return 0;
2394 }
2395
2396 static void free_idle_threads(void)
2397 {
2398         int i;
2399
2400         if (idle_threads == NULL)
2401                 return;
2402
2403         for (i = 0; i < idle_max_cpu; ++i) {
2404                 if ((idle_threads[i]))
2405                         thread__delete(idle_threads[i]);
2406         }
2407
2408         free(idle_threads);
2409 }
2410
2411 static struct thread *get_idle_thread(int cpu)
2412 {
2413         /*
2414          * expand/allocate array of pointers to local thread
2415          * structs if needed
2416          */
2417         if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2418                 int i, j = __roundup_pow_of_two(cpu+1);
2419                 void *p;
2420
2421                 p = realloc(idle_threads, j * sizeof(struct thread *));
2422                 if (!p)
2423                         return NULL;
2424
2425                 idle_threads = (struct thread **) p;
2426                 for (i = idle_max_cpu; i < j; ++i)
2427                         idle_threads[i] = NULL;
2428
2429                 idle_max_cpu = j;
2430         }
2431
2432         /* allocate a new thread struct if needed */
2433         if (idle_threads[cpu] == NULL) {
2434                 idle_threads[cpu] = thread__new(0, 0);
2435
2436                 if (idle_threads[cpu]) {
2437                         if (init_idle_thread(idle_threads[cpu]) < 0)
2438                                 return NULL;
2439                 }
2440         }
2441
2442         return idle_threads[cpu];
2443 }
2444
2445 static void save_idle_callchain(struct perf_sched *sched,
2446                                 struct idle_thread_runtime *itr,
2447                                 struct perf_sample *sample)
2448 {
2449         struct callchain_cursor *cursor;
2450
2451         if (!sched->show_callchain || sample->callchain == NULL)
2452                 return;
2453
2454         cursor = get_tls_callchain_cursor();
2455         if (cursor == NULL)
2456                 return;
2457
2458         callchain_cursor__copy(&itr->cursor, cursor);
2459 }
2460
2461 static struct thread *timehist_get_thread(struct perf_sched *sched,
2462                                           struct perf_sample *sample,
2463                                           struct machine *machine,
2464                                           struct evsel *evsel)
2465 {
2466         struct thread *thread;
2467
2468         if (is_idle_sample(sample, evsel)) {
2469                 thread = get_idle_thread(sample->cpu);
2470                 if (thread == NULL)
2471                         pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2472
2473         } else {
2474                 /* there were samples with tid 0 but non-zero pid */
2475                 thread = machine__findnew_thread(machine, sample->pid,
2476                                                  sample->tid ?: sample->pid);
2477                 if (thread == NULL) {
2478                         pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2479                                  sample->tid);
2480                 }
2481
2482                 save_task_callchain(sched, sample, evsel, machine);
2483                 if (sched->idle_hist) {
2484                         struct thread *idle;
2485                         struct idle_thread_runtime *itr;
2486
2487                         idle = get_idle_thread(sample->cpu);
2488                         if (idle == NULL) {
2489                                 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2490                                 return NULL;
2491                         }
2492
2493                         itr = thread__priv(idle);
2494                         if (itr == NULL)
2495                                 return NULL;
2496
2497                         itr->last_thread = thread;
2498
2499                         /* copy task callchain when entering to idle */
2500                         if (evsel__intval(evsel, sample, "next_pid") == 0)
2501                                 save_idle_callchain(sched, itr, sample);
2502                 }
2503         }
2504
2505         return thread;
2506 }
2507
2508 static bool timehist_skip_sample(struct perf_sched *sched,
2509                                  struct thread *thread,
2510                                  struct evsel *evsel,
2511                                  struct perf_sample *sample)
2512 {
2513         bool rc = false;
2514         int prio = -1;
2515         struct thread_runtime *tr = NULL;
2516
2517         if (thread__is_filtered(thread)) {
2518                 rc = true;
2519                 sched->skipped_samples++;
2520         }
2521
2522         if (sched->prio_str) {
2523                 /*
2524                  * Because priority may be changed during task execution,
2525                  * first read priority from prev sched_in event for current task.
2526                  * If prev sched_in event is not saved, then read priority from
2527                  * current task sched_out event.
2528                  */
2529                 tr = thread__get_runtime(thread);
2530                 if (tr && tr->prio != -1)
2531                         prio = tr->prio;
2532                 else if (evsel__name_is(evsel, "sched:sched_switch"))
2533                         prio = evsel__intval(evsel, sample, "prev_prio");
2534
2535                 if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2536                         rc = true;
2537                         sched->skipped_samples++;
2538                 }
2539         }
2540
2541         if (sched->idle_hist) {
2542                 if (!evsel__name_is(evsel, "sched:sched_switch"))
2543                         rc = true;
2544                 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2545                          evsel__intval(evsel, sample, "next_pid") != 0)
2546                         rc = true;
2547         }
2548
2549         return rc;
2550 }
2551
2552 static void timehist_print_wakeup_event(struct perf_sched *sched,
2553                                         struct evsel *evsel,
2554                                         struct perf_sample *sample,
2555                                         struct machine *machine,
2556                                         struct thread *awakened)
2557 {
2558         struct thread *thread;
2559         char tstr[64];
2560
2561         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2562         if (thread == NULL)
2563                 return;
2564
2565         /* show wakeup unless both awakee and awaker are filtered */
2566         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2567             timehist_skip_sample(sched, awakened, evsel, sample)) {
2568                 return;
2569         }
2570
2571         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2572         printf("%15s [%04d] ", tstr, sample->cpu);
2573         if (sched->show_cpu_visual)
2574                 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2575
2576         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2577
2578         /* dt spacer */
2579         printf("  %9s  %9s  %9s ", "", "", "");
2580
2581         printf("awakened: %s", timehist_get_commstr(awakened));
2582
2583         printf("\n");
2584 }
2585
2586 static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2587                                         union perf_event *event __maybe_unused,
2588                                         struct evsel *evsel __maybe_unused,
2589                                         struct perf_sample *sample __maybe_unused,
2590                                         struct machine *machine __maybe_unused)
2591 {
2592         return 0;
2593 }
2594
2595 static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2596                                        union perf_event *event __maybe_unused,
2597                                        struct evsel *evsel,
2598                                        struct perf_sample *sample,
2599                                        struct machine *machine)
2600 {
2601         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2602         struct thread *thread;
2603         struct thread_runtime *tr = NULL;
2604         /* want pid of awakened task not pid in sample */
2605         const u32 pid = evsel__intval(evsel, sample, "pid");
2606
2607         thread = machine__findnew_thread(machine, 0, pid);
2608         if (thread == NULL)
2609                 return -1;
2610
2611         tr = thread__get_runtime(thread);
2612         if (tr == NULL)
2613                 return -1;
2614
2615         if (tr->ready_to_run == 0)
2616                 tr->ready_to_run = sample->time;
2617
2618         /* show wakeups if requested */
2619         if (sched->show_wakeups &&
2620             !perf_time__skip_sample(&sched->ptime, sample->time))
2621                 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2622
2623         return 0;
2624 }
2625
2626 static void timehist_print_migration_event(struct perf_sched *sched,
2627                                         struct evsel *evsel,
2628                                         struct perf_sample *sample,
2629                                         struct machine *machine,
2630                                         struct thread *migrated)
2631 {
2632         struct thread *thread;
2633         char tstr[64];
2634         u32 max_cpus;
2635         u32 ocpu, dcpu;
2636
2637         if (sched->summary_only)
2638                 return;
2639
2640         max_cpus = sched->max_cpu.cpu + 1;
2641         ocpu = evsel__intval(evsel, sample, "orig_cpu");
2642         dcpu = evsel__intval(evsel, sample, "dest_cpu");
2643
2644         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2645         if (thread == NULL)
2646                 return;
2647
2648         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2649             timehist_skip_sample(sched, migrated, evsel, sample)) {
2650                 return;
2651         }
2652
2653         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2654         printf("%15s [%04d] ", tstr, sample->cpu);
2655
2656         if (sched->show_cpu_visual) {
2657                 u32 i;
2658                 char c;
2659
2660                 printf("  ");
2661                 for (i = 0; i < max_cpus; ++i) {
2662                         c = (i == sample->cpu) ? 'm' : ' ';
2663                         printf("%c", c);
2664                 }
2665                 printf("  ");
2666         }
2667
2668         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2669
2670         /* dt spacer */
2671         printf("  %9s  %9s  %9s ", "", "", "");
2672
2673         printf("migrated: %s", timehist_get_commstr(migrated));
2674         printf(" cpu %d => %d", ocpu, dcpu);
2675
2676         printf("\n");
2677 }
2678
2679 static int timehist_migrate_task_event(const struct perf_tool *tool,
2680                                        union perf_event *event __maybe_unused,
2681                                        struct evsel *evsel,
2682                                        struct perf_sample *sample,
2683                                        struct machine *machine)
2684 {
2685         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2686         struct thread *thread;
2687         struct thread_runtime *tr = NULL;
2688         /* want pid of migrated task not pid in sample */
2689         const u32 pid = evsel__intval(evsel, sample, "pid");
2690
2691         thread = machine__findnew_thread(machine, 0, pid);
2692         if (thread == NULL)
2693                 return -1;
2694
2695         tr = thread__get_runtime(thread);
2696         if (tr == NULL)
2697                 return -1;
2698
2699         tr->migrations++;
2700         tr->migrated = sample->time;
2701
2702         /* show migrations if requested */
2703         if (sched->show_migrations) {
2704                 timehist_print_migration_event(sched, evsel, sample,
2705                                                         machine, thread);
2706         }
2707
2708         return 0;
2709 }
2710
2711 static void timehist_update_task_prio(struct evsel *evsel,
2712                                       struct perf_sample *sample,
2713                                       struct machine *machine)
2714 {
2715         struct thread *thread;
2716         struct thread_runtime *tr = NULL;
2717         const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2718         const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2719
2720         if (next_pid == 0)
2721                 thread = get_idle_thread(sample->cpu);
2722         else
2723                 thread = machine__findnew_thread(machine, -1, next_pid);
2724
2725         if (thread == NULL)
2726                 return;
2727
2728         tr = thread__get_runtime(thread);
2729         if (tr == NULL)
2730                 return;
2731
2732         tr->prio = next_prio;
2733 }
2734
2735 static int timehist_sched_change_event(const struct perf_tool *tool,
2736                                        union perf_event *event,
2737                                        struct evsel *evsel,
2738                                        struct perf_sample *sample,
2739                                        struct machine *machine)
2740 {
2741         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2742         struct perf_time_interval *ptime = &sched->ptime;
2743         struct addr_location al;
2744         struct thread *thread;
2745         struct thread_runtime *tr = NULL;
2746         u64 tprev, t = sample->time;
2747         int rc = 0;
2748         const char state = evsel__taskstate(evsel, sample, "prev_state");
2749
2750         addr_location__init(&al);
2751         if (machine__resolve(machine, &al, sample) < 0) {
2752                 pr_err("problem processing %d event. skipping it\n",
2753                        event->header.type);
2754                 rc = -1;
2755                 goto out;
2756         }
2757
2758         if (sched->show_prio || sched->prio_str)
2759                 timehist_update_task_prio(evsel, sample, machine);
2760
2761         thread = timehist_get_thread(sched, sample, machine, evsel);
2762         if (thread == NULL) {
2763                 rc = -1;
2764                 goto out;
2765         }
2766
2767         if (timehist_skip_sample(sched, thread, evsel, sample))
2768                 goto out;
2769
2770         tr = thread__get_runtime(thread);
2771         if (tr == NULL) {
2772                 rc = -1;
2773                 goto out;
2774         }
2775
2776         tprev = evsel__get_time(evsel, sample->cpu);
2777
2778         /*
2779          * If start time given:
2780          * - sample time is under window user cares about - skip sample
2781          * - tprev is under window user cares about  - reset to start of window
2782          */
2783         if (ptime->start && ptime->start > t)
2784                 goto out;
2785
2786         if (tprev && ptime->start > tprev)
2787                 tprev = ptime->start;
2788
2789         /*
2790          * If end time given:
2791          * - previous sched event is out of window - we are done
2792          * - sample time is beyond window user cares about - reset it
2793          *   to close out stats for time window interest
2794          * - If tprev is 0, that is, sched_in event for current task is
2795          *   not recorded, cannot determine whether sched_in event is
2796          *   within time window interest - ignore it
2797          */
2798         if (ptime->end) {
2799                 if (!tprev || tprev > ptime->end)
2800                         goto out;
2801
2802                 if (t > ptime->end)
2803                         t = ptime->end;
2804         }
2805
2806         if (!sched->idle_hist || thread__tid(thread) == 0) {
2807                 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2808                         timehist_update_runtime_stats(tr, t, tprev);
2809
2810                 if (sched->idle_hist) {
2811                         struct idle_thread_runtime *itr = (void *)tr;
2812                         struct thread_runtime *last_tr;
2813
2814                         if (itr->last_thread == NULL)
2815                                 goto out;
2816
2817                         /* add current idle time as last thread's runtime */
2818                         last_tr = thread__get_runtime(itr->last_thread);
2819                         if (last_tr == NULL)
2820                                 goto out;
2821
2822                         timehist_update_runtime_stats(last_tr, t, tprev);
2823                         /*
2824                          * remove delta time of last thread as it's not updated
2825                          * and otherwise it will show an invalid value next
2826                          * time.  we only care total run time and run stat.
2827                          */
2828                         last_tr->dt_run = 0;
2829                         last_tr->dt_delay = 0;
2830                         last_tr->dt_sleep = 0;
2831                         last_tr->dt_iowait = 0;
2832                         last_tr->dt_preempt = 0;
2833
2834                         if (itr->cursor.nr)
2835                                 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2836
2837                         itr->last_thread = NULL;
2838                 }
2839
2840                 if (!sched->summary_only)
2841                         timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2842         }
2843
2844 out:
2845         if (sched->hist_time.start == 0 && t >= ptime->start)
2846                 sched->hist_time.start = t;
2847         if (ptime->end == 0 || t <= ptime->end)
2848                 sched->hist_time.end = t;
2849
2850         if (tr) {
2851                 /* time of this sched_switch event becomes last time task seen */
2852                 tr->last_time = sample->time;
2853
2854                 /* last state is used to determine where to account wait time */
2855                 tr->last_state = state;
2856
2857                 /* sched out event for task so reset ready to run time and migrated time */
2858                 if (state == 'R')
2859                         tr->ready_to_run = t;
2860                 else
2861                         tr->ready_to_run = 0;
2862
2863                 tr->migrated = 0;
2864         }
2865
2866         evsel__save_time(evsel, sample->time, sample->cpu);
2867
2868         addr_location__exit(&al);
2869         return rc;
2870 }
2871
2872 static int timehist_sched_switch_event(const struct perf_tool *tool,
2873                              union perf_event *event,
2874                              struct evsel *evsel,
2875                              struct perf_sample *sample,
2876                              struct machine *machine __maybe_unused)
2877 {
2878         return timehist_sched_change_event(tool, event, evsel, sample, machine);
2879 }
2880
2881 static int process_lost(const struct perf_tool *tool __maybe_unused,
2882                         union perf_event *event,
2883                         struct perf_sample *sample,
2884                         struct machine *machine __maybe_unused)
2885 {
2886         char tstr[64];
2887
2888         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2889         printf("%15s ", tstr);
2890         printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2891
2892         return 0;
2893 }
2894
2895
2896 static void print_thread_runtime(struct thread *t,
2897                                  struct thread_runtime *r)
2898 {
2899         double mean = avg_stats(&r->run_stats);
2900         float stddev;
2901
2902         printf("%*s   %5d  %9" PRIu64 " ",
2903                comm_width, timehist_get_commstr(t), thread__ppid(t),
2904                (u64) r->run_stats.n);
2905
2906         print_sched_time(r->total_run_time, 8);
2907         stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2908         print_sched_time(r->run_stats.min, 6);
2909         printf(" ");
2910         print_sched_time((u64) mean, 6);
2911         printf(" ");
2912         print_sched_time(r->run_stats.max, 6);
2913         printf("  ");
2914         printf("%5.2f", stddev);
2915         printf("   %5" PRIu64, r->migrations);
2916         printf("\n");
2917 }
2918
2919 static void print_thread_waittime(struct thread *t,
2920                                   struct thread_runtime *r)
2921 {
2922         printf("%*s   %5d  %9" PRIu64 " ",
2923                comm_width, timehist_get_commstr(t), thread__ppid(t),
2924                (u64) r->run_stats.n);
2925
2926         print_sched_time(r->total_run_time, 8);
2927         print_sched_time(r->total_sleep_time, 6);
2928         printf(" ");
2929         print_sched_time(r->total_iowait_time, 6);
2930         printf(" ");
2931         print_sched_time(r->total_preempt_time, 6);
2932         printf(" ");
2933         print_sched_time(r->total_delay_time, 6);
2934         printf("\n");
2935 }
2936
2937 struct total_run_stats {
2938         struct perf_sched *sched;
2939         u64  sched_count;
2940         u64  task_count;
2941         u64  total_run_time;
2942 };
2943
2944 static int show_thread_runtime(struct thread *t, void *priv)
2945 {
2946         struct total_run_stats *stats = priv;
2947         struct thread_runtime *r;
2948
2949         if (thread__is_filtered(t))
2950                 return 0;
2951
2952         r = thread__priv(t);
2953         if (r && r->run_stats.n) {
2954                 stats->task_count++;
2955                 stats->sched_count += r->run_stats.n;
2956                 stats->total_run_time += r->total_run_time;
2957
2958                 if (stats->sched->show_state)
2959                         print_thread_waittime(t, r);
2960                 else
2961                         print_thread_runtime(t, r);
2962         }
2963
2964         return 0;
2965 }
2966
2967 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2968 {
2969         const char *sep = " <- ";
2970         struct callchain_list *chain;
2971         size_t ret = 0;
2972         char bf[1024];
2973         bool first;
2974
2975         if (node == NULL)
2976                 return 0;
2977
2978         ret = callchain__fprintf_folded(fp, node->parent);
2979         first = (ret == 0);
2980
2981         list_for_each_entry(chain, &node->val, list) {
2982                 if (chain->ip >= PERF_CONTEXT_MAX)
2983                         continue;
2984                 if (chain->ms.sym && chain->ms.sym->ignore)
2985                         continue;
2986                 ret += fprintf(fp, "%s%s", first ? "" : sep,
2987                                callchain_list__sym_name(chain, bf, sizeof(bf),
2988                                                         false));
2989                 first = false;
2990         }
2991
2992         return ret;
2993 }
2994
2995 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2996 {
2997         size_t ret = 0;
2998         FILE *fp = stdout;
2999         struct callchain_node *chain;
3000         struct rb_node *rb_node = rb_first_cached(root);
3001
3002         printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
3003         printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
3004                graph_dotted_line);
3005
3006         while (rb_node) {
3007                 chain = rb_entry(rb_node, struct callchain_node, rb_node);
3008                 rb_node = rb_next(rb_node);
3009
3010                 ret += fprintf(fp, "  ");
3011                 print_sched_time(chain->hit, 12);
3012                 ret += 16;  /* print_sched_time returns 2nd arg + 4 */
3013                 ret += fprintf(fp, " %8d  ", chain->count);
3014                 ret += callchain__fprintf_folded(fp, chain);
3015                 ret += fprintf(fp, "\n");
3016         }
3017
3018         return ret;
3019 }
3020
3021 static void timehist_print_summary(struct perf_sched *sched,
3022                                    struct perf_session *session)
3023 {
3024         struct machine *m = &session->machines.host;
3025         struct total_run_stats totals;
3026         u64 task_count;
3027         struct thread *t;
3028         struct thread_runtime *r;
3029         int i;
3030         u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3031
3032         memset(&totals, 0, sizeof(totals));
3033         totals.sched = sched;
3034
3035         if (sched->idle_hist) {
3036                 printf("\nIdle-time summary\n");
3037                 printf("%*s  parent  sched-out  ", comm_width, "comm");
3038                 printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
3039         } else if (sched->show_state) {
3040                 printf("\nWait-time summary\n");
3041                 printf("%*s  parent   sched-in  ", comm_width, "comm");
3042                 printf("   run-time      sleep      iowait     preempt       delay\n");
3043         } else {
3044                 printf("\nRuntime summary\n");
3045                 printf("%*s  parent   sched-in  ", comm_width, "comm");
3046                 printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
3047         }
3048         printf("%*s            (count)  ", comm_width, "");
3049         printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
3050                sched->show_state ? "(msec)" : "%");
3051         printf("%.117s\n", graph_dotted_line);
3052
3053         machine__for_each_thread(m, show_thread_runtime, &totals);
3054         task_count = totals.task_count;
3055         if (!task_count)
3056                 printf("<no still running tasks>\n");
3057
3058         /* CPU idle stats not tracked when samples were skipped */
3059         if (sched->skipped_samples && !sched->idle_hist)
3060                 return;
3061
3062         printf("\nIdle stats:\n");
3063         for (i = 0; i < idle_max_cpu; ++i) {
3064                 if (cpu_list && !test_bit(i, cpu_bitmap))
3065                         continue;
3066
3067                 t = idle_threads[i];
3068                 if (!t)
3069                         continue;
3070
3071                 r = thread__priv(t);
3072                 if (r && r->run_stats.n) {
3073                         totals.sched_count += r->run_stats.n;
3074                         printf("    CPU %2d idle for ", i);
3075                         print_sched_time(r->total_run_time, 6);
3076                         printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3077                 } else
3078                         printf("    CPU %2d idle entire time window\n", i);
3079         }
3080
3081         if (sched->idle_hist && sched->show_callchain) {
3082                 callchain_param.mode  = CHAIN_FOLDED;
3083                 callchain_param.value = CCVAL_PERIOD;
3084
3085                 callchain_register_param(&callchain_param);
3086
3087                 printf("\nIdle stats by callchain:\n");
3088                 for (i = 0; i < idle_max_cpu; ++i) {
3089                         struct idle_thread_runtime *itr;
3090
3091                         t = idle_threads[i];
3092                         if (!t)
3093                                 continue;
3094
3095                         itr = thread__priv(t);
3096                         if (itr == NULL)
3097                                 continue;
3098
3099                         callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3100                                              0, &callchain_param);
3101
3102                         printf("  CPU %2d:", i);
3103                         print_sched_time(itr->tr.total_run_time, 6);
3104                         printf(" msec\n");
3105                         timehist_print_idlehist_callchain(&itr->sorted_root);
3106                         printf("\n");
3107                 }
3108         }
3109
3110         printf("\n"
3111                "    Total number of unique tasks: %" PRIu64 "\n"
3112                "Total number of context switches: %" PRIu64 "\n",
3113                totals.task_count, totals.sched_count);
3114
3115         printf("           Total run time (msec): ");
3116         print_sched_time(totals.total_run_time, 2);
3117         printf("\n");
3118
3119         printf("    Total scheduling time (msec): ");
3120         print_sched_time(hist_time, 2);
3121         printf(" (x %d)\n", sched->max_cpu.cpu);
3122 }
3123
3124 typedef int (*sched_handler)(const struct perf_tool *tool,
3125                           union perf_event *event,
3126                           struct evsel *evsel,
3127                           struct perf_sample *sample,
3128                           struct machine *machine);
3129
3130 static int perf_timehist__process_sample(const struct perf_tool *tool,
3131                                          union perf_event *event,
3132                                          struct perf_sample *sample,
3133                                          struct evsel *evsel,
3134                                          struct machine *machine)
3135 {
3136         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3137         int err = 0;
3138         struct perf_cpu this_cpu = {
3139                 .cpu = sample->cpu,
3140         };
3141
3142         if (this_cpu.cpu > sched->max_cpu.cpu)
3143                 sched->max_cpu = this_cpu;
3144
3145         if (evsel->handler != NULL) {
3146                 sched_handler f = evsel->handler;
3147
3148                 err = f(tool, event, evsel, sample, machine);
3149         }
3150
3151         return err;
3152 }
3153
3154 static int timehist_check_attr(struct perf_sched *sched,
3155                                struct evlist *evlist)
3156 {
3157         struct evsel *evsel;
3158         struct evsel_runtime *er;
3159
3160         list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3161                 er = evsel__get_runtime(evsel);
3162                 if (er == NULL) {
3163                         pr_err("Failed to allocate memory for evsel runtime data\n");
3164                         return -1;
3165                 }
3166
3167                 /* only need to save callchain related to sched_switch event */
3168                 if (sched->show_callchain &&
3169                     evsel__name_is(evsel, "sched:sched_switch") &&
3170                     !evsel__has_callchain(evsel)) {
3171                         pr_info("Samples of sched_switch event do not have callchains.\n");
3172                         sched->show_callchain = 0;
3173                         symbol_conf.use_callchain = 0;
3174                 }
3175         }
3176
3177         return 0;
3178 }
3179
3180 static int timehist_parse_prio_str(struct perf_sched *sched)
3181 {
3182         char *p;
3183         unsigned long start_prio, end_prio;
3184         const char *str = sched->prio_str;
3185
3186         if (!str)
3187                 return 0;
3188
3189         while (isdigit(*str)) {
3190                 p = NULL;
3191                 start_prio = strtoul(str, &p, 0);
3192                 if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3193                         return -1;
3194
3195                 if (*p == '-') {
3196                         str = ++p;
3197                         p = NULL;
3198                         end_prio = strtoul(str, &p, 0);
3199
3200                         if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3201                                 return -1;
3202
3203                         if (end_prio < start_prio)
3204                                 return -1;
3205                 } else {
3206                         end_prio = start_prio;
3207                 }
3208
3209                 for (; start_prio <= end_prio; start_prio++)
3210                         __set_bit(start_prio, sched->prio_bitmap);
3211
3212                 if (*p)
3213                         ++p;
3214
3215                 str = p;
3216         }
3217
3218         return 0;
3219 }
3220
3221 static int perf_sched__timehist(struct perf_sched *sched)
3222 {
3223         struct evsel_str_handler handlers[] = {
3224                 { "sched:sched_switch",       timehist_sched_switch_event, },
3225                 { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
3226                 { "sched:sched_waking",       timehist_sched_wakeup_event, },
3227                 { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3228         };
3229         const struct evsel_str_handler migrate_handlers[] = {
3230                 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3231         };
3232         struct perf_data data = {
3233                 .path  = input_name,
3234                 .mode  = PERF_DATA_MODE_READ,
3235                 .force = sched->force,
3236         };
3237
3238         struct perf_session *session;
3239         struct evlist *evlist;
3240         int err = -1;
3241
3242         /*
3243          * event handlers for timehist option
3244          */
3245         sched->tool.sample       = perf_timehist__process_sample;
3246         sched->tool.mmap         = perf_event__process_mmap;
3247         sched->tool.comm         = perf_event__process_comm;
3248         sched->tool.exit         = perf_event__process_exit;
3249         sched->tool.fork         = perf_event__process_fork;
3250         sched->tool.lost         = process_lost;
3251         sched->tool.attr         = perf_event__process_attr;
3252         sched->tool.tracing_data = perf_event__process_tracing_data;
3253         sched->tool.build_id     = perf_event__process_build_id;
3254
3255         sched->tool.ordering_requires_timestamps = true;
3256
3257         symbol_conf.use_callchain = sched->show_callchain;
3258
3259         session = perf_session__new(&data, &sched->tool);
3260         if (IS_ERR(session))
3261                 return PTR_ERR(session);
3262
3263         if (cpu_list) {
3264                 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3265                 if (err < 0)
3266                         goto out;
3267         }
3268
3269         evlist = session->evlist;
3270
3271         symbol__init(&session->header.env);
3272
3273         if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3274                 pr_err("Invalid time string\n");
3275                 err = -EINVAL;
3276                 goto out;
3277         }
3278
3279         if (timehist_check_attr(sched, evlist) != 0)
3280                 goto out;
3281
3282         if (timehist_parse_prio_str(sched) != 0) {
3283                 pr_err("Invalid prio string\n");
3284                 goto out;
3285         }
3286
3287         setup_pager();
3288
3289         /* prefer sched_waking if it is captured */
3290         if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3291                 handlers[1].handler = timehist_sched_wakeup_ignore;
3292
3293         /* setup per-evsel handlers */
3294         if (perf_session__set_tracepoints_handlers(session, handlers))
3295                 goto out;
3296
3297         /* sched_switch event at a minimum needs to exist */
3298         if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3299                 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3300                 goto out;
3301         }
3302
3303         if ((sched->show_migrations || sched->pre_migrations) &&
3304                 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3305                 goto out;
3306
3307         /* pre-allocate struct for per-CPU idle stats */
3308         sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3309         if (sched->max_cpu.cpu == 0)
3310                 sched->max_cpu.cpu = 4;
3311         if (init_idle_threads(sched->max_cpu.cpu))
3312                 goto out;
3313
3314         /* summary_only implies summary option, but don't overwrite summary if set */
3315         if (sched->summary_only)
3316                 sched->summary = sched->summary_only;
3317
3318         if (!sched->summary_only)
3319                 timehist_header(sched);
3320
3321         err = perf_session__process_events(session);
3322         if (err) {
3323                 pr_err("Failed to process events, error %d", err);
3324                 goto out;
3325         }
3326
3327         sched->nr_events      = evlist->stats.nr_events[0];
3328         sched->nr_lost_events = evlist->stats.total_lost;
3329         sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3330
3331         if (sched->summary)
3332                 timehist_print_summary(sched, session);
3333
3334 out:
3335         free_idle_threads();
3336         perf_session__delete(session);
3337
3338         return err;
3339 }
3340
3341
3342 static void print_bad_events(struct perf_sched *sched)
3343 {
3344         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3345                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3346                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3347                         sched->nr_unordered_timestamps, sched->nr_timestamps);
3348         }
3349         if (sched->nr_lost_events && sched->nr_events) {
3350                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3351                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3352                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3353         }
3354         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3355                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3356                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3357                         sched->nr_context_switch_bugs, sched->nr_timestamps);
3358                 if (sched->nr_lost_events)
3359                         printf(" (due to lost events?)");
3360                 printf("\n");
3361         }
3362 }
3363
3364 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3365 {
3366         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3367         struct work_atoms *this;
3368         const char *comm = thread__comm_str(data->thread), *this_comm;
3369         bool leftmost = true;
3370
3371         while (*new) {
3372                 int cmp;
3373
3374                 this = container_of(*new, struct work_atoms, node);
3375                 parent = *new;
3376
3377                 this_comm = thread__comm_str(this->thread);
3378                 cmp = strcmp(comm, this_comm);
3379                 if (cmp > 0) {
3380                         new = &((*new)->rb_left);
3381                 } else if (cmp < 0) {
3382                         new = &((*new)->rb_right);
3383                         leftmost = false;
3384                 } else {
3385                         this->num_merged++;
3386                         this->total_runtime += data->total_runtime;
3387                         this->nb_atoms += data->nb_atoms;
3388                         this->total_lat += data->total_lat;
3389                         list_splice(&data->work_list, &this->work_list);
3390                         if (this->max_lat < data->max_lat) {
3391                                 this->max_lat = data->max_lat;
3392                                 this->max_lat_start = data->max_lat_start;
3393                                 this->max_lat_end = data->max_lat_end;
3394                         }
3395                         zfree(&data);
3396                         return;
3397                 }
3398         }
3399
3400         data->num_merged++;
3401         rb_link_node(&data->node, parent, new);
3402         rb_insert_color_cached(&data->node, root, leftmost);
3403 }
3404
3405 static void perf_sched__merge_lat(struct perf_sched *sched)
3406 {
3407         struct work_atoms *data;
3408         struct rb_node *node;
3409
3410         if (sched->skip_merge)
3411                 return;
3412
3413         while ((node = rb_first_cached(&sched->atom_root))) {
3414                 rb_erase_cached(node, &sched->atom_root);
3415                 data = rb_entry(node, struct work_atoms, node);
3416                 __merge_work_atoms(&sched->merged_atom_root, data);
3417         }
3418 }
3419
3420 static int setup_cpus_switch_event(struct perf_sched *sched)
3421 {
3422         unsigned int i;
3423
3424         sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3425         if (!sched->cpu_last_switched)
3426                 return -1;
3427
3428         sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3429         if (!sched->curr_pid) {
3430                 zfree(&sched->cpu_last_switched);
3431                 return -1;
3432         }
3433
3434         for (i = 0; i < MAX_CPUS; i++)
3435                 sched->curr_pid[i] = -1;
3436
3437         return 0;
3438 }
3439
3440 static void free_cpus_switch_event(struct perf_sched *sched)
3441 {
3442         zfree(&sched->curr_pid);
3443         zfree(&sched->cpu_last_switched);
3444 }
3445
3446 static int perf_sched__lat(struct perf_sched *sched)
3447 {
3448         int rc = -1;
3449         struct rb_node *next;
3450
3451         setup_pager();
3452
3453         if (setup_cpus_switch_event(sched))
3454                 return rc;
3455
3456         if (perf_sched__read_events(sched))
3457                 goto out_free_cpus_switch_event;
3458
3459         perf_sched__merge_lat(sched);
3460         perf_sched__sort_lat(sched);
3461
3462         printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3463         printf("  Task                  |   Runtime ms  |  Count   | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3464         printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3465
3466         next = rb_first_cached(&sched->sorted_atom_root);
3467
3468         while (next) {
3469                 struct work_atoms *work_list;
3470
3471                 work_list = rb_entry(next, struct work_atoms, node);
3472                 output_lat_thread(sched, work_list);
3473                 next = rb_next(next);
3474                 thread__zput(work_list->thread);
3475         }
3476
3477         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3478         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3479                 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3480
3481         printf(" ---------------------------------------------------\n");
3482
3483         print_bad_events(sched);
3484         printf("\n");
3485
3486         rc = 0;
3487
3488 out_free_cpus_switch_event:
3489         free_cpus_switch_event(sched);
3490         return rc;
3491 }
3492
3493 static int setup_map_cpus(struct perf_sched *sched)
3494 {
3495         sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3496
3497         if (sched->map.comp) {
3498                 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3499                 if (!sched->map.comp_cpus)
3500                         return -1;
3501         }
3502
3503         if (sched->map.cpus_str) {
3504                 sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3505                 if (!sched->map.cpus) {
3506                         pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3507                         zfree(&sched->map.comp_cpus);
3508                         return -1;
3509                 }
3510         }
3511
3512         return 0;
3513 }
3514
3515 static int setup_color_pids(struct perf_sched *sched)
3516 {
3517         struct perf_thread_map *map;
3518
3519         if (!sched->map.color_pids_str)
3520                 return 0;
3521
3522         map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3523         if (!map) {
3524                 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3525                 return -1;
3526         }
3527
3528         sched->map.color_pids = map;
3529         return 0;
3530 }
3531
3532 static int setup_color_cpus(struct perf_sched *sched)
3533 {
3534         struct perf_cpu_map *map;
3535
3536         if (!sched->map.color_cpus_str)
3537                 return 0;
3538
3539         map = perf_cpu_map__new(sched->map.color_cpus_str);
3540         if (!map) {
3541                 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3542                 return -1;
3543         }
3544
3545         sched->map.color_cpus = map;
3546         return 0;
3547 }
3548
3549 static int perf_sched__map(struct perf_sched *sched)
3550 {
3551         int rc = -1;
3552
3553         sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3554         if (!sched->curr_thread)
3555                 return rc;
3556
3557         sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3558         if (!sched->curr_out_thread)
3559                 return rc;
3560
3561         if (setup_cpus_switch_event(sched))
3562                 goto out_free_curr_thread;
3563
3564         if (setup_map_cpus(sched))
3565                 goto out_free_cpus_switch_event;
3566
3567         if (setup_color_pids(sched))
3568                 goto out_put_map_cpus;
3569
3570         if (setup_color_cpus(sched))
3571                 goto out_put_color_pids;
3572
3573         setup_pager();
3574         if (perf_sched__read_events(sched))
3575                 goto out_put_color_cpus;
3576
3577         rc = 0;
3578         print_bad_events(sched);
3579
3580 out_put_color_cpus:
3581         perf_cpu_map__put(sched->map.color_cpus);
3582
3583 out_put_color_pids:
3584         perf_thread_map__put(sched->map.color_pids);
3585
3586 out_put_map_cpus:
3587         zfree(&sched->map.comp_cpus);
3588         perf_cpu_map__put(sched->map.cpus);
3589
3590 out_free_cpus_switch_event:
3591         free_cpus_switch_event(sched);
3592
3593 out_free_curr_thread:
3594         zfree(&sched->curr_thread);
3595         return rc;
3596 }
3597
3598 static int perf_sched__replay(struct perf_sched *sched)
3599 {
3600         int ret;
3601         unsigned long i;
3602
3603         mutex_init(&sched->start_work_mutex);
3604         mutex_init(&sched->work_done_wait_mutex);
3605
3606         ret = setup_cpus_switch_event(sched);
3607         if (ret)
3608                 goto out_mutex_destroy;
3609
3610         calibrate_run_measurement_overhead(sched);
3611         calibrate_sleep_measurement_overhead(sched);
3612
3613         test_calibrations(sched);
3614
3615         ret = perf_sched__read_events(sched);
3616         if (ret)
3617                 goto out_free_cpus_switch_event;
3618
3619         printf("nr_run_events:        %ld\n", sched->nr_run_events);
3620         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3621         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3622
3623         if (sched->targetless_wakeups)
3624                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3625         if (sched->multitarget_wakeups)
3626                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3627         if (sched->nr_run_events_optimized)
3628                 printf("run atoms optimized: %ld\n",
3629                         sched->nr_run_events_optimized);
3630
3631         print_task_traces(sched);
3632         add_cross_task_wakeups(sched);
3633
3634         sched->thread_funcs_exit = false;
3635         create_tasks(sched);
3636         printf("------------------------------------------------------------\n");
3637         if (sched->replay_repeat == 0)
3638                 sched->replay_repeat = UINT_MAX;
3639
3640         for (i = 0; i < sched->replay_repeat; i++)
3641                 run_one_test(sched);
3642
3643         sched->thread_funcs_exit = true;
3644         destroy_tasks(sched);
3645
3646 out_free_cpus_switch_event:
3647         free_cpus_switch_event(sched);
3648
3649 out_mutex_destroy:
3650         mutex_destroy(&sched->start_work_mutex);
3651         mutex_destroy(&sched->work_done_wait_mutex);
3652         return ret;
3653 }
3654
3655 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3656                           const char * const usage_msg[])
3657 {
3658         char *tmp, *tok, *str = strdup(sched->sort_order);
3659
3660         for (tok = strtok_r(str, ", ", &tmp);
3661                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
3662                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3663                         usage_with_options_msg(usage_msg, options,
3664                                         "Unknown --sort key: `%s'", tok);
3665                 }
3666         }
3667
3668         free(str);
3669
3670         sort_dimension__add("pid", &sched->cmp_pid);
3671 }
3672
3673 static bool schedstat_events_exposed(void)
3674 {
3675         /*
3676          * Select "sched:sched_stat_wait" event to check
3677          * whether schedstat tracepoints are exposed.
3678          */
3679         return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3680                 false : true;
3681 }
3682
3683 static int __cmd_record(int argc, const char **argv)
3684 {
3685         unsigned int rec_argc, i, j;
3686         char **rec_argv;
3687         const char **rec_argv_copy;
3688         const char * const record_args[] = {
3689                 "record",
3690                 "-a",
3691                 "-R",
3692                 "-m", "1024",
3693                 "-c", "1",
3694                 "-e", "sched:sched_switch",
3695                 "-e", "sched:sched_stat_runtime",
3696                 "-e", "sched:sched_process_fork",
3697                 "-e", "sched:sched_wakeup_new",
3698                 "-e", "sched:sched_migrate_task",
3699         };
3700
3701         /*
3702          * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3703          * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3704          * to prevent "perf sched record" execution failure, determine
3705          * whether to record schedstat events according to actual situation.
3706          */
3707         const char * const schedstat_args[] = {
3708                 "-e", "sched:sched_stat_wait",
3709                 "-e", "sched:sched_stat_sleep",
3710                 "-e", "sched:sched_stat_iowait",
3711         };
3712         unsigned int schedstat_argc = schedstat_events_exposed() ?
3713                 ARRAY_SIZE(schedstat_args) : 0;
3714
3715         struct tep_event *waking_event;
3716         int ret;
3717
3718         /*
3719          * +2 for either "-e", "sched:sched_wakeup" or
3720          * "-e", "sched:sched_waking"
3721          */
3722         rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3723         rec_argv = calloc(rec_argc + 1, sizeof(char *));
3724         if (rec_argv == NULL)
3725                 return -ENOMEM;
3726         rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3727         if (rec_argv_copy == NULL) {
3728                 free(rec_argv);
3729                 return -ENOMEM;
3730         }
3731
3732         for (i = 0; i < ARRAY_SIZE(record_args); i++)
3733                 rec_argv[i] = strdup(record_args[i]);
3734
3735         rec_argv[i++] = strdup("-e");
3736         waking_event = trace_event__tp_format("sched", "sched_waking");
3737         if (!IS_ERR(waking_event))
3738                 rec_argv[i++] = strdup("sched:sched_waking");
3739         else
3740                 rec_argv[i++] = strdup("sched:sched_wakeup");
3741
3742         for (j = 0; j < schedstat_argc; j++)
3743                 rec_argv[i++] = strdup(schedstat_args[j]);
3744
3745         for (j = 1; j < (unsigned int)argc; j++, i++)
3746                 rec_argv[i] = strdup(argv[j]);
3747
3748         BUG_ON(i != rec_argc);
3749
3750         memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3751         ret = cmd_record(rec_argc, rec_argv_copy);
3752
3753         for (i = 0; i < rec_argc; i++)
3754                 free(rec_argv[i]);
3755         free(rec_argv);
3756         free(rec_argv_copy);
3757
3758         return ret;
3759 }
3760
3761 int cmd_sched(int argc, const char **argv)
3762 {
3763         static const char default_sort_order[] = "avg, max, switch, runtime";
3764         struct perf_sched sched = {
3765                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3766                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3767                 .sort_order           = default_sort_order,
3768                 .replay_repeat        = 10,
3769                 .profile_cpu          = -1,
3770                 .next_shortname1      = 'A',
3771                 .next_shortname2      = '0',
3772                 .skip_merge           = 0,
3773                 .show_callchain       = 1,
3774                 .max_stack            = 5,
3775         };
3776         const struct option sched_options[] = {
3777         OPT_STRING('i', "input", &input_name, "file",
3778                     "input file name"),
3779         OPT_INCR('v', "verbose", &verbose,
3780                     "be more verbose (show symbol address, etc)"),
3781         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3782                     "dump raw trace in ASCII"),
3783         OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3784         OPT_END()
3785         };
3786         const struct option latency_options[] = {
3787         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3788                    "sort by key(s): runtime, switch, avg, max"),
3789         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3790                     "CPU to profile on"),
3791         OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3792                     "latency stats per pid instead of per comm"),
3793         OPT_PARENT(sched_options)
3794         };
3795         const struct option replay_options[] = {
3796         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3797                      "repeat the workload replay N times (0: infinite)"),
3798         OPT_PARENT(sched_options)
3799         };
3800         const struct option map_options[] = {
3801         OPT_BOOLEAN(0, "compact", &sched.map.comp,
3802                     "map output in compact mode"),
3803         OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3804                    "highlight given pids in map"),
3805         OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3806                     "highlight given CPUs in map"),
3807         OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3808                     "display given CPUs in map"),
3809         OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3810                 "map output only for the given task name(s)."),
3811         OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3812                 "given command name can be partially matched (fuzzy matching)"),
3813         OPT_PARENT(sched_options)
3814         };
3815         const struct option timehist_options[] = {
3816         OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3817                    "file", "vmlinux pathname"),
3818         OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3819                    "file", "kallsyms pathname"),
3820         OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3821                     "Display call chains if present (default on)"),
3822         OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3823                    "Maximum number of functions to display backtrace."),
3824         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3825                     "Look for files with symbols relative to this directory"),
3826         OPT_BOOLEAN('s', "summary", &sched.summary_only,
3827                     "Show only syscall summary with statistics"),
3828         OPT_BOOLEAN('S', "with-summary", &sched.summary,
3829                     "Show all syscalls and summary with statistics"),
3830         OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3831         OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3832         OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3833         OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3834         OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3835         OPT_STRING(0, "time", &sched.time_str, "str",
3836                    "Time span for analysis (start,stop)"),
3837         OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3838         OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3839                    "analyze events only for given process id(s)"),
3840         OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3841                    "analyze events only for given thread id(s)"),
3842         OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3843         OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3844         OPT_STRING(0, "prio", &sched.prio_str, "prio",
3845                    "analyze events only for given task priority(ies)"),
3846         OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3847         OPT_PARENT(sched_options)
3848         };
3849
3850         const char * const latency_usage[] = {
3851                 "perf sched latency [<options>]",
3852                 NULL
3853         };
3854         const char * const replay_usage[] = {
3855                 "perf sched replay [<options>]",
3856                 NULL
3857         };
3858         const char * const map_usage[] = {
3859                 "perf sched map [<options>]",
3860                 NULL
3861         };
3862         const char * const timehist_usage[] = {
3863                 "perf sched timehist [<options>]",
3864                 NULL
3865         };
3866         const char *const sched_subcommands[] = { "record", "latency", "map",
3867                                                   "replay", "script",
3868                                                   "timehist", NULL };
3869         const char *sched_usage[] = {
3870                 NULL,
3871                 NULL
3872         };
3873         struct trace_sched_handler lat_ops  = {
3874                 .wakeup_event       = latency_wakeup_event,
3875                 .switch_event       = latency_switch_event,
3876                 .runtime_event      = latency_runtime_event,
3877                 .migrate_task_event = latency_migrate_task_event,
3878         };
3879         struct trace_sched_handler map_ops  = {
3880                 .switch_event       = map_switch_event,
3881         };
3882         struct trace_sched_handler replay_ops  = {
3883                 .wakeup_event       = replay_wakeup_event,
3884                 .switch_event       = replay_switch_event,
3885                 .fork_event         = replay_fork_event,
3886         };
3887         int ret;
3888
3889         perf_tool__init(&sched.tool, /*ordered_events=*/true);
3890         sched.tool.sample        = perf_sched__process_tracepoint_sample;
3891         sched.tool.comm          = perf_sched__process_comm;
3892         sched.tool.namespaces    = perf_event__process_namespaces;
3893         sched.tool.lost          = perf_event__process_lost;
3894         sched.tool.fork          = perf_sched__process_fork_event;
3895
3896         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3897                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3898         if (!argc)
3899                 usage_with_options(sched_usage, sched_options);
3900
3901         /*
3902          * Aliased to 'perf script' for now:
3903          */
3904         if (!strcmp(argv[0], "script")) {
3905                 return cmd_script(argc, argv);
3906         } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3907                 return __cmd_record(argc, argv);
3908         } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3909                 sched.tp_handler = &lat_ops;
3910                 if (argc > 1) {
3911                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3912                         if (argc)
3913                                 usage_with_options(latency_usage, latency_options);
3914                 }
3915                 setup_sorting(&sched, latency_options, latency_usage);
3916                 return perf_sched__lat(&sched);
3917         } else if (!strcmp(argv[0], "map")) {
3918                 if (argc) {
3919                         argc = parse_options(argc, argv, map_options, map_usage, 0);
3920                         if (argc)
3921                                 usage_with_options(map_usage, map_options);
3922
3923                         if (sched.map.task_name) {
3924                                 sched.map.task_names = strlist__new(sched.map.task_name, NULL);
3925                                 if (sched.map.task_names == NULL) {
3926                                         fprintf(stderr, "Failed to parse task names\n");
3927                                         return -1;
3928                                 }
3929                         }
3930                 }
3931                 sched.tp_handler = &map_ops;
3932                 setup_sorting(&sched, latency_options, latency_usage);
3933                 return perf_sched__map(&sched);
3934         } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3935                 sched.tp_handler = &replay_ops;
3936                 if (argc) {
3937                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3938                         if (argc)
3939                                 usage_with_options(replay_usage, replay_options);
3940                 }
3941                 return perf_sched__replay(&sched);
3942         } else if (!strcmp(argv[0], "timehist")) {
3943                 if (argc) {
3944                         argc = parse_options(argc, argv, timehist_options,
3945                                              timehist_usage, 0);
3946                         if (argc)
3947                                 usage_with_options(timehist_usage, timehist_options);
3948                 }
3949                 if ((sched.show_wakeups || sched.show_next) &&
3950                     sched.summary_only) {
3951                         pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3952                         parse_options_usage(timehist_usage, timehist_options, "s", true);
3953                         if (sched.show_wakeups)
3954                                 parse_options_usage(NULL, timehist_options, "w", true);
3955                         if (sched.show_next)
3956                                 parse_options_usage(NULL, timehist_options, "n", true);
3957                         return -EINVAL;
3958                 }
3959                 ret = symbol__validate_sym_arguments();
3960                 if (ret)
3961                         return ret;
3962
3963                 return perf_sched__timehist(&sched);
3964         } else {
3965                 usage_with_options(sched_usage, sched_options);
3966         }
3967
3968         /* free usage string allocated by parse_options_subcommand */
3969         free((void *)sched_usage[0]);
3970
3971         return 0;
3972 }