Merge tag '9p-for-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh/v9fs
[linux-2.6-block.git] / tools / perf / Documentation / topdown.txt
1 Using TopDown metrics
2 ---------------------
3
4 TopDown metrics break apart performance bottlenecks. Starting at level
5 1 it is typical to get metrics on retiring, bad speculation, frontend
6 bound, and backend bound. Higher levels provide more detail in to the
7 level 1 bottlenecks, such as at level 2: core bound, memory bound,
8 heavy operations, light operations, branch mispredicts, machine
9 clears, fetch latency and fetch bandwidth. For more details see [1][2][3].
10
11 perf stat --topdown implements this using available metrics that vary
12 per architecture.
13
14 % perf stat -a --topdown -I1000
15 #           time      %  tma_retiring %  tma_backend_bound %  tma_frontend_bound %  tma_bad_speculation
16      1.001141351                 11.5                 34.9                  46.9                    6.7
17      2.006141972                 13.4                 28.1                  50.4                    8.1
18      3.010162040                 12.9                 28.1                  51.1                    8.0
19      4.014009311                 12.5                 28.6                  51.8                    7.2
20      5.017838554                 11.8                 33.0                  48.0                    7.2
21      5.704818971                 14.0                 27.5                  51.3                    7.3
22 ...
23
24 New Topdown features in Intel Ice Lake
25 ======================================
26
27 With Ice Lake CPUs the TopDown metrics are directly available as
28 fixed counters and do not require generic counters. This allows
29 to collect TopDown always in addition to other events.
30
31 Using TopDown through RDPMC in applications on Intel Ice Lake
32 =============================================================
33
34 For more fine grained measurements it can be useful to
35 access the new  directly from user space. This is more complicated,
36 but drastically lowers overhead.
37
38 On Ice Lake, there is a new fixed counter 3: SLOTS, which reports
39 "pipeline SLOTS" (cycles multiplied by core issue width) and a
40 metric register that reports slots ratios for the different bottleneck
41 categories.
42
43 The metrics counter is CPU model specific and is not available on older
44 CPUs.
45
46 Example code
47 ============
48
49 Library functions to do the functionality described below
50 is also available in libjevents [4]
51
52 The application opens a group with fixed counter 3 (SLOTS) and any
53 metric event, and allow user programs to read the performance counters.
54
55 Fixed counter 3 is mapped to a pseudo event event=0x00, umask=04,
56 so the perf_event_attr structure should be initialized with
57 { .config = 0x0400, .type = PERF_TYPE_RAW }
58 The metric events are mapped to the pseudo event event=0x00, umask=0x8X.
59 For example, the perf_event_attr structure can be initialized with
60 { .config = 0x8000, .type = PERF_TYPE_RAW } for Retiring metric event
61 The Fixed counter 3 must be the leader of the group.
62
63 #include <linux/perf_event.h>
64 #include <sys/mman.h>
65 #include <sys/syscall.h>
66 #include <unistd.h>
67
68 /* Provide own perf_event_open stub because glibc doesn't */
69 __attribute__((weak))
70 int perf_event_open(struct perf_event_attr *attr, pid_t pid,
71                     int cpu, int group_fd, unsigned long flags)
72 {
73         return syscall(__NR_perf_event_open, attr, pid, cpu, group_fd, flags);
74 }
75
76 /* Open slots counter file descriptor for current task. */
77 struct perf_event_attr slots = {
78         .type = PERF_TYPE_RAW,
79         .size = sizeof(struct perf_event_attr),
80         .config = 0x400,
81         .exclude_kernel = 1,
82 };
83
84 int slots_fd = perf_event_open(&slots, 0, -1, -1, 0);
85 if (slots_fd < 0)
86         ... error ...
87
88 /* Memory mapping the fd permits _rdpmc calls from userspace */
89 void *slots_p = mmap(0, getpagesize(), PROT_READ, MAP_SHARED, slots_fd, 0);
90 if (!slot_p)
91         .... error ...
92
93 /*
94  * Open metrics event file descriptor for current task.
95  * Set slots event as the leader of the group.
96  */
97 struct perf_event_attr metrics = {
98         .type = PERF_TYPE_RAW,
99         .size = sizeof(struct perf_event_attr),
100         .config = 0x8000,
101         .exclude_kernel = 1,
102 };
103
104 int metrics_fd = perf_event_open(&metrics, 0, -1, slots_fd, 0);
105 if (metrics_fd < 0)
106         ... error ...
107
108 /* Memory mapping the fd permits _rdpmc calls from userspace */
109 void *metrics_p = mmap(0, getpagesize(), PROT_READ, MAP_SHARED, metrics_fd, 0);
110 if (!metrics_p)
111         ... error ...
112
113 Note: the file descriptors returned by the perf_event_open calls must be memory
114 mapped to permit calls to the _rdpmd instruction. Permission may also be granted
115 by writing the /sys/devices/cpu/rdpmc sysfs node.
116
117 The RDPMC instruction (or _rdpmc compiler intrinsic) can now be used
118 to read slots and the topdown metrics at different points of the program:
119
120 #include <stdint.h>
121 #include <x86intrin.h>
122
123 #define RDPMC_FIXED     (1 << 30)       /* return fixed counters */
124 #define RDPMC_METRIC    (1 << 29)       /* return metric counters */
125
126 #define FIXED_COUNTER_SLOTS             3
127 #define METRIC_COUNTER_TOPDOWN_L1_L2    0
128
129 static inline uint64_t read_slots(void)
130 {
131         return _rdpmc(RDPMC_FIXED | FIXED_COUNTER_SLOTS);
132 }
133
134 static inline uint64_t read_metrics(void)
135 {
136         return _rdpmc(RDPMC_METRIC | METRIC_COUNTER_TOPDOWN_L1_L2);
137 }
138
139 Then the program can be instrumented to read these metrics at different
140 points.
141
142 It's not a good idea to do this with too short code regions,
143 as the parallelism and overlap in the CPU program execution will
144 cause too much measurement inaccuracy. For example instrumenting
145 individual basic blocks is definitely too fine grained.
146
147 _rdpmc calls should not be mixed with reading the metrics and slots counters
148 through system calls, as the kernel will reset these counters after each system
149 call.
150
151 Decoding metrics values
152 =======================
153
154 The value reported by read_metrics() contains four 8 bit fields
155 that represent a scaled ratio that represent the Level 1 bottleneck.
156 All four fields add up to 0xff (= 100%)
157
158 The binary ratios in the metric value can be converted to float ratios:
159
160 #define GET_METRIC(m, i) (((m) >> (i*8)) & 0xff)
161
162 /* L1 Topdown metric events */
163 #define TOPDOWN_RETIRING(val)   ((float)GET_METRIC(val, 0) / 0xff)
164 #define TOPDOWN_BAD_SPEC(val)   ((float)GET_METRIC(val, 1) / 0xff)
165 #define TOPDOWN_FE_BOUND(val)   ((float)GET_METRIC(val, 2) / 0xff)
166 #define TOPDOWN_BE_BOUND(val)   ((float)GET_METRIC(val, 3) / 0xff)
167
168 /*
169  * L2 Topdown metric events.
170  * Available on Sapphire Rapids and later platforms.
171  */
172 #define TOPDOWN_HEAVY_OPS(val)          ((float)GET_METRIC(val, 4) / 0xff)
173 #define TOPDOWN_BR_MISPREDICT(val)      ((float)GET_METRIC(val, 5) / 0xff)
174 #define TOPDOWN_FETCH_LAT(val)          ((float)GET_METRIC(val, 6) / 0xff)
175 #define TOPDOWN_MEM_BOUND(val)          ((float)GET_METRIC(val, 7) / 0xff)
176
177 and then converted to percent for printing.
178
179 The ratios in the metric accumulate for the time when the counter
180 is enabled. For measuring programs it is often useful to measure
181 specific sections. For this it is needed to deltas on metrics.
182
183 This can be done by scaling the metrics with the slots counter
184 read at the same time.
185
186 Then it's possible to take deltas of these slots counts
187 measured at different points, and determine the metrics
188 for that time period.
189
190         slots_a = read_slots();
191         metric_a = read_metrics();
192
193         ... larger code region ...
194
195         slots_b = read_slots()
196         metric_b = read_metrics()
197
198         # compute scaled metrics for measurement a
199         retiring_slots_a = GET_METRIC(metric_a, 0) * slots_a
200         bad_spec_slots_a = GET_METRIC(metric_a, 1) * slots_a
201         fe_bound_slots_a = GET_METRIC(metric_a, 2) * slots_a
202         be_bound_slots_a = GET_METRIC(metric_a, 3) * slots_a
203
204         # compute delta scaled metrics between b and a
205         retiring_slots = GET_METRIC(metric_b, 0) * slots_b - retiring_slots_a
206         bad_spec_slots = GET_METRIC(metric_b, 1) * slots_b - bad_spec_slots_a
207         fe_bound_slots = GET_METRIC(metric_b, 2) * slots_b - fe_bound_slots_a
208         be_bound_slots = GET_METRIC(metric_b, 3) * slots_b - be_bound_slots_a
209
210 Later the individual ratios of L1 metric events for the measurement period can
211 be recreated from these counts.
212
213         slots_delta = slots_b - slots_a
214         retiring_ratio = (float)retiring_slots / slots_delta
215         bad_spec_ratio = (float)bad_spec_slots / slots_delta
216         fe_bound_ratio = (float)fe_bound_slots / slots_delta
217         be_bound_ratio = (float)be_bound_slots / slota_delta
218
219         printf("Retiring %.2f%% Bad Speculation %.2f%% FE Bound %.2f%% BE Bound %.2f%%\n",
220                 retiring_ratio * 100.,
221                 bad_spec_ratio * 100.,
222                 fe_bound_ratio * 100.,
223                 be_bound_ratio * 100.);
224
225 The individual ratios of L2 metric events for the measurement period can be
226 recreated from L1 and L2 metric counters. (Available on Sapphire Rapids and
227 later platforms)
228
229         # compute scaled metrics for measurement a
230         heavy_ops_slots_a = GET_METRIC(metric_a, 4) * slots_a
231         br_mispredict_slots_a = GET_METRIC(metric_a, 5) * slots_a
232         fetch_lat_slots_a = GET_METRIC(metric_a, 6) * slots_a
233         mem_bound_slots_a = GET_METRIC(metric_a, 7) * slots_a
234
235         # compute delta scaled metrics between b and a
236         heavy_ops_slots = GET_METRIC(metric_b, 4) * slots_b - heavy_ops_slots_a
237         br_mispredict_slots = GET_METRIC(metric_b, 5) * slots_b - br_mispredict_slots_a
238         fetch_lat_slots = GET_METRIC(metric_b, 6) * slots_b - fetch_lat_slots_a
239         mem_bound_slots = GET_METRIC(metric_b, 7) * slots_b - mem_bound_slots_a
240
241         slots_delta = slots_b - slots_a
242         heavy_ops_ratio = (float)heavy_ops_slots / slots_delta
243         light_ops_ratio = retiring_ratio - heavy_ops_ratio;
244
245         br_mispredict_ratio = (float)br_mispredict_slots / slots_delta
246         machine_clears_ratio = bad_spec_ratio - br_mispredict_ratio;
247
248         fetch_lat_ratio = (float)fetch_lat_slots / slots_delta
249         fetch_bw_ratio = fe_bound_ratio - fetch_lat_ratio;
250
251         mem_bound_ratio = (float)mem_bound_slots / slota_delta
252         core_bound_ratio = be_bound_ratio - mem_bound_ratio;
253
254         printf("Heavy Operations %.2f%% Light Operations %.2f%% "
255                "Branch Mispredict %.2f%% Machine Clears %.2f%% "
256                "Fetch Latency %.2f%% Fetch Bandwidth %.2f%% "
257                "Mem Bound %.2f%% Core Bound %.2f%%\n",
258                 heavy_ops_ratio * 100.,
259                 light_ops_ratio * 100.,
260                 br_mispredict_ratio * 100.,
261                 machine_clears_ratio * 100.,
262                 fetch_lat_ratio * 100.,
263                 fetch_bw_ratio * 100.,
264                 mem_bound_ratio * 100.,
265                 core_bound_ratio * 100.);
266
267 Resetting metrics counters
268 ==========================
269
270 Since the individual metrics are only 8bit they lose precision for
271 short regions over time because the number of cycles covered by each
272 fraction bit shrinks. So the counters need to be reset regularly.
273
274 When using the kernel perf API the kernel resets on every read.
275 So as long as the reading is at reasonable intervals (every few
276 seconds) the precision is good.
277
278 When using perf stat it is recommended to always use the -I option,
279 with no longer interval than a few seconds
280
281         perf stat -I 1000 --topdown ...
282
283 For user programs using RDPMC directly the counter can
284 be reset explicitly using ioctl:
285
286         ioctl(perf_fd, PERF_EVENT_IOC_RESET, 0);
287
288 This "opens" a new measurement period.
289
290 A program using RDPMC for TopDown should schedule such a reset
291 regularly, as in every few seconds.
292
293 Limits on Intel Ice Lake
294 ========================
295
296 Four pseudo TopDown metric events are exposed for the end-users,
297 topdown-retiring, topdown-bad-spec, topdown-fe-bound and topdown-be-bound.
298 They can be used to collect the TopDown value under the following
299 rules:
300 - All the TopDown metric events must be in a group with the SLOTS event.
301 - The SLOTS event must be the leader of the group.
302 - The PERF_FORMAT_GROUP flag must be applied for each TopDown metric
303   events
304
305 The SLOTS event and the TopDown metric events can be counting members of
306 a sampling read group. Since the SLOTS event must be the leader of a TopDown
307 group, the second event of the group is the sampling event.
308 For example, perf record -e '{slots, $sampling_event, topdown-retiring}:S'
309
310 Extension on Intel Sapphire Rapids Server
311 =========================================
312 The metrics counter is extended to support TMA method level 2 metrics.
313 The lower half of the register is the TMA level 1 metrics (legacy).
314 The upper half is also divided into four 8-bit fields for the new level 2
315 metrics. Four more TopDown metric events are exposed for the end-users,
316 topdown-heavy-ops, topdown-br-mispredict, topdown-fetch-lat and
317 topdown-mem-bound.
318
319 Each of the new level 2 metrics in the upper half is a subset of the
320 corresponding level 1 metric in the lower half. Software can deduce the
321 other four level 2 metrics by subtracting corresponding metrics as below.
322
323     Light_Operations = Retiring - Heavy_Operations
324     Machine_Clears = Bad_Speculation - Branch_Mispredicts
325     Fetch_Bandwidth = Frontend_Bound - Fetch_Latency
326     Core_Bound = Backend_Bound - Memory_Bound
327
328
329 [1] https://software.intel.com/en-us/top-down-microarchitecture-analysis-method-win
330 [2] https://sites.google.com/site/analysismethods/yasin-pubs
331 [3] https://perf.wiki.kernel.org/index.php/Top-Down_Analysis
332 [4] https://github.com/andikleen/pmu-tools/tree/master/jevents