Merge branch 'for-5.4/apple' into for-linus
[linux-2.6-block.git] / tools / perf / bench / numa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11
12 #include "../perf.h"
13 #include "../builtin.h"
14 #include <subcmd/parse-options.h>
15 #include "../util/cloexec.h"
16
17 #include "bench.h"
18
19 #include <errno.h>
20 #include <sched.h>
21 #include <stdio.h>
22 #include <assert.h>
23 #include <malloc.h>
24 #include <signal.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <sys/mman.h>
29 #include <sys/time.h>
30 #include <sys/resource.h>
31 #include <sys/wait.h>
32 #include <sys/prctl.h>
33 #include <sys/types.h>
34 #include <linux/kernel.h>
35 #include <linux/time64.h>
36 #include <linux/numa.h>
37 #include <linux/zalloc.h>
38
39 #include <numa.h>
40 #include <numaif.h>
41
42 #ifndef RUSAGE_THREAD
43 # define RUSAGE_THREAD 1
44 #endif
45
46 /*
47  * Regular printout to the terminal, supressed if -q is specified:
48  */
49 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
50
51 /*
52  * Debug printf:
53  */
54 #undef dprintf
55 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
56
57 struct thread_data {
58         int                     curr_cpu;
59         cpu_set_t               bind_cpumask;
60         int                     bind_node;
61         u8                      *process_data;
62         int                     process_nr;
63         int                     thread_nr;
64         int                     task_nr;
65         unsigned int            loops_done;
66         u64                     val;
67         u64                     runtime_ns;
68         u64                     system_time_ns;
69         u64                     user_time_ns;
70         double                  speed_gbs;
71         pthread_mutex_t         *process_lock;
72 };
73
74 /* Parameters set by options: */
75
76 struct params {
77         /* Startup synchronization: */
78         bool                    serialize_startup;
79
80         /* Task hierarchy: */
81         int                     nr_proc;
82         int                     nr_threads;
83
84         /* Working set sizes: */
85         const char              *mb_global_str;
86         const char              *mb_proc_str;
87         const char              *mb_proc_locked_str;
88         const char              *mb_thread_str;
89
90         double                  mb_global;
91         double                  mb_proc;
92         double                  mb_proc_locked;
93         double                  mb_thread;
94
95         /* Access patterns to the working set: */
96         bool                    data_reads;
97         bool                    data_writes;
98         bool                    data_backwards;
99         bool                    data_zero_memset;
100         bool                    data_rand_walk;
101         u32                     nr_loops;
102         u32                     nr_secs;
103         u32                     sleep_usecs;
104
105         /* Working set initialization: */
106         bool                    init_zero;
107         bool                    init_random;
108         bool                    init_cpu0;
109
110         /* Misc options: */
111         int                     show_details;
112         int                     run_all;
113         int                     thp;
114
115         long                    bytes_global;
116         long                    bytes_process;
117         long                    bytes_process_locked;
118         long                    bytes_thread;
119
120         int                     nr_tasks;
121         bool                    show_quiet;
122
123         bool                    show_convergence;
124         bool                    measure_convergence;
125
126         int                     perturb_secs;
127         int                     nr_cpus;
128         int                     nr_nodes;
129
130         /* Affinity options -C and -N: */
131         char                    *cpu_list_str;
132         char                    *node_list_str;
133 };
134
135
136 /* Global, read-writable area, accessible to all processes and threads: */
137
138 struct global_info {
139         u8                      *data;
140
141         pthread_mutex_t         startup_mutex;
142         int                     nr_tasks_started;
143
144         pthread_mutex_t         startup_done_mutex;
145
146         pthread_mutex_t         start_work_mutex;
147         int                     nr_tasks_working;
148
149         pthread_mutex_t         stop_work_mutex;
150         u64                     bytes_done;
151
152         struct thread_data      *threads;
153
154         /* Convergence latency measurement: */
155         bool                    all_converged;
156         bool                    stop_work;
157
158         int                     print_once;
159
160         struct params           p;
161 };
162
163 static struct global_info       *g = NULL;
164
165 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
166 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
167
168 struct params p0;
169
170 static const struct option options[] = {
171         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
172         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
173
174         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
175         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
176         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
177         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
178
179         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
180         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
181         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
182
183         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via reads (can be mixed with -W)"),
184         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
185         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
186         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
187         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
188
189
190         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
191         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
192         OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
193         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
194
195         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
196         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
197         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
198         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
199                     "convergence is reached when each process (all its threads) is running on a single NUMA node."),
200         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
201         OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
202         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
203
204         /* Special option string parsing callbacks: */
205         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
206                         "bind the first N tasks to these specific cpus (the rest is unbound)",
207                         parse_cpus_opt),
208         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
209                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
210                         parse_nodes_opt),
211         OPT_END()
212 };
213
214 static const char * const bench_numa_usage[] = {
215         "perf bench numa <options>",
216         NULL
217 };
218
219 static const char * const numa_usage[] = {
220         "perf bench numa mem [<options>]",
221         NULL
222 };
223
224 /*
225  * To get number of numa nodes present.
226  */
227 static int nr_numa_nodes(void)
228 {
229         int i, nr_nodes = 0;
230
231         for (i = 0; i < g->p.nr_nodes; i++) {
232                 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
233                         nr_nodes++;
234         }
235
236         return nr_nodes;
237 }
238
239 /*
240  * To check if given numa node is present.
241  */
242 static int is_node_present(int node)
243 {
244         return numa_bitmask_isbitset(numa_nodes_ptr, node);
245 }
246
247 /*
248  * To check given numa node has cpus.
249  */
250 static bool node_has_cpus(int node)
251 {
252         struct bitmask *cpu = numa_allocate_cpumask();
253         unsigned int i;
254
255         if (cpu && !numa_node_to_cpus(node, cpu)) {
256                 for (i = 0; i < cpu->size; i++) {
257                         if (numa_bitmask_isbitset(cpu, i))
258                                 return true;
259                 }
260         }
261
262         return false; /* lets fall back to nocpus safely */
263 }
264
265 static cpu_set_t bind_to_cpu(int target_cpu)
266 {
267         cpu_set_t orig_mask, mask;
268         int ret;
269
270         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
271         BUG_ON(ret);
272
273         CPU_ZERO(&mask);
274
275         if (target_cpu == -1) {
276                 int cpu;
277
278                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
279                         CPU_SET(cpu, &mask);
280         } else {
281                 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
282                 CPU_SET(target_cpu, &mask);
283         }
284
285         ret = sched_setaffinity(0, sizeof(mask), &mask);
286         BUG_ON(ret);
287
288         return orig_mask;
289 }
290
291 static cpu_set_t bind_to_node(int target_node)
292 {
293         int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
294         cpu_set_t orig_mask, mask;
295         int cpu;
296         int ret;
297
298         BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
299         BUG_ON(!cpus_per_node);
300
301         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
302         BUG_ON(ret);
303
304         CPU_ZERO(&mask);
305
306         if (target_node == NUMA_NO_NODE) {
307                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
308                         CPU_SET(cpu, &mask);
309         } else {
310                 int cpu_start = (target_node + 0) * cpus_per_node;
311                 int cpu_stop  = (target_node + 1) * cpus_per_node;
312
313                 BUG_ON(cpu_stop > g->p.nr_cpus);
314
315                 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
316                         CPU_SET(cpu, &mask);
317         }
318
319         ret = sched_setaffinity(0, sizeof(mask), &mask);
320         BUG_ON(ret);
321
322         return orig_mask;
323 }
324
325 static void bind_to_cpumask(cpu_set_t mask)
326 {
327         int ret;
328
329         ret = sched_setaffinity(0, sizeof(mask), &mask);
330         BUG_ON(ret);
331 }
332
333 static void mempol_restore(void)
334 {
335         int ret;
336
337         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
338
339         BUG_ON(ret);
340 }
341
342 static void bind_to_memnode(int node)
343 {
344         unsigned long nodemask;
345         int ret;
346
347         if (node == NUMA_NO_NODE)
348                 return;
349
350         BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
351         nodemask = 1L << node;
352
353         ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
354         dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
355
356         BUG_ON(ret);
357 }
358
359 #define HPSIZE (2*1024*1024)
360
361 #define set_taskname(fmt...)                            \
362 do {                                                    \
363         char name[20];                                  \
364                                                         \
365         snprintf(name, 20, fmt);                        \
366         prctl(PR_SET_NAME, name);                       \
367 } while (0)
368
369 static u8 *alloc_data(ssize_t bytes0, int map_flags,
370                       int init_zero, int init_cpu0, int thp, int init_random)
371 {
372         cpu_set_t orig_mask;
373         ssize_t bytes;
374         u8 *buf;
375         int ret;
376
377         if (!bytes0)
378                 return NULL;
379
380         /* Allocate and initialize all memory on CPU#0: */
381         if (init_cpu0) {
382                 int node = numa_node_of_cpu(0);
383
384                 orig_mask = bind_to_node(node);
385                 bind_to_memnode(node);
386         }
387
388         bytes = bytes0 + HPSIZE;
389
390         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
391         BUG_ON(buf == (void *)-1);
392
393         if (map_flags == MAP_PRIVATE) {
394                 if (thp > 0) {
395                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
396                         if (ret && !g->print_once) {
397                                 g->print_once = 1;
398                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
399                         }
400                 }
401                 if (thp < 0) {
402                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
403                         if (ret && !g->print_once) {
404                                 g->print_once = 1;
405                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
406                         }
407                 }
408         }
409
410         if (init_zero) {
411                 bzero(buf, bytes);
412         } else {
413                 /* Initialize random contents, different in each word: */
414                 if (init_random) {
415                         u64 *wbuf = (void *)buf;
416                         long off = rand();
417                         long i;
418
419                         for (i = 0; i < bytes/8; i++)
420                                 wbuf[i] = i + off;
421                 }
422         }
423
424         /* Align to 2MB boundary: */
425         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
426
427         /* Restore affinity: */
428         if (init_cpu0) {
429                 bind_to_cpumask(orig_mask);
430                 mempol_restore();
431         }
432
433         return buf;
434 }
435
436 static void free_data(void *data, ssize_t bytes)
437 {
438         int ret;
439
440         if (!data)
441                 return;
442
443         ret = munmap(data, bytes);
444         BUG_ON(ret);
445 }
446
447 /*
448  * Create a shared memory buffer that can be shared between processes, zeroed:
449  */
450 static void * zalloc_shared_data(ssize_t bytes)
451 {
452         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
453 }
454
455 /*
456  * Create a shared memory buffer that can be shared between processes:
457  */
458 static void * setup_shared_data(ssize_t bytes)
459 {
460         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
461 }
462
463 /*
464  * Allocate process-local memory - this will either be shared between
465  * threads of this process, or only be accessed by this thread:
466  */
467 static void * setup_private_data(ssize_t bytes)
468 {
469         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
470 }
471
472 /*
473  * Return a process-shared (global) mutex:
474  */
475 static void init_global_mutex(pthread_mutex_t *mutex)
476 {
477         pthread_mutexattr_t attr;
478
479         pthread_mutexattr_init(&attr);
480         pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
481         pthread_mutex_init(mutex, &attr);
482 }
483
484 static int parse_cpu_list(const char *arg)
485 {
486         p0.cpu_list_str = strdup(arg);
487
488         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
489
490         return 0;
491 }
492
493 static int parse_setup_cpu_list(void)
494 {
495         struct thread_data *td;
496         char *str0, *str;
497         int t;
498
499         if (!g->p.cpu_list_str)
500                 return 0;
501
502         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
503
504         str0 = str = strdup(g->p.cpu_list_str);
505         t = 0;
506
507         BUG_ON(!str);
508
509         tprintf("# binding tasks to CPUs:\n");
510         tprintf("#  ");
511
512         while (true) {
513                 int bind_cpu, bind_cpu_0, bind_cpu_1;
514                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
515                 int bind_len;
516                 int step;
517                 int mul;
518
519                 tok = strsep(&str, ",");
520                 if (!tok)
521                         break;
522
523                 tok_end = strstr(tok, "-");
524
525                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
526                 if (!tok_end) {
527                         /* Single CPU specified: */
528                         bind_cpu_0 = bind_cpu_1 = atol(tok);
529                 } else {
530                         /* CPU range specified (for example: "5-11"): */
531                         bind_cpu_0 = atol(tok);
532                         bind_cpu_1 = atol(tok_end + 1);
533                 }
534
535                 step = 1;
536                 tok_step = strstr(tok, "#");
537                 if (tok_step) {
538                         step = atol(tok_step + 1);
539                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
540                 }
541
542                 /*
543                  * Mask length.
544                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
545                  * where the _4 means the next 4 CPUs are allowed.
546                  */
547                 bind_len = 1;
548                 tok_len = strstr(tok, "_");
549                 if (tok_len) {
550                         bind_len = atol(tok_len + 1);
551                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
552                 }
553
554                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
555                 mul = 1;
556                 tok_mul = strstr(tok, "x");
557                 if (tok_mul) {
558                         mul = atol(tok_mul + 1);
559                         BUG_ON(mul <= 0);
560                 }
561
562                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
563
564                 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
565                         printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
566                         return -1;
567                 }
568
569                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
570                 BUG_ON(bind_cpu_0 > bind_cpu_1);
571
572                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
573                         int i;
574
575                         for (i = 0; i < mul; i++) {
576                                 int cpu;
577
578                                 if (t >= g->p.nr_tasks) {
579                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
580                                         goto out;
581                                 }
582                                 td = g->threads + t;
583
584                                 if (t)
585                                         tprintf(",");
586                                 if (bind_len > 1) {
587                                         tprintf("%2d/%d", bind_cpu, bind_len);
588                                 } else {
589                                         tprintf("%2d", bind_cpu);
590                                 }
591
592                                 CPU_ZERO(&td->bind_cpumask);
593                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
594                                         BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
595                                         CPU_SET(cpu, &td->bind_cpumask);
596                                 }
597                                 t++;
598                         }
599                 }
600         }
601 out:
602
603         tprintf("\n");
604
605         if (t < g->p.nr_tasks)
606                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
607
608         free(str0);
609         return 0;
610 }
611
612 static int parse_cpus_opt(const struct option *opt __maybe_unused,
613                           const char *arg, int unset __maybe_unused)
614 {
615         if (!arg)
616                 return -1;
617
618         return parse_cpu_list(arg);
619 }
620
621 static int parse_node_list(const char *arg)
622 {
623         p0.node_list_str = strdup(arg);
624
625         dprintf("got NODE list: {%s}\n", p0.node_list_str);
626
627         return 0;
628 }
629
630 static int parse_setup_node_list(void)
631 {
632         struct thread_data *td;
633         char *str0, *str;
634         int t;
635
636         if (!g->p.node_list_str)
637                 return 0;
638
639         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
640
641         str0 = str = strdup(g->p.node_list_str);
642         t = 0;
643
644         BUG_ON(!str);
645
646         tprintf("# binding tasks to NODEs:\n");
647         tprintf("# ");
648
649         while (true) {
650                 int bind_node, bind_node_0, bind_node_1;
651                 char *tok, *tok_end, *tok_step, *tok_mul;
652                 int step;
653                 int mul;
654
655                 tok = strsep(&str, ",");
656                 if (!tok)
657                         break;
658
659                 tok_end = strstr(tok, "-");
660
661                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
662                 if (!tok_end) {
663                         /* Single NODE specified: */
664                         bind_node_0 = bind_node_1 = atol(tok);
665                 } else {
666                         /* NODE range specified (for example: "5-11"): */
667                         bind_node_0 = atol(tok);
668                         bind_node_1 = atol(tok_end + 1);
669                 }
670
671                 step = 1;
672                 tok_step = strstr(tok, "#");
673                 if (tok_step) {
674                         step = atol(tok_step + 1);
675                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
676                 }
677
678                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
679                 mul = 1;
680                 tok_mul = strstr(tok, "x");
681                 if (tok_mul) {
682                         mul = atol(tok_mul + 1);
683                         BUG_ON(mul <= 0);
684                 }
685
686                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
687
688                 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
689                         printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
690                         return -1;
691                 }
692
693                 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
694                 BUG_ON(bind_node_0 > bind_node_1);
695
696                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
697                         int i;
698
699                         for (i = 0; i < mul; i++) {
700                                 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
701                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
702                                         goto out;
703                                 }
704                                 td = g->threads + t;
705
706                                 if (!t)
707                                         tprintf(" %2d", bind_node);
708                                 else
709                                         tprintf(",%2d", bind_node);
710
711                                 td->bind_node = bind_node;
712                                 t++;
713                         }
714                 }
715         }
716 out:
717
718         tprintf("\n");
719
720         if (t < g->p.nr_tasks)
721                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
722
723         free(str0);
724         return 0;
725 }
726
727 static int parse_nodes_opt(const struct option *opt __maybe_unused,
728                           const char *arg, int unset __maybe_unused)
729 {
730         if (!arg)
731                 return -1;
732
733         return parse_node_list(arg);
734
735         return 0;
736 }
737
738 #define BIT(x) (1ul << x)
739
740 static inline uint32_t lfsr_32(uint32_t lfsr)
741 {
742         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
743         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
744 }
745
746 /*
747  * Make sure there's real data dependency to RAM (when read
748  * accesses are enabled), so the compiler, the CPU and the
749  * kernel (KSM, zero page, etc.) cannot optimize away RAM
750  * accesses:
751  */
752 static inline u64 access_data(u64 *data, u64 val)
753 {
754         if (g->p.data_reads)
755                 val += *data;
756         if (g->p.data_writes)
757                 *data = val + 1;
758         return val;
759 }
760
761 /*
762  * The worker process does two types of work, a forwards going
763  * loop and a backwards going loop.
764  *
765  * We do this so that on multiprocessor systems we do not create
766  * a 'train' of processing, with highly synchronized processes,
767  * skewing the whole benchmark.
768  */
769 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
770 {
771         long words = bytes/sizeof(u64);
772         u64 *data = (void *)__data;
773         long chunk_0, chunk_1;
774         u64 *d0, *d, *d1;
775         long off;
776         long i;
777
778         BUG_ON(!data && words);
779         BUG_ON(data && !words);
780
781         if (!data)
782                 return val;
783
784         /* Very simple memset() work variant: */
785         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
786                 bzero(data, bytes);
787                 return val;
788         }
789
790         /* Spread out by PID/TID nr and by loop nr: */
791         chunk_0 = words/nr_max;
792         chunk_1 = words/g->p.nr_loops;
793         off = nr*chunk_0 + loop*chunk_1;
794
795         while (off >= words)
796                 off -= words;
797
798         if (g->p.data_rand_walk) {
799                 u32 lfsr = nr + loop + val;
800                 int j;
801
802                 for (i = 0; i < words/1024; i++) {
803                         long start, end;
804
805                         lfsr = lfsr_32(lfsr);
806
807                         start = lfsr % words;
808                         end = min(start + 1024, words-1);
809
810                         if (g->p.data_zero_memset) {
811                                 bzero(data + start, (end-start) * sizeof(u64));
812                         } else {
813                                 for (j = start; j < end; j++)
814                                         val = access_data(data + j, val);
815                         }
816                 }
817         } else if (!g->p.data_backwards || (nr + loop) & 1) {
818
819                 d0 = data + off;
820                 d  = data + off + 1;
821                 d1 = data + words;
822
823                 /* Process data forwards: */
824                 for (;;) {
825                         if (unlikely(d >= d1))
826                                 d = data;
827                         if (unlikely(d == d0))
828                                 break;
829
830                         val = access_data(d, val);
831
832                         d++;
833                 }
834         } else {
835                 /* Process data backwards: */
836
837                 d0 = data + off;
838                 d  = data + off - 1;
839                 d1 = data + words;
840
841                 /* Process data forwards: */
842                 for (;;) {
843                         if (unlikely(d < data))
844                                 d = data + words-1;
845                         if (unlikely(d == d0))
846                                 break;
847
848                         val = access_data(d, val);
849
850                         d--;
851                 }
852         }
853
854         return val;
855 }
856
857 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
858 {
859         unsigned int cpu;
860
861         cpu = sched_getcpu();
862
863         g->threads[task_nr].curr_cpu = cpu;
864         prctl(0, bytes_worked);
865 }
866
867 #define MAX_NR_NODES    64
868
869 /*
870  * Count the number of nodes a process's threads
871  * are spread out on.
872  *
873  * A count of 1 means that the process is compressed
874  * to a single node. A count of g->p.nr_nodes means it's
875  * spread out on the whole system.
876  */
877 static int count_process_nodes(int process_nr)
878 {
879         char node_present[MAX_NR_NODES] = { 0, };
880         int nodes;
881         int n, t;
882
883         for (t = 0; t < g->p.nr_threads; t++) {
884                 struct thread_data *td;
885                 int task_nr;
886                 int node;
887
888                 task_nr = process_nr*g->p.nr_threads + t;
889                 td = g->threads + task_nr;
890
891                 node = numa_node_of_cpu(td->curr_cpu);
892                 if (node < 0) /* curr_cpu was likely still -1 */
893                         return 0;
894
895                 node_present[node] = 1;
896         }
897
898         nodes = 0;
899
900         for (n = 0; n < MAX_NR_NODES; n++)
901                 nodes += node_present[n];
902
903         return nodes;
904 }
905
906 /*
907  * Count the number of distinct process-threads a node contains.
908  *
909  * A count of 1 means that the node contains only a single
910  * process. If all nodes on the system contain at most one
911  * process then we are well-converged.
912  */
913 static int count_node_processes(int node)
914 {
915         int processes = 0;
916         int t, p;
917
918         for (p = 0; p < g->p.nr_proc; p++) {
919                 for (t = 0; t < g->p.nr_threads; t++) {
920                         struct thread_data *td;
921                         int task_nr;
922                         int n;
923
924                         task_nr = p*g->p.nr_threads + t;
925                         td = g->threads + task_nr;
926
927                         n = numa_node_of_cpu(td->curr_cpu);
928                         if (n == node) {
929                                 processes++;
930                                 break;
931                         }
932                 }
933         }
934
935         return processes;
936 }
937
938 static void calc_convergence_compression(int *strong)
939 {
940         unsigned int nodes_min, nodes_max;
941         int p;
942
943         nodes_min = -1;
944         nodes_max =  0;
945
946         for (p = 0; p < g->p.nr_proc; p++) {
947                 unsigned int nodes = count_process_nodes(p);
948
949                 if (!nodes) {
950                         *strong = 0;
951                         return;
952                 }
953
954                 nodes_min = min(nodes, nodes_min);
955                 nodes_max = max(nodes, nodes_max);
956         }
957
958         /* Strong convergence: all threads compress on a single node: */
959         if (nodes_min == 1 && nodes_max == 1) {
960                 *strong = 1;
961         } else {
962                 *strong = 0;
963                 tprintf(" {%d-%d}", nodes_min, nodes_max);
964         }
965 }
966
967 static void calc_convergence(double runtime_ns_max, double *convergence)
968 {
969         unsigned int loops_done_min, loops_done_max;
970         int process_groups;
971         int nodes[MAX_NR_NODES];
972         int distance;
973         int nr_min;
974         int nr_max;
975         int strong;
976         int sum;
977         int nr;
978         int node;
979         int cpu;
980         int t;
981
982         if (!g->p.show_convergence && !g->p.measure_convergence)
983                 return;
984
985         for (node = 0; node < g->p.nr_nodes; node++)
986                 nodes[node] = 0;
987
988         loops_done_min = -1;
989         loops_done_max = 0;
990
991         for (t = 0; t < g->p.nr_tasks; t++) {
992                 struct thread_data *td = g->threads + t;
993                 unsigned int loops_done;
994
995                 cpu = td->curr_cpu;
996
997                 /* Not all threads have written it yet: */
998                 if (cpu < 0)
999                         continue;
1000
1001                 node = numa_node_of_cpu(cpu);
1002
1003                 nodes[node]++;
1004
1005                 loops_done = td->loops_done;
1006                 loops_done_min = min(loops_done, loops_done_min);
1007                 loops_done_max = max(loops_done, loops_done_max);
1008         }
1009
1010         nr_max = 0;
1011         nr_min = g->p.nr_tasks;
1012         sum = 0;
1013
1014         for (node = 0; node < g->p.nr_nodes; node++) {
1015                 if (!is_node_present(node))
1016                         continue;
1017                 nr = nodes[node];
1018                 nr_min = min(nr, nr_min);
1019                 nr_max = max(nr, nr_max);
1020                 sum += nr;
1021         }
1022         BUG_ON(nr_min > nr_max);
1023
1024         BUG_ON(sum > g->p.nr_tasks);
1025
1026         if (0 && (sum < g->p.nr_tasks))
1027                 return;
1028
1029         /*
1030          * Count the number of distinct process groups present
1031          * on nodes - when we are converged this will decrease
1032          * to g->p.nr_proc:
1033          */
1034         process_groups = 0;
1035
1036         for (node = 0; node < g->p.nr_nodes; node++) {
1037                 int processes;
1038
1039                 if (!is_node_present(node))
1040                         continue;
1041                 processes = count_node_processes(node);
1042                 nr = nodes[node];
1043                 tprintf(" %2d/%-2d", nr, processes);
1044
1045                 process_groups += processes;
1046         }
1047
1048         distance = nr_max - nr_min;
1049
1050         tprintf(" [%2d/%-2d]", distance, process_groups);
1051
1052         tprintf(" l:%3d-%-3d (%3d)",
1053                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1054
1055         if (loops_done_min && loops_done_max) {
1056                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1057
1058                 tprintf(" [%4.1f%%]", skew * 100.0);
1059         }
1060
1061         calc_convergence_compression(&strong);
1062
1063         if (strong && process_groups == g->p.nr_proc) {
1064                 if (!*convergence) {
1065                         *convergence = runtime_ns_max;
1066                         tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1067                         if (g->p.measure_convergence) {
1068                                 g->all_converged = true;
1069                                 g->stop_work = true;
1070                         }
1071                 }
1072         } else {
1073                 if (*convergence) {
1074                         tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1075                         *convergence = 0;
1076                 }
1077                 tprintf("\n");
1078         }
1079 }
1080
1081 static void show_summary(double runtime_ns_max, int l, double *convergence)
1082 {
1083         tprintf("\r #  %5.1f%%  [%.1f mins]",
1084                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1085
1086         calc_convergence(runtime_ns_max, convergence);
1087
1088         if (g->p.show_details >= 0)
1089                 fflush(stdout);
1090 }
1091
1092 static void *worker_thread(void *__tdata)
1093 {
1094         struct thread_data *td = __tdata;
1095         struct timeval start0, start, stop, diff;
1096         int process_nr = td->process_nr;
1097         int thread_nr = td->thread_nr;
1098         unsigned long last_perturbance;
1099         int task_nr = td->task_nr;
1100         int details = g->p.show_details;
1101         int first_task, last_task;
1102         double convergence = 0;
1103         u64 val = td->val;
1104         double runtime_ns_max;
1105         u8 *global_data;
1106         u8 *process_data;
1107         u8 *thread_data;
1108         u64 bytes_done, secs;
1109         long work_done;
1110         u32 l;
1111         struct rusage rusage;
1112
1113         bind_to_cpumask(td->bind_cpumask);
1114         bind_to_memnode(td->bind_node);
1115
1116         set_taskname("thread %d/%d", process_nr, thread_nr);
1117
1118         global_data = g->data;
1119         process_data = td->process_data;
1120         thread_data = setup_private_data(g->p.bytes_thread);
1121
1122         bytes_done = 0;
1123
1124         last_task = 0;
1125         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1126                 last_task = 1;
1127
1128         first_task = 0;
1129         if (process_nr == 0 && thread_nr == 0)
1130                 first_task = 1;
1131
1132         if (details >= 2) {
1133                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1134                         process_nr, thread_nr, global_data, process_data, thread_data);
1135         }
1136
1137         if (g->p.serialize_startup) {
1138                 pthread_mutex_lock(&g->startup_mutex);
1139                 g->nr_tasks_started++;
1140                 pthread_mutex_unlock(&g->startup_mutex);
1141
1142                 /* Here we will wait for the main process to start us all at once: */
1143                 pthread_mutex_lock(&g->start_work_mutex);
1144                 g->nr_tasks_working++;
1145
1146                 /* Last one wake the main process: */
1147                 if (g->nr_tasks_working == g->p.nr_tasks)
1148                         pthread_mutex_unlock(&g->startup_done_mutex);
1149
1150                 pthread_mutex_unlock(&g->start_work_mutex);
1151         }
1152
1153         gettimeofday(&start0, NULL);
1154
1155         start = stop = start0;
1156         last_perturbance = start.tv_sec;
1157
1158         for (l = 0; l < g->p.nr_loops; l++) {
1159                 start = stop;
1160
1161                 if (g->stop_work)
1162                         break;
1163
1164                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1165                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1166                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1167
1168                 if (g->p.sleep_usecs) {
1169                         pthread_mutex_lock(td->process_lock);
1170                         usleep(g->p.sleep_usecs);
1171                         pthread_mutex_unlock(td->process_lock);
1172                 }
1173                 /*
1174                  * Amount of work to be done under a process-global lock:
1175                  */
1176                 if (g->p.bytes_process_locked) {
1177                         pthread_mutex_lock(td->process_lock);
1178                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1179                         pthread_mutex_unlock(td->process_lock);
1180                 }
1181
1182                 work_done = g->p.bytes_global + g->p.bytes_process +
1183                             g->p.bytes_process_locked + g->p.bytes_thread;
1184
1185                 update_curr_cpu(task_nr, work_done);
1186                 bytes_done += work_done;
1187
1188                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1189                         continue;
1190
1191                 td->loops_done = l;
1192
1193                 gettimeofday(&stop, NULL);
1194
1195                 /* Check whether our max runtime timed out: */
1196                 if (g->p.nr_secs) {
1197                         timersub(&stop, &start0, &diff);
1198                         if ((u32)diff.tv_sec >= g->p.nr_secs) {
1199                                 g->stop_work = true;
1200                                 break;
1201                         }
1202                 }
1203
1204                 /* Update the summary at most once per second: */
1205                 if (start.tv_sec == stop.tv_sec)
1206                         continue;
1207
1208                 /*
1209                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1210                  * by migrating to CPU#0:
1211                  */
1212                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1213                         cpu_set_t orig_mask;
1214                         int target_cpu;
1215                         int this_cpu;
1216
1217                         last_perturbance = stop.tv_sec;
1218
1219                         /*
1220                          * Depending on where we are running, move into
1221                          * the other half of the system, to create some
1222                          * real disturbance:
1223                          */
1224                         this_cpu = g->threads[task_nr].curr_cpu;
1225                         if (this_cpu < g->p.nr_cpus/2)
1226                                 target_cpu = g->p.nr_cpus-1;
1227                         else
1228                                 target_cpu = 0;
1229
1230                         orig_mask = bind_to_cpu(target_cpu);
1231
1232                         /* Here we are running on the target CPU already */
1233                         if (details >= 1)
1234                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1235
1236                         bind_to_cpumask(orig_mask);
1237                 }
1238
1239                 if (details >= 3) {
1240                         timersub(&stop, &start, &diff);
1241                         runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1242                         runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1243
1244                         if (details >= 0) {
1245                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1246                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1247                         }
1248                         fflush(stdout);
1249                 }
1250                 if (!last_task)
1251                         continue;
1252
1253                 timersub(&stop, &start0, &diff);
1254                 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1255                 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1256
1257                 show_summary(runtime_ns_max, l, &convergence);
1258         }
1259
1260         gettimeofday(&stop, NULL);
1261         timersub(&stop, &start0, &diff);
1262         td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1263         td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1264         secs = td->runtime_ns / NSEC_PER_SEC;
1265         td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1266
1267         getrusage(RUSAGE_THREAD, &rusage);
1268         td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1269         td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1270         td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1271         td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1272
1273         free_data(thread_data, g->p.bytes_thread);
1274
1275         pthread_mutex_lock(&g->stop_work_mutex);
1276         g->bytes_done += bytes_done;
1277         pthread_mutex_unlock(&g->stop_work_mutex);
1278
1279         return NULL;
1280 }
1281
1282 /*
1283  * A worker process starts a couple of threads:
1284  */
1285 static void worker_process(int process_nr)
1286 {
1287         pthread_mutex_t process_lock;
1288         struct thread_data *td;
1289         pthread_t *pthreads;
1290         u8 *process_data;
1291         int task_nr;
1292         int ret;
1293         int t;
1294
1295         pthread_mutex_init(&process_lock, NULL);
1296         set_taskname("process %d", process_nr);
1297
1298         /*
1299          * Pick up the memory policy and the CPU binding of our first thread,
1300          * so that we initialize memory accordingly:
1301          */
1302         task_nr = process_nr*g->p.nr_threads;
1303         td = g->threads + task_nr;
1304
1305         bind_to_memnode(td->bind_node);
1306         bind_to_cpumask(td->bind_cpumask);
1307
1308         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1309         process_data = setup_private_data(g->p.bytes_process);
1310
1311         if (g->p.show_details >= 3) {
1312                 printf(" # process %2d global mem: %p, process mem: %p\n",
1313                         process_nr, g->data, process_data);
1314         }
1315
1316         for (t = 0; t < g->p.nr_threads; t++) {
1317                 task_nr = process_nr*g->p.nr_threads + t;
1318                 td = g->threads + task_nr;
1319
1320                 td->process_data = process_data;
1321                 td->process_nr   = process_nr;
1322                 td->thread_nr    = t;
1323                 td->task_nr      = task_nr;
1324                 td->val          = rand();
1325                 td->curr_cpu     = -1;
1326                 td->process_lock = &process_lock;
1327
1328                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1329                 BUG_ON(ret);
1330         }
1331
1332         for (t = 0; t < g->p.nr_threads; t++) {
1333                 ret = pthread_join(pthreads[t], NULL);
1334                 BUG_ON(ret);
1335         }
1336
1337         free_data(process_data, g->p.bytes_process);
1338         free(pthreads);
1339 }
1340
1341 static void print_summary(void)
1342 {
1343         if (g->p.show_details < 0)
1344                 return;
1345
1346         printf("\n ###\n");
1347         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1348                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1349         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1350                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1351         printf(" #      %5dx %5ldMB process shared mem operations\n",
1352                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1353         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1354                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1355
1356         printf(" ###\n");
1357
1358         printf("\n ###\n"); fflush(stdout);
1359 }
1360
1361 static void init_thread_data(void)
1362 {
1363         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1364         int t;
1365
1366         g->threads = zalloc_shared_data(size);
1367
1368         for (t = 0; t < g->p.nr_tasks; t++) {
1369                 struct thread_data *td = g->threads + t;
1370                 int cpu;
1371
1372                 /* Allow all nodes by default: */
1373                 td->bind_node = NUMA_NO_NODE;
1374
1375                 /* Allow all CPUs by default: */
1376                 CPU_ZERO(&td->bind_cpumask);
1377                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1378                         CPU_SET(cpu, &td->bind_cpumask);
1379         }
1380 }
1381
1382 static void deinit_thread_data(void)
1383 {
1384         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1385
1386         free_data(g->threads, size);
1387 }
1388
1389 static int init(void)
1390 {
1391         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1392
1393         /* Copy over options: */
1394         g->p = p0;
1395
1396         g->p.nr_cpus = numa_num_configured_cpus();
1397
1398         g->p.nr_nodes = numa_max_node() + 1;
1399
1400         /* char array in count_process_nodes(): */
1401         BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1402
1403         if (g->p.show_quiet && !g->p.show_details)
1404                 g->p.show_details = -1;
1405
1406         /* Some memory should be specified: */
1407         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1408                 return -1;
1409
1410         if (g->p.mb_global_str) {
1411                 g->p.mb_global = atof(g->p.mb_global_str);
1412                 BUG_ON(g->p.mb_global < 0);
1413         }
1414
1415         if (g->p.mb_proc_str) {
1416                 g->p.mb_proc = atof(g->p.mb_proc_str);
1417                 BUG_ON(g->p.mb_proc < 0);
1418         }
1419
1420         if (g->p.mb_proc_locked_str) {
1421                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1422                 BUG_ON(g->p.mb_proc_locked < 0);
1423                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1424         }
1425
1426         if (g->p.mb_thread_str) {
1427                 g->p.mb_thread = atof(g->p.mb_thread_str);
1428                 BUG_ON(g->p.mb_thread < 0);
1429         }
1430
1431         BUG_ON(g->p.nr_threads <= 0);
1432         BUG_ON(g->p.nr_proc <= 0);
1433
1434         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1435
1436         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1437         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1438         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1439         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1440
1441         g->data = setup_shared_data(g->p.bytes_global);
1442
1443         /* Startup serialization: */
1444         init_global_mutex(&g->start_work_mutex);
1445         init_global_mutex(&g->startup_mutex);
1446         init_global_mutex(&g->startup_done_mutex);
1447         init_global_mutex(&g->stop_work_mutex);
1448
1449         init_thread_data();
1450
1451         tprintf("#\n");
1452         if (parse_setup_cpu_list() || parse_setup_node_list())
1453                 return -1;
1454         tprintf("#\n");
1455
1456         print_summary();
1457
1458         return 0;
1459 }
1460
1461 static void deinit(void)
1462 {
1463         free_data(g->data, g->p.bytes_global);
1464         g->data = NULL;
1465
1466         deinit_thread_data();
1467
1468         free_data(g, sizeof(*g));
1469         g = NULL;
1470 }
1471
1472 /*
1473  * Print a short or long result, depending on the verbosity setting:
1474  */
1475 static void print_res(const char *name, double val,
1476                       const char *txt_unit, const char *txt_short, const char *txt_long)
1477 {
1478         if (!name)
1479                 name = "main,";
1480
1481         if (!g->p.show_quiet)
1482                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1483         else
1484                 printf(" %14.3f %s\n", val, txt_long);
1485 }
1486
1487 static int __bench_numa(const char *name)
1488 {
1489         struct timeval start, stop, diff;
1490         u64 runtime_ns_min, runtime_ns_sum;
1491         pid_t *pids, pid, wpid;
1492         double delta_runtime;
1493         double runtime_avg;
1494         double runtime_sec_max;
1495         double runtime_sec_min;
1496         int wait_stat;
1497         double bytes;
1498         int i, t, p;
1499
1500         if (init())
1501                 return -1;
1502
1503         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1504         pid = -1;
1505
1506         /* All threads try to acquire it, this way we can wait for them to start up: */
1507         pthread_mutex_lock(&g->start_work_mutex);
1508
1509         if (g->p.serialize_startup) {
1510                 tprintf(" #\n");
1511                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1512         }
1513
1514         gettimeofday(&start, NULL);
1515
1516         for (i = 0; i < g->p.nr_proc; i++) {
1517                 pid = fork();
1518                 dprintf(" # process %2d: PID %d\n", i, pid);
1519
1520                 BUG_ON(pid < 0);
1521                 if (!pid) {
1522                         /* Child process: */
1523                         worker_process(i);
1524
1525                         exit(0);
1526                 }
1527                 pids[i] = pid;
1528
1529         }
1530         /* Wait for all the threads to start up: */
1531         while (g->nr_tasks_started != g->p.nr_tasks)
1532                 usleep(USEC_PER_MSEC);
1533
1534         BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1535
1536         if (g->p.serialize_startup) {
1537                 double startup_sec;
1538
1539                 pthread_mutex_lock(&g->startup_done_mutex);
1540
1541                 /* This will start all threads: */
1542                 pthread_mutex_unlock(&g->start_work_mutex);
1543
1544                 /* This mutex is locked - the last started thread will wake us: */
1545                 pthread_mutex_lock(&g->startup_done_mutex);
1546
1547                 gettimeofday(&stop, NULL);
1548
1549                 timersub(&stop, &start, &diff);
1550
1551                 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1552                 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1553                 startup_sec /= NSEC_PER_SEC;
1554
1555                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1556                 tprintf(" #\n");
1557
1558                 start = stop;
1559                 pthread_mutex_unlock(&g->startup_done_mutex);
1560         } else {
1561                 gettimeofday(&start, NULL);
1562         }
1563
1564         /* Parent process: */
1565
1566
1567         for (i = 0; i < g->p.nr_proc; i++) {
1568                 wpid = waitpid(pids[i], &wait_stat, 0);
1569                 BUG_ON(wpid < 0);
1570                 BUG_ON(!WIFEXITED(wait_stat));
1571
1572         }
1573
1574         runtime_ns_sum = 0;
1575         runtime_ns_min = -1LL;
1576
1577         for (t = 0; t < g->p.nr_tasks; t++) {
1578                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1579
1580                 runtime_ns_sum += thread_runtime_ns;
1581                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1582         }
1583
1584         gettimeofday(&stop, NULL);
1585         timersub(&stop, &start, &diff);
1586
1587         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1588
1589         tprintf("\n ###\n");
1590         tprintf("\n");
1591
1592         runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1593         runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1594         runtime_sec_max /= NSEC_PER_SEC;
1595
1596         runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1597
1598         bytes = g->bytes_done;
1599         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1600
1601         if (g->p.measure_convergence) {
1602                 print_res(name, runtime_sec_max,
1603                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1604         }
1605
1606         print_res(name, runtime_sec_max,
1607                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1608
1609         print_res(name, runtime_sec_min,
1610                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1611
1612         print_res(name, runtime_avg,
1613                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1614
1615         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1616         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1617                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1618
1619         print_res(name, bytes / g->p.nr_tasks / 1e9,
1620                 "GB,", "data/thread",           "GB data processed, per thread");
1621
1622         print_res(name, bytes / 1e9,
1623                 "GB,", "data-total",            "GB data processed, total");
1624
1625         print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1626                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1627
1628         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1629                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1630
1631         print_res(name, bytes / runtime_sec_max / 1e9,
1632                 "GB/sec,", "total-speed",       "GB/sec total speed");
1633
1634         if (g->p.show_details >= 2) {
1635                 char tname[14 + 2 * 10 + 1];
1636                 struct thread_data *td;
1637                 for (p = 0; p < g->p.nr_proc; p++) {
1638                         for (t = 0; t < g->p.nr_threads; t++) {
1639                                 memset(tname, 0, sizeof(tname));
1640                                 td = g->threads + p*g->p.nr_threads + t;
1641                                 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1642                                 print_res(tname, td->speed_gbs,
1643                                         "GB/sec",       "thread-speed", "GB/sec/thread speed");
1644                                 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1645                                         "secs", "thread-system-time", "system CPU time/thread");
1646                                 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1647                                         "secs", "thread-user-time", "user CPU time/thread");
1648                         }
1649                 }
1650         }
1651
1652         free(pids);
1653
1654         deinit();
1655
1656         return 0;
1657 }
1658
1659 #define MAX_ARGS 50
1660
1661 static int command_size(const char **argv)
1662 {
1663         int size = 0;
1664
1665         while (*argv) {
1666                 size++;
1667                 argv++;
1668         }
1669
1670         BUG_ON(size >= MAX_ARGS);
1671
1672         return size;
1673 }
1674
1675 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1676 {
1677         int i;
1678
1679         printf("\n # Running %s \"perf bench numa", name);
1680
1681         for (i = 0; i < argc; i++)
1682                 printf(" %s", argv[i]);
1683
1684         printf("\"\n");
1685
1686         memset(p, 0, sizeof(*p));
1687
1688         /* Initialize nonzero defaults: */
1689
1690         p->serialize_startup            = 1;
1691         p->data_reads                   = true;
1692         p->data_writes                  = true;
1693         p->data_backwards               = true;
1694         p->data_rand_walk               = true;
1695         p->nr_loops                     = -1;
1696         p->init_random                  = true;
1697         p->mb_global_str                = "1";
1698         p->nr_proc                      = 1;
1699         p->nr_threads                   = 1;
1700         p->nr_secs                      = 5;
1701         p->run_all                      = argc == 1;
1702 }
1703
1704 static int run_bench_numa(const char *name, const char **argv)
1705 {
1706         int argc = command_size(argv);
1707
1708         init_params(&p0, name, argc, argv);
1709         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1710         if (argc)
1711                 goto err;
1712
1713         if (__bench_numa(name))
1714                 goto err;
1715
1716         return 0;
1717
1718 err:
1719         return -1;
1720 }
1721
1722 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1723 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1724
1725 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1726 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1727
1728 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1729 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1730
1731 /*
1732  * The built-in test-suite executed by "perf bench numa -a".
1733  *
1734  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1735  */
1736 static const char *tests[][MAX_ARGS] = {
1737    /* Basic single-stream NUMA bandwidth measurements: */
1738    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1739                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1740    { "RAM-bw-local-NOTHP,",
1741                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1742                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1743    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1744                           "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1745
1746    /* 2-stream NUMA bandwidth measurements: */
1747    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1748                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1749    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1750                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1751
1752    /* Cross-stream NUMA bandwidth measurement: */
1753    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1754                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1755
1756    /* Convergence latency measurements: */
1757    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1758    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1759    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1760    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1761    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1762    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1763    { " 4x4-convergence-NOTHP,",
1764                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1765    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1766    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1767    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1768    { " 8x4-convergence-NOTHP,",
1769                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1770    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1771    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1772    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1773    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1774    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1775
1776    /* Various NUMA process/thread layout bandwidth measurements: */
1777    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1778    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1779    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1780    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1781    { " 8x1-bw-process-NOTHP,",
1782                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1783    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1784
1785    { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1786    { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1787    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1788    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1789
1790    { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1791    { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1792    { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1793    { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1794    { " 4x8-bw-thread-NOTHP,",
1795                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1796    { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1797    { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1798
1799    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1800    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1801
1802    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1803    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1804    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1805    { "numa01-bw-thread-NOTHP,",
1806                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1807 };
1808
1809 static int bench_all(void)
1810 {
1811         int nr = ARRAY_SIZE(tests);
1812         int ret;
1813         int i;
1814
1815         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1816         BUG_ON(ret < 0);
1817
1818         for (i = 0; i < nr; i++) {
1819                 run_bench_numa(tests[i][0], tests[i] + 1);
1820         }
1821
1822         printf("\n");
1823
1824         return 0;
1825 }
1826
1827 int bench_numa(int argc, const char **argv)
1828 {
1829         init_params(&p0, "main,", argc, argv);
1830         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1831         if (argc)
1832                 goto err;
1833
1834         if (p0.run_all)
1835                 return bench_all();
1836
1837         if (__bench_numa(NULL))
1838                 goto err;
1839
1840         return 0;
1841
1842 err:
1843         usage_with_options(numa_usage, options);
1844         return -1;
1845 }