Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-block.git] / tools / memory-model / Documentation / explanation.txt
1 Explanation of the Linux-Kernel Memory Consistency Model
2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3
4 :Author: Alan Stern <stern@rowland.harvard.edu>
5 :Created: October 2017
6
7 .. Contents
8
9   1. INTRODUCTION
10   2. BACKGROUND
11   3. A SIMPLE EXAMPLE
12   4. A SELECTION OF MEMORY MODELS
13   5. ORDERING AND CYCLES
14   6. EVENTS
15   7. THE PROGRAM ORDER RELATION: po AND po-loc
16   8. A WARNING
17   9. DEPENDENCY RELATIONS: data, addr, and ctrl
18   10. THE READS-FROM RELATION: rf, rfi, and rfe
19   11. CACHE COHERENCE AND THE COHERENCE ORDER RELATION: co, coi, and coe
20   12. THE FROM-READS RELATION: fr, fri, and fre
21   13. AN OPERATIONAL MODEL
22   14. PROPAGATION ORDER RELATION: cumul-fence
23   15. DERIVATION OF THE LKMM FROM THE OPERATIONAL MODEL
24   16. SEQUENTIAL CONSISTENCY PER VARIABLE
25   17. ATOMIC UPDATES: rmw
26   18. THE PRESERVED PROGRAM ORDER RELATION: ppo
27   19. AND THEN THERE WAS ALPHA
28   20. THE HAPPENS-BEFORE RELATION: hb
29   21. THE PROPAGATES-BEFORE RELATION: pb
30   22. RCU RELATIONS: rcu-link, rcu-gp, rcu-rscsi, rcu-order, rcu-fence, and rb
31   23. SRCU READ-SIDE CRITICAL SECTIONS
32   24. LOCKING
33   25. PLAIN ACCESSES AND DATA RACES
34   26. ODDS AND ENDS
35
36
37
38 INTRODUCTION
39 ------------
40
41 The Linux-kernel memory consistency model (LKMM) is rather complex and
42 obscure.  This is particularly evident if you read through the
43 linux-kernel.bell and linux-kernel.cat files that make up the formal
44 version of the model; they are extremely terse and their meanings are
45 far from clear.
46
47 This document describes the ideas underlying the LKMM.  It is meant
48 for people who want to understand how the model was designed.  It does
49 not go into the details of the code in the .bell and .cat files;
50 rather, it explains in English what the code expresses symbolically.
51
52 Sections 2 (BACKGROUND) through 5 (ORDERING AND CYCLES) are aimed
53 toward beginners; they explain what memory consistency models are and
54 the basic notions shared by all such models.  People already familiar
55 with these concepts can skim or skip over them.  Sections 6 (EVENTS)
56 through 12 (THE FROM_READS RELATION) describe the fundamental
57 relations used in many models.  Starting in Section 13 (AN OPERATIONAL
58 MODEL), the workings of the LKMM itself are covered.
59
60 Warning: The code examples in this document are not written in the
61 proper format for litmus tests.  They don't include a header line, the
62 initializations are not enclosed in braces, the global variables are
63 not passed by pointers, and they don't have an "exists" clause at the
64 end.  Converting them to the right format is left as an exercise for
65 the reader.
66
67
68 BACKGROUND
69 ----------
70
71 A memory consistency model (or just memory model, for short) is
72 something which predicts, given a piece of computer code running on a
73 particular kind of system, what values may be obtained by the code's
74 load instructions.  The LKMM makes these predictions for code running
75 as part of the Linux kernel.
76
77 In practice, people tend to use memory models the other way around.
78 That is, given a piece of code and a collection of values specified
79 for the loads, the model will predict whether it is possible for the
80 code to run in such a way that the loads will indeed obtain the
81 specified values.  Of course, this is just another way of expressing
82 the same idea.
83
84 For code running on a uniprocessor system, the predictions are easy:
85 Each load instruction must obtain the value written by the most recent
86 store instruction accessing the same location (we ignore complicating
87 factors such as DMA and mixed-size accesses.)  But on multiprocessor
88 systems, with multiple CPUs making concurrent accesses to shared
89 memory locations, things aren't so simple.
90
91 Different architectures have differing memory models, and the Linux
92 kernel supports a variety of architectures.  The LKMM has to be fairly
93 permissive, in the sense that any behavior allowed by one of these
94 architectures also has to be allowed by the LKMM.
95
96
97 A SIMPLE EXAMPLE
98 ----------------
99
100 Here is a simple example to illustrate the basic concepts.  Consider
101 some code running as part of a device driver for an input device.  The
102 driver might contain an interrupt handler which collects data from the
103 device, stores it in a buffer, and sets a flag to indicate the buffer
104 is full.  Running concurrently on a different CPU might be a part of
105 the driver code being executed by a process in the midst of a read(2)
106 system call.  This code tests the flag to see whether the buffer is
107 ready, and if it is, copies the data back to userspace.  The buffer
108 and the flag are memory locations shared between the two CPUs.
109
110 We can abstract out the important pieces of the driver code as follows
111 (the reason for using WRITE_ONCE() and READ_ONCE() instead of simple
112 assignment statements is discussed later):
113
114         int buf = 0, flag = 0;
115
116         P0()
117         {
118                 WRITE_ONCE(buf, 1);
119                 WRITE_ONCE(flag, 1);
120         }
121
122         P1()
123         {
124                 int r1;
125                 int r2 = 0;
126
127                 r1 = READ_ONCE(flag);
128                 if (r1)
129                         r2 = READ_ONCE(buf);
130         }
131
132 Here the P0() function represents the interrupt handler running on one
133 CPU and P1() represents the read() routine running on another.  The
134 value 1 stored in buf represents input data collected from the device.
135 Thus, P0 stores the data in buf and then sets flag.  Meanwhile, P1
136 reads flag into the private variable r1, and if it is set, reads the
137 data from buf into a second private variable r2 for copying to
138 userspace.  (Presumably if flag is not set then the driver will wait a
139 while and try again.)
140
141 This pattern of memory accesses, where one CPU stores values to two
142 shared memory locations and another CPU loads from those locations in
143 the opposite order, is widely known as the "Message Passing" or MP
144 pattern.  It is typical of memory access patterns in the kernel.
145
146 Please note that this example code is a simplified abstraction.  Real
147 buffers are usually larger than a single integer, real device drivers
148 usually use sleep and wakeup mechanisms rather than polling for I/O
149 completion, and real code generally doesn't bother to copy values into
150 private variables before using them.  All that is beside the point;
151 the idea here is simply to illustrate the overall pattern of memory
152 accesses by the CPUs.
153
154 A memory model will predict what values P1 might obtain for its loads
155 from flag and buf, or equivalently, what values r1 and r2 might end up
156 with after the code has finished running.
157
158 Some predictions are trivial.  For instance, no sane memory model would
159 predict that r1 = 42 or r2 = -7, because neither of those values ever
160 gets stored in flag or buf.
161
162 Some nontrivial predictions are nonetheless quite simple.  For
163 instance, P1 might run entirely before P0 begins, in which case r1 and
164 r2 will both be 0 at the end.  Or P0 might run entirely before P1
165 begins, in which case r1 and r2 will both be 1.
166
167 The interesting predictions concern what might happen when the two
168 routines run concurrently.  One possibility is that P1 runs after P0's
169 store to buf but before the store to flag.  In this case, r1 and r2
170 will again both be 0.  (If P1 had been designed to read buf
171 unconditionally then we would instead have r1 = 0 and r2 = 1.)
172
173 However, the most interesting possibility is where r1 = 1 and r2 = 0.
174 If this were to occur it would mean the driver contains a bug, because
175 incorrect data would get sent to the user: 0 instead of 1.  As it
176 happens, the LKMM does predict this outcome can occur, and the example
177 driver code shown above is indeed buggy.
178
179
180 A SELECTION OF MEMORY MODELS
181 ----------------------------
182
183 The first widely cited memory model, and the simplest to understand,
184 is Sequential Consistency.  According to this model, systems behave as
185 if each CPU executed its instructions in order but with unspecified
186 timing.  In other words, the instructions from the various CPUs get
187 interleaved in a nondeterministic way, always according to some single
188 global order that agrees with the order of the instructions in the
189 program source for each CPU.  The model says that the value obtained
190 by each load is simply the value written by the most recently executed
191 store to the same memory location, from any CPU.
192
193 For the MP example code shown above, Sequential Consistency predicts
194 that the undesired result r1 = 1, r2 = 0 cannot occur.  The reasoning
195 goes like this:
196
197         Since r1 = 1, P0 must store 1 to flag before P1 loads 1 from
198         it, as loads can obtain values only from earlier stores.
199
200         P1 loads from flag before loading from buf, since CPUs execute
201         their instructions in order.
202
203         P1 must load 0 from buf before P0 stores 1 to it; otherwise r2
204         would be 1 since a load obtains its value from the most recent
205         store to the same address.
206
207         P0 stores 1 to buf before storing 1 to flag, since it executes
208         its instructions in order.
209
210         Since an instruction (in this case, P0's store to flag) cannot
211         execute before itself, the specified outcome is impossible.
212
213 However, real computer hardware almost never follows the Sequential
214 Consistency memory model; doing so would rule out too many valuable
215 performance optimizations.  On ARM and PowerPC architectures, for
216 instance, the MP example code really does sometimes yield r1 = 1 and
217 r2 = 0.
218
219 x86 and SPARC follow yet a different memory model: TSO (Total Store
220 Ordering).  This model predicts that the undesired outcome for the MP
221 pattern cannot occur, but in other respects it differs from Sequential
222 Consistency.  One example is the Store Buffer (SB) pattern, in which
223 each CPU stores to its own shared location and then loads from the
224 other CPU's location:
225
226         int x = 0, y = 0;
227
228         P0()
229         {
230                 int r0;
231
232                 WRITE_ONCE(x, 1);
233                 r0 = READ_ONCE(y);
234         }
235
236         P1()
237         {
238                 int r1;
239
240                 WRITE_ONCE(y, 1);
241                 r1 = READ_ONCE(x);
242         }
243
244 Sequential Consistency predicts that the outcome r0 = 0, r1 = 0 is
245 impossible.  (Exercise: Figure out the reasoning.)  But TSO allows
246 this outcome to occur, and in fact it does sometimes occur on x86 and
247 SPARC systems.
248
249 The LKMM was inspired by the memory models followed by PowerPC, ARM,
250 x86, Alpha, and other architectures.  However, it is different in
251 detail from each of them.
252
253
254 ORDERING AND CYCLES
255 -------------------
256
257 Memory models are all about ordering.  Often this is temporal ordering
258 (i.e., the order in which certain events occur) but it doesn't have to
259 be; consider for example the order of instructions in a program's
260 source code.  We saw above that Sequential Consistency makes an
261 important assumption that CPUs execute instructions in the same order
262 as those instructions occur in the code, and there are many other
263 instances of ordering playing central roles in memory models.
264
265 The counterpart to ordering is a cycle.  Ordering rules out cycles:
266 It's not possible to have X ordered before Y, Y ordered before Z, and
267 Z ordered before X, because this would mean that X is ordered before
268 itself.  The analysis of the MP example under Sequential Consistency
269 involved just such an impossible cycle:
270
271         W: P0 stores 1 to flag   executes before
272         X: P1 loads 1 from flag  executes before
273         Y: P1 loads 0 from buf   executes before
274         Z: P0 stores 1 to buf    executes before
275         W: P0 stores 1 to flag.
276
277 In short, if a memory model requires certain accesses to be ordered,
278 and a certain outcome for the loads in a piece of code can happen only
279 if those accesses would form a cycle, then the memory model predicts
280 that outcome cannot occur.
281
282 The LKMM is defined largely in terms of cycles, as we will see.
283
284
285 EVENTS
286 ------
287
288 The LKMM does not work directly with the C statements that make up
289 kernel source code.  Instead it considers the effects of those
290 statements in a more abstract form, namely, events.  The model
291 includes three types of events:
292
293         Read events correspond to loads from shared memory, such as
294         calls to READ_ONCE(), smp_load_acquire(), or
295         rcu_dereference().
296
297         Write events correspond to stores to shared memory, such as
298         calls to WRITE_ONCE(), smp_store_release(), or atomic_set().
299
300         Fence events correspond to memory barriers (also known as
301         fences), such as calls to smp_rmb() or rcu_read_lock().
302
303 These categories are not exclusive; a read or write event can also be
304 a fence.  This happens with functions like smp_load_acquire() or
305 spin_lock().  However, no single event can be both a read and a write.
306 Atomic read-modify-write accesses, such as atomic_inc() or xchg(),
307 correspond to a pair of events: a read followed by a write.  (The
308 write event is omitted for executions where it doesn't occur, such as
309 a cmpxchg() where the comparison fails.)
310
311 Other parts of the code, those which do not involve interaction with
312 shared memory, do not give rise to events.  Thus, arithmetic and
313 logical computations, control-flow instructions, or accesses to
314 private memory or CPU registers are not of central interest to the
315 memory model.  They only affect the model's predictions indirectly.
316 For example, an arithmetic computation might determine the value that
317 gets stored to a shared memory location (or in the case of an array
318 index, the address where the value gets stored), but the memory model
319 is concerned only with the store itself -- its value and its address
320 -- not the computation leading up to it.
321
322 Events in the LKMM can be linked by various relations, which we will
323 describe in the following sections.  The memory model requires certain
324 of these relations to be orderings, that is, it requires them not to
325 have any cycles.
326
327
328 THE PROGRAM ORDER RELATION: po AND po-loc
329 -----------------------------------------
330
331 The most important relation between events is program order (po).  You
332 can think of it as the order in which statements occur in the source
333 code after branches are taken into account and loops have been
334 unrolled.  A better description might be the order in which
335 instructions are presented to a CPU's execution unit.  Thus, we say
336 that X is po-before Y (written as "X ->po Y" in formulas) if X occurs
337 before Y in the instruction stream.
338
339 This is inherently a single-CPU relation; two instructions executing
340 on different CPUs are never linked by po.  Also, it is by definition
341 an ordering so it cannot have any cycles.
342
343 po-loc is a sub-relation of po.  It links two memory accesses when the
344 first comes before the second in program order and they access the
345 same memory location (the "-loc" suffix).
346
347 Although this may seem straightforward, there is one subtle aspect to
348 program order we need to explain.  The LKMM was inspired by low-level
349 architectural memory models which describe the behavior of machine
350 code, and it retains their outlook to a considerable extent.  The
351 read, write, and fence events used by the model are close in spirit to
352 individual machine instructions.  Nevertheless, the LKMM describes
353 kernel code written in C, and the mapping from C to machine code can
354 be extremely complex.
355
356 Optimizing compilers have great freedom in the way they translate
357 source code to object code.  They are allowed to apply transformations
358 that add memory accesses, eliminate accesses, combine them, split them
359 into pieces, or move them around.  The use of READ_ONCE(), WRITE_ONCE(),
360 or one of the other atomic or synchronization primitives prevents a
361 large number of compiler optimizations.  In particular, it is guaranteed
362 that the compiler will not remove such accesses from the generated code
363 (unless it can prove the accesses will never be executed), it will not
364 change the order in which they occur in the code (within limits imposed
365 by the C standard), and it will not introduce extraneous accesses.
366
367 The MP and SB examples above used READ_ONCE() and WRITE_ONCE() rather
368 than ordinary memory accesses.  Thanks to this usage, we can be certain
369 that in the MP example, the compiler won't reorder P0's write event to
370 buf and P0's write event to flag, and similarly for the other shared
371 memory accesses in the examples.
372
373 Since private variables are not shared between CPUs, they can be
374 accessed normally without READ_ONCE() or WRITE_ONCE().  In fact, they
375 need not even be stored in normal memory at all -- in principle a
376 private variable could be stored in a CPU register (hence the convention
377 that these variables have names starting with the letter 'r').
378
379
380 A WARNING
381 ---------
382
383 The protections provided by READ_ONCE(), WRITE_ONCE(), and others are
384 not perfect; and under some circumstances it is possible for the
385 compiler to undermine the memory model.  Here is an example.  Suppose
386 both branches of an "if" statement store the same value to the same
387 location:
388
389         r1 = READ_ONCE(x);
390         if (r1) {
391                 WRITE_ONCE(y, 2);
392                 ...  /* do something */
393         } else {
394                 WRITE_ONCE(y, 2);
395                 ...  /* do something else */
396         }
397
398 For this code, the LKMM predicts that the load from x will always be
399 executed before either of the stores to y.  However, a compiler could
400 lift the stores out of the conditional, transforming the code into
401 something resembling:
402
403         r1 = READ_ONCE(x);
404         WRITE_ONCE(y, 2);
405         if (r1) {
406                 ...  /* do something */
407         } else {
408                 ...  /* do something else */
409         }
410
411 Given this version of the code, the LKMM would predict that the load
412 from x could be executed after the store to y.  Thus, the memory
413 model's original prediction could be invalidated by the compiler.
414
415 Another issue arises from the fact that in C, arguments to many
416 operators and function calls can be evaluated in any order.  For
417 example:
418
419         r1 = f(5) + g(6);
420
421 The object code might call f(5) either before or after g(6); the
422 memory model cannot assume there is a fixed program order relation
423 between them.  (In fact, if the function calls are inlined then the
424 compiler might even interleave their object code.)
425
426
427 DEPENDENCY RELATIONS: data, addr, and ctrl
428 ------------------------------------------
429
430 We say that two events are linked by a dependency relation when the
431 execution of the second event depends in some way on a value obtained
432 from memory by the first.  The first event must be a read, and the
433 value it obtains must somehow affect what the second event does.
434 There are three kinds of dependencies: data, address (addr), and
435 control (ctrl).
436
437 A read and a write event are linked by a data dependency if the value
438 obtained by the read affects the value stored by the write.  As a very
439 simple example:
440
441         int x, y;
442
443         r1 = READ_ONCE(x);
444         WRITE_ONCE(y, r1 + 5);
445
446 The value stored by the WRITE_ONCE obviously depends on the value
447 loaded by the READ_ONCE.  Such dependencies can wind through
448 arbitrarily complicated computations, and a write can depend on the
449 values of multiple reads.
450
451 A read event and another memory access event are linked by an address
452 dependency if the value obtained by the read affects the location
453 accessed by the other event.  The second event can be either a read or
454 a write.  Here's another simple example:
455
456         int a[20];
457         int i;
458
459         r1 = READ_ONCE(i);
460         r2 = READ_ONCE(a[r1]);
461
462 Here the location accessed by the second READ_ONCE() depends on the
463 index value loaded by the first.  Pointer indirection also gives rise
464 to address dependencies, since the address of a location accessed
465 through a pointer will depend on the value read earlier from that
466 pointer.
467
468 Finally, a read event X and a write event Y are linked by a control
469 dependency if Y syntactically lies within an arm of an if statement and
470 X affects the evaluation of the if condition via a data or address
471 dependency (or similarly for a switch statement).  Simple example:
472
473         int x, y;
474
475         r1 = READ_ONCE(x);
476         if (r1)
477                 WRITE_ONCE(y, 1984);
478
479 Execution of the WRITE_ONCE() is controlled by a conditional expression
480 which depends on the value obtained by the READ_ONCE(); hence there is
481 a control dependency from the load to the store.
482
483 It should be pretty obvious that events can only depend on reads that
484 come earlier in program order.  Symbolically, if we have R ->data X,
485 R ->addr X, or R ->ctrl X (where R is a read event), then we must also
486 have R ->po X.  It wouldn't make sense for a computation to depend
487 somehow on a value that doesn't get loaded from shared memory until
488 later in the code!
489
490 Here's a trick question: When is a dependency not a dependency?  Answer:
491 When it is purely syntactic rather than semantic.  We say a dependency
492 between two accesses is purely syntactic if the second access doesn't
493 actually depend on the result of the first.  Here is a trivial example:
494
495         r1 = READ_ONCE(x);
496         WRITE_ONCE(y, r1 * 0);
497
498 There appears to be a data dependency from the load of x to the store
499 of y, since the value to be stored is computed from the value that was
500 loaded.  But in fact, the value stored does not really depend on
501 anything since it will always be 0.  Thus the data dependency is only
502 syntactic (it appears to exist in the code) but not semantic (the
503 second access will always be the same, regardless of the value of the
504 first access).  Given code like this, a compiler could simply discard
505 the value returned by the load from x, which would certainly destroy
506 any dependency.  (The compiler is not permitted to eliminate entirely
507 the load generated for a READ_ONCE() -- that's one of the nice
508 properties of READ_ONCE() -- but it is allowed to ignore the load's
509 value.)
510
511 It's natural to object that no one in their right mind would write
512 code like the above.  However, macro expansions can easily give rise
513 to this sort of thing, in ways that often are not apparent to the
514 programmer.
515
516 Another mechanism that can lead to purely syntactic dependencies is
517 related to the notion of "undefined behavior".  Certain program
518 behaviors are called "undefined" in the C language specification,
519 which means that when they occur there are no guarantees at all about
520 the outcome.  Consider the following example:
521
522         int a[1];
523         int i;
524
525         r1 = READ_ONCE(i);
526         r2 = READ_ONCE(a[r1]);
527
528 Access beyond the end or before the beginning of an array is one kind
529 of undefined behavior.  Therefore the compiler doesn't have to worry
530 about what will happen if r1 is nonzero, and it can assume that r1
531 will always be zero regardless of the value actually loaded from i.
532 (If the assumption turns out to be wrong the resulting behavior will
533 be undefined anyway, so the compiler doesn't care!)  Thus the value
534 from the load can be discarded, breaking the address dependency.
535
536 The LKMM is unaware that purely syntactic dependencies are different
537 from semantic dependencies and therefore mistakenly predicts that the
538 accesses in the two examples above will be ordered.  This is another
539 example of how the compiler can undermine the memory model.  Be warned.
540
541
542 THE READS-FROM RELATION: rf, rfi, and rfe
543 -----------------------------------------
544
545 The reads-from relation (rf) links a write event to a read event when
546 the value loaded by the read is the value that was stored by the
547 write.  In colloquial terms, the load "reads from" the store.  We
548 write W ->rf R to indicate that the load R reads from the store W.  We
549 further distinguish the cases where the load and the store occur on
550 the same CPU (internal reads-from, or rfi) and where they occur on
551 different CPUs (external reads-from, or rfe).
552
553 For our purposes, a memory location's initial value is treated as
554 though it had been written there by an imaginary initial store that
555 executes on a separate CPU before the main program runs.
556
557 Usage of the rf relation implicitly assumes that loads will always
558 read from a single store.  It doesn't apply properly in the presence
559 of load-tearing, where a load obtains some of its bits from one store
560 and some of them from another store.  Fortunately, use of READ_ONCE()
561 and WRITE_ONCE() will prevent load-tearing; it's not possible to have:
562
563         int x = 0;
564
565         P0()
566         {
567                 WRITE_ONCE(x, 0x1234);
568         }
569
570         P1()
571         {
572                 int r1;
573
574                 r1 = READ_ONCE(x);
575         }
576
577 and end up with r1 = 0x1200 (partly from x's initial value and partly
578 from the value stored by P0).
579
580 On the other hand, load-tearing is unavoidable when mixed-size
581 accesses are used.  Consider this example:
582
583         union {
584                 u32     w;
585                 u16     h[2];
586         } x;
587
588         P0()
589         {
590                 WRITE_ONCE(x.h[0], 0x1234);
591                 WRITE_ONCE(x.h[1], 0x5678);
592         }
593
594         P1()
595         {
596                 int r1;
597
598                 r1 = READ_ONCE(x.w);
599         }
600
601 If r1 = 0x56781234 (little-endian!) at the end, then P1 must have read
602 from both of P0's stores.  It is possible to handle mixed-size and
603 unaligned accesses in a memory model, but the LKMM currently does not
604 attempt to do so.  It requires all accesses to be properly aligned and
605 of the location's actual size.
606
607
608 CACHE COHERENCE AND THE COHERENCE ORDER RELATION: co, coi, and coe
609 ------------------------------------------------------------------
610
611 Cache coherence is a general principle requiring that in a
612 multi-processor system, the CPUs must share a consistent view of the
613 memory contents.  Specifically, it requires that for each location in
614 shared memory, the stores to that location must form a single global
615 ordering which all the CPUs agree on (the coherence order), and this
616 ordering must be consistent with the program order for accesses to
617 that location.
618
619 To put it another way, for any variable x, the coherence order (co) of
620 the stores to x is simply the order in which the stores overwrite one
621 another.  The imaginary store which establishes x's initial value
622 comes first in the coherence order; the store which directly
623 overwrites the initial value comes second; the store which overwrites
624 that value comes third, and so on.
625
626 You can think of the coherence order as being the order in which the
627 stores reach x's location in memory (or if you prefer a more
628 hardware-centric view, the order in which the stores get written to
629 x's cache line).  We write W ->co W' if W comes before W' in the
630 coherence order, that is, if the value stored by W gets overwritten,
631 directly or indirectly, by the value stored by W'.
632
633 Coherence order is required to be consistent with program order.  This
634 requirement takes the form of four coherency rules:
635
636         Write-write coherence: If W ->po-loc W' (i.e., W comes before
637         W' in program order and they access the same location), where W
638         and W' are two stores, then W ->co W'.
639
640         Write-read coherence: If W ->po-loc R, where W is a store and R
641         is a load, then R must read from W or from some other store
642         which comes after W in the coherence order.
643
644         Read-write coherence: If R ->po-loc W, where R is a load and W
645         is a store, then the store which R reads from must come before
646         W in the coherence order.
647
648         Read-read coherence: If R ->po-loc R', where R and R' are two
649         loads, then either they read from the same store or else the
650         store read by R comes before the store read by R' in the
651         coherence order.
652
653 This is sometimes referred to as sequential consistency per variable,
654 because it means that the accesses to any single memory location obey
655 the rules of the Sequential Consistency memory model.  (According to
656 Wikipedia, sequential consistency per variable and cache coherence
657 mean the same thing except that cache coherence includes an extra
658 requirement that every store eventually becomes visible to every CPU.)
659
660 Any reasonable memory model will include cache coherence.  Indeed, our
661 expectation of cache coherence is so deeply ingrained that violations
662 of its requirements look more like hardware bugs than programming
663 errors:
664
665         int x;
666
667         P0()
668         {
669                 WRITE_ONCE(x, 17);
670                 WRITE_ONCE(x, 23);
671         }
672
673 If the final value stored in x after this code ran was 17, you would
674 think your computer was broken.  It would be a violation of the
675 write-write coherence rule: Since the store of 23 comes later in
676 program order, it must also come later in x's coherence order and
677 thus must overwrite the store of 17.
678
679         int x = 0;
680
681         P0()
682         {
683                 int r1;
684
685                 r1 = READ_ONCE(x);
686                 WRITE_ONCE(x, 666);
687         }
688
689 If r1 = 666 at the end, this would violate the read-write coherence
690 rule: The READ_ONCE() load comes before the WRITE_ONCE() store in
691 program order, so it must not read from that store but rather from one
692 coming earlier in the coherence order (in this case, x's initial
693 value).
694
695         int x = 0;
696
697         P0()
698         {
699                 WRITE_ONCE(x, 5);
700         }
701
702         P1()
703         {
704                 int r1, r2;
705
706                 r1 = READ_ONCE(x);
707                 r2 = READ_ONCE(x);
708         }
709
710 If r1 = 5 (reading from P0's store) and r2 = 0 (reading from the
711 imaginary store which establishes x's initial value) at the end, this
712 would violate the read-read coherence rule: The r1 load comes before
713 the r2 load in program order, so it must not read from a store that
714 comes later in the coherence order.
715
716 (As a minor curiosity, if this code had used normal loads instead of
717 READ_ONCE() in P1, on Itanium it sometimes could end up with r1 = 5
718 and r2 = 0!  This results from parallel execution of the operations
719 encoded in Itanium's Very-Long-Instruction-Word format, and it is yet
720 another motivation for using READ_ONCE() when accessing shared memory
721 locations.)
722
723 Just like the po relation, co is inherently an ordering -- it is not
724 possible for a store to directly or indirectly overwrite itself!  And
725 just like with the rf relation, we distinguish between stores that
726 occur on the same CPU (internal coherence order, or coi) and stores
727 that occur on different CPUs (external coherence order, or coe).
728
729 On the other hand, stores to different memory locations are never
730 related by co, just as instructions on different CPUs are never
731 related by po.  Coherence order is strictly per-location, or if you
732 prefer, each location has its own independent coherence order.
733
734
735 THE FROM-READS RELATION: fr, fri, and fre
736 -----------------------------------------
737
738 The from-reads relation (fr) can be a little difficult for people to
739 grok.  It describes the situation where a load reads a value that gets
740 overwritten by a store.  In other words, we have R ->fr W when the
741 value that R reads is overwritten (directly or indirectly) by W, or
742 equivalently, when R reads from a store which comes earlier than W in
743 the coherence order.
744
745 For example:
746
747         int x = 0;
748
749         P0()
750         {
751                 int r1;
752
753                 r1 = READ_ONCE(x);
754                 WRITE_ONCE(x, 2);
755         }
756
757 The value loaded from x will be 0 (assuming cache coherence!), and it
758 gets overwritten by the value 2.  Thus there is an fr link from the
759 READ_ONCE() to the WRITE_ONCE().  If the code contained any later
760 stores to x, there would also be fr links from the READ_ONCE() to
761 them.
762
763 As with rf, rfi, and rfe, we subdivide the fr relation into fri (when
764 the load and the store are on the same CPU) and fre (when they are on
765 different CPUs).
766
767 Note that the fr relation is determined entirely by the rf and co
768 relations; it is not independent.  Given a read event R and a write
769 event W for the same location, we will have R ->fr W if and only if
770 the write which R reads from is co-before W.  In symbols,
771
772         (R ->fr W) := (there exists W' with W' ->rf R and W' ->co W).
773
774
775 AN OPERATIONAL MODEL
776 --------------------
777
778 The LKMM is based on various operational memory models, meaning that
779 the models arise from an abstract view of how a computer system
780 operates.  Here are the main ideas, as incorporated into the LKMM.
781
782 The system as a whole is divided into the CPUs and a memory subsystem.
783 The CPUs are responsible for executing instructions (not necessarily
784 in program order), and they communicate with the memory subsystem.
785 For the most part, executing an instruction requires a CPU to perform
786 only internal operations.  However, loads, stores, and fences involve
787 more.
788
789 When CPU C executes a store instruction, it tells the memory subsystem
790 to store a certain value at a certain location.  The memory subsystem
791 propagates the store to all the other CPUs as well as to RAM.  (As a
792 special case, we say that the store propagates to its own CPU at the
793 time it is executed.)  The memory subsystem also determines where the
794 store falls in the location's coherence order.  In particular, it must
795 arrange for the store to be co-later than (i.e., to overwrite) any
796 other store to the same location which has already propagated to CPU C.
797
798 When a CPU executes a load instruction R, it first checks to see
799 whether there are any as-yet unexecuted store instructions, for the
800 same location, that come before R in program order.  If there are, it
801 uses the value of the po-latest such store as the value obtained by R,
802 and we say that the store's value is forwarded to R.  Otherwise, the
803 CPU asks the memory subsystem for the value to load and we say that R
804 is satisfied from memory.  The memory subsystem hands back the value
805 of the co-latest store to the location in question which has already
806 propagated to that CPU.
807
808 (In fact, the picture needs to be a little more complicated than this.
809 CPUs have local caches, and propagating a store to a CPU really means
810 propagating it to the CPU's local cache.  A local cache can take some
811 time to process the stores that it receives, and a store can't be used
812 to satisfy one of the CPU's loads until it has been processed.  On
813 most architectures, the local caches process stores in
814 First-In-First-Out order, and consequently the processing delay
815 doesn't matter for the memory model.  But on Alpha, the local caches
816 have a partitioned design that results in non-FIFO behavior.  We will
817 discuss this in more detail later.)
818
819 Note that load instructions may be executed speculatively and may be
820 restarted under certain circumstances.  The memory model ignores these
821 premature executions; we simply say that the load executes at the
822 final time it is forwarded or satisfied.
823
824 Executing a fence (or memory barrier) instruction doesn't require a
825 CPU to do anything special other than informing the memory subsystem
826 about the fence.  However, fences do constrain the way CPUs and the
827 memory subsystem handle other instructions, in two respects.
828
829 First, a fence forces the CPU to execute various instructions in
830 program order.  Exactly which instructions are ordered depends on the
831 type of fence:
832
833         Strong fences, including smp_mb() and synchronize_rcu(), force
834         the CPU to execute all po-earlier instructions before any
835         po-later instructions;
836
837         smp_rmb() forces the CPU to execute all po-earlier loads
838         before any po-later loads;
839
840         smp_wmb() forces the CPU to execute all po-earlier stores
841         before any po-later stores;
842
843         Acquire fences, such as smp_load_acquire(), force the CPU to
844         execute the load associated with the fence (e.g., the load
845         part of an smp_load_acquire()) before any po-later
846         instructions;
847
848         Release fences, such as smp_store_release(), force the CPU to
849         execute all po-earlier instructions before the store
850         associated with the fence (e.g., the store part of an
851         smp_store_release()).
852
853 Second, some types of fence affect the way the memory subsystem
854 propagates stores.  When a fence instruction is executed on CPU C:
855
856         For each other CPU C', smp_wmb() forces all po-earlier stores
857         on C to propagate to C' before any po-later stores do.
858
859         For each other CPU C', any store which propagates to C before
860         a release fence is executed (including all po-earlier
861         stores executed on C) is forced to propagate to C' before the
862         store associated with the release fence does.
863
864         Any store which propagates to C before a strong fence is
865         executed (including all po-earlier stores on C) is forced to
866         propagate to all other CPUs before any instructions po-after
867         the strong fence are executed on C.
868
869 The propagation ordering enforced by release fences and strong fences
870 affects stores from other CPUs that propagate to CPU C before the
871 fence is executed, as well as stores that are executed on C before the
872 fence.  We describe this property by saying that release fences and
873 strong fences are A-cumulative.  By contrast, smp_wmb() fences are not
874 A-cumulative; they only affect the propagation of stores that are
875 executed on C before the fence (i.e., those which precede the fence in
876 program order).
877
878 rcu_read_lock(), rcu_read_unlock(), and synchronize_rcu() fences have
879 other properties which we discuss later.
880
881
882 PROPAGATION ORDER RELATION: cumul-fence
883 ---------------------------------------
884
885 The fences which affect propagation order (i.e., strong, release, and
886 smp_wmb() fences) are collectively referred to as cumul-fences, even
887 though smp_wmb() isn't A-cumulative.  The cumul-fence relation is
888 defined to link memory access events E and F whenever:
889
890         E and F are both stores on the same CPU and an smp_wmb() fence
891         event occurs between them in program order; or
892
893         F is a release fence and some X comes before F in program order,
894         where either X = E or else E ->rf X; or
895
896         A strong fence event occurs between some X and F in program
897         order, where either X = E or else E ->rf X.
898
899 The operational model requires that whenever W and W' are both stores
900 and W ->cumul-fence W', then W must propagate to any given CPU
901 before W' does.  However, for different CPUs C and C', it does not
902 require W to propagate to C before W' propagates to C'.
903
904
905 DERIVATION OF THE LKMM FROM THE OPERATIONAL MODEL
906 -------------------------------------------------
907
908 The LKMM is derived from the restrictions imposed by the design
909 outlined above.  These restrictions involve the necessity of
910 maintaining cache coherence and the fact that a CPU can't operate on a
911 value before it knows what that value is, among other things.
912
913 The formal version of the LKMM is defined by six requirements, or
914 axioms:
915
916         Sequential consistency per variable: This requires that the
917         system obey the four coherency rules.
918
919         Atomicity: This requires that atomic read-modify-write
920         operations really are atomic, that is, no other stores can
921         sneak into the middle of such an update.
922
923         Happens-before: This requires that certain instructions are
924         executed in a specific order.
925
926         Propagation: This requires that certain stores propagate to
927         CPUs and to RAM in a specific order.
928
929         Rcu: This requires that RCU read-side critical sections and
930         grace periods obey the rules of RCU, in particular, the
931         Grace-Period Guarantee.
932
933         Plain-coherence: This requires that plain memory accesses
934         (those not using READ_ONCE(), WRITE_ONCE(), etc.) must obey
935         the operational model's rules regarding cache coherence.
936
937 The first and second are quite common; they can be found in many
938 memory models (such as those for C11/C++11).  The "happens-before" and
939 "propagation" axioms have analogs in other memory models as well.  The
940 "rcu" and "plain-coherence" axioms are specific to the LKMM.
941
942 Each of these axioms is discussed below.
943
944
945 SEQUENTIAL CONSISTENCY PER VARIABLE
946 -----------------------------------
947
948 According to the principle of cache coherence, the stores to any fixed
949 shared location in memory form a global ordering.  We can imagine
950 inserting the loads from that location into this ordering, by placing
951 each load between the store that it reads from and the following
952 store.  This leaves the relative positions of loads that read from the
953 same store unspecified; let's say they are inserted in program order,
954 first for CPU 0, then CPU 1, etc.
955
956 You can check that the four coherency rules imply that the rf, co, fr,
957 and po-loc relations agree with this global ordering; in other words,
958 whenever we have X ->rf Y or X ->co Y or X ->fr Y or X ->po-loc Y, the
959 X event comes before the Y event in the global ordering.  The LKMM's
960 "coherence" axiom expresses this by requiring the union of these
961 relations not to have any cycles.  This means it must not be possible
962 to find events
963
964         X0 -> X1 -> X2 -> ... -> Xn -> X0,
965
966 where each of the links is either rf, co, fr, or po-loc.  This has to
967 hold if the accesses to the fixed memory location can be ordered as
968 cache coherence demands.
969
970 Although it is not obvious, it can be shown that the converse is also
971 true: This LKMM axiom implies that the four coherency rules are
972 obeyed.
973
974
975 ATOMIC UPDATES: rmw
976 -------------------
977
978 What does it mean to say that a read-modify-write (rmw) update, such
979 as atomic_inc(&x), is atomic?  It means that the memory location (x in
980 this case) does not get altered between the read and the write events
981 making up the atomic operation.  In particular, if two CPUs perform
982 atomic_inc(&x) concurrently, it must be guaranteed that the final
983 value of x will be the initial value plus two.  We should never have
984 the following sequence of events:
985
986         CPU 0 loads x obtaining 13;
987                                         CPU 1 loads x obtaining 13;
988         CPU 0 stores 14 to x;
989                                         CPU 1 stores 14 to x;
990
991 where the final value of x is wrong (14 rather than 15).
992
993 In this example, CPU 0's increment effectively gets lost because it
994 occurs in between CPU 1's load and store.  To put it another way, the
995 problem is that the position of CPU 0's store in x's coherence order
996 is between the store that CPU 1 reads from and the store that CPU 1
997 performs.
998
999 The same analysis applies to all atomic update operations.  Therefore,
1000 to enforce atomicity the LKMM requires that atomic updates follow this
1001 rule: Whenever R and W are the read and write events composing an
1002 atomic read-modify-write and W' is the write event which R reads from,
1003 there must not be any stores coming between W' and W in the coherence
1004 order.  Equivalently,
1005
1006         (R ->rmw W) implies (there is no X with R ->fr X and X ->co W),
1007
1008 where the rmw relation links the read and write events making up each
1009 atomic update.  This is what the LKMM's "atomic" axiom says.
1010
1011 Atomic rmw updates play one more role in the LKMM: They can form "rmw
1012 sequences".  An rmw sequence is simply a bunch of atomic updates where
1013 each update reads from the previous one.  Written using events, it
1014 looks like this:
1015
1016         Z0 ->rf Y1 ->rmw Z1 ->rf ... ->rf Yn ->rmw Zn,
1017
1018 where Z0 is some store event and n can be any number (even 0, in the
1019 degenerate case).  We write this relation as: Z0 ->rmw-sequence Zn.
1020 Note that this implies Z0 and Zn are stores to the same variable.
1021
1022 Rmw sequences have a special property in the LKMM: They can extend the
1023 cumul-fence relation.  That is, if we have:
1024
1025         U ->cumul-fence X -> rmw-sequence Y
1026
1027 then also U ->cumul-fence Y.  Thinking about this in terms of the
1028 operational model, U ->cumul-fence X says that the store U propagates
1029 to each CPU before the store X does.  Then the fact that X and Y are
1030 linked by an rmw sequence means that U also propagates to each CPU
1031 before Y does.  In an analogous way, rmw sequences can also extend
1032 the w-post-bounded relation defined below in the PLAIN ACCESSES AND
1033 DATA RACES section.
1034
1035 (The notion of rmw sequences in the LKMM is similar to, but not quite
1036 the same as, that of release sequences in the C11 memory model.  They
1037 were added to the LKMM to fix an obscure bug; without them, atomic
1038 updates with full-barrier semantics did not always guarantee ordering
1039 at least as strong as atomic updates with release-barrier semantics.)
1040
1041
1042 THE PRESERVED PROGRAM ORDER RELATION: ppo
1043 -----------------------------------------
1044
1045 There are many situations where a CPU is obliged to execute two
1046 instructions in program order.  We amalgamate them into the ppo (for
1047 "preserved program order") relation, which links the po-earlier
1048 instruction to the po-later instruction and is thus a sub-relation of
1049 po.
1050
1051 The operational model already includes a description of one such
1052 situation: Fences are a source of ppo links.  Suppose X and Y are
1053 memory accesses with X ->po Y; then the CPU must execute X before Y if
1054 any of the following hold:
1055
1056         A strong (smp_mb() or synchronize_rcu()) fence occurs between
1057         X and Y;
1058
1059         X and Y are both stores and an smp_wmb() fence occurs between
1060         them;
1061
1062         X and Y are both loads and an smp_rmb() fence occurs between
1063         them;
1064
1065         X is also an acquire fence, such as smp_load_acquire();
1066
1067         Y is also a release fence, such as smp_store_release().
1068
1069 Another possibility, not mentioned earlier but discussed in the next
1070 section, is:
1071
1072         X and Y are both loads, X ->addr Y (i.e., there is an address
1073         dependency from X to Y), and X is a READ_ONCE() or an atomic
1074         access.
1075
1076 Dependencies can also cause instructions to be executed in program
1077 order.  This is uncontroversial when the second instruction is a
1078 store; either a data, address, or control dependency from a load R to
1079 a store W will force the CPU to execute R before W.  This is very
1080 simply because the CPU cannot tell the memory subsystem about W's
1081 store before it knows what value should be stored (in the case of a
1082 data dependency), what location it should be stored into (in the case
1083 of an address dependency), or whether the store should actually take
1084 place (in the case of a control dependency).
1085
1086 Dependencies to load instructions are more problematic.  To begin with,
1087 there is no such thing as a data dependency to a load.  Next, a CPU
1088 has no reason to respect a control dependency to a load, because it
1089 can always satisfy the second load speculatively before the first, and
1090 then ignore the result if it turns out that the second load shouldn't
1091 be executed after all.  And lastly, the real difficulties begin when
1092 we consider address dependencies to loads.
1093
1094 To be fair about it, all Linux-supported architectures do execute
1095 loads in program order if there is an address dependency between them.
1096 After all, a CPU cannot ask the memory subsystem to load a value from
1097 a particular location before it knows what that location is.  However,
1098 the split-cache design used by Alpha can cause it to behave in a way
1099 that looks as if the loads were executed out of order (see the next
1100 section for more details).  The kernel includes a workaround for this
1101 problem when the loads come from READ_ONCE(), and therefore the LKMM
1102 includes address dependencies to loads in the ppo relation.
1103
1104 On the other hand, dependencies can indirectly affect the ordering of
1105 two loads.  This happens when there is a dependency from a load to a
1106 store and a second, po-later load reads from that store:
1107
1108         R ->dep W ->rfi R',
1109
1110 where the dep link can be either an address or a data dependency.  In
1111 this situation we know it is possible for the CPU to execute R' before
1112 W, because it can forward the value that W will store to R'.  But it
1113 cannot execute R' before R, because it cannot forward the value before
1114 it knows what that value is, or that W and R' do access the same
1115 location.  However, if there is merely a control dependency between R
1116 and W then the CPU can speculatively forward W to R' before executing
1117 R; if the speculation turns out to be wrong then the CPU merely has to
1118 restart or abandon R'.
1119
1120 (In theory, a CPU might forward a store to a load when it runs across
1121 an address dependency like this:
1122
1123         r1 = READ_ONCE(ptr);
1124         WRITE_ONCE(*r1, 17);
1125         r2 = READ_ONCE(*r1);
1126
1127 because it could tell that the store and the second load access the
1128 same location even before it knows what the location's address is.
1129 However, none of the architectures supported by the Linux kernel do
1130 this.)
1131
1132 Two memory accesses of the same location must always be executed in
1133 program order if the second access is a store.  Thus, if we have
1134
1135         R ->po-loc W
1136
1137 (the po-loc link says that R comes before W in program order and they
1138 access the same location), the CPU is obliged to execute W after R.
1139 If it executed W first then the memory subsystem would respond to R's
1140 read request with the value stored by W (or an even later store), in
1141 violation of the read-write coherence rule.  Similarly, if we had
1142
1143         W ->po-loc W'
1144
1145 and the CPU executed W' before W, then the memory subsystem would put
1146 W' before W in the coherence order.  It would effectively cause W to
1147 overwrite W', in violation of the write-write coherence rule.
1148 (Interestingly, an early ARMv8 memory model, now obsolete, proposed
1149 allowing out-of-order writes like this to occur.  The model avoided
1150 violating the write-write coherence rule by requiring the CPU not to
1151 send the W write to the memory subsystem at all!)
1152
1153
1154 AND THEN THERE WAS ALPHA
1155 ------------------------
1156
1157 As mentioned above, the Alpha architecture is unique in that it does
1158 not appear to respect address dependencies to loads.  This means that
1159 code such as the following:
1160
1161         int x = 0;
1162         int y = -1;
1163         int *ptr = &y;
1164
1165         P0()
1166         {
1167                 WRITE_ONCE(x, 1);
1168                 smp_wmb();
1169                 WRITE_ONCE(ptr, &x);
1170         }
1171
1172         P1()
1173         {
1174                 int *r1;
1175                 int r2;
1176
1177                 r1 = ptr;
1178                 r2 = READ_ONCE(*r1);
1179         }
1180
1181 can malfunction on Alpha systems (notice that P1 uses an ordinary load
1182 to read ptr instead of READ_ONCE()).  It is quite possible that r1 = &x
1183 and r2 = 0 at the end, in spite of the address dependency.
1184
1185 At first glance this doesn't seem to make sense.  We know that the
1186 smp_wmb() forces P0's store to x to propagate to P1 before the store
1187 to ptr does.  And since P1 can't execute its second load
1188 until it knows what location to load from, i.e., after executing its
1189 first load, the value x = 1 must have propagated to P1 before the
1190 second load executed.  So why doesn't r2 end up equal to 1?
1191
1192 The answer lies in the Alpha's split local caches.  Although the two
1193 stores do reach P1's local cache in the proper order, it can happen
1194 that the first store is processed by a busy part of the cache while
1195 the second store is processed by an idle part.  As a result, the x = 1
1196 value may not become available for P1's CPU to read until after the
1197 ptr = &x value does, leading to the undesirable result above.  The
1198 final effect is that even though the two loads really are executed in
1199 program order, it appears that they aren't.
1200
1201 This could not have happened if the local cache had processed the
1202 incoming stores in FIFO order.  By contrast, other architectures
1203 maintain at least the appearance of FIFO order.
1204
1205 In practice, this difficulty is solved by inserting a special fence
1206 between P1's two loads when the kernel is compiled for the Alpha
1207 architecture.  In fact, as of version 4.15, the kernel automatically
1208 adds this fence after every READ_ONCE() and atomic load on Alpha.  The
1209 effect of the fence is to cause the CPU not to execute any po-later
1210 instructions until after the local cache has finished processing all
1211 the stores it has already received.  Thus, if the code was changed to:
1212
1213         P1()
1214         {
1215                 int *r1;
1216                 int r2;
1217
1218                 r1 = READ_ONCE(ptr);
1219                 r2 = READ_ONCE(*r1);
1220         }
1221
1222 then we would never get r1 = &x and r2 = 0.  By the time P1 executed
1223 its second load, the x = 1 store would already be fully processed by
1224 the local cache and available for satisfying the read request.  Thus
1225 we have yet another reason why shared data should always be read with
1226 READ_ONCE() or another synchronization primitive rather than accessed
1227 directly.
1228
1229 The LKMM requires that smp_rmb(), acquire fences, and strong fences
1230 share this property: They do not allow the CPU to execute any po-later
1231 instructions (or po-later loads in the case of smp_rmb()) until all
1232 outstanding stores have been processed by the local cache.  In the
1233 case of a strong fence, the CPU first has to wait for all of its
1234 po-earlier stores to propagate to every other CPU in the system; then
1235 it has to wait for the local cache to process all the stores received
1236 as of that time -- not just the stores received when the strong fence
1237 began.
1238
1239 And of course, none of this matters for any architecture other than
1240 Alpha.
1241
1242
1243 THE HAPPENS-BEFORE RELATION: hb
1244 -------------------------------
1245
1246 The happens-before relation (hb) links memory accesses that have to
1247 execute in a certain order.  hb includes the ppo relation and two
1248 others, one of which is rfe.
1249
1250 W ->rfe R implies that W and R are on different CPUs.  It also means
1251 that W's store must have propagated to R's CPU before R executed;
1252 otherwise R could not have read the value stored by W.  Therefore W
1253 must have executed before R, and so we have W ->hb R.
1254
1255 The equivalent fact need not hold if W ->rfi R (i.e., W and R are on
1256 the same CPU).  As we have already seen, the operational model allows
1257 W's value to be forwarded to R in such cases, meaning that R may well
1258 execute before W does.
1259
1260 It's important to understand that neither coe nor fre is included in
1261 hb, despite their similarities to rfe.  For example, suppose we have
1262 W ->coe W'.  This means that W and W' are stores to the same location,
1263 they execute on different CPUs, and W comes before W' in the coherence
1264 order (i.e., W' overwrites W).  Nevertheless, it is possible for W' to
1265 execute before W, because the decision as to which store overwrites
1266 the other is made later by the memory subsystem.  When the stores are
1267 nearly simultaneous, either one can come out on top.  Similarly,
1268 R ->fre W means that W overwrites the value which R reads, but it
1269 doesn't mean that W has to execute after R.  All that's necessary is
1270 for the memory subsystem not to propagate W to R's CPU until after R
1271 has executed, which is possible if W executes shortly before R.
1272
1273 The third relation included in hb is like ppo, in that it only links
1274 events that are on the same CPU.  However it is more difficult to
1275 explain, because it arises only indirectly from the requirement of
1276 cache coherence.  The relation is called prop, and it links two events
1277 on CPU C in situations where a store from some other CPU comes after
1278 the first event in the coherence order and propagates to C before the
1279 second event executes.
1280
1281 This is best explained with some examples.  The simplest case looks
1282 like this:
1283
1284         int x;
1285
1286         P0()
1287         {
1288                 int r1;
1289
1290                 WRITE_ONCE(x, 1);
1291                 r1 = READ_ONCE(x);
1292         }
1293
1294         P1()
1295         {
1296                 WRITE_ONCE(x, 8);
1297         }
1298
1299 If r1 = 8 at the end then P0's accesses must have executed in program
1300 order.  We can deduce this from the operational model; if P0's load
1301 had executed before its store then the value of the store would have
1302 been forwarded to the load, so r1 would have ended up equal to 1, not
1303 8.  In this case there is a prop link from P0's write event to its read
1304 event, because P1's store came after P0's store in x's coherence
1305 order, and P1's store propagated to P0 before P0's load executed.
1306
1307 An equally simple case involves two loads of the same location that
1308 read from different stores:
1309
1310         int x = 0;
1311
1312         P0()
1313         {
1314                 int r1, r2;
1315
1316                 r1 = READ_ONCE(x);
1317                 r2 = READ_ONCE(x);
1318         }
1319
1320         P1()
1321         {
1322                 WRITE_ONCE(x, 9);
1323         }
1324
1325 If r1 = 0 and r2 = 9 at the end then P0's accesses must have executed
1326 in program order.  If the second load had executed before the first
1327 then the x = 9 store must have been propagated to P0 before the first
1328 load executed, and so r1 would have been 9 rather than 0.  In this
1329 case there is a prop link from P0's first read event to its second,
1330 because P1's store overwrote the value read by P0's first load, and
1331 P1's store propagated to P0 before P0's second load executed.
1332
1333 Less trivial examples of prop all involve fences.  Unlike the simple
1334 examples above, they can require that some instructions are executed
1335 out of program order.  This next one should look familiar:
1336
1337         int buf = 0, flag = 0;
1338
1339         P0()
1340         {
1341                 WRITE_ONCE(buf, 1);
1342                 smp_wmb();
1343                 WRITE_ONCE(flag, 1);
1344         }
1345
1346         P1()
1347         {
1348                 int r1;
1349                 int r2;
1350
1351                 r1 = READ_ONCE(flag);
1352                 r2 = READ_ONCE(buf);
1353         }
1354
1355 This is the MP pattern again, with an smp_wmb() fence between the two
1356 stores.  If r1 = 1 and r2 = 0 at the end then there is a prop link
1357 from P1's second load to its first (backwards!).  The reason is
1358 similar to the previous examples: The value P1 loads from buf gets
1359 overwritten by P0's store to buf, the fence guarantees that the store
1360 to buf will propagate to P1 before the store to flag does, and the
1361 store to flag propagates to P1 before P1 reads flag.
1362
1363 The prop link says that in order to obtain the r1 = 1, r2 = 0 result,
1364 P1 must execute its second load before the first.  Indeed, if the load
1365 from flag were executed first, then the buf = 1 store would already
1366 have propagated to P1 by the time P1's load from buf executed, so r2
1367 would have been 1 at the end, not 0.  (The reasoning holds even for
1368 Alpha, although the details are more complicated and we will not go
1369 into them.)
1370
1371 But what if we put an smp_rmb() fence between P1's loads?  The fence
1372 would force the two loads to be executed in program order, and it
1373 would generate a cycle in the hb relation: The fence would create a ppo
1374 link (hence an hb link) from the first load to the second, and the
1375 prop relation would give an hb link from the second load to the first.
1376 Since an instruction can't execute before itself, we are forced to
1377 conclude that if an smp_rmb() fence is added, the r1 = 1, r2 = 0
1378 outcome is impossible -- as it should be.
1379
1380 The formal definition of the prop relation involves a coe or fre link,
1381 followed by an arbitrary number of cumul-fence links, ending with an
1382 rfe link.  You can concoct more exotic examples, containing more than
1383 one fence, although this quickly leads to diminishing returns in terms
1384 of complexity.  For instance, here's an example containing a coe link
1385 followed by two cumul-fences and an rfe link, utilizing the fact that
1386 release fences are A-cumulative:
1387
1388         int x, y, z;
1389
1390         P0()
1391         {
1392                 int r0;
1393
1394                 WRITE_ONCE(x, 1);
1395                 r0 = READ_ONCE(z);
1396         }
1397
1398         P1()
1399         {
1400                 WRITE_ONCE(x, 2);
1401                 smp_wmb();
1402                 WRITE_ONCE(y, 1);
1403         }
1404
1405         P2()
1406         {
1407                 int r2;
1408
1409                 r2 = READ_ONCE(y);
1410                 smp_store_release(&z, 1);
1411         }
1412
1413 If x = 2, r0 = 1, and r2 = 1 after this code runs then there is a prop
1414 link from P0's store to its load.  This is because P0's store gets
1415 overwritten by P1's store since x = 2 at the end (a coe link), the
1416 smp_wmb() ensures that P1's store to x propagates to P2 before the
1417 store to y does (the first cumul-fence), the store to y propagates to P2
1418 before P2's load and store execute, P2's smp_store_release()
1419 guarantees that the stores to x and y both propagate to P0 before the
1420 store to z does (the second cumul-fence), and P0's load executes after the
1421 store to z has propagated to P0 (an rfe link).
1422
1423 In summary, the fact that the hb relation links memory access events
1424 in the order they execute means that it must not have cycles.  This
1425 requirement is the content of the LKMM's "happens-before" axiom.
1426
1427 The LKMM defines yet another relation connected to times of
1428 instruction execution, but it is not included in hb.  It relies on the
1429 particular properties of strong fences, which we cover in the next
1430 section.
1431
1432
1433 THE PROPAGATES-BEFORE RELATION: pb
1434 ----------------------------------
1435
1436 The propagates-before (pb) relation capitalizes on the special
1437 features of strong fences.  It links two events E and F whenever some
1438 store is coherence-later than E and propagates to every CPU and to RAM
1439 before F executes.  The formal definition requires that E be linked to
1440 F via a coe or fre link, an arbitrary number of cumul-fences, an
1441 optional rfe link, a strong fence, and an arbitrary number of hb
1442 links.  Let's see how this definition works out.
1443
1444 Consider first the case where E is a store (implying that the sequence
1445 of links begins with coe).  Then there are events W, X, Y, and Z such
1446 that:
1447
1448         E ->coe W ->cumul-fence* X ->rfe? Y ->strong-fence Z ->hb* F,
1449
1450 where the * suffix indicates an arbitrary number of links of the
1451 specified type, and the ? suffix indicates the link is optional (Y may
1452 be equal to X).  Because of the cumul-fence links, we know that W will
1453 propagate to Y's CPU before X does, hence before Y executes and hence
1454 before the strong fence executes.  Because this fence is strong, we
1455 know that W will propagate to every CPU and to RAM before Z executes.
1456 And because of the hb links, we know that Z will execute before F.
1457 Thus W, which comes later than E in the coherence order, will
1458 propagate to every CPU and to RAM before F executes.
1459
1460 The case where E is a load is exactly the same, except that the first
1461 link in the sequence is fre instead of coe.
1462
1463 The existence of a pb link from E to F implies that E must execute
1464 before F.  To see why, suppose that F executed first.  Then W would
1465 have propagated to E's CPU before E executed.  If E was a store, the
1466 memory subsystem would then be forced to make E come after W in the
1467 coherence order, contradicting the fact that E ->coe W.  If E was a
1468 load, the memory subsystem would then be forced to satisfy E's read
1469 request with the value stored by W or an even later store,
1470 contradicting the fact that E ->fre W.
1471
1472 A good example illustrating how pb works is the SB pattern with strong
1473 fences:
1474
1475         int x = 0, y = 0;
1476
1477         P0()
1478         {
1479                 int r0;
1480
1481                 WRITE_ONCE(x, 1);
1482                 smp_mb();
1483                 r0 = READ_ONCE(y);
1484         }
1485
1486         P1()
1487         {
1488                 int r1;
1489
1490                 WRITE_ONCE(y, 1);
1491                 smp_mb();
1492                 r1 = READ_ONCE(x);
1493         }
1494
1495 If r0 = 0 at the end then there is a pb link from P0's load to P1's
1496 load: an fre link from P0's load to P1's store (which overwrites the
1497 value read by P0), and a strong fence between P1's store and its load.
1498 In this example, the sequences of cumul-fence and hb links are empty.
1499 Note that this pb link is not included in hb as an instance of prop,
1500 because it does not start and end on the same CPU.
1501
1502 Similarly, if r1 = 0 at the end then there is a pb link from P1's load
1503 to P0's.  This means that if both r1 and r2 were 0 there would be a
1504 cycle in pb, which is not possible since an instruction cannot execute
1505 before itself.  Thus, adding smp_mb() fences to the SB pattern
1506 prevents the r0 = 0, r1 = 0 outcome.
1507
1508 In summary, the fact that the pb relation links events in the order
1509 they execute means that it cannot have cycles.  This requirement is
1510 the content of the LKMM's "propagation" axiom.
1511
1512
1513 RCU RELATIONS: rcu-link, rcu-gp, rcu-rscsi, rcu-order, rcu-fence, and rb
1514 ------------------------------------------------------------------------
1515
1516 RCU (Read-Copy-Update) is a powerful synchronization mechanism.  It
1517 rests on two concepts: grace periods and read-side critical sections.
1518
1519 A grace period is the span of time occupied by a call to
1520 synchronize_rcu().  A read-side critical section (or just critical
1521 section, for short) is a region of code delimited by rcu_read_lock()
1522 at the start and rcu_read_unlock() at the end.  Critical sections can
1523 be nested, although we won't make use of this fact.
1524
1525 As far as memory models are concerned, RCU's main feature is its
1526 Grace-Period Guarantee, which states that a critical section can never
1527 span a full grace period.  In more detail, the Guarantee says:
1528
1529         For any critical section C and any grace period G, at least
1530         one of the following statements must hold:
1531
1532 (1)     C ends before G does, and in addition, every store that
1533         propagates to C's CPU before the end of C must propagate to
1534         every CPU before G ends.
1535
1536 (2)     G starts before C does, and in addition, every store that
1537         propagates to G's CPU before the start of G must propagate
1538         to every CPU before C starts.
1539
1540 In particular, it is not possible for a critical section to both start
1541 before and end after a grace period.
1542
1543 Here is a simple example of RCU in action:
1544
1545         int x, y;
1546
1547         P0()
1548         {
1549                 rcu_read_lock();
1550                 WRITE_ONCE(x, 1);
1551                 WRITE_ONCE(y, 1);
1552                 rcu_read_unlock();
1553         }
1554
1555         P1()
1556         {
1557                 int r1, r2;
1558
1559                 r1 = READ_ONCE(x);
1560                 synchronize_rcu();
1561                 r2 = READ_ONCE(y);
1562         }
1563
1564 The Grace Period Guarantee tells us that when this code runs, it will
1565 never end with r1 = 1 and r2 = 0.  The reasoning is as follows.  r1 = 1
1566 means that P0's store to x propagated to P1 before P1 called
1567 synchronize_rcu(), so P0's critical section must have started before
1568 P1's grace period, contrary to part (2) of the Guarantee.  On the
1569 other hand, r2 = 0 means that P0's store to y, which occurs before the
1570 end of the critical section, did not propagate to P1 before the end of
1571 the grace period, contrary to part (1).  Together the results violate
1572 the Guarantee.
1573
1574 In the kernel's implementations of RCU, the requirements for stores
1575 to propagate to every CPU are fulfilled by placing strong fences at
1576 suitable places in the RCU-related code.  Thus, if a critical section
1577 starts before a grace period does then the critical section's CPU will
1578 execute an smp_mb() fence after the end of the critical section and
1579 some time before the grace period's synchronize_rcu() call returns.
1580 And if a critical section ends after a grace period does then the
1581 synchronize_rcu() routine will execute an smp_mb() fence at its start
1582 and some time before the critical section's opening rcu_read_lock()
1583 executes.
1584
1585 What exactly do we mean by saying that a critical section "starts
1586 before" or "ends after" a grace period?  Some aspects of the meaning
1587 are pretty obvious, as in the example above, but the details aren't
1588 entirely clear.  The LKMM formalizes this notion by means of the
1589 rcu-link relation.  rcu-link encompasses a very general notion of
1590 "before": If E and F are RCU fence events (i.e., rcu_read_lock(),
1591 rcu_read_unlock(), or synchronize_rcu()) then among other things,
1592 E ->rcu-link F includes cases where E is po-before some memory-access
1593 event X, F is po-after some memory-access event Y, and we have any of
1594 X ->rfe Y, X ->co Y, or X ->fr Y.
1595
1596 The formal definition of the rcu-link relation is more than a little
1597 obscure, and we won't give it here.  It is closely related to the pb
1598 relation, and the details don't matter unless you want to comb through
1599 a somewhat lengthy formal proof.  Pretty much all you need to know
1600 about rcu-link is the information in the preceding paragraph.
1601
1602 The LKMM also defines the rcu-gp and rcu-rscsi relations.  They bring
1603 grace periods and read-side critical sections into the picture, in the
1604 following way:
1605
1606         E ->rcu-gp F means that E and F are in fact the same event,
1607         and that event is a synchronize_rcu() fence (i.e., a grace
1608         period).
1609
1610         E ->rcu-rscsi F means that E and F are the rcu_read_unlock()
1611         and rcu_read_lock() fence events delimiting some read-side
1612         critical section.  (The 'i' at the end of the name emphasizes
1613         that this relation is "inverted": It links the end of the
1614         critical section to the start.)
1615
1616 If we think of the rcu-link relation as standing for an extended
1617 "before", then X ->rcu-gp Y ->rcu-link Z roughly says that X is a
1618 grace period which ends before Z begins.  (In fact it covers more than
1619 this, because it also includes cases where some store propagates to
1620 Z's CPU before Z begins but doesn't propagate to some other CPU until
1621 after X ends.)  Similarly, X ->rcu-rscsi Y ->rcu-link Z says that X is
1622 the end of a critical section which starts before Z begins.
1623
1624 The LKMM goes on to define the rcu-order relation as a sequence of
1625 rcu-gp and rcu-rscsi links separated by rcu-link links, in which the
1626 number of rcu-gp links is >= the number of rcu-rscsi links.  For
1627 example:
1628
1629         X ->rcu-gp Y ->rcu-link Z ->rcu-rscsi T ->rcu-link U ->rcu-gp V
1630
1631 would imply that X ->rcu-order V, because this sequence contains two
1632 rcu-gp links and one rcu-rscsi link.  (It also implies that
1633 X ->rcu-order T and Z ->rcu-order V.)  On the other hand:
1634
1635         X ->rcu-rscsi Y ->rcu-link Z ->rcu-rscsi T ->rcu-link U ->rcu-gp V
1636
1637 does not imply X ->rcu-order V, because the sequence contains only
1638 one rcu-gp link but two rcu-rscsi links.
1639
1640 The rcu-order relation is important because the Grace Period Guarantee
1641 means that rcu-order links act kind of like strong fences.  In
1642 particular, E ->rcu-order F implies not only that E begins before F
1643 ends, but also that any write po-before E will propagate to every CPU
1644 before any instruction po-after F can execute.  (However, it does not
1645 imply that E must execute before F; in fact, each synchronize_rcu()
1646 fence event is linked to itself by rcu-order as a degenerate case.)
1647
1648 To prove this in full generality requires some intellectual effort.
1649 We'll consider just a very simple case:
1650
1651         G ->rcu-gp W ->rcu-link Z ->rcu-rscsi F.
1652
1653 This formula means that G and W are the same event (a grace period),
1654 and there are events X, Y and a read-side critical section C such that:
1655
1656         1. G = W is po-before or equal to X;
1657
1658         2. X comes "before" Y in some sense (including rfe, co and fr);
1659
1660         3. Y is po-before Z;
1661
1662         4. Z is the rcu_read_unlock() event marking the end of C;
1663
1664         5. F is the rcu_read_lock() event marking the start of C.
1665
1666 From 1 - 4 we deduce that the grace period G ends before the critical
1667 section C.  Then part (2) of the Grace Period Guarantee says not only
1668 that G starts before C does, but also that any write which executes on
1669 G's CPU before G starts must propagate to every CPU before C starts.
1670 In particular, the write propagates to every CPU before F finishes
1671 executing and hence before any instruction po-after F can execute.
1672 This sort of reasoning can be extended to handle all the situations
1673 covered by rcu-order.
1674
1675 The rcu-fence relation is a simple extension of rcu-order.  While
1676 rcu-order only links certain fence events (calls to synchronize_rcu(),
1677 rcu_read_lock(), or rcu_read_unlock()), rcu-fence links any events
1678 that are separated by an rcu-order link.  This is analogous to the way
1679 the strong-fence relation links events that are separated by an
1680 smp_mb() fence event (as mentioned above, rcu-order links act kind of
1681 like strong fences).  Written symbolically, X ->rcu-fence Y means
1682 there are fence events E and F such that:
1683
1684         X ->po E ->rcu-order F ->po Y.
1685
1686 From the discussion above, we see this implies not only that X
1687 executes before Y, but also (if X is a store) that X propagates to
1688 every CPU before Y executes.  Thus rcu-fence is sort of a
1689 "super-strong" fence: Unlike the original strong fences (smp_mb() and
1690 synchronize_rcu()), rcu-fence is able to link events on different
1691 CPUs.  (Perhaps this fact should lead us to say that rcu-fence isn't
1692 really a fence at all!)
1693
1694 Finally, the LKMM defines the RCU-before (rb) relation in terms of
1695 rcu-fence.  This is done in essentially the same way as the pb
1696 relation was defined in terms of strong-fence.  We will omit the
1697 details; the end result is that E ->rb F implies E must execute
1698 before F, just as E ->pb F does (and for much the same reasons).
1699
1700 Putting this all together, the LKMM expresses the Grace Period
1701 Guarantee by requiring that the rb relation does not contain a cycle.
1702 Equivalently, this "rcu" axiom requires that there are no events E
1703 and F with E ->rcu-link F ->rcu-order E.  Or to put it a third way,
1704 the axiom requires that there are no cycles consisting of rcu-gp and
1705 rcu-rscsi alternating with rcu-link, where the number of rcu-gp links
1706 is >= the number of rcu-rscsi links.
1707
1708 Justifying the axiom isn't easy, but it is in fact a valid
1709 formalization of the Grace Period Guarantee.  We won't attempt to go
1710 through the detailed argument, but the following analysis gives a
1711 taste of what is involved.  Suppose both parts of the Guarantee are
1712 violated: A critical section starts before a grace period, and some
1713 store propagates to the critical section's CPU before the end of the
1714 critical section but doesn't propagate to some other CPU until after
1715 the end of the grace period.
1716
1717 Putting symbols to these ideas, let L and U be the rcu_read_lock() and
1718 rcu_read_unlock() fence events delimiting the critical section in
1719 question, and let S be the synchronize_rcu() fence event for the grace
1720 period.  Saying that the critical section starts before S means there
1721 are events Q and R where Q is po-after L (which marks the start of the
1722 critical section), Q is "before" R in the sense used by the rcu-link
1723 relation, and R is po-before the grace period S.  Thus we have:
1724
1725         L ->rcu-link S.
1726
1727 Let W be the store mentioned above, let Y come before the end of the
1728 critical section and witness that W propagates to the critical
1729 section's CPU by reading from W, and let Z on some arbitrary CPU be a
1730 witness that W has not propagated to that CPU, where Z happens after
1731 some event X which is po-after S.  Symbolically, this amounts to:
1732
1733         S ->po X ->hb* Z ->fr W ->rf Y ->po U.
1734
1735 The fr link from Z to W indicates that W has not propagated to Z's CPU
1736 at the time that Z executes.  From this, it can be shown (see the
1737 discussion of the rcu-link relation earlier) that S and U are related
1738 by rcu-link:
1739
1740         S ->rcu-link U.
1741
1742 Since S is a grace period we have S ->rcu-gp S, and since L and U are
1743 the start and end of the critical section C we have U ->rcu-rscsi L.
1744 From this we obtain:
1745
1746         S ->rcu-gp S ->rcu-link U ->rcu-rscsi L ->rcu-link S,
1747
1748 a forbidden cycle.  Thus the "rcu" axiom rules out this violation of
1749 the Grace Period Guarantee.
1750
1751 For something a little more down-to-earth, let's see how the axiom
1752 works out in practice.  Consider the RCU code example from above, this
1753 time with statement labels added:
1754
1755         int x, y;
1756
1757         P0()
1758         {
1759                 L: rcu_read_lock();
1760                 X: WRITE_ONCE(x, 1);
1761                 Y: WRITE_ONCE(y, 1);
1762                 U: rcu_read_unlock();
1763         }
1764
1765         P1()
1766         {
1767                 int r1, r2;
1768
1769                 Z: r1 = READ_ONCE(x);
1770                 S: synchronize_rcu();
1771                 W: r2 = READ_ONCE(y);
1772         }
1773
1774
1775 If r2 = 0 at the end then P0's store at Y overwrites the value that
1776 P1's load at W reads from, so we have W ->fre Y.  Since S ->po W and
1777 also Y ->po U, we get S ->rcu-link U.  In addition, S ->rcu-gp S
1778 because S is a grace period.
1779
1780 If r1 = 1 at the end then P1's load at Z reads from P0's store at X,
1781 so we have X ->rfe Z.  Together with L ->po X and Z ->po S, this
1782 yields L ->rcu-link S.  And since L and U are the start and end of a
1783 critical section, we have U ->rcu-rscsi L.
1784
1785 Then U ->rcu-rscsi L ->rcu-link S ->rcu-gp S ->rcu-link U is a
1786 forbidden cycle, violating the "rcu" axiom.  Hence the outcome is not
1787 allowed by the LKMM, as we would expect.
1788
1789 For contrast, let's see what can happen in a more complicated example:
1790
1791         int x, y, z;
1792
1793         P0()
1794         {
1795                 int r0;
1796
1797                 L0: rcu_read_lock();
1798                     r0 = READ_ONCE(x);
1799                     WRITE_ONCE(y, 1);
1800                 U0: rcu_read_unlock();
1801         }
1802
1803         P1()
1804         {
1805                 int r1;
1806
1807                     r1 = READ_ONCE(y);
1808                 S1: synchronize_rcu();
1809                     WRITE_ONCE(z, 1);
1810         }
1811
1812         P2()
1813         {
1814                 int r2;
1815
1816                 L2: rcu_read_lock();
1817                     r2 = READ_ONCE(z);
1818                     WRITE_ONCE(x, 1);
1819                 U2: rcu_read_unlock();
1820         }
1821
1822 If r0 = r1 = r2 = 1 at the end, then similar reasoning to before shows
1823 that U0 ->rcu-rscsi L0 ->rcu-link S1 ->rcu-gp S1 ->rcu-link U2 ->rcu-rscsi
1824 L2 ->rcu-link U0.  However this cycle is not forbidden, because the
1825 sequence of relations contains fewer instances of rcu-gp (one) than of
1826 rcu-rscsi (two).  Consequently the outcome is allowed by the LKMM.
1827 The following instruction timing diagram shows how it might actually
1828 occur:
1829
1830 P0                      P1                      P2
1831 --------------------    --------------------    --------------------
1832 rcu_read_lock()
1833 WRITE_ONCE(y, 1)
1834                         r1 = READ_ONCE(y)
1835                         synchronize_rcu() starts
1836                         .                       rcu_read_lock()
1837                         .                       WRITE_ONCE(x, 1)
1838 r0 = READ_ONCE(x)       .
1839 rcu_read_unlock()       .
1840                         synchronize_rcu() ends
1841                         WRITE_ONCE(z, 1)
1842                                                 r2 = READ_ONCE(z)
1843                                                 rcu_read_unlock()
1844
1845 This requires P0 and P2 to execute their loads and stores out of
1846 program order, but of course they are allowed to do so.  And as you
1847 can see, the Grace Period Guarantee is not violated: The critical
1848 section in P0 both starts before P1's grace period does and ends
1849 before it does, and the critical section in P2 both starts after P1's
1850 grace period does and ends after it does.
1851
1852 The LKMM supports SRCU (Sleepable Read-Copy-Update) in addition to
1853 normal RCU.  The ideas involved are much the same as above, with new
1854 relations srcu-gp and srcu-rscsi added to represent SRCU grace periods
1855 and read-side critical sections.  However, there are some significant
1856 differences between RCU read-side critical sections and their SRCU
1857 counterparts, as described in the next section.
1858
1859
1860 SRCU READ-SIDE CRITICAL SECTIONS
1861 --------------------------------
1862
1863 The LKMM uses the srcu-rscsi relation to model SRCU read-side critical
1864 sections.  They differ from RCU read-side critical sections in the
1865 following respects:
1866
1867 1.      Unlike the analogous RCU primitives, synchronize_srcu(),
1868         srcu_read_lock(), and srcu_read_unlock() take a pointer to a
1869         struct srcu_struct as an argument.  This structure is called
1870         an SRCU domain, and calls linked by srcu-rscsi must have the
1871         same domain.  Read-side critical sections and grace periods
1872         associated with different domains are independent of one
1873         another; the SRCU version of the RCU Guarantee applies only
1874         to pairs of critical sections and grace periods having the
1875         same domain.
1876
1877 2.      srcu_read_lock() returns a value, called the index, which must
1878         be passed to the matching srcu_read_unlock() call.  Unlike
1879         rcu_read_lock() and rcu_read_unlock(), an srcu_read_lock()
1880         call does not always have to match the next unpaired
1881         srcu_read_unlock().  In fact, it is possible for two SRCU
1882         read-side critical sections to overlap partially, as in the
1883         following example (where s is an srcu_struct and idx1 and idx2
1884         are integer variables):
1885
1886                 idx1 = srcu_read_lock(&s);      // Start of first RSCS
1887                 idx2 = srcu_read_lock(&s);      // Start of second RSCS
1888                 srcu_read_unlock(&s, idx1);     // End of first RSCS
1889                 srcu_read_unlock(&s, idx2);     // End of second RSCS
1890
1891         The matching is determined entirely by the domain pointer and
1892         index value.  By contrast, if the calls had been
1893         rcu_read_lock() and rcu_read_unlock() then they would have
1894         created two nested (fully overlapping) read-side critical
1895         sections: an inner one and an outer one.
1896
1897 3.      The srcu_down_read() and srcu_up_read() primitives work
1898         exactly like srcu_read_lock() and srcu_read_unlock(), except
1899         that matching calls don't have to execute on the same CPU.
1900         (The names are meant to be suggestive of operations on
1901         semaphores.)  Since the matching is determined by the domain
1902         pointer and index value, these primitives make it possible for
1903         an SRCU read-side critical section to start on one CPU and end
1904         on another, so to speak.
1905
1906 In order to account for these properties of SRCU, the LKMM models
1907 srcu_read_lock() as a special type of load event (which is
1908 appropriate, since it takes a memory location as argument and returns
1909 a value, just as a load does) and srcu_read_unlock() as a special type
1910 of store event (again appropriate, since it takes as arguments a
1911 memory location and a value).  These loads and stores are annotated as
1912 belonging to the "srcu-lock" and "srcu-unlock" event classes
1913 respectively.
1914
1915 This approach allows the LKMM to tell whether two events are
1916 associated with the same SRCU domain, simply by checking whether they
1917 access the same memory location (i.e., they are linked by the loc
1918 relation).  It also gives a way to tell which unlock matches a
1919 particular lock, by checking for the presence of a data dependency
1920 from the load (srcu-lock) to the store (srcu-unlock).  For example,
1921 given the situation outlined earlier (with statement labels added):
1922
1923         A: idx1 = srcu_read_lock(&s);
1924         B: idx2 = srcu_read_lock(&s);
1925         C: srcu_read_unlock(&s, idx1);
1926         D: srcu_read_unlock(&s, idx2);
1927
1928 the LKMM will treat A and B as loads from s yielding values saved in
1929 idx1 and idx2 respectively.  Similarly, it will treat C and D as
1930 though they stored the values from idx1 and idx2 in s.  The end result
1931 is much as if we had written:
1932
1933         A: idx1 = READ_ONCE(s);
1934         B: idx2 = READ_ONCE(s);
1935         C: WRITE_ONCE(s, idx1);
1936         D: WRITE_ONCE(s, idx2);
1937
1938 except for the presence of the special srcu-lock and srcu-unlock
1939 annotations.  You can see at once that we have A ->data C and
1940 B ->data D.  These dependencies tell the LKMM that C is the
1941 srcu-unlock event matching srcu-lock event A, and D is the
1942 srcu-unlock event matching srcu-lock event B.
1943
1944 This approach is admittedly a hack, and it has the potential to lead
1945 to problems.  For example, in:
1946
1947         idx1 = srcu_read_lock(&s);
1948         srcu_read_unlock(&s, idx1);
1949         idx2 = srcu_read_lock(&s);
1950         srcu_read_unlock(&s, idx2);
1951
1952 the LKMM will believe that idx2 must have the same value as idx1,
1953 since it reads from the immediately preceding store of idx1 in s.
1954 Fortunately this won't matter, assuming that litmus tests never do
1955 anything with SRCU index values other than pass them to
1956 srcu_read_unlock() or srcu_up_read() calls.
1957
1958 However, sometimes it is necessary to store an index value in a
1959 shared variable temporarily.  In fact, this is the only way for
1960 srcu_down_read() to pass the index it gets to an srcu_up_read() call
1961 on a different CPU.  In more detail, we might have soething like:
1962
1963         struct srcu_struct s;
1964         int x;
1965
1966         P0()
1967         {
1968                 int r0;
1969
1970                 A: r0 = srcu_down_read(&s);
1971                 B: WRITE_ONCE(x, r0);
1972         }
1973
1974         P1()
1975         {
1976                 int r1;
1977
1978                 C: r1 = READ_ONCE(x);
1979                 D: srcu_up_read(&s, r1);
1980         }
1981
1982 Assuming that P1 executes after P0 and does read the index value
1983 stored in x, we can write this (using brackets to represent event
1984 annotations) as:
1985
1986         A[srcu-lock] ->data B[once] ->rf C[once] ->data D[srcu-unlock].
1987
1988 The LKMM defines a carry-srcu-data relation to express this pattern;
1989 it permits an arbitrarily long sequence of
1990
1991         data ; rf
1992
1993 pairs (that is, a data link followed by an rf link) to occur between
1994 an srcu-lock event and the final data dependency leading to the
1995 matching srcu-unlock event.  carry-srcu-data is complicated by the
1996 need to ensure that none of the intermediate store events in this
1997 sequence are instances of srcu-unlock.  This is necessary because in a
1998 pattern like the one above:
1999
2000         A: idx1 = srcu_read_lock(&s);
2001         B: srcu_read_unlock(&s, idx1);
2002         C: idx2 = srcu_read_lock(&s);
2003         D: srcu_read_unlock(&s, idx2);
2004
2005 the LKMM treats B as a store to the variable s and C as a load from
2006 that variable, creating an undesirable rf link from B to C:
2007
2008         A ->data B ->rf C ->data D.
2009
2010 This would cause carry-srcu-data to mistakenly extend a data
2011 dependency from A to D, giving the impression that D was the
2012 srcu-unlock event matching A's srcu-lock.  To avoid such problems,
2013 carry-srcu-data does not accept sequences in which the ends of any of
2014 the intermediate ->data links (B above) is an srcu-unlock event.
2015
2016
2017 LOCKING
2018 -------
2019
2020 The LKMM includes locking.  In fact, there is special code for locking
2021 in the formal model, added in order to make tools run faster.
2022 However, this special code is intended to be more or less equivalent
2023 to concepts we have already covered.  A spinlock_t variable is treated
2024 the same as an int, and spin_lock(&s) is treated almost the same as:
2025
2026         while (cmpxchg_acquire(&s, 0, 1) != 0)
2027                 cpu_relax();
2028
2029 This waits until s is equal to 0 and then atomically sets it to 1,
2030 and the read part of the cmpxchg operation acts as an acquire fence.
2031 An alternate way to express the same thing would be:
2032
2033         r = xchg_acquire(&s, 1);
2034
2035 along with a requirement that at the end, r = 0.  Similarly,
2036 spin_trylock(&s) is treated almost the same as:
2037
2038         return !cmpxchg_acquire(&s, 0, 1);
2039
2040 which atomically sets s to 1 if it is currently equal to 0 and returns
2041 true if it succeeds (the read part of the cmpxchg operation acts as an
2042 acquire fence only if the operation is successful).  spin_unlock(&s)
2043 is treated almost the same as:
2044
2045         smp_store_release(&s, 0);
2046
2047 The "almost" qualifiers above need some explanation.  In the LKMM, the
2048 store-release in a spin_unlock() and the load-acquire which forms the
2049 first half of the atomic rmw update in a spin_lock() or a successful
2050 spin_trylock() -- we can call these things lock-releases and
2051 lock-acquires -- have two properties beyond those of ordinary releases
2052 and acquires.
2053
2054 First, when a lock-acquire reads from or is po-after a lock-release,
2055 the LKMM requires that every instruction po-before the lock-release
2056 must execute before any instruction po-after the lock-acquire.  This
2057 would naturally hold if the release and acquire operations were on
2058 different CPUs and accessed the same lock variable, but the LKMM says
2059 it also holds when they are on the same CPU, even if they access
2060 different lock variables.  For example:
2061
2062         int x, y;
2063         spinlock_t s, t;
2064
2065         P0()
2066         {
2067                 int r1, r2;
2068
2069                 spin_lock(&s);
2070                 r1 = READ_ONCE(x);
2071                 spin_unlock(&s);
2072                 spin_lock(&t);
2073                 r2 = READ_ONCE(y);
2074                 spin_unlock(&t);
2075         }
2076
2077         P1()
2078         {
2079                 WRITE_ONCE(y, 1);
2080                 smp_wmb();
2081                 WRITE_ONCE(x, 1);
2082         }
2083
2084 Here the second spin_lock() is po-after the first spin_unlock(), and
2085 therefore the load of x must execute before the load of y, even though
2086 the two locking operations use different locks.  Thus we cannot have
2087 r1 = 1 and r2 = 0 at the end (this is an instance of the MP pattern).
2088
2089 This requirement does not apply to ordinary release and acquire
2090 fences, only to lock-related operations.  For instance, suppose P0()
2091 in the example had been written as:
2092
2093         P0()
2094         {
2095                 int r1, r2, r3;
2096
2097                 r1 = READ_ONCE(x);
2098                 smp_store_release(&s, 1);
2099                 r3 = smp_load_acquire(&s);
2100                 r2 = READ_ONCE(y);
2101         }
2102
2103 Then the CPU would be allowed to forward the s = 1 value from the
2104 smp_store_release() to the smp_load_acquire(), executing the
2105 instructions in the following order:
2106
2107                 r3 = smp_load_acquire(&s);      // Obtains r3 = 1
2108                 r2 = READ_ONCE(y);
2109                 r1 = READ_ONCE(x);
2110                 smp_store_release(&s, 1);       // Value is forwarded
2111
2112 and thus it could load y before x, obtaining r2 = 0 and r1 = 1.
2113
2114 Second, when a lock-acquire reads from or is po-after a lock-release,
2115 and some other stores W and W' occur po-before the lock-release and
2116 po-after the lock-acquire respectively, the LKMM requires that W must
2117 propagate to each CPU before W' does.  For example, consider:
2118
2119         int x, y;
2120         spinlock_t s;
2121
2122         P0()
2123         {
2124                 spin_lock(&s);
2125                 WRITE_ONCE(x, 1);
2126                 spin_unlock(&s);
2127         }
2128
2129         P1()
2130         {
2131                 int r1;
2132
2133                 spin_lock(&s);
2134                 r1 = READ_ONCE(x);
2135                 WRITE_ONCE(y, 1);
2136                 spin_unlock(&s);
2137         }
2138
2139         P2()
2140         {
2141                 int r2, r3;
2142
2143                 r2 = READ_ONCE(y);
2144                 smp_rmb();
2145                 r3 = READ_ONCE(x);
2146         }
2147
2148 If r1 = 1 at the end then the spin_lock() in P1 must have read from
2149 the spin_unlock() in P0.  Hence the store to x must propagate to P2
2150 before the store to y does, so we cannot have r2 = 1 and r3 = 0.  But
2151 if P1 had used a lock variable different from s, the writes could have
2152 propagated in either order.  (On the other hand, if the code in P0 and
2153 P1 had all executed on a single CPU, as in the example before this
2154 one, then the writes would have propagated in order even if the two
2155 critical sections used different lock variables.)
2156
2157 These two special requirements for lock-release and lock-acquire do
2158 not arise from the operational model.  Nevertheless, kernel developers
2159 have come to expect and rely on them because they do hold on all
2160 architectures supported by the Linux kernel, albeit for various
2161 differing reasons.
2162
2163
2164 PLAIN ACCESSES AND DATA RACES
2165 -----------------------------
2166
2167 In the LKMM, memory accesses such as READ_ONCE(x), atomic_inc(&y),
2168 smp_load_acquire(&z), and so on are collectively referred to as
2169 "marked" accesses, because they are all annotated with special
2170 operations of one kind or another.  Ordinary C-language memory
2171 accesses such as x or y = 0 are simply called "plain" accesses.
2172
2173 Early versions of the LKMM had nothing to say about plain accesses.
2174 The C standard allows compilers to assume that the variables affected
2175 by plain accesses are not concurrently read or written by any other
2176 threads or CPUs.  This leaves compilers free to implement all manner
2177 of transformations or optimizations of code containing plain accesses,
2178 making such code very difficult for a memory model to handle.
2179
2180 Here is just one example of a possible pitfall:
2181
2182         int a = 6;
2183         int *x = &a;
2184
2185         P0()
2186         {
2187                 int *r1;
2188                 int r2 = 0;
2189
2190                 r1 = x;
2191                 if (r1 != NULL)
2192                         r2 = READ_ONCE(*r1);
2193         }
2194
2195         P1()
2196         {
2197                 WRITE_ONCE(x, NULL);
2198         }
2199
2200 On the face of it, one would expect that when this code runs, the only
2201 possible final values for r2 are 6 and 0, depending on whether or not
2202 P1's store to x propagates to P0 before P0's load from x executes.
2203 But since P0's load from x is a plain access, the compiler may decide
2204 to carry out the load twice (for the comparison against NULL, then again
2205 for the READ_ONCE()) and eliminate the temporary variable r1.  The
2206 object code generated for P0 could therefore end up looking rather
2207 like this:
2208
2209         P0()
2210         {
2211                 int r2 = 0;
2212
2213                 if (x != NULL)
2214                         r2 = READ_ONCE(*x);
2215         }
2216
2217 And now it is obvious that this code runs the risk of dereferencing a
2218 NULL pointer, because P1's store to x might propagate to P0 after the
2219 test against NULL has been made but before the READ_ONCE() executes.
2220 If the original code had said "r1 = READ_ONCE(x)" instead of "r1 = x",
2221 the compiler would not have performed this optimization and there
2222 would be no possibility of a NULL-pointer dereference.
2223
2224 Given the possibility of transformations like this one, the LKMM
2225 doesn't try to predict all possible outcomes of code containing plain
2226 accesses.  It is instead content to determine whether the code
2227 violates the compiler's assumptions, which would render the ultimate
2228 outcome undefined.
2229
2230 In technical terms, the compiler is allowed to assume that when the
2231 program executes, there will not be any data races.  A "data race"
2232 occurs when there are two memory accesses such that:
2233
2234 1.      they access the same location,
2235
2236 2.      at least one of them is a store,
2237
2238 3.      at least one of them is plain,
2239
2240 4.      they occur on different CPUs (or in different threads on the
2241         same CPU), and
2242
2243 5.      they execute concurrently.
2244
2245 In the literature, two accesses are said to "conflict" if they satisfy
2246 1 and 2 above.  We'll go a little farther and say that two accesses
2247 are "race candidates" if they satisfy 1 - 4.  Thus, whether or not two
2248 race candidates actually do race in a given execution depends on
2249 whether they are concurrent.
2250
2251 The LKMM tries to determine whether a program contains race candidates
2252 which may execute concurrently; if it does then the LKMM says there is
2253 a potential data race and makes no predictions about the program's
2254 outcome.
2255
2256 Determining whether two accesses are race candidates is easy; you can
2257 see that all the concepts involved in the definition above are already
2258 part of the memory model.  The hard part is telling whether they may
2259 execute concurrently.  The LKMM takes a conservative attitude,
2260 assuming that accesses may be concurrent unless it can prove they
2261 are not.
2262
2263 If two memory accesses aren't concurrent then one must execute before
2264 the other.  Therefore the LKMM decides two accesses aren't concurrent
2265 if they can be connected by a sequence of hb, pb, and rb links
2266 (together referred to as xb, for "executes before").  However, there
2267 are two complicating factors.
2268
2269 If X is a load and X executes before a store Y, then indeed there is
2270 no danger of X and Y being concurrent.  After all, Y can't have any
2271 effect on the value obtained by X until the memory subsystem has
2272 propagated Y from its own CPU to X's CPU, which won't happen until
2273 some time after Y executes and thus after X executes.  But if X is a
2274 store, then even if X executes before Y it is still possible that X
2275 will propagate to Y's CPU just as Y is executing.  In such a case X
2276 could very well interfere somehow with Y, and we would have to
2277 consider X and Y to be concurrent.
2278
2279 Therefore when X is a store, for X and Y to be non-concurrent the LKMM
2280 requires not only that X must execute before Y but also that X must
2281 propagate to Y's CPU before Y executes.  (Or vice versa, of course, if
2282 Y executes before X -- then Y must propagate to X's CPU before X
2283 executes if Y is a store.)  This is expressed by the visibility
2284 relation (vis), where X ->vis Y is defined to hold if there is an
2285 intermediate event Z such that:
2286
2287         X is connected to Z by a possibly empty sequence of
2288         cumul-fence links followed by an optional rfe link (if none of
2289         these links are present, X and Z are the same event),
2290
2291 and either:
2292
2293         Z is connected to Y by a strong-fence link followed by a
2294         possibly empty sequence of xb links,
2295
2296 or:
2297
2298         Z is on the same CPU as Y and is connected to Y by a possibly
2299         empty sequence of xb links (again, if the sequence is empty it
2300         means Z and Y are the same event).
2301
2302 The motivations behind this definition are straightforward:
2303
2304         cumul-fence memory barriers force stores that are po-before
2305         the barrier to propagate to other CPUs before stores that are
2306         po-after the barrier.
2307
2308         An rfe link from an event W to an event R says that R reads
2309         from W, which certainly means that W must have propagated to
2310         R's CPU before R executed.
2311
2312         strong-fence memory barriers force stores that are po-before
2313         the barrier, or that propagate to the barrier's CPU before the
2314         barrier executes, to propagate to all CPUs before any events
2315         po-after the barrier can execute.
2316
2317 To see how this works out in practice, consider our old friend, the MP
2318 pattern (with fences and statement labels, but without the conditional
2319 test):
2320
2321         int buf = 0, flag = 0;
2322
2323         P0()
2324         {
2325                 X: WRITE_ONCE(buf, 1);
2326                    smp_wmb();
2327                 W: WRITE_ONCE(flag, 1);
2328         }
2329
2330         P1()
2331         {
2332                 int r1;
2333                 int r2 = 0;
2334
2335                 Z: r1 = READ_ONCE(flag);
2336                    smp_rmb();
2337                 Y: r2 = READ_ONCE(buf);
2338         }
2339
2340 The smp_wmb() memory barrier gives a cumul-fence link from X to W, and
2341 assuming r1 = 1 at the end, there is an rfe link from W to Z.  This
2342 means that the store to buf must propagate from P0 to P1 before Z
2343 executes.  Next, Z and Y are on the same CPU and the smp_rmb() fence
2344 provides an xb link from Z to Y (i.e., it forces Z to execute before
2345 Y).  Therefore we have X ->vis Y: X must propagate to Y's CPU before Y
2346 executes.
2347
2348 The second complicating factor mentioned above arises from the fact
2349 that when we are considering data races, some of the memory accesses
2350 are plain.  Now, although we have not said so explicitly, up to this
2351 point most of the relations defined by the LKMM (ppo, hb, prop,
2352 cumul-fence, pb, and so on -- including vis) apply only to marked
2353 accesses.
2354
2355 There are good reasons for this restriction.  The compiler is not
2356 allowed to apply fancy transformations to marked accesses, and
2357 consequently each such access in the source code corresponds more or
2358 less directly to a single machine instruction in the object code.  But
2359 plain accesses are a different story; the compiler may combine them,
2360 split them up, duplicate them, eliminate them, invent new ones, and
2361 who knows what else.  Seeing a plain access in the source code tells
2362 you almost nothing about what machine instructions will end up in the
2363 object code.
2364
2365 Fortunately, the compiler isn't completely free; it is subject to some
2366 limitations.  For one, it is not allowed to introduce a data race into
2367 the object code if the source code does not already contain a data
2368 race (if it could, memory models would be useless and no multithreaded
2369 code would be safe!).  For another, it cannot move a plain access past
2370 a compiler barrier.
2371
2372 A compiler barrier is a kind of fence, but as the name implies, it
2373 only affects the compiler; it does not necessarily have any effect on
2374 how instructions are executed by the CPU.  In Linux kernel source
2375 code, the barrier() function is a compiler barrier.  It doesn't give
2376 rise directly to any machine instructions in the object code; rather,
2377 it affects how the compiler generates the rest of the object code.
2378 Given source code like this:
2379
2380         ... some memory accesses ...
2381         barrier();
2382         ... some other memory accesses ...
2383
2384 the barrier() function ensures that the machine instructions
2385 corresponding to the first group of accesses will all end po-before
2386 any machine instructions corresponding to the second group of accesses
2387 -- even if some of the accesses are plain.  (Of course, the CPU may
2388 then execute some of those accesses out of program order, but we
2389 already know how to deal with such issues.)  Without the barrier()
2390 there would be no such guarantee; the two groups of accesses could be
2391 intermingled or even reversed in the object code.
2392
2393 The LKMM doesn't say much about the barrier() function, but it does
2394 require that all fences are also compiler barriers.  In addition, it
2395 requires that the ordering properties of memory barriers such as
2396 smp_rmb() or smp_store_release() apply to plain accesses as well as to
2397 marked accesses.
2398
2399 This is the key to analyzing data races.  Consider the MP pattern
2400 again, now using plain accesses for buf:
2401
2402         int buf = 0, flag = 0;
2403
2404         P0()
2405         {
2406                 U: buf = 1;
2407                    smp_wmb();
2408                 X: WRITE_ONCE(flag, 1);
2409         }
2410
2411         P1()
2412         {
2413                 int r1;
2414                 int r2 = 0;
2415
2416                 Y: r1 = READ_ONCE(flag);
2417                    if (r1) {
2418                            smp_rmb();
2419                         V: r2 = buf;
2420                    }
2421         }
2422
2423 This program does not contain a data race.  Although the U and V
2424 accesses are race candidates, the LKMM can prove they are not
2425 concurrent as follows:
2426
2427         The smp_wmb() fence in P0 is both a compiler barrier and a
2428         cumul-fence.  It guarantees that no matter what hash of
2429         machine instructions the compiler generates for the plain
2430         access U, all those instructions will be po-before the fence.
2431         Consequently U's store to buf, no matter how it is carried out
2432         at the machine level, must propagate to P1 before X's store to
2433         flag does.
2434
2435         X and Y are both marked accesses.  Hence an rfe link from X to
2436         Y is a valid indicator that X propagated to P1 before Y
2437         executed, i.e., X ->vis Y.  (And if there is no rfe link then
2438         r1 will be 0, so V will not be executed and ipso facto won't
2439         race with U.)
2440
2441         The smp_rmb() fence in P1 is a compiler barrier as well as a
2442         fence.  It guarantees that all the machine-level instructions
2443         corresponding to the access V will be po-after the fence, and
2444         therefore any loads among those instructions will execute
2445         after the fence does and hence after Y does.
2446
2447 Thus U's store to buf is forced to propagate to P1 before V's load
2448 executes (assuming V does execute), ruling out the possibility of a
2449 data race between them.
2450
2451 This analysis illustrates how the LKMM deals with plain accesses in
2452 general.  Suppose R is a plain load and we want to show that R
2453 executes before some marked access E.  We can do this by finding a
2454 marked access X such that R and X are ordered by a suitable fence and
2455 X ->xb* E.  If E was also a plain access, we would also look for a
2456 marked access Y such that X ->xb* Y, and Y and E are ordered by a
2457 fence.  We describe this arrangement by saying that R is
2458 "post-bounded" by X and E is "pre-bounded" by Y.
2459
2460 In fact, we go one step further: Since R is a read, we say that R is
2461 "r-post-bounded" by X.  Similarly, E would be "r-pre-bounded" or
2462 "w-pre-bounded" by Y, depending on whether E was a store or a load.
2463 This distinction is needed because some fences affect only loads
2464 (i.e., smp_rmb()) and some affect only stores (smp_wmb()); otherwise
2465 the two types of bounds are the same.  And as a degenerate case, we
2466 say that a marked access pre-bounds and post-bounds itself (e.g., if R
2467 above were a marked load then X could simply be taken to be R itself.)
2468
2469 The need to distinguish between r- and w-bounding raises yet another
2470 issue.  When the source code contains a plain store, the compiler is
2471 allowed to put plain loads of the same location into the object code.
2472 For example, given the source code:
2473
2474         x = 1;
2475
2476 the compiler is theoretically allowed to generate object code that
2477 looks like:
2478
2479         if (x != 1)
2480                 x = 1;
2481
2482 thereby adding a load (and possibly replacing the store entirely).
2483 For this reason, whenever the LKMM requires a plain store to be
2484 w-pre-bounded or w-post-bounded by a marked access, it also requires
2485 the store to be r-pre-bounded or r-post-bounded, so as to handle cases
2486 where the compiler adds a load.
2487
2488 (This may be overly cautious.  We don't know of any examples where a
2489 compiler has augmented a store with a load in this fashion, and the
2490 Linux kernel developers would probably fight pretty hard to change a
2491 compiler if it ever did this.  Still, better safe than sorry.)
2492
2493 Incidentally, the other tranformation -- augmenting a plain load by
2494 adding in a store to the same location -- is not allowed.  This is
2495 because the compiler cannot know whether any other CPUs might perform
2496 a concurrent load from that location.  Two concurrent loads don't
2497 constitute a race (they can't interfere with each other), but a store
2498 does race with a concurrent load.  Thus adding a store might create a
2499 data race where one was not already present in the source code,
2500 something the compiler is forbidden to do.  Augmenting a store with a
2501 load, on the other hand, is acceptable because doing so won't create a
2502 data race unless one already existed.
2503
2504 The LKMM includes a second way to pre-bound plain accesses, in
2505 addition to fences: an address dependency from a marked load.  That
2506 is, in the sequence:
2507
2508         p = READ_ONCE(ptr);
2509         r = *p;
2510
2511 the LKMM says that the marked load of ptr pre-bounds the plain load of
2512 *p; the marked load must execute before any of the machine
2513 instructions corresponding to the plain load.  This is a reasonable
2514 stipulation, since after all, the CPU can't perform the load of *p
2515 until it knows what value p will hold.  Furthermore, without some
2516 assumption like this one, some usages typical of RCU would count as
2517 data races.  For example:
2518
2519         int a = 1, b;
2520         int *ptr = &a;
2521
2522         P0()
2523         {
2524                 b = 2;
2525                 rcu_assign_pointer(ptr, &b);
2526         }
2527
2528         P1()
2529         {
2530                 int *p;
2531                 int r;
2532
2533                 rcu_read_lock();
2534                 p = rcu_dereference(ptr);
2535                 r = *p;
2536                 rcu_read_unlock();
2537         }
2538
2539 (In this example the rcu_read_lock() and rcu_read_unlock() calls don't
2540 really do anything, because there aren't any grace periods.  They are
2541 included merely for the sake of good form; typically P0 would call
2542 synchronize_rcu() somewhere after the rcu_assign_pointer().)
2543
2544 rcu_assign_pointer() performs a store-release, so the plain store to b
2545 is definitely w-post-bounded before the store to ptr, and the two
2546 stores will propagate to P1 in that order.  However, rcu_dereference()
2547 is only equivalent to READ_ONCE().  While it is a marked access, it is
2548 not a fence or compiler barrier.  Hence the only guarantee we have
2549 that the load of ptr in P1 is r-pre-bounded before the load of *p
2550 (thus avoiding a race) is the assumption about address dependencies.
2551
2552 This is a situation where the compiler can undermine the memory model,
2553 and a certain amount of care is required when programming constructs
2554 like this one.  In particular, comparisons between the pointer and
2555 other known addresses can cause trouble.  If you have something like:
2556
2557         p = rcu_dereference(ptr);
2558         if (p == &x)
2559                 r = *p;
2560
2561 then the compiler just might generate object code resembling:
2562
2563         p = rcu_dereference(ptr);
2564         if (p == &x)
2565                 r = x;
2566
2567 or even:
2568
2569         rtemp = x;
2570         p = rcu_dereference(ptr);
2571         if (p == &x)
2572                 r = rtemp;
2573
2574 which would invalidate the memory model's assumption, since the CPU
2575 could now perform the load of x before the load of ptr (there might be
2576 a control dependency but no address dependency at the machine level).
2577
2578 Finally, it turns out there is a situation in which a plain write does
2579 not need to be w-post-bounded: when it is separated from the other
2580 race-candidate access by a fence.  At first glance this may seem
2581 impossible.  After all, to be race candidates the two accesses must
2582 be on different CPUs, and fences don't link events on different CPUs.
2583 Well, normal fences don't -- but rcu-fence can!  Here's an example:
2584
2585         int x, y;
2586
2587         P0()
2588         {
2589                 WRITE_ONCE(x, 1);
2590                 synchronize_rcu();
2591                 y = 3;
2592         }
2593
2594         P1()
2595         {
2596                 rcu_read_lock();
2597                 if (READ_ONCE(x) == 0)
2598                         y = 2;
2599                 rcu_read_unlock();
2600         }
2601
2602 Do the plain stores to y race?  Clearly not if P1 reads a non-zero
2603 value for x, so let's assume the READ_ONCE(x) does obtain 0.  This
2604 means that the read-side critical section in P1 must finish executing
2605 before the grace period in P0 does, because RCU's Grace-Period
2606 Guarantee says that otherwise P0's store to x would have propagated to
2607 P1 before the critical section started and so would have been visible
2608 to the READ_ONCE().  (Another way of putting it is that the fre link
2609 from the READ_ONCE() to the WRITE_ONCE() gives rise to an rcu-link
2610 between those two events.)
2611
2612 This means there is an rcu-fence link from P1's "y = 2" store to P0's
2613 "y = 3" store, and consequently the first must propagate from P1 to P0
2614 before the second can execute.  Therefore the two stores cannot be
2615 concurrent and there is no race, even though P1's plain store to y
2616 isn't w-post-bounded by any marked accesses.
2617
2618 Putting all this material together yields the following picture.  For
2619 race-candidate stores W and W', where W ->co W', the LKMM says the
2620 stores don't race if W can be linked to W' by a
2621
2622         w-post-bounded ; vis ; w-pre-bounded
2623
2624 sequence.  If W is plain then they also have to be linked by an
2625
2626         r-post-bounded ; xb* ; w-pre-bounded
2627
2628 sequence, and if W' is plain then they also have to be linked by a
2629
2630         w-post-bounded ; vis ; r-pre-bounded
2631
2632 sequence.  For race-candidate load R and store W, the LKMM says the
2633 two accesses don't race if R can be linked to W by an
2634
2635         r-post-bounded ; xb* ; w-pre-bounded
2636
2637 sequence or if W can be linked to R by a
2638
2639         w-post-bounded ; vis ; r-pre-bounded
2640
2641 sequence.  For the cases involving a vis link, the LKMM also accepts
2642 sequences in which W is linked to W' or R by a
2643
2644         strong-fence ; xb* ; {w and/or r}-pre-bounded
2645
2646 sequence with no post-bounding, and in every case the LKMM also allows
2647 the link simply to be a fence with no bounding at all.  If no sequence
2648 of the appropriate sort exists, the LKMM says that the accesses race.
2649
2650 There is one more part of the LKMM related to plain accesses (although
2651 not to data races) we should discuss.  Recall that many relations such
2652 as hb are limited to marked accesses only.  As a result, the
2653 happens-before, propagates-before, and rcu axioms (which state that
2654 various relation must not contain a cycle) doesn't apply to plain
2655 accesses.  Nevertheless, we do want to rule out such cycles, because
2656 they don't make sense even for plain accesses.
2657
2658 To this end, the LKMM imposes three extra restrictions, together
2659 called the "plain-coherence" axiom because of their resemblance to the
2660 rules used by the operational model to ensure cache coherence (that
2661 is, the rules governing the memory subsystem's choice of a store to
2662 satisfy a load request and its determination of where a store will
2663 fall in the coherence order):
2664
2665         If R and W are race candidates and it is possible to link R to
2666         W by one of the xb* sequences listed above, then W ->rfe R is
2667         not allowed (i.e., a load cannot read from a store that it
2668         executes before, even if one or both is plain).
2669
2670         If W and R are race candidates and it is possible to link W to
2671         R by one of the vis sequences listed above, then R ->fre W is
2672         not allowed (i.e., if a store is visible to a load then the
2673         load must read from that store or one coherence-after it).
2674
2675         If W and W' are race candidates and it is possible to link W
2676         to W' by one of the vis sequences listed above, then W' ->co W
2677         is not allowed (i.e., if one store is visible to a second then
2678         the second must come after the first in the coherence order).
2679
2680 This is the extent to which the LKMM deals with plain accesses.
2681 Perhaps it could say more (for example, plain accesses might
2682 contribute to the ppo relation), but at the moment it seems that this
2683 minimal, conservative approach is good enough.
2684
2685
2686 ODDS AND ENDS
2687 -------------
2688
2689 This section covers material that didn't quite fit anywhere in the
2690 earlier sections.
2691
2692 The descriptions in this document don't always match the formal
2693 version of the LKMM exactly.  For example, the actual formal
2694 definition of the prop relation makes the initial coe or fre part
2695 optional, and it doesn't require the events linked by the relation to
2696 be on the same CPU.  These differences are very unimportant; indeed,
2697 instances where the coe/fre part of prop is missing are of no interest
2698 because all the other parts (fences and rfe) are already included in
2699 hb anyway, and where the formal model adds prop into hb, it includes
2700 an explicit requirement that the events being linked are on the same
2701 CPU.
2702
2703 Another minor difference has to do with events that are both memory
2704 accesses and fences, such as those corresponding to smp_load_acquire()
2705 calls.  In the formal model, these events aren't actually both reads
2706 and fences; rather, they are read events with an annotation marking
2707 them as acquires.  (Or write events annotated as releases, in the case
2708 smp_store_release().)  The final effect is the same.
2709
2710 Although we didn't mention it above, the instruction execution
2711 ordering provided by the smp_rmb() fence doesn't apply to read events
2712 that are part of a non-value-returning atomic update.  For instance,
2713 given:
2714
2715         atomic_inc(&x);
2716         smp_rmb();
2717         r1 = READ_ONCE(y);
2718
2719 it is not guaranteed that the load from y will execute after the
2720 update to x.  This is because the ARMv8 architecture allows
2721 non-value-returning atomic operations effectively to be executed off
2722 the CPU.  Basically, the CPU tells the memory subsystem to increment
2723 x, and then the increment is carried out by the memory hardware with
2724 no further involvement from the CPU.  Since the CPU doesn't ever read
2725 the value of x, there is nothing for the smp_rmb() fence to act on.
2726
2727 The LKMM defines a few extra synchronization operations in terms of
2728 things we have already covered.  In particular, rcu_dereference() is
2729 treated as READ_ONCE() and rcu_assign_pointer() is treated as
2730 smp_store_release() -- which is basically how the Linux kernel treats
2731 them.
2732
2733 Although we said that plain accesses are not linked by the ppo
2734 relation, they do contribute to it indirectly.  Firstly, when there is
2735 an address dependency from a marked load R to a plain store W,
2736 followed by smp_wmb() and then a marked store W', the LKMM creates a
2737 ppo link from R to W'.  The reasoning behind this is perhaps a little
2738 shaky, but essentially it says there is no way to generate object code
2739 for this source code in which W' could execute before R.  Just as with
2740 pre-bounding by address dependencies, it is possible for the compiler
2741 to undermine this relation if sufficient care is not taken.
2742
2743 Secondly, plain accesses can carry dependencies: If a data dependency
2744 links a marked load R to a store W, and the store is read by a load R'
2745 from the same thread, then the data loaded by R' depends on the data
2746 loaded originally by R. Thus, if R' is linked to any access X by a
2747 dependency, R is also linked to access X by the same dependency, even
2748 if W' or R' (or both!) are plain.
2749
2750 There are a few oddball fences which need special treatment:
2751 smp_mb__before_atomic(), smp_mb__after_atomic(), and
2752 smp_mb__after_spinlock().  The LKMM uses fence events with special
2753 annotations for them; they act as strong fences just like smp_mb()
2754 except for the sets of events that they order.  Instead of ordering
2755 all po-earlier events against all po-later events, as smp_mb() does,
2756 they behave as follows:
2757
2758         smp_mb__before_atomic() orders all po-earlier events against
2759         po-later atomic updates and the events following them;
2760
2761         smp_mb__after_atomic() orders po-earlier atomic updates and
2762         the events preceding them against all po-later events;
2763
2764         smp_mb__after_spinlock() orders po-earlier lock acquisition
2765         events and the events preceding them against all po-later
2766         events.
2767
2768 Interestingly, RCU and locking each introduce the possibility of
2769 deadlock.  When faced with code sequences such as:
2770
2771         spin_lock(&s);
2772         spin_lock(&s);
2773         spin_unlock(&s);
2774         spin_unlock(&s);
2775
2776 or:
2777
2778         rcu_read_lock();
2779         synchronize_rcu();
2780         rcu_read_unlock();
2781
2782 what does the LKMM have to say?  Answer: It says there are no allowed
2783 executions at all, which makes sense.  But this can also lead to
2784 misleading results, because if a piece of code has multiple possible
2785 executions, some of which deadlock, the model will report only on the
2786 non-deadlocking executions.  For example:
2787
2788         int x, y;
2789
2790         P0()
2791         {
2792                 int r0;
2793
2794                 WRITE_ONCE(x, 1);
2795                 r0 = READ_ONCE(y);
2796         }
2797
2798         P1()
2799         {
2800                 rcu_read_lock();
2801                 if (READ_ONCE(x) > 0) {
2802                         WRITE_ONCE(y, 36);
2803                         synchronize_rcu();
2804                 }
2805                 rcu_read_unlock();
2806         }
2807
2808 Is it possible to end up with r0 = 36 at the end?  The LKMM will tell
2809 you it is not, but the model won't mention that this is because P1
2810 will self-deadlock in the executions where it stores 36 in y.