perf sched: Remove sched_process_fork tracepoint
[linux-2.6-block.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
16
17 #include "util/debug.h"
18
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
21
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
25
26 #define PR_SET_NAME             15               /* Set process name */
27 #define MAX_CPUS                4096
28 #define COMM_LEN                20
29 #define SYM_LEN                 129
30 #define MAX_PID                 65536
31
32 struct sched_atom;
33
34 struct task_desc {
35         unsigned long           nr;
36         unsigned long           pid;
37         char                    comm[COMM_LEN];
38
39         unsigned long           nr_events;
40         unsigned long           curr_event;
41         struct sched_atom       **atoms;
42
43         pthread_t               thread;
44         sem_t                   sleep_sem;
45
46         sem_t                   ready_for_work;
47         sem_t                   work_done_sem;
48
49         u64                     cpu_usage;
50 };
51
52 enum sched_event_type {
53         SCHED_EVENT_RUN,
54         SCHED_EVENT_SLEEP,
55         SCHED_EVENT_WAKEUP,
56         SCHED_EVENT_MIGRATION,
57 };
58
59 struct sched_atom {
60         enum sched_event_type   type;
61         int                     specific_wait;
62         u64                     timestamp;
63         u64                     duration;
64         unsigned long           nr;
65         sem_t                   *wait_sem;
66         struct task_desc        *wakee;
67 };
68
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
70
71 enum thread_state {
72         THREAD_SLEEPING = 0,
73         THREAD_WAIT_CPU,
74         THREAD_SCHED_IN,
75         THREAD_IGNORE
76 };
77
78 struct work_atom {
79         struct list_head        list;
80         enum thread_state       state;
81         u64                     sched_out_time;
82         u64                     wake_up_time;
83         u64                     sched_in_time;
84         u64                     runtime;
85 };
86
87 struct work_atoms {
88         struct list_head        work_list;
89         struct thread           *thread;
90         struct rb_node          node;
91         u64                     max_lat;
92         u64                     max_lat_at;
93         u64                     total_lat;
94         u64                     nb_atoms;
95         u64                     total_runtime;
96 };
97
98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
99
100 struct perf_sched;
101
102 struct trace_sched_handler {
103         int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104                             struct perf_sample *sample, struct machine *machine);
105
106         int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107                              struct perf_sample *sample, struct machine *machine);
108
109         int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110                             struct perf_sample *sample, struct machine *machine);
111
112         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
113         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
114                           struct machine *machine);
115
116         int (*migrate_task_event)(struct perf_sched *sched,
117                                   struct perf_evsel *evsel,
118                                   struct perf_sample *sample,
119                                   struct machine *machine);
120 };
121
122 struct perf_sched {
123         struct perf_tool tool;
124         const char       *sort_order;
125         unsigned long    nr_tasks;
126         struct task_desc *pid_to_task[MAX_PID];
127         struct task_desc **tasks;
128         const struct trace_sched_handler *tp_handler;
129         pthread_mutex_t  start_work_mutex;
130         pthread_mutex_t  work_done_wait_mutex;
131         int              profile_cpu;
132 /*
133  * Track the current task - that way we can know whether there's any
134  * weird events, such as a task being switched away that is not current.
135  */
136         int              max_cpu;
137         u32              curr_pid[MAX_CPUS];
138         struct thread    *curr_thread[MAX_CPUS];
139         char             next_shortname1;
140         char             next_shortname2;
141         unsigned int     replay_repeat;
142         unsigned long    nr_run_events;
143         unsigned long    nr_sleep_events;
144         unsigned long    nr_wakeup_events;
145         unsigned long    nr_sleep_corrections;
146         unsigned long    nr_run_events_optimized;
147         unsigned long    targetless_wakeups;
148         unsigned long    multitarget_wakeups;
149         unsigned long    nr_runs;
150         unsigned long    nr_timestamps;
151         unsigned long    nr_unordered_timestamps;
152         unsigned long    nr_state_machine_bugs;
153         unsigned long    nr_context_switch_bugs;
154         unsigned long    nr_events;
155         unsigned long    nr_lost_chunks;
156         unsigned long    nr_lost_events;
157         u64              run_measurement_overhead;
158         u64              sleep_measurement_overhead;
159         u64              start_time;
160         u64              cpu_usage;
161         u64              runavg_cpu_usage;
162         u64              parent_cpu_usage;
163         u64              runavg_parent_cpu_usage;
164         u64              sum_runtime;
165         u64              sum_fluct;
166         u64              run_avg;
167         u64              all_runtime;
168         u64              all_count;
169         u64              cpu_last_switched[MAX_CPUS];
170         struct rb_root   atom_root, sorted_atom_root;
171         struct list_head sort_list, cmp_pid;
172 };
173
174 static u64 get_nsecs(void)
175 {
176         struct timespec ts;
177
178         clock_gettime(CLOCK_MONOTONIC, &ts);
179
180         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
181 }
182
183 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
184 {
185         u64 T0 = get_nsecs(), T1;
186
187         do {
188                 T1 = get_nsecs();
189         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
190 }
191
192 static void sleep_nsecs(u64 nsecs)
193 {
194         struct timespec ts;
195
196         ts.tv_nsec = nsecs % 999999999;
197         ts.tv_sec = nsecs / 999999999;
198
199         nanosleep(&ts, NULL);
200 }
201
202 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
203 {
204         u64 T0, T1, delta, min_delta = 1000000000ULL;
205         int i;
206
207         for (i = 0; i < 10; i++) {
208                 T0 = get_nsecs();
209                 burn_nsecs(sched, 0);
210                 T1 = get_nsecs();
211                 delta = T1-T0;
212                 min_delta = min(min_delta, delta);
213         }
214         sched->run_measurement_overhead = min_delta;
215
216         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
217 }
218
219 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
220 {
221         u64 T0, T1, delta, min_delta = 1000000000ULL;
222         int i;
223
224         for (i = 0; i < 10; i++) {
225                 T0 = get_nsecs();
226                 sleep_nsecs(10000);
227                 T1 = get_nsecs();
228                 delta = T1-T0;
229                 min_delta = min(min_delta, delta);
230         }
231         min_delta -= 10000;
232         sched->sleep_measurement_overhead = min_delta;
233
234         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
235 }
236
237 static struct sched_atom *
238 get_new_event(struct task_desc *task, u64 timestamp)
239 {
240         struct sched_atom *event = zalloc(sizeof(*event));
241         unsigned long idx = task->nr_events;
242         size_t size;
243
244         event->timestamp = timestamp;
245         event->nr = idx;
246
247         task->nr_events++;
248         size = sizeof(struct sched_atom *) * task->nr_events;
249         task->atoms = realloc(task->atoms, size);
250         BUG_ON(!task->atoms);
251
252         task->atoms[idx] = event;
253
254         return event;
255 }
256
257 static struct sched_atom *last_event(struct task_desc *task)
258 {
259         if (!task->nr_events)
260                 return NULL;
261
262         return task->atoms[task->nr_events - 1];
263 }
264
265 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266                                 u64 timestamp, u64 duration)
267 {
268         struct sched_atom *event, *curr_event = last_event(task);
269
270         /*
271          * optimize an existing RUN event by merging this one
272          * to it:
273          */
274         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275                 sched->nr_run_events_optimized++;
276                 curr_event->duration += duration;
277                 return;
278         }
279
280         event = get_new_event(task, timestamp);
281
282         event->type = SCHED_EVENT_RUN;
283         event->duration = duration;
284
285         sched->nr_run_events++;
286 }
287
288 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289                                    u64 timestamp, struct task_desc *wakee)
290 {
291         struct sched_atom *event, *wakee_event;
292
293         event = get_new_event(task, timestamp);
294         event->type = SCHED_EVENT_WAKEUP;
295         event->wakee = wakee;
296
297         wakee_event = last_event(wakee);
298         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299                 sched->targetless_wakeups++;
300                 return;
301         }
302         if (wakee_event->wait_sem) {
303                 sched->multitarget_wakeups++;
304                 return;
305         }
306
307         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308         sem_init(wakee_event->wait_sem, 0, 0);
309         wakee_event->specific_wait = 1;
310         event->wait_sem = wakee_event->wait_sem;
311
312         sched->nr_wakeup_events++;
313 }
314
315 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316                                   u64 timestamp, u64 task_state __maybe_unused)
317 {
318         struct sched_atom *event = get_new_event(task, timestamp);
319
320         event->type = SCHED_EVENT_SLEEP;
321
322         sched->nr_sleep_events++;
323 }
324
325 static struct task_desc *register_pid(struct perf_sched *sched,
326                                       unsigned long pid, const char *comm)
327 {
328         struct task_desc *task;
329
330         BUG_ON(pid >= MAX_PID);
331
332         task = sched->pid_to_task[pid];
333
334         if (task)
335                 return task;
336
337         task = zalloc(sizeof(*task));
338         task->pid = pid;
339         task->nr = sched->nr_tasks;
340         strcpy(task->comm, comm);
341         /*
342          * every task starts in sleeping state - this gets ignored
343          * if there's no wakeup pointing to this sleep state:
344          */
345         add_sched_event_sleep(sched, task, 0, 0);
346
347         sched->pid_to_task[pid] = task;
348         sched->nr_tasks++;
349         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350         BUG_ON(!sched->tasks);
351         sched->tasks[task->nr] = task;
352
353         if (verbose)
354                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
355
356         return task;
357 }
358
359
360 static void print_task_traces(struct perf_sched *sched)
361 {
362         struct task_desc *task;
363         unsigned long i;
364
365         for (i = 0; i < sched->nr_tasks; i++) {
366                 task = sched->tasks[i];
367                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368                         task->nr, task->comm, task->pid, task->nr_events);
369         }
370 }
371
372 static void add_cross_task_wakeups(struct perf_sched *sched)
373 {
374         struct task_desc *task1, *task2;
375         unsigned long i, j;
376
377         for (i = 0; i < sched->nr_tasks; i++) {
378                 task1 = sched->tasks[i];
379                 j = i + 1;
380                 if (j == sched->nr_tasks)
381                         j = 0;
382                 task2 = sched->tasks[j];
383                 add_sched_event_wakeup(sched, task1, 0, task2);
384         }
385 }
386
387 static void perf_sched__process_event(struct perf_sched *sched,
388                                       struct sched_atom *atom)
389 {
390         int ret = 0;
391
392         switch (atom->type) {
393                 case SCHED_EVENT_RUN:
394                         burn_nsecs(sched, atom->duration);
395                         break;
396                 case SCHED_EVENT_SLEEP:
397                         if (atom->wait_sem)
398                                 ret = sem_wait(atom->wait_sem);
399                         BUG_ON(ret);
400                         break;
401                 case SCHED_EVENT_WAKEUP:
402                         if (atom->wait_sem)
403                                 ret = sem_post(atom->wait_sem);
404                         BUG_ON(ret);
405                         break;
406                 case SCHED_EVENT_MIGRATION:
407                         break;
408                 default:
409                         BUG_ON(1);
410         }
411 }
412
413 static u64 get_cpu_usage_nsec_parent(void)
414 {
415         struct rusage ru;
416         u64 sum;
417         int err;
418
419         err = getrusage(RUSAGE_SELF, &ru);
420         BUG_ON(err);
421
422         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
424
425         return sum;
426 }
427
428 static int self_open_counters(void)
429 {
430         struct perf_event_attr attr;
431         int fd;
432
433         memset(&attr, 0, sizeof(attr));
434
435         attr.type = PERF_TYPE_SOFTWARE;
436         attr.config = PERF_COUNT_SW_TASK_CLOCK;
437
438         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
439
440         if (fd < 0)
441                 pr_err("Error: sys_perf_event_open() syscall returned "
442                        "with %d (%s)\n", fd, strerror(errno));
443         return fd;
444 }
445
446 static u64 get_cpu_usage_nsec_self(int fd)
447 {
448         u64 runtime;
449         int ret;
450
451         ret = read(fd, &runtime, sizeof(runtime));
452         BUG_ON(ret != sizeof(runtime));
453
454         return runtime;
455 }
456
457 struct sched_thread_parms {
458         struct task_desc  *task;
459         struct perf_sched *sched;
460 };
461
462 static void *thread_func(void *ctx)
463 {
464         struct sched_thread_parms *parms = ctx;
465         struct task_desc *this_task = parms->task;
466         struct perf_sched *sched = parms->sched;
467         u64 cpu_usage_0, cpu_usage_1;
468         unsigned long i, ret;
469         char comm2[22];
470         int fd;
471
472         free(parms);
473
474         sprintf(comm2, ":%s", this_task->comm);
475         prctl(PR_SET_NAME, comm2);
476         fd = self_open_counters();
477         if (fd < 0)
478                 return NULL;
479 again:
480         ret = sem_post(&this_task->ready_for_work);
481         BUG_ON(ret);
482         ret = pthread_mutex_lock(&sched->start_work_mutex);
483         BUG_ON(ret);
484         ret = pthread_mutex_unlock(&sched->start_work_mutex);
485         BUG_ON(ret);
486
487         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
488
489         for (i = 0; i < this_task->nr_events; i++) {
490                 this_task->curr_event = i;
491                 perf_sched__process_event(sched, this_task->atoms[i]);
492         }
493
494         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
495         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
496         ret = sem_post(&this_task->work_done_sem);
497         BUG_ON(ret);
498
499         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
500         BUG_ON(ret);
501         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
502         BUG_ON(ret);
503
504         goto again;
505 }
506
507 static void create_tasks(struct perf_sched *sched)
508 {
509         struct task_desc *task;
510         pthread_attr_t attr;
511         unsigned long i;
512         int err;
513
514         err = pthread_attr_init(&attr);
515         BUG_ON(err);
516         err = pthread_attr_setstacksize(&attr,
517                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
518         BUG_ON(err);
519         err = pthread_mutex_lock(&sched->start_work_mutex);
520         BUG_ON(err);
521         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
522         BUG_ON(err);
523         for (i = 0; i < sched->nr_tasks; i++) {
524                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
525                 BUG_ON(parms == NULL);
526                 parms->task = task = sched->tasks[i];
527                 parms->sched = sched;
528                 sem_init(&task->sleep_sem, 0, 0);
529                 sem_init(&task->ready_for_work, 0, 0);
530                 sem_init(&task->work_done_sem, 0, 0);
531                 task->curr_event = 0;
532                 err = pthread_create(&task->thread, &attr, thread_func, parms);
533                 BUG_ON(err);
534         }
535 }
536
537 static void wait_for_tasks(struct perf_sched *sched)
538 {
539         u64 cpu_usage_0, cpu_usage_1;
540         struct task_desc *task;
541         unsigned long i, ret;
542
543         sched->start_time = get_nsecs();
544         sched->cpu_usage = 0;
545         pthread_mutex_unlock(&sched->work_done_wait_mutex);
546
547         for (i = 0; i < sched->nr_tasks; i++) {
548                 task = sched->tasks[i];
549                 ret = sem_wait(&task->ready_for_work);
550                 BUG_ON(ret);
551                 sem_init(&task->ready_for_work, 0, 0);
552         }
553         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
554         BUG_ON(ret);
555
556         cpu_usage_0 = get_cpu_usage_nsec_parent();
557
558         pthread_mutex_unlock(&sched->start_work_mutex);
559
560         for (i = 0; i < sched->nr_tasks; i++) {
561                 task = sched->tasks[i];
562                 ret = sem_wait(&task->work_done_sem);
563                 BUG_ON(ret);
564                 sem_init(&task->work_done_sem, 0, 0);
565                 sched->cpu_usage += task->cpu_usage;
566                 task->cpu_usage = 0;
567         }
568
569         cpu_usage_1 = get_cpu_usage_nsec_parent();
570         if (!sched->runavg_cpu_usage)
571                 sched->runavg_cpu_usage = sched->cpu_usage;
572         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
573
574         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
575         if (!sched->runavg_parent_cpu_usage)
576                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
577         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
578                                          sched->parent_cpu_usage)/10;
579
580         ret = pthread_mutex_lock(&sched->start_work_mutex);
581         BUG_ON(ret);
582
583         for (i = 0; i < sched->nr_tasks; i++) {
584                 task = sched->tasks[i];
585                 sem_init(&task->sleep_sem, 0, 0);
586                 task->curr_event = 0;
587         }
588 }
589
590 static void run_one_test(struct perf_sched *sched)
591 {
592         u64 T0, T1, delta, avg_delta, fluct;
593
594         T0 = get_nsecs();
595         wait_for_tasks(sched);
596         T1 = get_nsecs();
597
598         delta = T1 - T0;
599         sched->sum_runtime += delta;
600         sched->nr_runs++;
601
602         avg_delta = sched->sum_runtime / sched->nr_runs;
603         if (delta < avg_delta)
604                 fluct = avg_delta - delta;
605         else
606                 fluct = delta - avg_delta;
607         sched->sum_fluct += fluct;
608         if (!sched->run_avg)
609                 sched->run_avg = delta;
610         sched->run_avg = (sched->run_avg * 9 + delta) / 10;
611
612         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
613
614         printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
615
616         printf("cpu: %0.2f / %0.2f",
617                 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
618
619 #if 0
620         /*
621          * rusage statistics done by the parent, these are less
622          * accurate than the sched->sum_exec_runtime based statistics:
623          */
624         printf(" [%0.2f / %0.2f]",
625                 (double)sched->parent_cpu_usage/1e6,
626                 (double)sched->runavg_parent_cpu_usage/1e6);
627 #endif
628
629         printf("\n");
630
631         if (sched->nr_sleep_corrections)
632                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
633         sched->nr_sleep_corrections = 0;
634 }
635
636 static void test_calibrations(struct perf_sched *sched)
637 {
638         u64 T0, T1;
639
640         T0 = get_nsecs();
641         burn_nsecs(sched, 1e6);
642         T1 = get_nsecs();
643
644         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
645
646         T0 = get_nsecs();
647         sleep_nsecs(1e6);
648         T1 = get_nsecs();
649
650         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
651 }
652
653 static int
654 replay_wakeup_event(struct perf_sched *sched,
655                     struct perf_evsel *evsel, struct perf_sample *sample,
656                     struct machine *machine __maybe_unused)
657 {
658         const char *comm = perf_evsel__strval(evsel, sample, "comm");
659         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
660         struct task_desc *waker, *wakee;
661
662         if (verbose) {
663                 printf("sched_wakeup event %p\n", evsel);
664
665                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
666         }
667
668         waker = register_pid(sched, sample->tid, "<unknown>");
669         wakee = register_pid(sched, pid, comm);
670
671         add_sched_event_wakeup(sched, waker, sample->time, wakee);
672         return 0;
673 }
674
675 static int replay_switch_event(struct perf_sched *sched,
676                                struct perf_evsel *evsel,
677                                struct perf_sample *sample,
678                                struct machine *machine __maybe_unused)
679 {
680         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
681                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
682         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
683                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
684         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
685         struct task_desc *prev, __maybe_unused *next;
686         u64 timestamp0, timestamp = sample->time;
687         int cpu = sample->cpu;
688         s64 delta;
689
690         if (verbose)
691                 printf("sched_switch event %p\n", evsel);
692
693         if (cpu >= MAX_CPUS || cpu < 0)
694                 return 0;
695
696         timestamp0 = sched->cpu_last_switched[cpu];
697         if (timestamp0)
698                 delta = timestamp - timestamp0;
699         else
700                 delta = 0;
701
702         if (delta < 0) {
703                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
704                 return -1;
705         }
706
707         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
708                  prev_comm, prev_pid, next_comm, next_pid, delta);
709
710         prev = register_pid(sched, prev_pid, prev_comm);
711         next = register_pid(sched, next_pid, next_comm);
712
713         sched->cpu_last_switched[cpu] = timestamp;
714
715         add_sched_event_run(sched, prev, timestamp, delta);
716         add_sched_event_sleep(sched, prev, timestamp, prev_state);
717
718         return 0;
719 }
720
721 static int replay_fork_event(struct perf_sched *sched,
722                              union perf_event *event,
723                              struct machine *machine)
724 {
725         struct thread *child, *parent;
726
727         child = machine__findnew_thread(machine, event->fork.tid);
728         parent = machine__findnew_thread(machine, event->fork.ptid);
729
730         if (child == NULL || parent == NULL) {
731                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
732                                  child, parent);
733                 return 0;
734         }
735
736         if (verbose) {
737                 printf("fork event\n");
738                 printf("... parent: %s/%d\n", parent->comm, parent->tid);
739                 printf("...  child: %s/%d\n", child->comm, child->tid);
740         }
741
742         register_pid(sched, parent->tid, parent->comm);
743         register_pid(sched, child->tid, child->comm);
744         return 0;
745 }
746
747 struct sort_dimension {
748         const char              *name;
749         sort_fn_t               cmp;
750         struct list_head        list;
751 };
752
753 static int
754 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
755 {
756         struct sort_dimension *sort;
757         int ret = 0;
758
759         BUG_ON(list_empty(list));
760
761         list_for_each_entry(sort, list, list) {
762                 ret = sort->cmp(l, r);
763                 if (ret)
764                         return ret;
765         }
766
767         return ret;
768 }
769
770 static struct work_atoms *
771 thread_atoms_search(struct rb_root *root, struct thread *thread,
772                          struct list_head *sort_list)
773 {
774         struct rb_node *node = root->rb_node;
775         struct work_atoms key = { .thread = thread };
776
777         while (node) {
778                 struct work_atoms *atoms;
779                 int cmp;
780
781                 atoms = container_of(node, struct work_atoms, node);
782
783                 cmp = thread_lat_cmp(sort_list, &key, atoms);
784                 if (cmp > 0)
785                         node = node->rb_left;
786                 else if (cmp < 0)
787                         node = node->rb_right;
788                 else {
789                         BUG_ON(thread != atoms->thread);
790                         return atoms;
791                 }
792         }
793         return NULL;
794 }
795
796 static void
797 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
798                          struct list_head *sort_list)
799 {
800         struct rb_node **new = &(root->rb_node), *parent = NULL;
801
802         while (*new) {
803                 struct work_atoms *this;
804                 int cmp;
805
806                 this = container_of(*new, struct work_atoms, node);
807                 parent = *new;
808
809                 cmp = thread_lat_cmp(sort_list, data, this);
810
811                 if (cmp > 0)
812                         new = &((*new)->rb_left);
813                 else
814                         new = &((*new)->rb_right);
815         }
816
817         rb_link_node(&data->node, parent, new);
818         rb_insert_color(&data->node, root);
819 }
820
821 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
822 {
823         struct work_atoms *atoms = zalloc(sizeof(*atoms));
824         if (!atoms) {
825                 pr_err("No memory at %s\n", __func__);
826                 return -1;
827         }
828
829         atoms->thread = thread;
830         INIT_LIST_HEAD(&atoms->work_list);
831         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
832         return 0;
833 }
834
835 static char sched_out_state(u64 prev_state)
836 {
837         const char *str = TASK_STATE_TO_CHAR_STR;
838
839         return str[prev_state];
840 }
841
842 static int
843 add_sched_out_event(struct work_atoms *atoms,
844                     char run_state,
845                     u64 timestamp)
846 {
847         struct work_atom *atom = zalloc(sizeof(*atom));
848         if (!atom) {
849                 pr_err("Non memory at %s", __func__);
850                 return -1;
851         }
852
853         atom->sched_out_time = timestamp;
854
855         if (run_state == 'R') {
856                 atom->state = THREAD_WAIT_CPU;
857                 atom->wake_up_time = atom->sched_out_time;
858         }
859
860         list_add_tail(&atom->list, &atoms->work_list);
861         return 0;
862 }
863
864 static void
865 add_runtime_event(struct work_atoms *atoms, u64 delta,
866                   u64 timestamp __maybe_unused)
867 {
868         struct work_atom *atom;
869
870         BUG_ON(list_empty(&atoms->work_list));
871
872         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
873
874         atom->runtime += delta;
875         atoms->total_runtime += delta;
876 }
877
878 static void
879 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
880 {
881         struct work_atom *atom;
882         u64 delta;
883
884         if (list_empty(&atoms->work_list))
885                 return;
886
887         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
888
889         if (atom->state != THREAD_WAIT_CPU)
890                 return;
891
892         if (timestamp < atom->wake_up_time) {
893                 atom->state = THREAD_IGNORE;
894                 return;
895         }
896
897         atom->state = THREAD_SCHED_IN;
898         atom->sched_in_time = timestamp;
899
900         delta = atom->sched_in_time - atom->wake_up_time;
901         atoms->total_lat += delta;
902         if (delta > atoms->max_lat) {
903                 atoms->max_lat = delta;
904                 atoms->max_lat_at = timestamp;
905         }
906         atoms->nb_atoms++;
907 }
908
909 static int latency_switch_event(struct perf_sched *sched,
910                                 struct perf_evsel *evsel,
911                                 struct perf_sample *sample,
912                                 struct machine *machine)
913 {
914         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
915                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
916         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
917         struct work_atoms *out_events, *in_events;
918         struct thread *sched_out, *sched_in;
919         u64 timestamp0, timestamp = sample->time;
920         int cpu = sample->cpu;
921         s64 delta;
922
923         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
924
925         timestamp0 = sched->cpu_last_switched[cpu];
926         sched->cpu_last_switched[cpu] = timestamp;
927         if (timestamp0)
928                 delta = timestamp - timestamp0;
929         else
930                 delta = 0;
931
932         if (delta < 0) {
933                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
934                 return -1;
935         }
936
937         sched_out = machine__findnew_thread(machine, prev_pid);
938         sched_in = machine__findnew_thread(machine, next_pid);
939
940         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
941         if (!out_events) {
942                 if (thread_atoms_insert(sched, sched_out))
943                         return -1;
944                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
945                 if (!out_events) {
946                         pr_err("out-event: Internal tree error");
947                         return -1;
948                 }
949         }
950         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
951                 return -1;
952
953         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
954         if (!in_events) {
955                 if (thread_atoms_insert(sched, sched_in))
956                         return -1;
957                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
958                 if (!in_events) {
959                         pr_err("in-event: Internal tree error");
960                         return -1;
961                 }
962                 /*
963                  * Take came in we have not heard about yet,
964                  * add in an initial atom in runnable state:
965                  */
966                 if (add_sched_out_event(in_events, 'R', timestamp))
967                         return -1;
968         }
969         add_sched_in_event(in_events, timestamp);
970
971         return 0;
972 }
973
974 static int latency_runtime_event(struct perf_sched *sched,
975                                  struct perf_evsel *evsel,
976                                  struct perf_sample *sample,
977                                  struct machine *machine)
978 {
979         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
980         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
981         struct thread *thread = machine__findnew_thread(machine, pid);
982         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
983         u64 timestamp = sample->time;
984         int cpu = sample->cpu;
985
986         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
987         if (!atoms) {
988                 if (thread_atoms_insert(sched, thread))
989                         return -1;
990                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
991                 if (!atoms) {
992                         pr_err("in-event: Internal tree error");
993                         return -1;
994                 }
995                 if (add_sched_out_event(atoms, 'R', timestamp))
996                         return -1;
997         }
998
999         add_runtime_event(atoms, runtime, timestamp);
1000         return 0;
1001 }
1002
1003 static int latency_wakeup_event(struct perf_sched *sched,
1004                                 struct perf_evsel *evsel,
1005                                 struct perf_sample *sample,
1006                                 struct machine *machine)
1007 {
1008         const u32 pid     = perf_evsel__intval(evsel, sample, "pid"),
1009                   success = perf_evsel__intval(evsel, sample, "success");
1010         struct work_atoms *atoms;
1011         struct work_atom *atom;
1012         struct thread *wakee;
1013         u64 timestamp = sample->time;
1014
1015         /* Note for later, it may be interesting to observe the failing cases */
1016         if (!success)
1017                 return 0;
1018
1019         wakee = machine__findnew_thread(machine, pid);
1020         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1021         if (!atoms) {
1022                 if (thread_atoms_insert(sched, wakee))
1023                         return -1;
1024                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1025                 if (!atoms) {
1026                         pr_err("wakeup-event: Internal tree error");
1027                         return -1;
1028                 }
1029                 if (add_sched_out_event(atoms, 'S', timestamp))
1030                         return -1;
1031         }
1032
1033         BUG_ON(list_empty(&atoms->work_list));
1034
1035         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1036
1037         /*
1038          * You WILL be missing events if you've recorded only
1039          * one CPU, or are only looking at only one, so don't
1040          * make useless noise.
1041          */
1042         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1043                 sched->nr_state_machine_bugs++;
1044
1045         sched->nr_timestamps++;
1046         if (atom->sched_out_time > timestamp) {
1047                 sched->nr_unordered_timestamps++;
1048                 return 0;
1049         }
1050
1051         atom->state = THREAD_WAIT_CPU;
1052         atom->wake_up_time = timestamp;
1053         return 0;
1054 }
1055
1056 static int latency_migrate_task_event(struct perf_sched *sched,
1057                                       struct perf_evsel *evsel,
1058                                       struct perf_sample *sample,
1059                                       struct machine *machine)
1060 {
1061         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1062         u64 timestamp = sample->time;
1063         struct work_atoms *atoms;
1064         struct work_atom *atom;
1065         struct thread *migrant;
1066
1067         /*
1068          * Only need to worry about migration when profiling one CPU.
1069          */
1070         if (sched->profile_cpu == -1)
1071                 return 0;
1072
1073         migrant = machine__findnew_thread(machine, pid);
1074         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1075         if (!atoms) {
1076                 if (thread_atoms_insert(sched, migrant))
1077                         return -1;
1078                 register_pid(sched, migrant->tid, migrant->comm);
1079                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1080                 if (!atoms) {
1081                         pr_err("migration-event: Internal tree error");
1082                         return -1;
1083                 }
1084                 if (add_sched_out_event(atoms, 'R', timestamp))
1085                         return -1;
1086         }
1087
1088         BUG_ON(list_empty(&atoms->work_list));
1089
1090         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1092
1093         sched->nr_timestamps++;
1094
1095         if (atom->sched_out_time > timestamp)
1096                 sched->nr_unordered_timestamps++;
1097
1098         return 0;
1099 }
1100
1101 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1102 {
1103         int i;
1104         int ret;
1105         u64 avg;
1106
1107         if (!work_list->nb_atoms)
1108                 return;
1109         /*
1110          * Ignore idle threads:
1111          */
1112         if (!strcmp(work_list->thread->comm, "swapper"))
1113                 return;
1114
1115         sched->all_runtime += work_list->total_runtime;
1116         sched->all_count   += work_list->nb_atoms;
1117
1118         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->tid);
1119
1120         for (i = 0; i < 24 - ret; i++)
1121                 printf(" ");
1122
1123         avg = work_list->total_lat / work_list->nb_atoms;
1124
1125         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1126               (double)work_list->total_runtime / 1e6,
1127                  work_list->nb_atoms, (double)avg / 1e6,
1128                  (double)work_list->max_lat / 1e6,
1129                  (double)work_list->max_lat_at / 1e9);
1130 }
1131
1132 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1133 {
1134         if (l->thread->tid < r->thread->tid)
1135                 return -1;
1136         if (l->thread->tid > r->thread->tid)
1137                 return 1;
1138
1139         return 0;
1140 }
1141
1142 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1143 {
1144         u64 avgl, avgr;
1145
1146         if (!l->nb_atoms)
1147                 return -1;
1148
1149         if (!r->nb_atoms)
1150                 return 1;
1151
1152         avgl = l->total_lat / l->nb_atoms;
1153         avgr = r->total_lat / r->nb_atoms;
1154
1155         if (avgl < avgr)
1156                 return -1;
1157         if (avgl > avgr)
1158                 return 1;
1159
1160         return 0;
1161 }
1162
1163 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1164 {
1165         if (l->max_lat < r->max_lat)
1166                 return -1;
1167         if (l->max_lat > r->max_lat)
1168                 return 1;
1169
1170         return 0;
1171 }
1172
1173 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1174 {
1175         if (l->nb_atoms < r->nb_atoms)
1176                 return -1;
1177         if (l->nb_atoms > r->nb_atoms)
1178                 return 1;
1179
1180         return 0;
1181 }
1182
1183 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1184 {
1185         if (l->total_runtime < r->total_runtime)
1186                 return -1;
1187         if (l->total_runtime > r->total_runtime)
1188                 return 1;
1189
1190         return 0;
1191 }
1192
1193 static int sort_dimension__add(const char *tok, struct list_head *list)
1194 {
1195         size_t i;
1196         static struct sort_dimension avg_sort_dimension = {
1197                 .name = "avg",
1198                 .cmp  = avg_cmp,
1199         };
1200         static struct sort_dimension max_sort_dimension = {
1201                 .name = "max",
1202                 .cmp  = max_cmp,
1203         };
1204         static struct sort_dimension pid_sort_dimension = {
1205                 .name = "pid",
1206                 .cmp  = pid_cmp,
1207         };
1208         static struct sort_dimension runtime_sort_dimension = {
1209                 .name = "runtime",
1210                 .cmp  = runtime_cmp,
1211         };
1212         static struct sort_dimension switch_sort_dimension = {
1213                 .name = "switch",
1214                 .cmp  = switch_cmp,
1215         };
1216         struct sort_dimension *available_sorts[] = {
1217                 &pid_sort_dimension,
1218                 &avg_sort_dimension,
1219                 &max_sort_dimension,
1220                 &switch_sort_dimension,
1221                 &runtime_sort_dimension,
1222         };
1223
1224         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1225                 if (!strcmp(available_sorts[i]->name, tok)) {
1226                         list_add_tail(&available_sorts[i]->list, list);
1227
1228                         return 0;
1229                 }
1230         }
1231
1232         return -1;
1233 }
1234
1235 static void perf_sched__sort_lat(struct perf_sched *sched)
1236 {
1237         struct rb_node *node;
1238
1239         for (;;) {
1240                 struct work_atoms *data;
1241                 node = rb_first(&sched->atom_root);
1242                 if (!node)
1243                         break;
1244
1245                 rb_erase(node, &sched->atom_root);
1246                 data = rb_entry(node, struct work_atoms, node);
1247                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1248         }
1249 }
1250
1251 static int process_sched_wakeup_event(struct perf_tool *tool,
1252                                       struct perf_evsel *evsel,
1253                                       struct perf_sample *sample,
1254                                       struct machine *machine)
1255 {
1256         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1257
1258         if (sched->tp_handler->wakeup_event)
1259                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1260
1261         return 0;
1262 }
1263
1264 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1265                             struct perf_sample *sample, struct machine *machine)
1266 {
1267         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1268                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1269         struct thread *sched_out __maybe_unused, *sched_in;
1270         int new_shortname;
1271         u64 timestamp0, timestamp = sample->time;
1272         s64 delta;
1273         int cpu, this_cpu = sample->cpu;
1274
1275         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1276
1277         if (this_cpu > sched->max_cpu)
1278                 sched->max_cpu = this_cpu;
1279
1280         timestamp0 = sched->cpu_last_switched[this_cpu];
1281         sched->cpu_last_switched[this_cpu] = timestamp;
1282         if (timestamp0)
1283                 delta = timestamp - timestamp0;
1284         else
1285                 delta = 0;
1286
1287         if (delta < 0) {
1288                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1289                 return -1;
1290         }
1291
1292         sched_out = machine__findnew_thread(machine, prev_pid);
1293         sched_in = machine__findnew_thread(machine, next_pid);
1294
1295         sched->curr_thread[this_cpu] = sched_in;
1296
1297         printf("  ");
1298
1299         new_shortname = 0;
1300         if (!sched_in->shortname[0]) {
1301                 sched_in->shortname[0] = sched->next_shortname1;
1302                 sched_in->shortname[1] = sched->next_shortname2;
1303
1304                 if (sched->next_shortname1 < 'Z') {
1305                         sched->next_shortname1++;
1306                 } else {
1307                         sched->next_shortname1='A';
1308                         if (sched->next_shortname2 < '9') {
1309                                 sched->next_shortname2++;
1310                         } else {
1311                                 sched->next_shortname2='0';
1312                         }
1313                 }
1314                 new_shortname = 1;
1315         }
1316
1317         for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1318                 if (cpu != this_cpu)
1319                         printf(" ");
1320                 else
1321                         printf("*");
1322
1323                 if (sched->curr_thread[cpu]) {
1324                         if (sched->curr_thread[cpu]->tid)
1325                                 printf("%2s ", sched->curr_thread[cpu]->shortname);
1326                         else
1327                                 printf(".  ");
1328                 } else
1329                         printf("   ");
1330         }
1331
1332         printf("  %12.6f secs ", (double)timestamp/1e9);
1333         if (new_shortname) {
1334                 printf("%s => %s:%d\n",
1335                         sched_in->shortname, sched_in->comm, sched_in->tid);
1336         } else {
1337                 printf("\n");
1338         }
1339
1340         return 0;
1341 }
1342
1343 static int process_sched_switch_event(struct perf_tool *tool,
1344                                       struct perf_evsel *evsel,
1345                                       struct perf_sample *sample,
1346                                       struct machine *machine)
1347 {
1348         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1349         int this_cpu = sample->cpu, err = 0;
1350         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1351             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1352
1353         if (sched->curr_pid[this_cpu] != (u32)-1) {
1354                 /*
1355                  * Are we trying to switch away a PID that is
1356                  * not current?
1357                  */
1358                 if (sched->curr_pid[this_cpu] != prev_pid)
1359                         sched->nr_context_switch_bugs++;
1360         }
1361
1362         if (sched->tp_handler->switch_event)
1363                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1364
1365         sched->curr_pid[this_cpu] = next_pid;
1366         return err;
1367 }
1368
1369 static int process_sched_runtime_event(struct perf_tool *tool,
1370                                        struct perf_evsel *evsel,
1371                                        struct perf_sample *sample,
1372                                        struct machine *machine)
1373 {
1374         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1375
1376         if (sched->tp_handler->runtime_event)
1377                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1378
1379         return 0;
1380 }
1381
1382 static int perf_sched__process_fork_event(struct perf_tool *tool,
1383                                           union perf_event *event,
1384                                           struct perf_sample *sample,
1385                                           struct machine *machine)
1386 {
1387         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1388
1389         /* run the fork event through the perf machineruy */
1390         perf_event__process_fork(tool, event, sample, machine);
1391
1392         /* and then run additional processing needed for this command */
1393         if (sched->tp_handler->fork_event)
1394                 return sched->tp_handler->fork_event(sched, event, machine);
1395
1396         return 0;
1397 }
1398
1399 static int process_sched_migrate_task_event(struct perf_tool *tool,
1400                                             struct perf_evsel *evsel,
1401                                             struct perf_sample *sample,
1402                                             struct machine *machine)
1403 {
1404         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1405
1406         if (sched->tp_handler->migrate_task_event)
1407                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1408
1409         return 0;
1410 }
1411
1412 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1413                                   struct perf_evsel *evsel,
1414                                   struct perf_sample *sample,
1415                                   struct machine *machine);
1416
1417 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1418                                                  union perf_event *event __maybe_unused,
1419                                                  struct perf_sample *sample,
1420                                                  struct perf_evsel *evsel,
1421                                                  struct machine *machine)
1422 {
1423         int err = 0;
1424
1425         evsel->hists.stats.total_period += sample->period;
1426         hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1427
1428         if (evsel->handler.func != NULL) {
1429                 tracepoint_handler f = evsel->handler.func;
1430                 err = f(tool, evsel, sample, machine);
1431         }
1432
1433         return err;
1434 }
1435
1436 static int perf_sched__read_events(struct perf_sched *sched,
1437                                    struct perf_session **psession)
1438 {
1439         const struct perf_evsel_str_handler handlers[] = {
1440                 { "sched:sched_switch",       process_sched_switch_event, },
1441                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1442                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1443                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1444                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1445         };
1446         struct perf_session *session;
1447
1448         session = perf_session__new(input_name, O_RDONLY, 0, false, &sched->tool);
1449         if (session == NULL) {
1450                 pr_debug("No Memory for session\n");
1451                 return -1;
1452         }
1453
1454         if (perf_session__set_tracepoints_handlers(session, handlers))
1455                 goto out_delete;
1456
1457         if (perf_session__has_traces(session, "record -R")) {
1458                 int err = perf_session__process_events(session, &sched->tool);
1459                 if (err) {
1460                         pr_err("Failed to process events, error %d", err);
1461                         goto out_delete;
1462                 }
1463
1464                 sched->nr_events      = session->stats.nr_events[0];
1465                 sched->nr_lost_events = session->stats.total_lost;
1466                 sched->nr_lost_chunks = session->stats.nr_events[PERF_RECORD_LOST];
1467         }
1468
1469         if (psession)
1470                 *psession = session;
1471         else
1472                 perf_session__delete(session);
1473
1474         return 0;
1475
1476 out_delete:
1477         perf_session__delete(session);
1478         return -1;
1479 }
1480
1481 static void print_bad_events(struct perf_sched *sched)
1482 {
1483         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1484                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1485                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1486                         sched->nr_unordered_timestamps, sched->nr_timestamps);
1487         }
1488         if (sched->nr_lost_events && sched->nr_events) {
1489                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1490                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1491                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1492         }
1493         if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1494                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1495                         (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1496                         sched->nr_state_machine_bugs, sched->nr_timestamps);
1497                 if (sched->nr_lost_events)
1498                         printf(" (due to lost events?)");
1499                 printf("\n");
1500         }
1501         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1502                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1503                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1504                         sched->nr_context_switch_bugs, sched->nr_timestamps);
1505                 if (sched->nr_lost_events)
1506                         printf(" (due to lost events?)");
1507                 printf("\n");
1508         }
1509 }
1510
1511 static int perf_sched__lat(struct perf_sched *sched)
1512 {
1513         struct rb_node *next;
1514         struct perf_session *session;
1515
1516         setup_pager();
1517
1518         /* save session -- references to threads are held in work_list */
1519         if (perf_sched__read_events(sched, &session))
1520                 return -1;
1521
1522         perf_sched__sort_lat(sched);
1523
1524         printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1525         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1526         printf(" ---------------------------------------------------------------------------------------------------------------\n");
1527
1528         next = rb_first(&sched->sorted_atom_root);
1529
1530         while (next) {
1531                 struct work_atoms *work_list;
1532
1533                 work_list = rb_entry(next, struct work_atoms, node);
1534                 output_lat_thread(sched, work_list);
1535                 next = rb_next(next);
1536         }
1537
1538         printf(" -----------------------------------------------------------------------------------------\n");
1539         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1540                 (double)sched->all_runtime / 1e6, sched->all_count);
1541
1542         printf(" ---------------------------------------------------\n");
1543
1544         print_bad_events(sched);
1545         printf("\n");
1546
1547         perf_session__delete(session);
1548         return 0;
1549 }
1550
1551 static int perf_sched__map(struct perf_sched *sched)
1552 {
1553         sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1554
1555         setup_pager();
1556         if (perf_sched__read_events(sched, NULL))
1557                 return -1;
1558         print_bad_events(sched);
1559         return 0;
1560 }
1561
1562 static int perf_sched__replay(struct perf_sched *sched)
1563 {
1564         unsigned long i;
1565
1566         calibrate_run_measurement_overhead(sched);
1567         calibrate_sleep_measurement_overhead(sched);
1568
1569         test_calibrations(sched);
1570
1571         if (perf_sched__read_events(sched, NULL))
1572                 return -1;
1573
1574         printf("nr_run_events:        %ld\n", sched->nr_run_events);
1575         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1576         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1577
1578         if (sched->targetless_wakeups)
1579                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1580         if (sched->multitarget_wakeups)
1581                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1582         if (sched->nr_run_events_optimized)
1583                 printf("run atoms optimized: %ld\n",
1584                         sched->nr_run_events_optimized);
1585
1586         print_task_traces(sched);
1587         add_cross_task_wakeups(sched);
1588
1589         create_tasks(sched);
1590         printf("------------------------------------------------------------\n");
1591         for (i = 0; i < sched->replay_repeat; i++)
1592                 run_one_test(sched);
1593
1594         return 0;
1595 }
1596
1597 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1598                           const char * const usage_msg[])
1599 {
1600         char *tmp, *tok, *str = strdup(sched->sort_order);
1601
1602         for (tok = strtok_r(str, ", ", &tmp);
1603                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1604                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1605                         error("Unknown --sort key: `%s'", tok);
1606                         usage_with_options(usage_msg, options);
1607                 }
1608         }
1609
1610         free(str);
1611
1612         sort_dimension__add("pid", &sched->cmp_pid);
1613 }
1614
1615 static int __cmd_record(int argc, const char **argv)
1616 {
1617         unsigned int rec_argc, i, j;
1618         const char **rec_argv;
1619         const char * const record_args[] = {
1620                 "record",
1621                 "-a",
1622                 "-R",
1623                 "-m", "1024",
1624                 "-c", "1",
1625                 "-e", "sched:sched_switch",
1626                 "-e", "sched:sched_stat_wait",
1627                 "-e", "sched:sched_stat_sleep",
1628                 "-e", "sched:sched_stat_iowait",
1629                 "-e", "sched:sched_stat_runtime",
1630                 "-e", "sched:sched_process_fork",
1631                 "-e", "sched:sched_wakeup",
1632                 "-e", "sched:sched_migrate_task",
1633         };
1634
1635         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1636         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1637
1638         if (rec_argv == NULL)
1639                 return -ENOMEM;
1640
1641         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1642                 rec_argv[i] = strdup(record_args[i]);
1643
1644         for (j = 1; j < (unsigned int)argc; j++, i++)
1645                 rec_argv[i] = argv[j];
1646
1647         BUG_ON(i != rec_argc);
1648
1649         return cmd_record(i, rec_argv, NULL);
1650 }
1651
1652 static const char default_sort_order[] = "avg, max, switch, runtime";
1653 static struct perf_sched sched = {
1654         .tool = {
1655                 .sample          = perf_sched__process_tracepoint_sample,
1656                 .comm            = perf_event__process_comm,
1657                 .lost            = perf_event__process_lost,
1658                 .fork            = perf_sched__process_fork_event,
1659                 .ordered_samples = true,
1660         },
1661         .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
1662         .sort_list            = LIST_HEAD_INIT(sched.sort_list),
1663         .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1664         .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1665         .curr_pid             = { [0 ... MAX_CPUS - 1] = -1 },
1666         .sort_order           = default_sort_order,
1667         .replay_repeat        = 10,
1668         .profile_cpu          = -1,
1669         .next_shortname1      = 'A',
1670         .next_shortname2      = '0',
1671 };
1672
1673 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1674 {
1675         const struct option latency_options[] = {
1676         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1677                    "sort by key(s): runtime, switch, avg, max"),
1678         OPT_INCR('v', "verbose", &verbose,
1679                     "be more verbose (show symbol address, etc)"),
1680         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1681                     "CPU to profile on"),
1682         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1683                     "dump raw trace in ASCII"),
1684         OPT_END()
1685         };
1686         const struct option replay_options[] = {
1687         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1688                      "repeat the workload replay N times (-1: infinite)"),
1689         OPT_INCR('v', "verbose", &verbose,
1690                     "be more verbose (show symbol address, etc)"),
1691         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1692                     "dump raw trace in ASCII"),
1693         OPT_END()
1694         };
1695         const struct option sched_options[] = {
1696         OPT_STRING('i', "input", &input_name, "file",
1697                     "input file name"),
1698         OPT_INCR('v', "verbose", &verbose,
1699                     "be more verbose (show symbol address, etc)"),
1700         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1701                     "dump raw trace in ASCII"),
1702         OPT_END()
1703         };
1704         const char * const latency_usage[] = {
1705                 "perf sched latency [<options>]",
1706                 NULL
1707         };
1708         const char * const replay_usage[] = {
1709                 "perf sched replay [<options>]",
1710                 NULL
1711         };
1712         const char * const sched_usage[] = {
1713                 "perf sched [<options>] {record|latency|map|replay|script}",
1714                 NULL
1715         };
1716         struct trace_sched_handler lat_ops  = {
1717                 .wakeup_event       = latency_wakeup_event,
1718                 .switch_event       = latency_switch_event,
1719                 .runtime_event      = latency_runtime_event,
1720                 .migrate_task_event = latency_migrate_task_event,
1721         };
1722         struct trace_sched_handler map_ops  = {
1723                 .switch_event       = map_switch_event,
1724         };
1725         struct trace_sched_handler replay_ops  = {
1726                 .wakeup_event       = replay_wakeup_event,
1727                 .switch_event       = replay_switch_event,
1728                 .fork_event         = replay_fork_event,
1729         };
1730
1731         argc = parse_options(argc, argv, sched_options, sched_usage,
1732                              PARSE_OPT_STOP_AT_NON_OPTION);
1733         if (!argc)
1734                 usage_with_options(sched_usage, sched_options);
1735
1736         /*
1737          * Aliased to 'perf script' for now:
1738          */
1739         if (!strcmp(argv[0], "script"))
1740                 return cmd_script(argc, argv, prefix);
1741
1742         symbol__init();
1743         if (!strncmp(argv[0], "rec", 3)) {
1744                 return __cmd_record(argc, argv);
1745         } else if (!strncmp(argv[0], "lat", 3)) {
1746                 sched.tp_handler = &lat_ops;
1747                 if (argc > 1) {
1748                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1749                         if (argc)
1750                                 usage_with_options(latency_usage, latency_options);
1751                 }
1752                 setup_sorting(&sched, latency_options, latency_usage);
1753                 return perf_sched__lat(&sched);
1754         } else if (!strcmp(argv[0], "map")) {
1755                 sched.tp_handler = &map_ops;
1756                 setup_sorting(&sched, latency_options, latency_usage);
1757                 return perf_sched__map(&sched);
1758         } else if (!strncmp(argv[0], "rep", 3)) {
1759                 sched.tp_handler = &replay_ops;
1760                 if (argc) {
1761                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1762                         if (argc)
1763                                 usage_with_options(replay_usage, replay_options);
1764                 }
1765                 return perf_sched__replay(&sched);
1766         } else {
1767                 usage_with_options(sched_usage, sched_options);
1768         }
1769
1770         return 0;
1771 }