1e3e697b98bcaf66c75457e0fdd11b74888e0785
[linux-2.6-block.git] / tools / lib / bpf / libbpf.c
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 #include "zip.h"
58
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC            0xcafe4a11
61 #endif
62
63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
64
65 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
66
67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
68  * compilation if user enables corresponding warning. Disable it explicitly.
69  */
70 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
71
72 #define __printf(a, b)  __attribute__((format(printf, a, b)))
73
74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
76 static int map_set_def_max_entries(struct bpf_map *map);
77
78 static const char * const attach_type_name[] = {
79         [BPF_CGROUP_INET_INGRESS]       = "cgroup_inet_ingress",
80         [BPF_CGROUP_INET_EGRESS]        = "cgroup_inet_egress",
81         [BPF_CGROUP_INET_SOCK_CREATE]   = "cgroup_inet_sock_create",
82         [BPF_CGROUP_INET_SOCK_RELEASE]  = "cgroup_inet_sock_release",
83         [BPF_CGROUP_SOCK_OPS]           = "cgroup_sock_ops",
84         [BPF_CGROUP_DEVICE]             = "cgroup_device",
85         [BPF_CGROUP_INET4_BIND]         = "cgroup_inet4_bind",
86         [BPF_CGROUP_INET6_BIND]         = "cgroup_inet6_bind",
87         [BPF_CGROUP_INET4_CONNECT]      = "cgroup_inet4_connect",
88         [BPF_CGROUP_INET6_CONNECT]      = "cgroup_inet6_connect",
89         [BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
90         [BPF_CGROUP_INET4_POST_BIND]    = "cgroup_inet4_post_bind",
91         [BPF_CGROUP_INET6_POST_BIND]    = "cgroup_inet6_post_bind",
92         [BPF_CGROUP_INET4_GETPEERNAME]  = "cgroup_inet4_getpeername",
93         [BPF_CGROUP_INET6_GETPEERNAME]  = "cgroup_inet6_getpeername",
94         [BPF_CGROUP_UNIX_GETPEERNAME]   = "cgroup_unix_getpeername",
95         [BPF_CGROUP_INET4_GETSOCKNAME]  = "cgroup_inet4_getsockname",
96         [BPF_CGROUP_INET6_GETSOCKNAME]  = "cgroup_inet6_getsockname",
97         [BPF_CGROUP_UNIX_GETSOCKNAME]   = "cgroup_unix_getsockname",
98         [BPF_CGROUP_UDP4_SENDMSG]       = "cgroup_udp4_sendmsg",
99         [BPF_CGROUP_UDP6_SENDMSG]       = "cgroup_udp6_sendmsg",
100         [BPF_CGROUP_UNIX_SENDMSG]       = "cgroup_unix_sendmsg",
101         [BPF_CGROUP_SYSCTL]             = "cgroup_sysctl",
102         [BPF_CGROUP_UDP4_RECVMSG]       = "cgroup_udp4_recvmsg",
103         [BPF_CGROUP_UDP6_RECVMSG]       = "cgroup_udp6_recvmsg",
104         [BPF_CGROUP_UNIX_RECVMSG]       = "cgroup_unix_recvmsg",
105         [BPF_CGROUP_GETSOCKOPT]         = "cgroup_getsockopt",
106         [BPF_CGROUP_SETSOCKOPT]         = "cgroup_setsockopt",
107         [BPF_SK_SKB_STREAM_PARSER]      = "sk_skb_stream_parser",
108         [BPF_SK_SKB_STREAM_VERDICT]     = "sk_skb_stream_verdict",
109         [BPF_SK_SKB_VERDICT]            = "sk_skb_verdict",
110         [BPF_SK_MSG_VERDICT]            = "sk_msg_verdict",
111         [BPF_LIRC_MODE2]                = "lirc_mode2",
112         [BPF_FLOW_DISSECTOR]            = "flow_dissector",
113         [BPF_TRACE_RAW_TP]              = "trace_raw_tp",
114         [BPF_TRACE_FENTRY]              = "trace_fentry",
115         [BPF_TRACE_FEXIT]               = "trace_fexit",
116         [BPF_MODIFY_RETURN]             = "modify_return",
117         [BPF_LSM_MAC]                   = "lsm_mac",
118         [BPF_LSM_CGROUP]                = "lsm_cgroup",
119         [BPF_SK_LOOKUP]                 = "sk_lookup",
120         [BPF_TRACE_ITER]                = "trace_iter",
121         [BPF_XDP_DEVMAP]                = "xdp_devmap",
122         [BPF_XDP_CPUMAP]                = "xdp_cpumap",
123         [BPF_XDP]                       = "xdp",
124         [BPF_SK_REUSEPORT_SELECT]       = "sk_reuseport_select",
125         [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]    = "sk_reuseport_select_or_migrate",
126         [BPF_PERF_EVENT]                = "perf_event",
127         [BPF_TRACE_KPROBE_MULTI]        = "trace_kprobe_multi",
128         [BPF_STRUCT_OPS]                = "struct_ops",
129         [BPF_NETFILTER]                 = "netfilter",
130         [BPF_TCX_INGRESS]               = "tcx_ingress",
131         [BPF_TCX_EGRESS]                = "tcx_egress",
132         [BPF_TRACE_UPROBE_MULTI]        = "trace_uprobe_multi",
133         [BPF_NETKIT_PRIMARY]            = "netkit_primary",
134         [BPF_NETKIT_PEER]               = "netkit_peer",
135 };
136
137 static const char * const link_type_name[] = {
138         [BPF_LINK_TYPE_UNSPEC]                  = "unspec",
139         [BPF_LINK_TYPE_RAW_TRACEPOINT]          = "raw_tracepoint",
140         [BPF_LINK_TYPE_TRACING]                 = "tracing",
141         [BPF_LINK_TYPE_CGROUP]                  = "cgroup",
142         [BPF_LINK_TYPE_ITER]                    = "iter",
143         [BPF_LINK_TYPE_NETNS]                   = "netns",
144         [BPF_LINK_TYPE_XDP]                     = "xdp",
145         [BPF_LINK_TYPE_PERF_EVENT]              = "perf_event",
146         [BPF_LINK_TYPE_KPROBE_MULTI]            = "kprobe_multi",
147         [BPF_LINK_TYPE_STRUCT_OPS]              = "struct_ops",
148         [BPF_LINK_TYPE_NETFILTER]               = "netfilter",
149         [BPF_LINK_TYPE_TCX]                     = "tcx",
150         [BPF_LINK_TYPE_UPROBE_MULTI]            = "uprobe_multi",
151         [BPF_LINK_TYPE_NETKIT]                  = "netkit",
152 };
153
154 static const char * const map_type_name[] = {
155         [BPF_MAP_TYPE_UNSPEC]                   = "unspec",
156         [BPF_MAP_TYPE_HASH]                     = "hash",
157         [BPF_MAP_TYPE_ARRAY]                    = "array",
158         [BPF_MAP_TYPE_PROG_ARRAY]               = "prog_array",
159         [BPF_MAP_TYPE_PERF_EVENT_ARRAY]         = "perf_event_array",
160         [BPF_MAP_TYPE_PERCPU_HASH]              = "percpu_hash",
161         [BPF_MAP_TYPE_PERCPU_ARRAY]             = "percpu_array",
162         [BPF_MAP_TYPE_STACK_TRACE]              = "stack_trace",
163         [BPF_MAP_TYPE_CGROUP_ARRAY]             = "cgroup_array",
164         [BPF_MAP_TYPE_LRU_HASH]                 = "lru_hash",
165         [BPF_MAP_TYPE_LRU_PERCPU_HASH]          = "lru_percpu_hash",
166         [BPF_MAP_TYPE_LPM_TRIE]                 = "lpm_trie",
167         [BPF_MAP_TYPE_ARRAY_OF_MAPS]            = "array_of_maps",
168         [BPF_MAP_TYPE_HASH_OF_MAPS]             = "hash_of_maps",
169         [BPF_MAP_TYPE_DEVMAP]                   = "devmap",
170         [BPF_MAP_TYPE_DEVMAP_HASH]              = "devmap_hash",
171         [BPF_MAP_TYPE_SOCKMAP]                  = "sockmap",
172         [BPF_MAP_TYPE_CPUMAP]                   = "cpumap",
173         [BPF_MAP_TYPE_XSKMAP]                   = "xskmap",
174         [BPF_MAP_TYPE_SOCKHASH]                 = "sockhash",
175         [BPF_MAP_TYPE_CGROUP_STORAGE]           = "cgroup_storage",
176         [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]      = "reuseport_sockarray",
177         [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]    = "percpu_cgroup_storage",
178         [BPF_MAP_TYPE_QUEUE]                    = "queue",
179         [BPF_MAP_TYPE_STACK]                    = "stack",
180         [BPF_MAP_TYPE_SK_STORAGE]               = "sk_storage",
181         [BPF_MAP_TYPE_STRUCT_OPS]               = "struct_ops",
182         [BPF_MAP_TYPE_RINGBUF]                  = "ringbuf",
183         [BPF_MAP_TYPE_INODE_STORAGE]            = "inode_storage",
184         [BPF_MAP_TYPE_TASK_STORAGE]             = "task_storage",
185         [BPF_MAP_TYPE_BLOOM_FILTER]             = "bloom_filter",
186         [BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
187         [BPF_MAP_TYPE_CGRP_STORAGE]             = "cgrp_storage",
188         [BPF_MAP_TYPE_ARENA]                    = "arena",
189 };
190
191 static const char * const prog_type_name[] = {
192         [BPF_PROG_TYPE_UNSPEC]                  = "unspec",
193         [BPF_PROG_TYPE_SOCKET_FILTER]           = "socket_filter",
194         [BPF_PROG_TYPE_KPROBE]                  = "kprobe",
195         [BPF_PROG_TYPE_SCHED_CLS]               = "sched_cls",
196         [BPF_PROG_TYPE_SCHED_ACT]               = "sched_act",
197         [BPF_PROG_TYPE_TRACEPOINT]              = "tracepoint",
198         [BPF_PROG_TYPE_XDP]                     = "xdp",
199         [BPF_PROG_TYPE_PERF_EVENT]              = "perf_event",
200         [BPF_PROG_TYPE_CGROUP_SKB]              = "cgroup_skb",
201         [BPF_PROG_TYPE_CGROUP_SOCK]             = "cgroup_sock",
202         [BPF_PROG_TYPE_LWT_IN]                  = "lwt_in",
203         [BPF_PROG_TYPE_LWT_OUT]                 = "lwt_out",
204         [BPF_PROG_TYPE_LWT_XMIT]                = "lwt_xmit",
205         [BPF_PROG_TYPE_SOCK_OPS]                = "sock_ops",
206         [BPF_PROG_TYPE_SK_SKB]                  = "sk_skb",
207         [BPF_PROG_TYPE_CGROUP_DEVICE]           = "cgroup_device",
208         [BPF_PROG_TYPE_SK_MSG]                  = "sk_msg",
209         [BPF_PROG_TYPE_RAW_TRACEPOINT]          = "raw_tracepoint",
210         [BPF_PROG_TYPE_CGROUP_SOCK_ADDR]        = "cgroup_sock_addr",
211         [BPF_PROG_TYPE_LWT_SEG6LOCAL]           = "lwt_seg6local",
212         [BPF_PROG_TYPE_LIRC_MODE2]              = "lirc_mode2",
213         [BPF_PROG_TYPE_SK_REUSEPORT]            = "sk_reuseport",
214         [BPF_PROG_TYPE_FLOW_DISSECTOR]          = "flow_dissector",
215         [BPF_PROG_TYPE_CGROUP_SYSCTL]           = "cgroup_sysctl",
216         [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
217         [BPF_PROG_TYPE_CGROUP_SOCKOPT]          = "cgroup_sockopt",
218         [BPF_PROG_TYPE_TRACING]                 = "tracing",
219         [BPF_PROG_TYPE_STRUCT_OPS]              = "struct_ops",
220         [BPF_PROG_TYPE_EXT]                     = "ext",
221         [BPF_PROG_TYPE_LSM]                     = "lsm",
222         [BPF_PROG_TYPE_SK_LOOKUP]               = "sk_lookup",
223         [BPF_PROG_TYPE_SYSCALL]                 = "syscall",
224         [BPF_PROG_TYPE_NETFILTER]               = "netfilter",
225 };
226
227 static int __base_pr(enum libbpf_print_level level, const char *format,
228                      va_list args)
229 {
230         if (level == LIBBPF_DEBUG)
231                 return 0;
232
233         return vfprintf(stderr, format, args);
234 }
235
236 static libbpf_print_fn_t __libbpf_pr = __base_pr;
237
238 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
239 {
240         libbpf_print_fn_t old_print_fn;
241
242         old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
243
244         return old_print_fn;
245 }
246
247 __printf(2, 3)
248 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
249 {
250         va_list args;
251         int old_errno;
252         libbpf_print_fn_t print_fn;
253
254         print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
255         if (!print_fn)
256                 return;
257
258         old_errno = errno;
259
260         va_start(args, format);
261         __libbpf_pr(level, format, args);
262         va_end(args);
263
264         errno = old_errno;
265 }
266
267 static void pr_perm_msg(int err)
268 {
269         struct rlimit limit;
270         char buf[100];
271
272         if (err != -EPERM || geteuid() != 0)
273                 return;
274
275         err = getrlimit(RLIMIT_MEMLOCK, &limit);
276         if (err)
277                 return;
278
279         if (limit.rlim_cur == RLIM_INFINITY)
280                 return;
281
282         if (limit.rlim_cur < 1024)
283                 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
284         else if (limit.rlim_cur < 1024*1024)
285                 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
286         else
287                 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
288
289         pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
290                 buf);
291 }
292
293 #define STRERR_BUFSIZE  128
294
295 /* Copied from tools/perf/util/util.h */
296 #ifndef zfree
297 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
298 #endif
299
300 #ifndef zclose
301 # define zclose(fd) ({                  \
302         int ___err = 0;                 \
303         if ((fd) >= 0)                  \
304                 ___err = close((fd));   \
305         fd = -1;                        \
306         ___err; })
307 #endif
308
309 static inline __u64 ptr_to_u64(const void *ptr)
310 {
311         return (__u64) (unsigned long) ptr;
312 }
313
314 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
315 {
316         /* as of v1.0 libbpf_set_strict_mode() is a no-op */
317         return 0;
318 }
319
320 __u32 libbpf_major_version(void)
321 {
322         return LIBBPF_MAJOR_VERSION;
323 }
324
325 __u32 libbpf_minor_version(void)
326 {
327         return LIBBPF_MINOR_VERSION;
328 }
329
330 const char *libbpf_version_string(void)
331 {
332 #define __S(X) #X
333 #define _S(X) __S(X)
334         return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
335 #undef _S
336 #undef __S
337 }
338
339 enum reloc_type {
340         RELO_LD64,
341         RELO_CALL,
342         RELO_DATA,
343         RELO_EXTERN_LD64,
344         RELO_EXTERN_CALL,
345         RELO_SUBPROG_ADDR,
346         RELO_CORE,
347 };
348
349 struct reloc_desc {
350         enum reloc_type type;
351         int insn_idx;
352         union {
353                 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
354                 struct {
355                         int map_idx;
356                         int sym_off;
357                         int ext_idx;
358                 };
359         };
360 };
361
362 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
363 enum sec_def_flags {
364         SEC_NONE = 0,
365         /* expected_attach_type is optional, if kernel doesn't support that */
366         SEC_EXP_ATTACH_OPT = 1,
367         /* legacy, only used by libbpf_get_type_names() and
368          * libbpf_attach_type_by_name(), not used by libbpf itself at all.
369          * This used to be associated with cgroup (and few other) BPF programs
370          * that were attachable through BPF_PROG_ATTACH command. Pretty
371          * meaningless nowadays, though.
372          */
373         SEC_ATTACHABLE = 2,
374         SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
375         /* attachment target is specified through BTF ID in either kernel or
376          * other BPF program's BTF object
377          */
378         SEC_ATTACH_BTF = 4,
379         /* BPF program type allows sleeping/blocking in kernel */
380         SEC_SLEEPABLE = 8,
381         /* BPF program support non-linear XDP buffer */
382         SEC_XDP_FRAGS = 16,
383         /* Setup proper attach type for usdt probes. */
384         SEC_USDT = 32,
385 };
386
387 struct bpf_sec_def {
388         char *sec;
389         enum bpf_prog_type prog_type;
390         enum bpf_attach_type expected_attach_type;
391         long cookie;
392         int handler_id;
393
394         libbpf_prog_setup_fn_t prog_setup_fn;
395         libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
396         libbpf_prog_attach_fn_t prog_attach_fn;
397 };
398
399 /*
400  * bpf_prog should be a better name but it has been used in
401  * linux/filter.h.
402  */
403 struct bpf_program {
404         char *name;
405         char *sec_name;
406         size_t sec_idx;
407         const struct bpf_sec_def *sec_def;
408         /* this program's instruction offset (in number of instructions)
409          * within its containing ELF section
410          */
411         size_t sec_insn_off;
412         /* number of original instructions in ELF section belonging to this
413          * program, not taking into account subprogram instructions possible
414          * appended later during relocation
415          */
416         size_t sec_insn_cnt;
417         /* Offset (in number of instructions) of the start of instruction
418          * belonging to this BPF program  within its containing main BPF
419          * program. For the entry-point (main) BPF program, this is always
420          * zero. For a sub-program, this gets reset before each of main BPF
421          * programs are processed and relocated and is used to determined
422          * whether sub-program was already appended to the main program, and
423          * if yes, at which instruction offset.
424          */
425         size_t sub_insn_off;
426
427         /* instructions that belong to BPF program; insns[0] is located at
428          * sec_insn_off instruction within its ELF section in ELF file, so
429          * when mapping ELF file instruction index to the local instruction,
430          * one needs to subtract sec_insn_off; and vice versa.
431          */
432         struct bpf_insn *insns;
433         /* actual number of instruction in this BPF program's image; for
434          * entry-point BPF programs this includes the size of main program
435          * itself plus all the used sub-programs, appended at the end
436          */
437         size_t insns_cnt;
438
439         struct reloc_desc *reloc_desc;
440         int nr_reloc;
441
442         /* BPF verifier log settings */
443         char *log_buf;
444         size_t log_size;
445         __u32 log_level;
446
447         struct bpf_object *obj;
448
449         int fd;
450         bool autoload;
451         bool autoattach;
452         bool sym_global;
453         bool mark_btf_static;
454         enum bpf_prog_type type;
455         enum bpf_attach_type expected_attach_type;
456         int exception_cb_idx;
457
458         int prog_ifindex;
459         __u32 attach_btf_obj_fd;
460         __u32 attach_btf_id;
461         __u32 attach_prog_fd;
462
463         void *func_info;
464         __u32 func_info_rec_size;
465         __u32 func_info_cnt;
466
467         void *line_info;
468         __u32 line_info_rec_size;
469         __u32 line_info_cnt;
470         __u32 prog_flags;
471 };
472
473 struct bpf_struct_ops {
474         const char *tname;
475         const struct btf_type *type;
476         struct bpf_program **progs;
477         __u32 *kern_func_off;
478         /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
479         void *data;
480         /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
481          *      btf_vmlinux's format.
482          * struct bpf_struct_ops_tcp_congestion_ops {
483          *      [... some other kernel fields ...]
484          *      struct tcp_congestion_ops data;
485          * }
486          * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
487          * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
488          * from "data".
489          */
490         void *kern_vdata;
491         __u32 type_id;
492 };
493
494 #define DATA_SEC ".data"
495 #define BSS_SEC ".bss"
496 #define RODATA_SEC ".rodata"
497 #define KCONFIG_SEC ".kconfig"
498 #define KSYMS_SEC ".ksyms"
499 #define STRUCT_OPS_SEC ".struct_ops"
500 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
501 #define ARENA_SEC ".addr_space.1"
502
503 enum libbpf_map_type {
504         LIBBPF_MAP_UNSPEC,
505         LIBBPF_MAP_DATA,
506         LIBBPF_MAP_BSS,
507         LIBBPF_MAP_RODATA,
508         LIBBPF_MAP_KCONFIG,
509 };
510
511 struct bpf_map_def {
512         unsigned int type;
513         unsigned int key_size;
514         unsigned int value_size;
515         unsigned int max_entries;
516         unsigned int map_flags;
517 };
518
519 struct bpf_map {
520         struct bpf_object *obj;
521         char *name;
522         /* real_name is defined for special internal maps (.rodata*,
523          * .data*, .bss, .kconfig) and preserves their original ELF section
524          * name. This is important to be able to find corresponding BTF
525          * DATASEC information.
526          */
527         char *real_name;
528         int fd;
529         int sec_idx;
530         size_t sec_offset;
531         int map_ifindex;
532         int inner_map_fd;
533         struct bpf_map_def def;
534         __u32 numa_node;
535         __u32 btf_var_idx;
536         int mod_btf_fd;
537         __u32 btf_key_type_id;
538         __u32 btf_value_type_id;
539         __u32 btf_vmlinux_value_type_id;
540         enum libbpf_map_type libbpf_type;
541         void *mmaped;
542         struct bpf_struct_ops *st_ops;
543         struct bpf_map *inner_map;
544         void **init_slots;
545         int init_slots_sz;
546         char *pin_path;
547         bool pinned;
548         bool reused;
549         bool autocreate;
550         __u64 map_extra;
551 };
552
553 enum extern_type {
554         EXT_UNKNOWN,
555         EXT_KCFG,
556         EXT_KSYM,
557 };
558
559 enum kcfg_type {
560         KCFG_UNKNOWN,
561         KCFG_CHAR,
562         KCFG_BOOL,
563         KCFG_INT,
564         KCFG_TRISTATE,
565         KCFG_CHAR_ARR,
566 };
567
568 struct extern_desc {
569         enum extern_type type;
570         int sym_idx;
571         int btf_id;
572         int sec_btf_id;
573         const char *name;
574         char *essent_name;
575         bool is_set;
576         bool is_weak;
577         union {
578                 struct {
579                         enum kcfg_type type;
580                         int sz;
581                         int align;
582                         int data_off;
583                         bool is_signed;
584                 } kcfg;
585                 struct {
586                         unsigned long long addr;
587
588                         /* target btf_id of the corresponding kernel var. */
589                         int kernel_btf_obj_fd;
590                         int kernel_btf_id;
591
592                         /* local btf_id of the ksym extern's type. */
593                         __u32 type_id;
594                         /* BTF fd index to be patched in for insn->off, this is
595                          * 0 for vmlinux BTF, index in obj->fd_array for module
596                          * BTF
597                          */
598                         __s16 btf_fd_idx;
599                 } ksym;
600         };
601 };
602
603 struct module_btf {
604         struct btf *btf;
605         char *name;
606         __u32 id;
607         int fd;
608         int fd_array_idx;
609 };
610
611 enum sec_type {
612         SEC_UNUSED = 0,
613         SEC_RELO,
614         SEC_BSS,
615         SEC_DATA,
616         SEC_RODATA,
617         SEC_ST_OPS,
618 };
619
620 struct elf_sec_desc {
621         enum sec_type sec_type;
622         Elf64_Shdr *shdr;
623         Elf_Data *data;
624 };
625
626 struct elf_state {
627         int fd;
628         const void *obj_buf;
629         size_t obj_buf_sz;
630         Elf *elf;
631         Elf64_Ehdr *ehdr;
632         Elf_Data *symbols;
633         Elf_Data *arena_data;
634         size_t shstrndx; /* section index for section name strings */
635         size_t strtabidx;
636         struct elf_sec_desc *secs;
637         size_t sec_cnt;
638         int btf_maps_shndx;
639         __u32 btf_maps_sec_btf_id;
640         int text_shndx;
641         int symbols_shndx;
642         bool has_st_ops;
643         int arena_data_shndx;
644 };
645
646 struct usdt_manager;
647
648 struct bpf_object {
649         char name[BPF_OBJ_NAME_LEN];
650         char license[64];
651         __u32 kern_version;
652
653         struct bpf_program *programs;
654         size_t nr_programs;
655         struct bpf_map *maps;
656         size_t nr_maps;
657         size_t maps_cap;
658
659         char *kconfig;
660         struct extern_desc *externs;
661         int nr_extern;
662         int kconfig_map_idx;
663
664         bool loaded;
665         bool has_subcalls;
666         bool has_rodata;
667
668         struct bpf_gen *gen_loader;
669
670         /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
671         struct elf_state efile;
672
673         struct btf *btf;
674         struct btf_ext *btf_ext;
675
676         /* Parse and load BTF vmlinux if any of the programs in the object need
677          * it at load time.
678          */
679         struct btf *btf_vmlinux;
680         /* Path to the custom BTF to be used for BPF CO-RE relocations as an
681          * override for vmlinux BTF.
682          */
683         char *btf_custom_path;
684         /* vmlinux BTF override for CO-RE relocations */
685         struct btf *btf_vmlinux_override;
686         /* Lazily initialized kernel module BTFs */
687         struct module_btf *btf_modules;
688         bool btf_modules_loaded;
689         size_t btf_module_cnt;
690         size_t btf_module_cap;
691
692         /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
693         char *log_buf;
694         size_t log_size;
695         __u32 log_level;
696
697         int *fd_array;
698         size_t fd_array_cap;
699         size_t fd_array_cnt;
700
701         struct usdt_manager *usdt_man;
702
703         struct bpf_map *arena_map;
704         void *arena_data;
705         size_t arena_data_sz;
706
707         struct kern_feature_cache *feat_cache;
708         char *token_path;
709         int token_fd;
710
711         char path[];
712 };
713
714 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
715 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
716 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
717 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
718 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
719 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
720 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
721 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
722 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
723
724 void bpf_program__unload(struct bpf_program *prog)
725 {
726         if (!prog)
727                 return;
728
729         zclose(prog->fd);
730
731         zfree(&prog->func_info);
732         zfree(&prog->line_info);
733 }
734
735 static void bpf_program__exit(struct bpf_program *prog)
736 {
737         if (!prog)
738                 return;
739
740         bpf_program__unload(prog);
741         zfree(&prog->name);
742         zfree(&prog->sec_name);
743         zfree(&prog->insns);
744         zfree(&prog->reloc_desc);
745
746         prog->nr_reloc = 0;
747         prog->insns_cnt = 0;
748         prog->sec_idx = -1;
749 }
750
751 static bool insn_is_subprog_call(const struct bpf_insn *insn)
752 {
753         return BPF_CLASS(insn->code) == BPF_JMP &&
754                BPF_OP(insn->code) == BPF_CALL &&
755                BPF_SRC(insn->code) == BPF_K &&
756                insn->src_reg == BPF_PSEUDO_CALL &&
757                insn->dst_reg == 0 &&
758                insn->off == 0;
759 }
760
761 static bool is_call_insn(const struct bpf_insn *insn)
762 {
763         return insn->code == (BPF_JMP | BPF_CALL);
764 }
765
766 static bool insn_is_pseudo_func(struct bpf_insn *insn)
767 {
768         return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
769 }
770
771 static int
772 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
773                       const char *name, size_t sec_idx, const char *sec_name,
774                       size_t sec_off, void *insn_data, size_t insn_data_sz)
775 {
776         if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
777                 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
778                         sec_name, name, sec_off, insn_data_sz);
779                 return -EINVAL;
780         }
781
782         memset(prog, 0, sizeof(*prog));
783         prog->obj = obj;
784
785         prog->sec_idx = sec_idx;
786         prog->sec_insn_off = sec_off / BPF_INSN_SZ;
787         prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
788         /* insns_cnt can later be increased by appending used subprograms */
789         prog->insns_cnt = prog->sec_insn_cnt;
790
791         prog->type = BPF_PROG_TYPE_UNSPEC;
792         prog->fd = -1;
793         prog->exception_cb_idx = -1;
794
795         /* libbpf's convention for SEC("?abc...") is that it's just like
796          * SEC("abc...") but the corresponding bpf_program starts out with
797          * autoload set to false.
798          */
799         if (sec_name[0] == '?') {
800                 prog->autoload = false;
801                 /* from now on forget there was ? in section name */
802                 sec_name++;
803         } else {
804                 prog->autoload = true;
805         }
806
807         prog->autoattach = true;
808
809         /* inherit object's log_level */
810         prog->log_level = obj->log_level;
811
812         prog->sec_name = strdup(sec_name);
813         if (!prog->sec_name)
814                 goto errout;
815
816         prog->name = strdup(name);
817         if (!prog->name)
818                 goto errout;
819
820         prog->insns = malloc(insn_data_sz);
821         if (!prog->insns)
822                 goto errout;
823         memcpy(prog->insns, insn_data, insn_data_sz);
824
825         return 0;
826 errout:
827         pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
828         bpf_program__exit(prog);
829         return -ENOMEM;
830 }
831
832 static int
833 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
834                          const char *sec_name, int sec_idx)
835 {
836         Elf_Data *symbols = obj->efile.symbols;
837         struct bpf_program *prog, *progs;
838         void *data = sec_data->d_buf;
839         size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
840         int nr_progs, err, i;
841         const char *name;
842         Elf64_Sym *sym;
843
844         progs = obj->programs;
845         nr_progs = obj->nr_programs;
846         nr_syms = symbols->d_size / sizeof(Elf64_Sym);
847
848         for (i = 0; i < nr_syms; i++) {
849                 sym = elf_sym_by_idx(obj, i);
850
851                 if (sym->st_shndx != sec_idx)
852                         continue;
853                 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
854                         continue;
855
856                 prog_sz = sym->st_size;
857                 sec_off = sym->st_value;
858
859                 name = elf_sym_str(obj, sym->st_name);
860                 if (!name) {
861                         pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
862                                 sec_name, sec_off);
863                         return -LIBBPF_ERRNO__FORMAT;
864                 }
865
866                 if (sec_off + prog_sz > sec_sz) {
867                         pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
868                                 sec_name, sec_off);
869                         return -LIBBPF_ERRNO__FORMAT;
870                 }
871
872                 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
873                         pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
874                         return -ENOTSUP;
875                 }
876
877                 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
878                          sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
879
880                 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
881                 if (!progs) {
882                         /*
883                          * In this case the original obj->programs
884                          * is still valid, so don't need special treat for
885                          * bpf_close_object().
886                          */
887                         pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
888                                 sec_name, name);
889                         return -ENOMEM;
890                 }
891                 obj->programs = progs;
892
893                 prog = &progs[nr_progs];
894
895                 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
896                                             sec_off, data + sec_off, prog_sz);
897                 if (err)
898                         return err;
899
900                 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
901                         prog->sym_global = true;
902
903                 /* if function is a global/weak symbol, but has restricted
904                  * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
905                  * as static to enable more permissive BPF verification mode
906                  * with more outside context available to BPF verifier
907                  */
908                 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
909                     || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
910                         prog->mark_btf_static = true;
911
912                 nr_progs++;
913                 obj->nr_programs = nr_progs;
914         }
915
916         return 0;
917 }
918
919 static const struct btf_member *
920 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
921 {
922         struct btf_member *m;
923         int i;
924
925         for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
926                 if (btf_member_bit_offset(t, i) == bit_offset)
927                         return m;
928         }
929
930         return NULL;
931 }
932
933 static const struct btf_member *
934 find_member_by_name(const struct btf *btf, const struct btf_type *t,
935                     const char *name)
936 {
937         struct btf_member *m;
938         int i;
939
940         for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
941                 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
942                         return m;
943         }
944
945         return NULL;
946 }
947
948 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
949                             __u16 kind, struct btf **res_btf,
950                             struct module_btf **res_mod_btf);
951
952 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
953 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
954                                    const char *name, __u32 kind);
955
956 static int
957 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
958                            struct module_btf **mod_btf,
959                            const struct btf_type **type, __u32 *type_id,
960                            const struct btf_type **vtype, __u32 *vtype_id,
961                            const struct btf_member **data_member)
962 {
963         const struct btf_type *kern_type, *kern_vtype;
964         const struct btf_member *kern_data_member;
965         struct btf *btf;
966         __s32 kern_vtype_id, kern_type_id;
967         char tname[256];
968         __u32 i;
969
970         snprintf(tname, sizeof(tname), "%.*s",
971                  (int)bpf_core_essential_name_len(tname_raw), tname_raw);
972
973         kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
974                                         &btf, mod_btf);
975         if (kern_type_id < 0) {
976                 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
977                         tname);
978                 return kern_type_id;
979         }
980         kern_type = btf__type_by_id(btf, kern_type_id);
981
982         /* Find the corresponding "map_value" type that will be used
983          * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
984          * find "struct bpf_struct_ops_tcp_congestion_ops" from the
985          * btf_vmlinux.
986          */
987         kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
988                                                 tname, BTF_KIND_STRUCT);
989         if (kern_vtype_id < 0) {
990                 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
991                         STRUCT_OPS_VALUE_PREFIX, tname);
992                 return kern_vtype_id;
993         }
994         kern_vtype = btf__type_by_id(btf, kern_vtype_id);
995
996         /* Find "struct tcp_congestion_ops" from
997          * struct bpf_struct_ops_tcp_congestion_ops {
998          *      [ ... ]
999          *      struct tcp_congestion_ops data;
1000          * }
1001          */
1002         kern_data_member = btf_members(kern_vtype);
1003         for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1004                 if (kern_data_member->type == kern_type_id)
1005                         break;
1006         }
1007         if (i == btf_vlen(kern_vtype)) {
1008                 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1009                         tname, STRUCT_OPS_VALUE_PREFIX, tname);
1010                 return -EINVAL;
1011         }
1012
1013         *type = kern_type;
1014         *type_id = kern_type_id;
1015         *vtype = kern_vtype;
1016         *vtype_id = kern_vtype_id;
1017         *data_member = kern_data_member;
1018
1019         return 0;
1020 }
1021
1022 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1023 {
1024         return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1025 }
1026
1027 static bool is_valid_st_ops_program(struct bpf_object *obj,
1028                                     const struct bpf_program *prog)
1029 {
1030         int i;
1031
1032         for (i = 0; i < obj->nr_programs; i++) {
1033                 if (&obj->programs[i] == prog)
1034                         return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1035         }
1036
1037         return false;
1038 }
1039
1040 /* For each struct_ops program P, referenced from some struct_ops map M,
1041  * enable P.autoload if there are Ms for which M.autocreate is true,
1042  * disable P.autoload if for all Ms M.autocreate is false.
1043  * Don't change P.autoload for programs that are not referenced from any maps.
1044  */
1045 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1046 {
1047         struct bpf_program *prog, *slot_prog;
1048         struct bpf_map *map;
1049         int i, j, k, vlen;
1050
1051         for (i = 0; i < obj->nr_programs; ++i) {
1052                 int should_load = false;
1053                 int use_cnt = 0;
1054
1055                 prog = &obj->programs[i];
1056                 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1057                         continue;
1058
1059                 for (j = 0; j < obj->nr_maps; ++j) {
1060                         map = &obj->maps[j];
1061                         if (!bpf_map__is_struct_ops(map))
1062                                 continue;
1063
1064                         vlen = btf_vlen(map->st_ops->type);
1065                         for (k = 0; k < vlen; ++k) {
1066                                 slot_prog = map->st_ops->progs[k];
1067                                 if (prog != slot_prog)
1068                                         continue;
1069
1070                                 use_cnt++;
1071                                 if (map->autocreate)
1072                                         should_load = true;
1073                         }
1074                 }
1075                 if (use_cnt)
1076                         prog->autoload = should_load;
1077         }
1078
1079         return 0;
1080 }
1081
1082 /* Init the map's fields that depend on kern_btf */
1083 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1084 {
1085         const struct btf_member *member, *kern_member, *kern_data_member;
1086         const struct btf_type *type, *kern_type, *kern_vtype;
1087         __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1088         struct bpf_object *obj = map->obj;
1089         const struct btf *btf = obj->btf;
1090         struct bpf_struct_ops *st_ops;
1091         const struct btf *kern_btf;
1092         struct module_btf *mod_btf;
1093         void *data, *kern_data;
1094         const char *tname;
1095         int err;
1096
1097         st_ops = map->st_ops;
1098         type = st_ops->type;
1099         tname = st_ops->tname;
1100         err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1101                                          &kern_type, &kern_type_id,
1102                                          &kern_vtype, &kern_vtype_id,
1103                                          &kern_data_member);
1104         if (err)
1105                 return err;
1106
1107         kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1108
1109         pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1110                  map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1111
1112         map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1113         map->def.value_size = kern_vtype->size;
1114         map->btf_vmlinux_value_type_id = kern_vtype_id;
1115
1116         st_ops->kern_vdata = calloc(1, kern_vtype->size);
1117         if (!st_ops->kern_vdata)
1118                 return -ENOMEM;
1119
1120         data = st_ops->data;
1121         kern_data_off = kern_data_member->offset / 8;
1122         kern_data = st_ops->kern_vdata + kern_data_off;
1123
1124         member = btf_members(type);
1125         for (i = 0; i < btf_vlen(type); i++, member++) {
1126                 const struct btf_type *mtype, *kern_mtype;
1127                 __u32 mtype_id, kern_mtype_id;
1128                 void *mdata, *kern_mdata;
1129                 __s64 msize, kern_msize;
1130                 __u32 moff, kern_moff;
1131                 __u32 kern_member_idx;
1132                 const char *mname;
1133
1134                 mname = btf__name_by_offset(btf, member->name_off);
1135                 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1136                 if (!kern_member) {
1137                         pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1138                                 map->name, mname);
1139                         return -ENOTSUP;
1140                 }
1141
1142                 kern_member_idx = kern_member - btf_members(kern_type);
1143                 if (btf_member_bitfield_size(type, i) ||
1144                     btf_member_bitfield_size(kern_type, kern_member_idx)) {
1145                         pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1146                                 map->name, mname);
1147                         return -ENOTSUP;
1148                 }
1149
1150                 moff = member->offset / 8;
1151                 kern_moff = kern_member->offset / 8;
1152
1153                 mdata = data + moff;
1154                 kern_mdata = kern_data + kern_moff;
1155
1156                 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1157                 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1158                                                     &kern_mtype_id);
1159                 if (BTF_INFO_KIND(mtype->info) !=
1160                     BTF_INFO_KIND(kern_mtype->info)) {
1161                         pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1162                                 map->name, mname, BTF_INFO_KIND(mtype->info),
1163                                 BTF_INFO_KIND(kern_mtype->info));
1164                         return -ENOTSUP;
1165                 }
1166
1167                 if (btf_is_ptr(mtype)) {
1168                         struct bpf_program *prog;
1169
1170                         /* Update the value from the shadow type */
1171                         prog = *(void **)mdata;
1172                         st_ops->progs[i] = prog;
1173                         if (!prog)
1174                                 continue;
1175                         if (!is_valid_st_ops_program(obj, prog)) {
1176                                 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1177                                         map->name, mname);
1178                                 return -ENOTSUP;
1179                         }
1180
1181                         kern_mtype = skip_mods_and_typedefs(kern_btf,
1182                                                             kern_mtype->type,
1183                                                             &kern_mtype_id);
1184
1185                         /* mtype->type must be a func_proto which was
1186                          * guaranteed in bpf_object__collect_st_ops_relos(),
1187                          * so only check kern_mtype for func_proto here.
1188                          */
1189                         if (!btf_is_func_proto(kern_mtype)) {
1190                                 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1191                                         map->name, mname);
1192                                 return -ENOTSUP;
1193                         }
1194
1195                         if (mod_btf)
1196                                 prog->attach_btf_obj_fd = mod_btf->fd;
1197
1198                         /* if we haven't yet processed this BPF program, record proper
1199                          * attach_btf_id and member_idx
1200                          */
1201                         if (!prog->attach_btf_id) {
1202                                 prog->attach_btf_id = kern_type_id;
1203                                 prog->expected_attach_type = kern_member_idx;
1204                         }
1205
1206                         /* struct_ops BPF prog can be re-used between multiple
1207                          * .struct_ops & .struct_ops.link as long as it's the
1208                          * same struct_ops struct definition and the same
1209                          * function pointer field
1210                          */
1211                         if (prog->attach_btf_id != kern_type_id) {
1212                                 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1213                                         map->name, mname, prog->name, prog->sec_name, prog->type,
1214                                         prog->attach_btf_id, kern_type_id);
1215                                 return -EINVAL;
1216                         }
1217                         if (prog->expected_attach_type != kern_member_idx) {
1218                                 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1219                                         map->name, mname, prog->name, prog->sec_name, prog->type,
1220                                         prog->expected_attach_type, kern_member_idx);
1221                                 return -EINVAL;
1222                         }
1223
1224                         st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1225
1226                         pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1227                                  map->name, mname, prog->name, moff,
1228                                  kern_moff);
1229
1230                         continue;
1231                 }
1232
1233                 msize = btf__resolve_size(btf, mtype_id);
1234                 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1235                 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1236                         pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1237                                 map->name, mname, (ssize_t)msize,
1238                                 (ssize_t)kern_msize);
1239                         return -ENOTSUP;
1240                 }
1241
1242                 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1243                          map->name, mname, (unsigned int)msize,
1244                          moff, kern_moff);
1245                 memcpy(kern_mdata, mdata, msize);
1246         }
1247
1248         return 0;
1249 }
1250
1251 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1252 {
1253         struct bpf_map *map;
1254         size_t i;
1255         int err;
1256
1257         for (i = 0; i < obj->nr_maps; i++) {
1258                 map = &obj->maps[i];
1259
1260                 if (!bpf_map__is_struct_ops(map))
1261                         continue;
1262
1263                 if (!map->autocreate)
1264                         continue;
1265
1266                 err = bpf_map__init_kern_struct_ops(map);
1267                 if (err)
1268                         return err;
1269         }
1270
1271         return 0;
1272 }
1273
1274 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1275                                 int shndx, Elf_Data *data)
1276 {
1277         const struct btf_type *type, *datasec;
1278         const struct btf_var_secinfo *vsi;
1279         struct bpf_struct_ops *st_ops;
1280         const char *tname, *var_name;
1281         __s32 type_id, datasec_id;
1282         const struct btf *btf;
1283         struct bpf_map *map;
1284         __u32 i;
1285
1286         if (shndx == -1)
1287                 return 0;
1288
1289         btf = obj->btf;
1290         datasec_id = btf__find_by_name_kind(btf, sec_name,
1291                                             BTF_KIND_DATASEC);
1292         if (datasec_id < 0) {
1293                 pr_warn("struct_ops init: DATASEC %s not found\n",
1294                         sec_name);
1295                 return -EINVAL;
1296         }
1297
1298         datasec = btf__type_by_id(btf, datasec_id);
1299         vsi = btf_var_secinfos(datasec);
1300         for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1301                 type = btf__type_by_id(obj->btf, vsi->type);
1302                 var_name = btf__name_by_offset(obj->btf, type->name_off);
1303
1304                 type_id = btf__resolve_type(obj->btf, vsi->type);
1305                 if (type_id < 0) {
1306                         pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1307                                 vsi->type, sec_name);
1308                         return -EINVAL;
1309                 }
1310
1311                 type = btf__type_by_id(obj->btf, type_id);
1312                 tname = btf__name_by_offset(obj->btf, type->name_off);
1313                 if (!tname[0]) {
1314                         pr_warn("struct_ops init: anonymous type is not supported\n");
1315                         return -ENOTSUP;
1316                 }
1317                 if (!btf_is_struct(type)) {
1318                         pr_warn("struct_ops init: %s is not a struct\n", tname);
1319                         return -EINVAL;
1320                 }
1321
1322                 map = bpf_object__add_map(obj);
1323                 if (IS_ERR(map))
1324                         return PTR_ERR(map);
1325
1326                 map->sec_idx = shndx;
1327                 map->sec_offset = vsi->offset;
1328                 map->name = strdup(var_name);
1329                 if (!map->name)
1330                         return -ENOMEM;
1331                 map->btf_value_type_id = type_id;
1332
1333                 /* Follow same convention as for programs autoload:
1334                  * SEC("?.struct_ops") means map is not created by default.
1335                  */
1336                 if (sec_name[0] == '?') {
1337                         map->autocreate = false;
1338                         /* from now on forget there was ? in section name */
1339                         sec_name++;
1340                 }
1341
1342                 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1343                 map->def.key_size = sizeof(int);
1344                 map->def.value_size = type->size;
1345                 map->def.max_entries = 1;
1346                 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1347
1348                 map->st_ops = calloc(1, sizeof(*map->st_ops));
1349                 if (!map->st_ops)
1350                         return -ENOMEM;
1351                 st_ops = map->st_ops;
1352                 st_ops->data = malloc(type->size);
1353                 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1354                 st_ops->kern_func_off = malloc(btf_vlen(type) *
1355                                                sizeof(*st_ops->kern_func_off));
1356                 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1357                         return -ENOMEM;
1358
1359                 if (vsi->offset + type->size > data->d_size) {
1360                         pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1361                                 var_name, sec_name);
1362                         return -EINVAL;
1363                 }
1364
1365                 memcpy(st_ops->data,
1366                        data->d_buf + vsi->offset,
1367                        type->size);
1368                 st_ops->tname = tname;
1369                 st_ops->type = type;
1370                 st_ops->type_id = type_id;
1371
1372                 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1373                          tname, type_id, var_name, vsi->offset);
1374         }
1375
1376         return 0;
1377 }
1378
1379 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1380 {
1381         const char *sec_name;
1382         int sec_idx, err;
1383
1384         for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1385                 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1386
1387                 if (desc->sec_type != SEC_ST_OPS)
1388                         continue;
1389
1390                 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1391                 if (!sec_name)
1392                         return -LIBBPF_ERRNO__FORMAT;
1393
1394                 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1395                 if (err)
1396                         return err;
1397         }
1398
1399         return 0;
1400 }
1401
1402 static struct bpf_object *bpf_object__new(const char *path,
1403                                           const void *obj_buf,
1404                                           size_t obj_buf_sz,
1405                                           const char *obj_name)
1406 {
1407         struct bpf_object *obj;
1408         char *end;
1409
1410         obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1411         if (!obj) {
1412                 pr_warn("alloc memory failed for %s\n", path);
1413                 return ERR_PTR(-ENOMEM);
1414         }
1415
1416         strcpy(obj->path, path);
1417         if (obj_name) {
1418                 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1419         } else {
1420                 /* Using basename() GNU version which doesn't modify arg. */
1421                 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1422                 end = strchr(obj->name, '.');
1423                 if (end)
1424                         *end = 0;
1425         }
1426
1427         obj->efile.fd = -1;
1428         /*
1429          * Caller of this function should also call
1430          * bpf_object__elf_finish() after data collection to return
1431          * obj_buf to user. If not, we should duplicate the buffer to
1432          * avoid user freeing them before elf finish.
1433          */
1434         obj->efile.obj_buf = obj_buf;
1435         obj->efile.obj_buf_sz = obj_buf_sz;
1436         obj->efile.btf_maps_shndx = -1;
1437         obj->kconfig_map_idx = -1;
1438
1439         obj->kern_version = get_kernel_version();
1440         obj->loaded = false;
1441
1442         return obj;
1443 }
1444
1445 static void bpf_object__elf_finish(struct bpf_object *obj)
1446 {
1447         if (!obj->efile.elf)
1448                 return;
1449
1450         elf_end(obj->efile.elf);
1451         obj->efile.elf = NULL;
1452         obj->efile.symbols = NULL;
1453         obj->efile.arena_data = NULL;
1454
1455         zfree(&obj->efile.secs);
1456         obj->efile.sec_cnt = 0;
1457         zclose(obj->efile.fd);
1458         obj->efile.obj_buf = NULL;
1459         obj->efile.obj_buf_sz = 0;
1460 }
1461
1462 static int bpf_object__elf_init(struct bpf_object *obj)
1463 {
1464         Elf64_Ehdr *ehdr;
1465         int err = 0;
1466         Elf *elf;
1467
1468         if (obj->efile.elf) {
1469                 pr_warn("elf: init internal error\n");
1470                 return -LIBBPF_ERRNO__LIBELF;
1471         }
1472
1473         if (obj->efile.obj_buf_sz > 0) {
1474                 /* obj_buf should have been validated by bpf_object__open_mem(). */
1475                 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1476         } else {
1477                 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1478                 if (obj->efile.fd < 0) {
1479                         char errmsg[STRERR_BUFSIZE], *cp;
1480
1481                         err = -errno;
1482                         cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1483                         pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1484                         return err;
1485                 }
1486
1487                 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1488         }
1489
1490         if (!elf) {
1491                 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1492                 err = -LIBBPF_ERRNO__LIBELF;
1493                 goto errout;
1494         }
1495
1496         obj->efile.elf = elf;
1497
1498         if (elf_kind(elf) != ELF_K_ELF) {
1499                 err = -LIBBPF_ERRNO__FORMAT;
1500                 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1501                 goto errout;
1502         }
1503
1504         if (gelf_getclass(elf) != ELFCLASS64) {
1505                 err = -LIBBPF_ERRNO__FORMAT;
1506                 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1507                 goto errout;
1508         }
1509
1510         obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1511         if (!obj->efile.ehdr) {
1512                 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1513                 err = -LIBBPF_ERRNO__FORMAT;
1514                 goto errout;
1515         }
1516
1517         if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1518                 pr_warn("elf: failed to get section names section index for %s: %s\n",
1519                         obj->path, elf_errmsg(-1));
1520                 err = -LIBBPF_ERRNO__FORMAT;
1521                 goto errout;
1522         }
1523
1524         /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1525         if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1526                 pr_warn("elf: failed to get section names strings from %s: %s\n",
1527                         obj->path, elf_errmsg(-1));
1528                 err = -LIBBPF_ERRNO__FORMAT;
1529                 goto errout;
1530         }
1531
1532         /* Old LLVM set e_machine to EM_NONE */
1533         if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1534                 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1535                 err = -LIBBPF_ERRNO__FORMAT;
1536                 goto errout;
1537         }
1538
1539         return 0;
1540 errout:
1541         bpf_object__elf_finish(obj);
1542         return err;
1543 }
1544
1545 static int bpf_object__check_endianness(struct bpf_object *obj)
1546 {
1547 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1548         if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1549                 return 0;
1550 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1551         if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1552                 return 0;
1553 #else
1554 # error "Unrecognized __BYTE_ORDER__"
1555 #endif
1556         pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1557         return -LIBBPF_ERRNO__ENDIAN;
1558 }
1559
1560 static int
1561 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1562 {
1563         if (!data) {
1564                 pr_warn("invalid license section in %s\n", obj->path);
1565                 return -LIBBPF_ERRNO__FORMAT;
1566         }
1567         /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1568          * go over allowed ELF data section buffer
1569          */
1570         libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1571         pr_debug("license of %s is %s\n", obj->path, obj->license);
1572         return 0;
1573 }
1574
1575 static int
1576 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1577 {
1578         __u32 kver;
1579
1580         if (!data || size != sizeof(kver)) {
1581                 pr_warn("invalid kver section in %s\n", obj->path);
1582                 return -LIBBPF_ERRNO__FORMAT;
1583         }
1584         memcpy(&kver, data, sizeof(kver));
1585         obj->kern_version = kver;
1586         pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1587         return 0;
1588 }
1589
1590 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1591 {
1592         if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1593             type == BPF_MAP_TYPE_HASH_OF_MAPS)
1594                 return true;
1595         return false;
1596 }
1597
1598 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1599 {
1600         Elf_Data *data;
1601         Elf_Scn *scn;
1602
1603         if (!name)
1604                 return -EINVAL;
1605
1606         scn = elf_sec_by_name(obj, name);
1607         data = elf_sec_data(obj, scn);
1608         if (data) {
1609                 *size = data->d_size;
1610                 return 0; /* found it */
1611         }
1612
1613         return -ENOENT;
1614 }
1615
1616 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1617 {
1618         Elf_Data *symbols = obj->efile.symbols;
1619         const char *sname;
1620         size_t si;
1621
1622         for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1623                 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1624
1625                 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1626                         continue;
1627
1628                 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1629                     ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1630                         continue;
1631
1632                 sname = elf_sym_str(obj, sym->st_name);
1633                 if (!sname) {
1634                         pr_warn("failed to get sym name string for var %s\n", name);
1635                         return ERR_PTR(-EIO);
1636                 }
1637                 if (strcmp(name, sname) == 0)
1638                         return sym;
1639         }
1640
1641         return ERR_PTR(-ENOENT);
1642 }
1643
1644 /* Some versions of Android don't provide memfd_create() in their libc
1645  * implementation, so avoid complications and just go straight to Linux
1646  * syscall.
1647  */
1648 static int sys_memfd_create(const char *name, unsigned flags)
1649 {
1650         return syscall(__NR_memfd_create, name, flags);
1651 }
1652
1653 static int create_placeholder_fd(void)
1654 {
1655         int fd;
1656
1657         fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1658         if (fd < 0)
1659                 return -errno;
1660         return fd;
1661 }
1662
1663 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1664 {
1665         struct bpf_map *map;
1666         int err;
1667
1668         err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1669                                 sizeof(*obj->maps), obj->nr_maps + 1);
1670         if (err)
1671                 return ERR_PTR(err);
1672
1673         map = &obj->maps[obj->nr_maps++];
1674         map->obj = obj;
1675         /* Preallocate map FD without actually creating BPF map just yet.
1676          * These map FD "placeholders" will be reused later without changing
1677          * FD value when map is actually created in the kernel.
1678          *
1679          * This is useful to be able to perform BPF program relocations
1680          * without having to create BPF maps before that step. This allows us
1681          * to finalize and load BTF very late in BPF object's loading phase,
1682          * right before BPF maps have to be created and BPF programs have to
1683          * be loaded. By having these map FD placeholders we can perform all
1684          * the sanitizations, relocations, and any other adjustments before we
1685          * start creating actual BPF kernel objects (BTF, maps, progs).
1686          */
1687         map->fd = create_placeholder_fd();
1688         if (map->fd < 0)
1689                 return ERR_PTR(map->fd);
1690         map->inner_map_fd = -1;
1691         map->autocreate = true;
1692
1693         return map;
1694 }
1695
1696 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1697 {
1698         const long page_sz = sysconf(_SC_PAGE_SIZE);
1699         size_t map_sz;
1700
1701         map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1702         map_sz = roundup(map_sz, page_sz);
1703         return map_sz;
1704 }
1705
1706 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1707 {
1708         const long page_sz = sysconf(_SC_PAGE_SIZE);
1709
1710         switch (map->def.type) {
1711         case BPF_MAP_TYPE_ARRAY:
1712                 return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1713         case BPF_MAP_TYPE_ARENA:
1714                 return page_sz * map->def.max_entries;
1715         default:
1716                 return 0; /* not supported */
1717         }
1718 }
1719
1720 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1721 {
1722         void *mmaped;
1723
1724         if (!map->mmaped)
1725                 return -EINVAL;
1726
1727         if (old_sz == new_sz)
1728                 return 0;
1729
1730         mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1731         if (mmaped == MAP_FAILED)
1732                 return -errno;
1733
1734         memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1735         munmap(map->mmaped, old_sz);
1736         map->mmaped = mmaped;
1737         return 0;
1738 }
1739
1740 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1741 {
1742         char map_name[BPF_OBJ_NAME_LEN], *p;
1743         int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1744
1745         /* This is one of the more confusing parts of libbpf for various
1746          * reasons, some of which are historical. The original idea for naming
1747          * internal names was to include as much of BPF object name prefix as
1748          * possible, so that it can be distinguished from similar internal
1749          * maps of a different BPF object.
1750          * As an example, let's say we have bpf_object named 'my_object_name'
1751          * and internal map corresponding to '.rodata' ELF section. The final
1752          * map name advertised to user and to the kernel will be
1753          * 'my_objec.rodata', taking first 8 characters of object name and
1754          * entire 7 characters of '.rodata'.
1755          * Somewhat confusingly, if internal map ELF section name is shorter
1756          * than 7 characters, e.g., '.bss', we still reserve 7 characters
1757          * for the suffix, even though we only have 4 actual characters, and
1758          * resulting map will be called 'my_objec.bss', not even using all 15
1759          * characters allowed by the kernel. Oh well, at least the truncated
1760          * object name is somewhat consistent in this case. But if the map
1761          * name is '.kconfig', we'll still have entirety of '.kconfig' added
1762          * (8 chars) and thus will be left with only first 7 characters of the
1763          * object name ('my_obje'). Happy guessing, user, that the final map
1764          * name will be "my_obje.kconfig".
1765          * Now, with libbpf starting to support arbitrarily named .rodata.*
1766          * and .data.* data sections, it's possible that ELF section name is
1767          * longer than allowed 15 chars, so we now need to be careful to take
1768          * only up to 15 first characters of ELF name, taking no BPF object
1769          * name characters at all. So '.rodata.abracadabra' will result in
1770          * '.rodata.abracad' kernel and user-visible name.
1771          * We need to keep this convoluted logic intact for .data, .bss and
1772          * .rodata maps, but for new custom .data.custom and .rodata.custom
1773          * maps we use their ELF names as is, not prepending bpf_object name
1774          * in front. We still need to truncate them to 15 characters for the
1775          * kernel. Full name can be recovered for such maps by using DATASEC
1776          * BTF type associated with such map's value type, though.
1777          */
1778         if (sfx_len >= BPF_OBJ_NAME_LEN)
1779                 sfx_len = BPF_OBJ_NAME_LEN - 1;
1780
1781         /* if there are two or more dots in map name, it's a custom dot map */
1782         if (strchr(real_name + 1, '.') != NULL)
1783                 pfx_len = 0;
1784         else
1785                 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1786
1787         snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1788                  sfx_len, real_name);
1789
1790         /* sanitise map name to characters allowed by kernel */
1791         for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1792                 if (!isalnum(*p) && *p != '_' && *p != '.')
1793                         *p = '_';
1794
1795         return strdup(map_name);
1796 }
1797
1798 static int
1799 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1800
1801 /* Internal BPF map is mmap()'able only if at least one of corresponding
1802  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1803  * variable and it's not marked as __hidden (which turns it into, effectively,
1804  * a STATIC variable).
1805  */
1806 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1807 {
1808         const struct btf_type *t, *vt;
1809         struct btf_var_secinfo *vsi;
1810         int i, n;
1811
1812         if (!map->btf_value_type_id)
1813                 return false;
1814
1815         t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1816         if (!btf_is_datasec(t))
1817                 return false;
1818
1819         vsi = btf_var_secinfos(t);
1820         for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1821                 vt = btf__type_by_id(obj->btf, vsi->type);
1822                 if (!btf_is_var(vt))
1823                         continue;
1824
1825                 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1826                         return true;
1827         }
1828
1829         return false;
1830 }
1831
1832 static int
1833 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1834                               const char *real_name, int sec_idx, void *data, size_t data_sz)
1835 {
1836         struct bpf_map_def *def;
1837         struct bpf_map *map;
1838         size_t mmap_sz;
1839         int err;
1840
1841         map = bpf_object__add_map(obj);
1842         if (IS_ERR(map))
1843                 return PTR_ERR(map);
1844
1845         map->libbpf_type = type;
1846         map->sec_idx = sec_idx;
1847         map->sec_offset = 0;
1848         map->real_name = strdup(real_name);
1849         map->name = internal_map_name(obj, real_name);
1850         if (!map->real_name || !map->name) {
1851                 zfree(&map->real_name);
1852                 zfree(&map->name);
1853                 return -ENOMEM;
1854         }
1855
1856         def = &map->def;
1857         def->type = BPF_MAP_TYPE_ARRAY;
1858         def->key_size = sizeof(int);
1859         def->value_size = data_sz;
1860         def->max_entries = 1;
1861         def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1862                 ? BPF_F_RDONLY_PROG : 0;
1863
1864         /* failures are fine because of maps like .rodata.str1.1 */
1865         (void) map_fill_btf_type_info(obj, map);
1866
1867         if (map_is_mmapable(obj, map))
1868                 def->map_flags |= BPF_F_MMAPABLE;
1869
1870         pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1871                  map->name, map->sec_idx, map->sec_offset, def->map_flags);
1872
1873         mmap_sz = bpf_map_mmap_sz(map);
1874         map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1875                            MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1876         if (map->mmaped == MAP_FAILED) {
1877                 err = -errno;
1878                 map->mmaped = NULL;
1879                 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1880                         map->name, err);
1881                 zfree(&map->real_name);
1882                 zfree(&map->name);
1883                 return err;
1884         }
1885
1886         if (data)
1887                 memcpy(map->mmaped, data, data_sz);
1888
1889         pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1890         return 0;
1891 }
1892
1893 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1894 {
1895         struct elf_sec_desc *sec_desc;
1896         const char *sec_name;
1897         int err = 0, sec_idx;
1898
1899         /*
1900          * Populate obj->maps with libbpf internal maps.
1901          */
1902         for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1903                 sec_desc = &obj->efile.secs[sec_idx];
1904
1905                 /* Skip recognized sections with size 0. */
1906                 if (!sec_desc->data || sec_desc->data->d_size == 0)
1907                         continue;
1908
1909                 switch (sec_desc->sec_type) {
1910                 case SEC_DATA:
1911                         sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1912                         err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1913                                                             sec_name, sec_idx,
1914                                                             sec_desc->data->d_buf,
1915                                                             sec_desc->data->d_size);
1916                         break;
1917                 case SEC_RODATA:
1918                         obj->has_rodata = true;
1919                         sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1920                         err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1921                                                             sec_name, sec_idx,
1922                                                             sec_desc->data->d_buf,
1923                                                             sec_desc->data->d_size);
1924                         break;
1925                 case SEC_BSS:
1926                         sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1927                         err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1928                                                             sec_name, sec_idx,
1929                                                             NULL,
1930                                                             sec_desc->data->d_size);
1931                         break;
1932                 default:
1933                         /* skip */
1934                         break;
1935                 }
1936                 if (err)
1937                         return err;
1938         }
1939         return 0;
1940 }
1941
1942
1943 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1944                                                const void *name)
1945 {
1946         int i;
1947
1948         for (i = 0; i < obj->nr_extern; i++) {
1949                 if (strcmp(obj->externs[i].name, name) == 0)
1950                         return &obj->externs[i];
1951         }
1952         return NULL;
1953 }
1954
1955 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1956                               char value)
1957 {
1958         switch (ext->kcfg.type) {
1959         case KCFG_BOOL:
1960                 if (value == 'm') {
1961                         pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1962                                 ext->name, value);
1963                         return -EINVAL;
1964                 }
1965                 *(bool *)ext_val = value == 'y' ? true : false;
1966                 break;
1967         case KCFG_TRISTATE:
1968                 if (value == 'y')
1969                         *(enum libbpf_tristate *)ext_val = TRI_YES;
1970                 else if (value == 'm')
1971                         *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1972                 else /* value == 'n' */
1973                         *(enum libbpf_tristate *)ext_val = TRI_NO;
1974                 break;
1975         case KCFG_CHAR:
1976                 *(char *)ext_val = value;
1977                 break;
1978         case KCFG_UNKNOWN:
1979         case KCFG_INT:
1980         case KCFG_CHAR_ARR:
1981         default:
1982                 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1983                         ext->name, value);
1984                 return -EINVAL;
1985         }
1986         ext->is_set = true;
1987         return 0;
1988 }
1989
1990 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1991                               const char *value)
1992 {
1993         size_t len;
1994
1995         if (ext->kcfg.type != KCFG_CHAR_ARR) {
1996                 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1997                         ext->name, value);
1998                 return -EINVAL;
1999         }
2000
2001         len = strlen(value);
2002         if (value[len - 1] != '"') {
2003                 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2004                         ext->name, value);
2005                 return -EINVAL;
2006         }
2007
2008         /* strip quotes */
2009         len -= 2;
2010         if (len >= ext->kcfg.sz) {
2011                 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2012                         ext->name, value, len, ext->kcfg.sz - 1);
2013                 len = ext->kcfg.sz - 1;
2014         }
2015         memcpy(ext_val, value + 1, len);
2016         ext_val[len] = '\0';
2017         ext->is_set = true;
2018         return 0;
2019 }
2020
2021 static int parse_u64(const char *value, __u64 *res)
2022 {
2023         char *value_end;
2024         int err;
2025
2026         errno = 0;
2027         *res = strtoull(value, &value_end, 0);
2028         if (errno) {
2029                 err = -errno;
2030                 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
2031                 return err;
2032         }
2033         if (*value_end) {
2034                 pr_warn("failed to parse '%s' as integer completely\n", value);
2035                 return -EINVAL;
2036         }
2037         return 0;
2038 }
2039
2040 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2041 {
2042         int bit_sz = ext->kcfg.sz * 8;
2043
2044         if (ext->kcfg.sz == 8)
2045                 return true;
2046
2047         /* Validate that value stored in u64 fits in integer of `ext->sz`
2048          * bytes size without any loss of information. If the target integer
2049          * is signed, we rely on the following limits of integer type of
2050          * Y bits and subsequent transformation:
2051          *
2052          *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
2053          *            0 <= X + 2^(Y-1) <= 2^Y - 1
2054          *            0 <= X + 2^(Y-1) <  2^Y
2055          *
2056          *  For unsigned target integer, check that all the (64 - Y) bits are
2057          *  zero.
2058          */
2059         if (ext->kcfg.is_signed)
2060                 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2061         else
2062                 return (v >> bit_sz) == 0;
2063 }
2064
2065 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2066                               __u64 value)
2067 {
2068         if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2069             ext->kcfg.type != KCFG_BOOL) {
2070                 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2071                         ext->name, (unsigned long long)value);
2072                 return -EINVAL;
2073         }
2074         if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2075                 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2076                         ext->name, (unsigned long long)value);
2077                 return -EINVAL;
2078
2079         }
2080         if (!is_kcfg_value_in_range(ext, value)) {
2081                 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2082                         ext->name, (unsigned long long)value, ext->kcfg.sz);
2083                 return -ERANGE;
2084         }
2085         switch (ext->kcfg.sz) {
2086         case 1:
2087                 *(__u8 *)ext_val = value;
2088                 break;
2089         case 2:
2090                 *(__u16 *)ext_val = value;
2091                 break;
2092         case 4:
2093                 *(__u32 *)ext_val = value;
2094                 break;
2095         case 8:
2096                 *(__u64 *)ext_val = value;
2097                 break;
2098         default:
2099                 return -EINVAL;
2100         }
2101         ext->is_set = true;
2102         return 0;
2103 }
2104
2105 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2106                                             char *buf, void *data)
2107 {
2108         struct extern_desc *ext;
2109         char *sep, *value;
2110         int len, err = 0;
2111         void *ext_val;
2112         __u64 num;
2113
2114         if (!str_has_pfx(buf, "CONFIG_"))
2115                 return 0;
2116
2117         sep = strchr(buf, '=');
2118         if (!sep) {
2119                 pr_warn("failed to parse '%s': no separator\n", buf);
2120                 return -EINVAL;
2121         }
2122
2123         /* Trim ending '\n' */
2124         len = strlen(buf);
2125         if (buf[len - 1] == '\n')
2126                 buf[len - 1] = '\0';
2127         /* Split on '=' and ensure that a value is present. */
2128         *sep = '\0';
2129         if (!sep[1]) {
2130                 *sep = '=';
2131                 pr_warn("failed to parse '%s': no value\n", buf);
2132                 return -EINVAL;
2133         }
2134
2135         ext = find_extern_by_name(obj, buf);
2136         if (!ext || ext->is_set)
2137                 return 0;
2138
2139         ext_val = data + ext->kcfg.data_off;
2140         value = sep + 1;
2141
2142         switch (*value) {
2143         case 'y': case 'n': case 'm':
2144                 err = set_kcfg_value_tri(ext, ext_val, *value);
2145                 break;
2146         case '"':
2147                 err = set_kcfg_value_str(ext, ext_val, value);
2148                 break;
2149         default:
2150                 /* assume integer */
2151                 err = parse_u64(value, &num);
2152                 if (err) {
2153                         pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2154                         return err;
2155                 }
2156                 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2157                         pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2158                         return -EINVAL;
2159                 }
2160                 err = set_kcfg_value_num(ext, ext_val, num);
2161                 break;
2162         }
2163         if (err)
2164                 return err;
2165         pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2166         return 0;
2167 }
2168
2169 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2170 {
2171         char buf[PATH_MAX];
2172         struct utsname uts;
2173         int len, err = 0;
2174         gzFile file;
2175
2176         uname(&uts);
2177         len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2178         if (len < 0)
2179                 return -EINVAL;
2180         else if (len >= PATH_MAX)
2181                 return -ENAMETOOLONG;
2182
2183         /* gzopen also accepts uncompressed files. */
2184         file = gzopen(buf, "re");
2185         if (!file)
2186                 file = gzopen("/proc/config.gz", "re");
2187
2188         if (!file) {
2189                 pr_warn("failed to open system Kconfig\n");
2190                 return -ENOENT;
2191         }
2192
2193         while (gzgets(file, buf, sizeof(buf))) {
2194                 err = bpf_object__process_kconfig_line(obj, buf, data);
2195                 if (err) {
2196                         pr_warn("error parsing system Kconfig line '%s': %d\n",
2197                                 buf, err);
2198                         goto out;
2199                 }
2200         }
2201
2202 out:
2203         gzclose(file);
2204         return err;
2205 }
2206
2207 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2208                                         const char *config, void *data)
2209 {
2210         char buf[PATH_MAX];
2211         int err = 0;
2212         FILE *file;
2213
2214         file = fmemopen((void *)config, strlen(config), "r");
2215         if (!file) {
2216                 err = -errno;
2217                 pr_warn("failed to open in-memory Kconfig: %d\n", err);
2218                 return err;
2219         }
2220
2221         while (fgets(buf, sizeof(buf), file)) {
2222                 err = bpf_object__process_kconfig_line(obj, buf, data);
2223                 if (err) {
2224                         pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2225                                 buf, err);
2226                         break;
2227                 }
2228         }
2229
2230         fclose(file);
2231         return err;
2232 }
2233
2234 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2235 {
2236         struct extern_desc *last_ext = NULL, *ext;
2237         size_t map_sz;
2238         int i, err;
2239
2240         for (i = 0; i < obj->nr_extern; i++) {
2241                 ext = &obj->externs[i];
2242                 if (ext->type == EXT_KCFG)
2243                         last_ext = ext;
2244         }
2245
2246         if (!last_ext)
2247                 return 0;
2248
2249         map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2250         err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2251                                             ".kconfig", obj->efile.symbols_shndx,
2252                                             NULL, map_sz);
2253         if (err)
2254                 return err;
2255
2256         obj->kconfig_map_idx = obj->nr_maps - 1;
2257
2258         return 0;
2259 }
2260
2261 const struct btf_type *
2262 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2263 {
2264         const struct btf_type *t = btf__type_by_id(btf, id);
2265
2266         if (res_id)
2267                 *res_id = id;
2268
2269         while (btf_is_mod(t) || btf_is_typedef(t)) {
2270                 if (res_id)
2271                         *res_id = t->type;
2272                 t = btf__type_by_id(btf, t->type);
2273         }
2274
2275         return t;
2276 }
2277
2278 static const struct btf_type *
2279 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2280 {
2281         const struct btf_type *t;
2282
2283         t = skip_mods_and_typedefs(btf, id, NULL);
2284         if (!btf_is_ptr(t))
2285                 return NULL;
2286
2287         t = skip_mods_and_typedefs(btf, t->type, res_id);
2288
2289         return btf_is_func_proto(t) ? t : NULL;
2290 }
2291
2292 static const char *__btf_kind_str(__u16 kind)
2293 {
2294         switch (kind) {
2295         case BTF_KIND_UNKN: return "void";
2296         case BTF_KIND_INT: return "int";
2297         case BTF_KIND_PTR: return "ptr";
2298         case BTF_KIND_ARRAY: return "array";
2299         case BTF_KIND_STRUCT: return "struct";
2300         case BTF_KIND_UNION: return "union";
2301         case BTF_KIND_ENUM: return "enum";
2302         case BTF_KIND_FWD: return "fwd";
2303         case BTF_KIND_TYPEDEF: return "typedef";
2304         case BTF_KIND_VOLATILE: return "volatile";
2305         case BTF_KIND_CONST: return "const";
2306         case BTF_KIND_RESTRICT: return "restrict";
2307         case BTF_KIND_FUNC: return "func";
2308         case BTF_KIND_FUNC_PROTO: return "func_proto";
2309         case BTF_KIND_VAR: return "var";
2310         case BTF_KIND_DATASEC: return "datasec";
2311         case BTF_KIND_FLOAT: return "float";
2312         case BTF_KIND_DECL_TAG: return "decl_tag";
2313         case BTF_KIND_TYPE_TAG: return "type_tag";
2314         case BTF_KIND_ENUM64: return "enum64";
2315         default: return "unknown";
2316         }
2317 }
2318
2319 const char *btf_kind_str(const struct btf_type *t)
2320 {
2321         return __btf_kind_str(btf_kind(t));
2322 }
2323
2324 /*
2325  * Fetch integer attribute of BTF map definition. Such attributes are
2326  * represented using a pointer to an array, in which dimensionality of array
2327  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2328  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2329  * type definition, while using only sizeof(void *) space in ELF data section.
2330  */
2331 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2332                               const struct btf_member *m, __u32 *res)
2333 {
2334         const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2335         const char *name = btf__name_by_offset(btf, m->name_off);
2336         const struct btf_array *arr_info;
2337         const struct btf_type *arr_t;
2338
2339         if (!btf_is_ptr(t)) {
2340                 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2341                         map_name, name, btf_kind_str(t));
2342                 return false;
2343         }
2344
2345         arr_t = btf__type_by_id(btf, t->type);
2346         if (!arr_t) {
2347                 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2348                         map_name, name, t->type);
2349                 return false;
2350         }
2351         if (!btf_is_array(arr_t)) {
2352                 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2353                         map_name, name, btf_kind_str(arr_t));
2354                 return false;
2355         }
2356         arr_info = btf_array(arr_t);
2357         *res = arr_info->nelems;
2358         return true;
2359 }
2360
2361 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2362                                const struct btf_member *m, __u64 *res)
2363 {
2364         const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2365         const char *name = btf__name_by_offset(btf, m->name_off);
2366
2367         if (btf_is_ptr(t)) {
2368                 __u32 res32;
2369                 bool ret;
2370
2371                 ret = get_map_field_int(map_name, btf, m, &res32);
2372                 if (ret)
2373                         *res = (__u64)res32;
2374                 return ret;
2375         }
2376
2377         if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2378                 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2379                         map_name, name, btf_kind_str(t));
2380                 return false;
2381         }
2382
2383         if (btf_vlen(t) != 1) {
2384                 pr_warn("map '%s': attr '%s': invalid __ulong\n",
2385                         map_name, name);
2386                 return false;
2387         }
2388
2389         if (btf_is_enum(t)) {
2390                 const struct btf_enum *e = btf_enum(t);
2391
2392                 *res = e->val;
2393         } else {
2394                 const struct btf_enum64 *e = btf_enum64(t);
2395
2396                 *res = btf_enum64_value(e);
2397         }
2398         return true;
2399 }
2400
2401 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2402 {
2403         int len;
2404
2405         len = snprintf(buf, buf_sz, "%s/%s", path, name);
2406         if (len < 0)
2407                 return -EINVAL;
2408         if (len >= buf_sz)
2409                 return -ENAMETOOLONG;
2410
2411         return 0;
2412 }
2413
2414 static int build_map_pin_path(struct bpf_map *map, const char *path)
2415 {
2416         char buf[PATH_MAX];
2417         int err;
2418
2419         if (!path)
2420                 path = BPF_FS_DEFAULT_PATH;
2421
2422         err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2423         if (err)
2424                 return err;
2425
2426         return bpf_map__set_pin_path(map, buf);
2427 }
2428
2429 /* should match definition in bpf_helpers.h */
2430 enum libbpf_pin_type {
2431         LIBBPF_PIN_NONE,
2432         /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2433         LIBBPF_PIN_BY_NAME,
2434 };
2435
2436 int parse_btf_map_def(const char *map_name, struct btf *btf,
2437                       const struct btf_type *def_t, bool strict,
2438                       struct btf_map_def *map_def, struct btf_map_def *inner_def)
2439 {
2440         const struct btf_type *t;
2441         const struct btf_member *m;
2442         bool is_inner = inner_def == NULL;
2443         int vlen, i;
2444
2445         vlen = btf_vlen(def_t);
2446         m = btf_members(def_t);
2447         for (i = 0; i < vlen; i++, m++) {
2448                 const char *name = btf__name_by_offset(btf, m->name_off);
2449
2450                 if (!name) {
2451                         pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2452                         return -EINVAL;
2453                 }
2454                 if (strcmp(name, "type") == 0) {
2455                         if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2456                                 return -EINVAL;
2457                         map_def->parts |= MAP_DEF_MAP_TYPE;
2458                 } else if (strcmp(name, "max_entries") == 0) {
2459                         if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2460                                 return -EINVAL;
2461                         map_def->parts |= MAP_DEF_MAX_ENTRIES;
2462                 } else if (strcmp(name, "map_flags") == 0) {
2463                         if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2464                                 return -EINVAL;
2465                         map_def->parts |= MAP_DEF_MAP_FLAGS;
2466                 } else if (strcmp(name, "numa_node") == 0) {
2467                         if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2468                                 return -EINVAL;
2469                         map_def->parts |= MAP_DEF_NUMA_NODE;
2470                 } else if (strcmp(name, "key_size") == 0) {
2471                         __u32 sz;
2472
2473                         if (!get_map_field_int(map_name, btf, m, &sz))
2474                                 return -EINVAL;
2475                         if (map_def->key_size && map_def->key_size != sz) {
2476                                 pr_warn("map '%s': conflicting key size %u != %u.\n",
2477                                         map_name, map_def->key_size, sz);
2478                                 return -EINVAL;
2479                         }
2480                         map_def->key_size = sz;
2481                         map_def->parts |= MAP_DEF_KEY_SIZE;
2482                 } else if (strcmp(name, "key") == 0) {
2483                         __s64 sz;
2484
2485                         t = btf__type_by_id(btf, m->type);
2486                         if (!t) {
2487                                 pr_warn("map '%s': key type [%d] not found.\n",
2488                                         map_name, m->type);
2489                                 return -EINVAL;
2490                         }
2491                         if (!btf_is_ptr(t)) {
2492                                 pr_warn("map '%s': key spec is not PTR: %s.\n",
2493                                         map_name, btf_kind_str(t));
2494                                 return -EINVAL;
2495                         }
2496                         sz = btf__resolve_size(btf, t->type);
2497                         if (sz < 0) {
2498                                 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2499                                         map_name, t->type, (ssize_t)sz);
2500                                 return sz;
2501                         }
2502                         if (map_def->key_size && map_def->key_size != sz) {
2503                                 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2504                                         map_name, map_def->key_size, (ssize_t)sz);
2505                                 return -EINVAL;
2506                         }
2507                         map_def->key_size = sz;
2508                         map_def->key_type_id = t->type;
2509                         map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2510                 } else if (strcmp(name, "value_size") == 0) {
2511                         __u32 sz;
2512
2513                         if (!get_map_field_int(map_name, btf, m, &sz))
2514                                 return -EINVAL;
2515                         if (map_def->value_size && map_def->value_size != sz) {
2516                                 pr_warn("map '%s': conflicting value size %u != %u.\n",
2517                                         map_name, map_def->value_size, sz);
2518                                 return -EINVAL;
2519                         }
2520                         map_def->value_size = sz;
2521                         map_def->parts |= MAP_DEF_VALUE_SIZE;
2522                 } else if (strcmp(name, "value") == 0) {
2523                         __s64 sz;
2524
2525                         t = btf__type_by_id(btf, m->type);
2526                         if (!t) {
2527                                 pr_warn("map '%s': value type [%d] not found.\n",
2528                                         map_name, m->type);
2529                                 return -EINVAL;
2530                         }
2531                         if (!btf_is_ptr(t)) {
2532                                 pr_warn("map '%s': value spec is not PTR: %s.\n",
2533                                         map_name, btf_kind_str(t));
2534                                 return -EINVAL;
2535                         }
2536                         sz = btf__resolve_size(btf, t->type);
2537                         if (sz < 0) {
2538                                 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2539                                         map_name, t->type, (ssize_t)sz);
2540                                 return sz;
2541                         }
2542                         if (map_def->value_size && map_def->value_size != sz) {
2543                                 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2544                                         map_name, map_def->value_size, (ssize_t)sz);
2545                                 return -EINVAL;
2546                         }
2547                         map_def->value_size = sz;
2548                         map_def->value_type_id = t->type;
2549                         map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2550                 }
2551                 else if (strcmp(name, "values") == 0) {
2552                         bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2553                         bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2554                         const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2555                         char inner_map_name[128];
2556                         int err;
2557
2558                         if (is_inner) {
2559                                 pr_warn("map '%s': multi-level inner maps not supported.\n",
2560                                         map_name);
2561                                 return -ENOTSUP;
2562                         }
2563                         if (i != vlen - 1) {
2564                                 pr_warn("map '%s': '%s' member should be last.\n",
2565                                         map_name, name);
2566                                 return -EINVAL;
2567                         }
2568                         if (!is_map_in_map && !is_prog_array) {
2569                                 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2570                                         map_name);
2571                                 return -ENOTSUP;
2572                         }
2573                         if (map_def->value_size && map_def->value_size != 4) {
2574                                 pr_warn("map '%s': conflicting value size %u != 4.\n",
2575                                         map_name, map_def->value_size);
2576                                 return -EINVAL;
2577                         }
2578                         map_def->value_size = 4;
2579                         t = btf__type_by_id(btf, m->type);
2580                         if (!t) {
2581                                 pr_warn("map '%s': %s type [%d] not found.\n",
2582                                         map_name, desc, m->type);
2583                                 return -EINVAL;
2584                         }
2585                         if (!btf_is_array(t) || btf_array(t)->nelems) {
2586                                 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2587                                         map_name, desc);
2588                                 return -EINVAL;
2589                         }
2590                         t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2591                         if (!btf_is_ptr(t)) {
2592                                 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2593                                         map_name, desc, btf_kind_str(t));
2594                                 return -EINVAL;
2595                         }
2596                         t = skip_mods_and_typedefs(btf, t->type, NULL);
2597                         if (is_prog_array) {
2598                                 if (!btf_is_func_proto(t)) {
2599                                         pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2600                                                 map_name, btf_kind_str(t));
2601                                         return -EINVAL;
2602                                 }
2603                                 continue;
2604                         }
2605                         if (!btf_is_struct(t)) {
2606                                 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2607                                         map_name, btf_kind_str(t));
2608                                 return -EINVAL;
2609                         }
2610
2611                         snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2612                         err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2613                         if (err)
2614                                 return err;
2615
2616                         map_def->parts |= MAP_DEF_INNER_MAP;
2617                 } else if (strcmp(name, "pinning") == 0) {
2618                         __u32 val;
2619
2620                         if (is_inner) {
2621                                 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2622                                 return -EINVAL;
2623                         }
2624                         if (!get_map_field_int(map_name, btf, m, &val))
2625                                 return -EINVAL;
2626                         if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2627                                 pr_warn("map '%s': invalid pinning value %u.\n",
2628                                         map_name, val);
2629                                 return -EINVAL;
2630                         }
2631                         map_def->pinning = val;
2632                         map_def->parts |= MAP_DEF_PINNING;
2633                 } else if (strcmp(name, "map_extra") == 0) {
2634                         __u64 map_extra;
2635
2636                         if (!get_map_field_long(map_name, btf, m, &map_extra))
2637                                 return -EINVAL;
2638                         map_def->map_extra = map_extra;
2639                         map_def->parts |= MAP_DEF_MAP_EXTRA;
2640                 } else {
2641                         if (strict) {
2642                                 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2643                                 return -ENOTSUP;
2644                         }
2645                         pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2646                 }
2647         }
2648
2649         if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2650                 pr_warn("map '%s': map type isn't specified.\n", map_name);
2651                 return -EINVAL;
2652         }
2653
2654         return 0;
2655 }
2656
2657 static size_t adjust_ringbuf_sz(size_t sz)
2658 {
2659         __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2660         __u32 mul;
2661
2662         /* if user forgot to set any size, make sure they see error */
2663         if (sz == 0)
2664                 return 0;
2665         /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2666          * a power-of-2 multiple of kernel's page size. If user diligently
2667          * satisified these conditions, pass the size through.
2668          */
2669         if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2670                 return sz;
2671
2672         /* Otherwise find closest (page_sz * power_of_2) product bigger than
2673          * user-set size to satisfy both user size request and kernel
2674          * requirements and substitute correct max_entries for map creation.
2675          */
2676         for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2677                 if (mul * page_sz > sz)
2678                         return mul * page_sz;
2679         }
2680
2681         /* if it's impossible to satisfy the conditions (i.e., user size is
2682          * very close to UINT_MAX but is not a power-of-2 multiple of
2683          * page_size) then just return original size and let kernel reject it
2684          */
2685         return sz;
2686 }
2687
2688 static bool map_is_ringbuf(const struct bpf_map *map)
2689 {
2690         return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2691                map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2692 }
2693
2694 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2695 {
2696         map->def.type = def->map_type;
2697         map->def.key_size = def->key_size;
2698         map->def.value_size = def->value_size;
2699         map->def.max_entries = def->max_entries;
2700         map->def.map_flags = def->map_flags;
2701         map->map_extra = def->map_extra;
2702
2703         map->numa_node = def->numa_node;
2704         map->btf_key_type_id = def->key_type_id;
2705         map->btf_value_type_id = def->value_type_id;
2706
2707         /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2708         if (map_is_ringbuf(map))
2709                 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2710
2711         if (def->parts & MAP_DEF_MAP_TYPE)
2712                 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2713
2714         if (def->parts & MAP_DEF_KEY_TYPE)
2715                 pr_debug("map '%s': found key [%u], sz = %u.\n",
2716                          map->name, def->key_type_id, def->key_size);
2717         else if (def->parts & MAP_DEF_KEY_SIZE)
2718                 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2719
2720         if (def->parts & MAP_DEF_VALUE_TYPE)
2721                 pr_debug("map '%s': found value [%u], sz = %u.\n",
2722                          map->name, def->value_type_id, def->value_size);
2723         else if (def->parts & MAP_DEF_VALUE_SIZE)
2724                 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2725
2726         if (def->parts & MAP_DEF_MAX_ENTRIES)
2727                 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2728         if (def->parts & MAP_DEF_MAP_FLAGS)
2729                 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2730         if (def->parts & MAP_DEF_MAP_EXTRA)
2731                 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2732                          (unsigned long long)def->map_extra);
2733         if (def->parts & MAP_DEF_PINNING)
2734                 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2735         if (def->parts & MAP_DEF_NUMA_NODE)
2736                 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2737
2738         if (def->parts & MAP_DEF_INNER_MAP)
2739                 pr_debug("map '%s': found inner map definition.\n", map->name);
2740 }
2741
2742 static const char *btf_var_linkage_str(__u32 linkage)
2743 {
2744         switch (linkage) {
2745         case BTF_VAR_STATIC: return "static";
2746         case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2747         case BTF_VAR_GLOBAL_EXTERN: return "extern";
2748         default: return "unknown";
2749         }
2750 }
2751
2752 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2753                                          const struct btf_type *sec,
2754                                          int var_idx, int sec_idx,
2755                                          const Elf_Data *data, bool strict,
2756                                          const char *pin_root_path)
2757 {
2758         struct btf_map_def map_def = {}, inner_def = {};
2759         const struct btf_type *var, *def;
2760         const struct btf_var_secinfo *vi;
2761         const struct btf_var *var_extra;
2762         const char *map_name;
2763         struct bpf_map *map;
2764         int err;
2765
2766         vi = btf_var_secinfos(sec) + var_idx;
2767         var = btf__type_by_id(obj->btf, vi->type);
2768         var_extra = btf_var(var);
2769         map_name = btf__name_by_offset(obj->btf, var->name_off);
2770
2771         if (map_name == NULL || map_name[0] == '\0') {
2772                 pr_warn("map #%d: empty name.\n", var_idx);
2773                 return -EINVAL;
2774         }
2775         if ((__u64)vi->offset + vi->size > data->d_size) {
2776                 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2777                 return -EINVAL;
2778         }
2779         if (!btf_is_var(var)) {
2780                 pr_warn("map '%s': unexpected var kind %s.\n",
2781                         map_name, btf_kind_str(var));
2782                 return -EINVAL;
2783         }
2784         if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2785                 pr_warn("map '%s': unsupported map linkage %s.\n",
2786                         map_name, btf_var_linkage_str(var_extra->linkage));
2787                 return -EOPNOTSUPP;
2788         }
2789
2790         def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2791         if (!btf_is_struct(def)) {
2792                 pr_warn("map '%s': unexpected def kind %s.\n",
2793                         map_name, btf_kind_str(var));
2794                 return -EINVAL;
2795         }
2796         if (def->size > vi->size) {
2797                 pr_warn("map '%s': invalid def size.\n", map_name);
2798                 return -EINVAL;
2799         }
2800
2801         map = bpf_object__add_map(obj);
2802         if (IS_ERR(map))
2803                 return PTR_ERR(map);
2804         map->name = strdup(map_name);
2805         if (!map->name) {
2806                 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2807                 return -ENOMEM;
2808         }
2809         map->libbpf_type = LIBBPF_MAP_UNSPEC;
2810         map->def.type = BPF_MAP_TYPE_UNSPEC;
2811         map->sec_idx = sec_idx;
2812         map->sec_offset = vi->offset;
2813         map->btf_var_idx = var_idx;
2814         pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2815                  map_name, map->sec_idx, map->sec_offset);
2816
2817         err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2818         if (err)
2819                 return err;
2820
2821         fill_map_from_def(map, &map_def);
2822
2823         if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2824                 err = build_map_pin_path(map, pin_root_path);
2825                 if (err) {
2826                         pr_warn("map '%s': couldn't build pin path.\n", map->name);
2827                         return err;
2828                 }
2829         }
2830
2831         if (map_def.parts & MAP_DEF_INNER_MAP) {
2832                 map->inner_map = calloc(1, sizeof(*map->inner_map));
2833                 if (!map->inner_map)
2834                         return -ENOMEM;
2835                 map->inner_map->fd = create_placeholder_fd();
2836                 if (map->inner_map->fd < 0)
2837                         return map->inner_map->fd;
2838                 map->inner_map->sec_idx = sec_idx;
2839                 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2840                 if (!map->inner_map->name)
2841                         return -ENOMEM;
2842                 sprintf(map->inner_map->name, "%s.inner", map_name);
2843
2844                 fill_map_from_def(map->inner_map, &inner_def);
2845         }
2846
2847         err = map_fill_btf_type_info(obj, map);
2848         if (err)
2849                 return err;
2850
2851         return 0;
2852 }
2853
2854 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2855                                const char *sec_name, int sec_idx,
2856                                void *data, size_t data_sz)
2857 {
2858         const long page_sz = sysconf(_SC_PAGE_SIZE);
2859         size_t mmap_sz;
2860
2861         mmap_sz = bpf_map_mmap_sz(obj->arena_map);
2862         if (roundup(data_sz, page_sz) > mmap_sz) {
2863                 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2864                         sec_name, mmap_sz, data_sz);
2865                 return -E2BIG;
2866         }
2867
2868         obj->arena_data = malloc(data_sz);
2869         if (!obj->arena_data)
2870                 return -ENOMEM;
2871         memcpy(obj->arena_data, data, data_sz);
2872         obj->arena_data_sz = data_sz;
2873
2874         /* make bpf_map__init_value() work for ARENA maps */
2875         map->mmaped = obj->arena_data;
2876
2877         return 0;
2878 }
2879
2880 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2881                                           const char *pin_root_path)
2882 {
2883         const struct btf_type *sec = NULL;
2884         int nr_types, i, vlen, err;
2885         const struct btf_type *t;
2886         const char *name;
2887         Elf_Data *data;
2888         Elf_Scn *scn;
2889
2890         if (obj->efile.btf_maps_shndx < 0)
2891                 return 0;
2892
2893         scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2894         data = elf_sec_data(obj, scn);
2895         if (!scn || !data) {
2896                 pr_warn("elf: failed to get %s map definitions for %s\n",
2897                         MAPS_ELF_SEC, obj->path);
2898                 return -EINVAL;
2899         }
2900
2901         nr_types = btf__type_cnt(obj->btf);
2902         for (i = 1; i < nr_types; i++) {
2903                 t = btf__type_by_id(obj->btf, i);
2904                 if (!btf_is_datasec(t))
2905                         continue;
2906                 name = btf__name_by_offset(obj->btf, t->name_off);
2907                 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2908                         sec = t;
2909                         obj->efile.btf_maps_sec_btf_id = i;
2910                         break;
2911                 }
2912         }
2913
2914         if (!sec) {
2915                 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2916                 return -ENOENT;
2917         }
2918
2919         vlen = btf_vlen(sec);
2920         for (i = 0; i < vlen; i++) {
2921                 err = bpf_object__init_user_btf_map(obj, sec, i,
2922                                                     obj->efile.btf_maps_shndx,
2923                                                     data, strict,
2924                                                     pin_root_path);
2925                 if (err)
2926                         return err;
2927         }
2928
2929         for (i = 0; i < obj->nr_maps; i++) {
2930                 struct bpf_map *map = &obj->maps[i];
2931
2932                 if (map->def.type != BPF_MAP_TYPE_ARENA)
2933                         continue;
2934
2935                 if (obj->arena_map) {
2936                         pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
2937                                 map->name, obj->arena_map->name);
2938                         return -EINVAL;
2939                 }
2940                 obj->arena_map = map;
2941
2942                 if (obj->efile.arena_data) {
2943                         err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
2944                                                   obj->efile.arena_data->d_buf,
2945                                                   obj->efile.arena_data->d_size);
2946                         if (err)
2947                                 return err;
2948                 }
2949         }
2950         if (obj->efile.arena_data && !obj->arena_map) {
2951                 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
2952                         ARENA_SEC);
2953                 return -ENOENT;
2954         }
2955
2956         return 0;
2957 }
2958
2959 static int bpf_object__init_maps(struct bpf_object *obj,
2960                                  const struct bpf_object_open_opts *opts)
2961 {
2962         const char *pin_root_path;
2963         bool strict;
2964         int err = 0;
2965
2966         strict = !OPTS_GET(opts, relaxed_maps, false);
2967         pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2968
2969         err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2970         err = err ?: bpf_object__init_global_data_maps(obj);
2971         err = err ?: bpf_object__init_kconfig_map(obj);
2972         err = err ?: bpf_object_init_struct_ops(obj);
2973
2974         return err;
2975 }
2976
2977 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2978 {
2979         Elf64_Shdr *sh;
2980
2981         sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2982         if (!sh)
2983                 return false;
2984
2985         return sh->sh_flags & SHF_EXECINSTR;
2986 }
2987
2988 static bool starts_with_qmark(const char *s)
2989 {
2990         return s && s[0] == '?';
2991 }
2992
2993 static bool btf_needs_sanitization(struct bpf_object *obj)
2994 {
2995         bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2996         bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2997         bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2998         bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2999         bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3000         bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3001         bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3002         bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3003
3004         return !has_func || !has_datasec || !has_func_global || !has_float ||
3005                !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3006 }
3007
3008 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3009 {
3010         bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3011         bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3012         bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3013         bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3014         bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3015         bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3016         bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3017         bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3018         int enum64_placeholder_id = 0;
3019         struct btf_type *t;
3020         int i, j, vlen;
3021
3022         for (i = 1; i < btf__type_cnt(btf); i++) {
3023                 t = (struct btf_type *)btf__type_by_id(btf, i);
3024
3025                 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3026                         /* replace VAR/DECL_TAG with INT */
3027                         t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3028                         /*
3029                          * using size = 1 is the safest choice, 4 will be too
3030                          * big and cause kernel BTF validation failure if
3031                          * original variable took less than 4 bytes
3032                          */
3033                         t->size = 1;
3034                         *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3035                 } else if (!has_datasec && btf_is_datasec(t)) {
3036                         /* replace DATASEC with STRUCT */
3037                         const struct btf_var_secinfo *v = btf_var_secinfos(t);
3038                         struct btf_member *m = btf_members(t);
3039                         struct btf_type *vt;
3040                         char *name;
3041
3042                         name = (char *)btf__name_by_offset(btf, t->name_off);
3043                         while (*name) {
3044                                 if (*name == '.' || *name == '?')
3045                                         *name = '_';
3046                                 name++;
3047                         }
3048
3049                         vlen = btf_vlen(t);
3050                         t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3051                         for (j = 0; j < vlen; j++, v++, m++) {
3052                                 /* order of field assignments is important */
3053                                 m->offset = v->offset * 8;
3054                                 m->type = v->type;
3055                                 /* preserve variable name as member name */
3056                                 vt = (void *)btf__type_by_id(btf, v->type);
3057                                 m->name_off = vt->name_off;
3058                         }
3059                 } else if (!has_qmark_datasec && btf_is_datasec(t) &&
3060                            starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3061                         /* replace '?' prefix with '_' for DATASEC names */
3062                         char *name;
3063
3064                         name = (char *)btf__name_by_offset(btf, t->name_off);
3065                         if (name[0] == '?')
3066                                 name[0] = '_';
3067                 } else if (!has_func && btf_is_func_proto(t)) {
3068                         /* replace FUNC_PROTO with ENUM */
3069                         vlen = btf_vlen(t);
3070                         t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3071                         t->size = sizeof(__u32); /* kernel enforced */
3072                 } else if (!has_func && btf_is_func(t)) {
3073                         /* replace FUNC with TYPEDEF */
3074                         t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3075                 } else if (!has_func_global && btf_is_func(t)) {
3076                         /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3077                         t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3078                 } else if (!has_float && btf_is_float(t)) {
3079                         /* replace FLOAT with an equally-sized empty STRUCT;
3080                          * since C compilers do not accept e.g. "float" as a
3081                          * valid struct name, make it anonymous
3082                          */
3083                         t->name_off = 0;
3084                         t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3085                 } else if (!has_type_tag && btf_is_type_tag(t)) {
3086                         /* replace TYPE_TAG with a CONST */
3087                         t->name_off = 0;
3088                         t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3089                 } else if (!has_enum64 && btf_is_enum(t)) {
3090                         /* clear the kflag */
3091                         t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3092                 } else if (!has_enum64 && btf_is_enum64(t)) {
3093                         /* replace ENUM64 with a union */
3094                         struct btf_member *m;
3095
3096                         if (enum64_placeholder_id == 0) {
3097                                 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3098                                 if (enum64_placeholder_id < 0)
3099                                         return enum64_placeholder_id;
3100
3101                                 t = (struct btf_type *)btf__type_by_id(btf, i);
3102                         }
3103
3104                         m = btf_members(t);
3105                         vlen = btf_vlen(t);
3106                         t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3107                         for (j = 0; j < vlen; j++, m++) {
3108                                 m->type = enum64_placeholder_id;
3109                                 m->offset = 0;
3110                         }
3111                 }
3112         }
3113
3114         return 0;
3115 }
3116
3117 static bool libbpf_needs_btf(const struct bpf_object *obj)
3118 {
3119         return obj->efile.btf_maps_shndx >= 0 ||
3120                obj->efile.has_st_ops ||
3121                obj->nr_extern > 0;
3122 }
3123
3124 static bool kernel_needs_btf(const struct bpf_object *obj)
3125 {
3126         return obj->efile.has_st_ops;
3127 }
3128
3129 static int bpf_object__init_btf(struct bpf_object *obj,
3130                                 Elf_Data *btf_data,
3131                                 Elf_Data *btf_ext_data)
3132 {
3133         int err = -ENOENT;
3134
3135         if (btf_data) {
3136                 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3137                 err = libbpf_get_error(obj->btf);
3138                 if (err) {
3139                         obj->btf = NULL;
3140                         pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
3141                         goto out;
3142                 }
3143                 /* enforce 8-byte pointers for BPF-targeted BTFs */
3144                 btf__set_pointer_size(obj->btf, 8);
3145         }
3146         if (btf_ext_data) {
3147                 struct btf_ext_info *ext_segs[3];
3148                 int seg_num, sec_num;
3149
3150                 if (!obj->btf) {
3151                         pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3152                                  BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3153                         goto out;
3154                 }
3155                 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3156                 err = libbpf_get_error(obj->btf_ext);
3157                 if (err) {
3158                         pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
3159                                 BTF_EXT_ELF_SEC, err);
3160                         obj->btf_ext = NULL;
3161                         goto out;
3162                 }
3163
3164                 /* setup .BTF.ext to ELF section mapping */
3165                 ext_segs[0] = &obj->btf_ext->func_info;
3166                 ext_segs[1] = &obj->btf_ext->line_info;
3167                 ext_segs[2] = &obj->btf_ext->core_relo_info;
3168                 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3169                         struct btf_ext_info *seg = ext_segs[seg_num];
3170                         const struct btf_ext_info_sec *sec;
3171                         const char *sec_name;
3172                         Elf_Scn *scn;
3173
3174                         if (seg->sec_cnt == 0)
3175                                 continue;
3176
3177                         seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3178                         if (!seg->sec_idxs) {
3179                                 err = -ENOMEM;
3180                                 goto out;
3181                         }
3182
3183                         sec_num = 0;
3184                         for_each_btf_ext_sec(seg, sec) {
3185                                 /* preventively increment index to avoid doing
3186                                  * this before every continue below
3187                                  */
3188                                 sec_num++;
3189
3190                                 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3191                                 if (str_is_empty(sec_name))
3192                                         continue;
3193                                 scn = elf_sec_by_name(obj, sec_name);
3194                                 if (!scn)
3195                                         continue;
3196
3197                                 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3198                         }
3199                 }
3200         }
3201 out:
3202         if (err && libbpf_needs_btf(obj)) {
3203                 pr_warn("BTF is required, but is missing or corrupted.\n");
3204                 return err;
3205         }
3206         return 0;
3207 }
3208
3209 static int compare_vsi_off(const void *_a, const void *_b)
3210 {
3211         const struct btf_var_secinfo *a = _a;
3212         const struct btf_var_secinfo *b = _b;
3213
3214         return a->offset - b->offset;
3215 }
3216
3217 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3218                              struct btf_type *t)
3219 {
3220         __u32 size = 0, i, vars = btf_vlen(t);
3221         const char *sec_name = btf__name_by_offset(btf, t->name_off);
3222         struct btf_var_secinfo *vsi;
3223         bool fixup_offsets = false;
3224         int err;
3225
3226         if (!sec_name) {
3227                 pr_debug("No name found in string section for DATASEC kind.\n");
3228                 return -ENOENT;
3229         }
3230
3231         /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3232          * variable offsets set at the previous step. Further, not every
3233          * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3234          * all fixups altogether for such sections and go straight to sorting
3235          * VARs within their DATASEC.
3236          */
3237         if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3238                 goto sort_vars;
3239
3240         /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3241          * fix this up. But BPF static linker already fixes this up and fills
3242          * all the sizes and offsets during static linking. So this step has
3243          * to be optional. But the STV_HIDDEN handling is non-optional for any
3244          * non-extern DATASEC, so the variable fixup loop below handles both
3245          * functions at the same time, paying the cost of BTF VAR <-> ELF
3246          * symbol matching just once.
3247          */
3248         if (t->size == 0) {
3249                 err = find_elf_sec_sz(obj, sec_name, &size);
3250                 if (err || !size) {
3251                         pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
3252                                  sec_name, size, err);
3253                         return -ENOENT;
3254                 }
3255
3256                 t->size = size;
3257                 fixup_offsets = true;
3258         }
3259
3260         for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3261                 const struct btf_type *t_var;
3262                 struct btf_var *var;
3263                 const char *var_name;
3264                 Elf64_Sym *sym;
3265
3266                 t_var = btf__type_by_id(btf, vsi->type);
3267                 if (!t_var || !btf_is_var(t_var)) {
3268                         pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3269                         return -EINVAL;
3270                 }
3271
3272                 var = btf_var(t_var);
3273                 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3274                         continue;
3275
3276                 var_name = btf__name_by_offset(btf, t_var->name_off);
3277                 if (!var_name) {
3278                         pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3279                                  sec_name, i);
3280                         return -ENOENT;
3281                 }
3282
3283                 sym = find_elf_var_sym(obj, var_name);
3284                 if (IS_ERR(sym)) {
3285                         pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3286                                  sec_name, var_name);
3287                         return -ENOENT;
3288                 }
3289
3290                 if (fixup_offsets)
3291                         vsi->offset = sym->st_value;
3292
3293                 /* if variable is a global/weak symbol, but has restricted
3294                  * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3295                  * as static. This follows similar logic for functions (BPF
3296                  * subprogs) and influences libbpf's further decisions about
3297                  * whether to make global data BPF array maps as
3298                  * BPF_F_MMAPABLE.
3299                  */
3300                 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3301                     || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3302                         var->linkage = BTF_VAR_STATIC;
3303         }
3304
3305 sort_vars:
3306         qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3307         return 0;
3308 }
3309
3310 static int bpf_object_fixup_btf(struct bpf_object *obj)
3311 {
3312         int i, n, err = 0;
3313
3314         if (!obj->btf)
3315                 return 0;
3316
3317         n = btf__type_cnt(obj->btf);
3318         for (i = 1; i < n; i++) {
3319                 struct btf_type *t = btf_type_by_id(obj->btf, i);
3320
3321                 /* Loader needs to fix up some of the things compiler
3322                  * couldn't get its hands on while emitting BTF. This
3323                  * is section size and global variable offset. We use
3324                  * the info from the ELF itself for this purpose.
3325                  */
3326                 if (btf_is_datasec(t)) {
3327                         err = btf_fixup_datasec(obj, obj->btf, t);
3328                         if (err)
3329                                 return err;
3330                 }
3331         }
3332
3333         return 0;
3334 }
3335
3336 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3337 {
3338         if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3339             prog->type == BPF_PROG_TYPE_LSM)
3340                 return true;
3341
3342         /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3343          * also need vmlinux BTF
3344          */
3345         if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3346                 return true;
3347
3348         return false;
3349 }
3350
3351 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3352 {
3353         return bpf_map__is_struct_ops(map);
3354 }
3355
3356 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3357 {
3358         struct bpf_program *prog;
3359         struct bpf_map *map;
3360         int i;
3361
3362         /* CO-RE relocations need kernel BTF, only when btf_custom_path
3363          * is not specified
3364          */
3365         if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3366                 return true;
3367
3368         /* Support for typed ksyms needs kernel BTF */
3369         for (i = 0; i < obj->nr_extern; i++) {
3370                 const struct extern_desc *ext;
3371
3372                 ext = &obj->externs[i];
3373                 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3374                         return true;
3375         }
3376
3377         bpf_object__for_each_program(prog, obj) {
3378                 if (!prog->autoload)
3379                         continue;
3380                 if (prog_needs_vmlinux_btf(prog))
3381                         return true;
3382         }
3383
3384         bpf_object__for_each_map(map, obj) {
3385                 if (map_needs_vmlinux_btf(map))
3386                         return true;
3387         }
3388
3389         return false;
3390 }
3391
3392 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3393 {
3394         int err;
3395
3396         /* btf_vmlinux could be loaded earlier */
3397         if (obj->btf_vmlinux || obj->gen_loader)
3398                 return 0;
3399
3400         if (!force && !obj_needs_vmlinux_btf(obj))
3401                 return 0;
3402
3403         obj->btf_vmlinux = btf__load_vmlinux_btf();
3404         err = libbpf_get_error(obj->btf_vmlinux);
3405         if (err) {
3406                 pr_warn("Error loading vmlinux BTF: %d\n", err);
3407                 obj->btf_vmlinux = NULL;
3408                 return err;
3409         }
3410         return 0;
3411 }
3412
3413 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3414 {
3415         struct btf *kern_btf = obj->btf;
3416         bool btf_mandatory, sanitize;
3417         int i, err = 0;
3418
3419         if (!obj->btf)
3420                 return 0;
3421
3422         if (!kernel_supports(obj, FEAT_BTF)) {
3423                 if (kernel_needs_btf(obj)) {
3424                         err = -EOPNOTSUPP;
3425                         goto report;
3426                 }
3427                 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3428                 return 0;
3429         }
3430
3431         /* Even though some subprogs are global/weak, user might prefer more
3432          * permissive BPF verification process that BPF verifier performs for
3433          * static functions, taking into account more context from the caller
3434          * functions. In such case, they need to mark such subprogs with
3435          * __attribute__((visibility("hidden"))) and libbpf will adjust
3436          * corresponding FUNC BTF type to be marked as static and trigger more
3437          * involved BPF verification process.
3438          */
3439         for (i = 0; i < obj->nr_programs; i++) {
3440                 struct bpf_program *prog = &obj->programs[i];
3441                 struct btf_type *t;
3442                 const char *name;
3443                 int j, n;
3444
3445                 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3446                         continue;
3447
3448                 n = btf__type_cnt(obj->btf);
3449                 for (j = 1; j < n; j++) {
3450                         t = btf_type_by_id(obj->btf, j);
3451                         if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3452                                 continue;
3453
3454                         name = btf__str_by_offset(obj->btf, t->name_off);
3455                         if (strcmp(name, prog->name) != 0)
3456                                 continue;
3457
3458                         t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3459                         break;
3460                 }
3461         }
3462
3463         sanitize = btf_needs_sanitization(obj);
3464         if (sanitize) {
3465                 const void *raw_data;
3466                 __u32 sz;
3467
3468                 /* clone BTF to sanitize a copy and leave the original intact */
3469                 raw_data = btf__raw_data(obj->btf, &sz);
3470                 kern_btf = btf__new(raw_data, sz);
3471                 err = libbpf_get_error(kern_btf);
3472                 if (err)
3473                         return err;
3474
3475                 /* enforce 8-byte pointers for BPF-targeted BTFs */
3476                 btf__set_pointer_size(obj->btf, 8);
3477                 err = bpf_object__sanitize_btf(obj, kern_btf);
3478                 if (err)
3479                         return err;
3480         }
3481
3482         if (obj->gen_loader) {
3483                 __u32 raw_size = 0;
3484                 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3485
3486                 if (!raw_data)
3487                         return -ENOMEM;
3488                 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3489                 /* Pretend to have valid FD to pass various fd >= 0 checks.
3490                  * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3491                  */
3492                 btf__set_fd(kern_btf, 0);
3493         } else {
3494                 /* currently BPF_BTF_LOAD only supports log_level 1 */
3495                 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3496                                            obj->log_level ? 1 : 0, obj->token_fd);
3497         }
3498         if (sanitize) {
3499                 if (!err) {
3500                         /* move fd to libbpf's BTF */
3501                         btf__set_fd(obj->btf, btf__fd(kern_btf));
3502                         btf__set_fd(kern_btf, -1);
3503                 }
3504                 btf__free(kern_btf);
3505         }
3506 report:
3507         if (err) {
3508                 btf_mandatory = kernel_needs_btf(obj);
3509                 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3510                         btf_mandatory ? "BTF is mandatory, can't proceed."
3511                                       : "BTF is optional, ignoring.");
3512                 if (!btf_mandatory)
3513                         err = 0;
3514         }
3515         return err;
3516 }
3517
3518 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3519 {
3520         const char *name;
3521
3522         name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3523         if (!name) {
3524                 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3525                         off, obj->path, elf_errmsg(-1));
3526                 return NULL;
3527         }
3528
3529         return name;
3530 }
3531
3532 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3533 {
3534         const char *name;
3535
3536         name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3537         if (!name) {
3538                 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3539                         off, obj->path, elf_errmsg(-1));
3540                 return NULL;
3541         }
3542
3543         return name;
3544 }
3545
3546 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3547 {
3548         Elf_Scn *scn;
3549
3550         scn = elf_getscn(obj->efile.elf, idx);
3551         if (!scn) {
3552                 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3553                         idx, obj->path, elf_errmsg(-1));
3554                 return NULL;
3555         }
3556         return scn;
3557 }
3558
3559 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3560 {
3561         Elf_Scn *scn = NULL;
3562         Elf *elf = obj->efile.elf;
3563         const char *sec_name;
3564
3565         while ((scn = elf_nextscn(elf, scn)) != NULL) {
3566                 sec_name = elf_sec_name(obj, scn);
3567                 if (!sec_name)
3568                         return NULL;
3569
3570                 if (strcmp(sec_name, name) != 0)
3571                         continue;
3572
3573                 return scn;
3574         }
3575         return NULL;
3576 }
3577
3578 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3579 {
3580         Elf64_Shdr *shdr;
3581
3582         if (!scn)
3583                 return NULL;
3584
3585         shdr = elf64_getshdr(scn);
3586         if (!shdr) {
3587                 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3588                         elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3589                 return NULL;
3590         }
3591
3592         return shdr;
3593 }
3594
3595 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3596 {
3597         const char *name;
3598         Elf64_Shdr *sh;
3599
3600         if (!scn)
3601                 return NULL;
3602
3603         sh = elf_sec_hdr(obj, scn);
3604         if (!sh)
3605                 return NULL;
3606
3607         name = elf_sec_str(obj, sh->sh_name);
3608         if (!name) {
3609                 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3610                         elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3611                 return NULL;
3612         }
3613
3614         return name;
3615 }
3616
3617 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3618 {
3619         Elf_Data *data;
3620
3621         if (!scn)
3622                 return NULL;
3623
3624         data = elf_getdata(scn, 0);
3625         if (!data) {
3626                 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3627                         elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3628                         obj->path, elf_errmsg(-1));
3629                 return NULL;
3630         }
3631
3632         return data;
3633 }
3634
3635 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3636 {
3637         if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3638                 return NULL;
3639
3640         return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3641 }
3642
3643 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3644 {
3645         if (idx >= data->d_size / sizeof(Elf64_Rel))
3646                 return NULL;
3647
3648         return (Elf64_Rel *)data->d_buf + idx;
3649 }
3650
3651 static bool is_sec_name_dwarf(const char *name)
3652 {
3653         /* approximation, but the actual list is too long */
3654         return str_has_pfx(name, ".debug_");
3655 }
3656
3657 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3658 {
3659         /* no special handling of .strtab */
3660         if (hdr->sh_type == SHT_STRTAB)
3661                 return true;
3662
3663         /* ignore .llvm_addrsig section as well */
3664         if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3665                 return true;
3666
3667         /* no subprograms will lead to an empty .text section, ignore it */
3668         if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3669             strcmp(name, ".text") == 0)
3670                 return true;
3671
3672         /* DWARF sections */
3673         if (is_sec_name_dwarf(name))
3674                 return true;
3675
3676         if (str_has_pfx(name, ".rel")) {
3677                 name += sizeof(".rel") - 1;
3678                 /* DWARF section relocations */
3679                 if (is_sec_name_dwarf(name))
3680                         return true;
3681
3682                 /* .BTF and .BTF.ext don't need relocations */
3683                 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3684                     strcmp(name, BTF_EXT_ELF_SEC) == 0)
3685                         return true;
3686         }
3687
3688         return false;
3689 }
3690
3691 static int cmp_progs(const void *_a, const void *_b)
3692 {
3693         const struct bpf_program *a = _a;
3694         const struct bpf_program *b = _b;
3695
3696         if (a->sec_idx != b->sec_idx)
3697                 return a->sec_idx < b->sec_idx ? -1 : 1;
3698
3699         /* sec_insn_off can't be the same within the section */
3700         return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3701 }
3702
3703 static int bpf_object__elf_collect(struct bpf_object *obj)
3704 {
3705         struct elf_sec_desc *sec_desc;
3706         Elf *elf = obj->efile.elf;
3707         Elf_Data *btf_ext_data = NULL;
3708         Elf_Data *btf_data = NULL;
3709         int idx = 0, err = 0;
3710         const char *name;
3711         Elf_Data *data;
3712         Elf_Scn *scn;
3713         Elf64_Shdr *sh;
3714
3715         /* ELF section indices are 0-based, but sec #0 is special "invalid"
3716          * section. Since section count retrieved by elf_getshdrnum() does
3717          * include sec #0, it is already the necessary size of an array to keep
3718          * all the sections.
3719          */
3720         if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3721                 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3722                         obj->path, elf_errmsg(-1));
3723                 return -LIBBPF_ERRNO__FORMAT;
3724         }
3725         obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3726         if (!obj->efile.secs)
3727                 return -ENOMEM;
3728
3729         /* a bunch of ELF parsing functionality depends on processing symbols,
3730          * so do the first pass and find the symbol table
3731          */
3732         scn = NULL;
3733         while ((scn = elf_nextscn(elf, scn)) != NULL) {
3734                 sh = elf_sec_hdr(obj, scn);
3735                 if (!sh)
3736                         return -LIBBPF_ERRNO__FORMAT;
3737
3738                 if (sh->sh_type == SHT_SYMTAB) {
3739                         if (obj->efile.symbols) {
3740                                 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3741                                 return -LIBBPF_ERRNO__FORMAT;
3742                         }
3743
3744                         data = elf_sec_data(obj, scn);
3745                         if (!data)
3746                                 return -LIBBPF_ERRNO__FORMAT;
3747
3748                         idx = elf_ndxscn(scn);
3749
3750                         obj->efile.symbols = data;
3751                         obj->efile.symbols_shndx = idx;
3752                         obj->efile.strtabidx = sh->sh_link;
3753                 }
3754         }
3755
3756         if (!obj->efile.symbols) {
3757                 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3758                         obj->path);
3759                 return -ENOENT;
3760         }
3761
3762         scn = NULL;
3763         while ((scn = elf_nextscn(elf, scn)) != NULL) {
3764                 idx = elf_ndxscn(scn);
3765                 sec_desc = &obj->efile.secs[idx];
3766
3767                 sh = elf_sec_hdr(obj, scn);
3768                 if (!sh)
3769                         return -LIBBPF_ERRNO__FORMAT;
3770
3771                 name = elf_sec_str(obj, sh->sh_name);
3772                 if (!name)
3773                         return -LIBBPF_ERRNO__FORMAT;
3774
3775                 if (ignore_elf_section(sh, name))
3776                         continue;
3777
3778                 data = elf_sec_data(obj, scn);
3779                 if (!data)
3780                         return -LIBBPF_ERRNO__FORMAT;
3781
3782                 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3783                          idx, name, (unsigned long)data->d_size,
3784                          (int)sh->sh_link, (unsigned long)sh->sh_flags,
3785                          (int)sh->sh_type);
3786
3787                 if (strcmp(name, "license") == 0) {
3788                         err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3789                         if (err)
3790                                 return err;
3791                 } else if (strcmp(name, "version") == 0) {
3792                         err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3793                         if (err)
3794                                 return err;
3795                 } else if (strcmp(name, "maps") == 0) {
3796                         pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3797                         return -ENOTSUP;
3798                 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3799                         obj->efile.btf_maps_shndx = idx;
3800                 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3801                         if (sh->sh_type != SHT_PROGBITS)
3802                                 return -LIBBPF_ERRNO__FORMAT;
3803                         btf_data = data;
3804                 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3805                         if (sh->sh_type != SHT_PROGBITS)
3806                                 return -LIBBPF_ERRNO__FORMAT;
3807                         btf_ext_data = data;
3808                 } else if (sh->sh_type == SHT_SYMTAB) {
3809                         /* already processed during the first pass above */
3810                 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3811                         if (sh->sh_flags & SHF_EXECINSTR) {
3812                                 if (strcmp(name, ".text") == 0)
3813                                         obj->efile.text_shndx = idx;
3814                                 err = bpf_object__add_programs(obj, data, name, idx);
3815                                 if (err)
3816                                         return err;
3817                         } else if (strcmp(name, DATA_SEC) == 0 ||
3818                                    str_has_pfx(name, DATA_SEC ".")) {
3819                                 sec_desc->sec_type = SEC_DATA;
3820                                 sec_desc->shdr = sh;
3821                                 sec_desc->data = data;
3822                         } else if (strcmp(name, RODATA_SEC) == 0 ||
3823                                    str_has_pfx(name, RODATA_SEC ".")) {
3824                                 sec_desc->sec_type = SEC_RODATA;
3825                                 sec_desc->shdr = sh;
3826                                 sec_desc->data = data;
3827                         } else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3828                                    strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3829                                    strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3830                                    strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3831                                 sec_desc->sec_type = SEC_ST_OPS;
3832                                 sec_desc->shdr = sh;
3833                                 sec_desc->data = data;
3834                                 obj->efile.has_st_ops = true;
3835                         } else if (strcmp(name, ARENA_SEC) == 0) {
3836                                 obj->efile.arena_data = data;
3837                                 obj->efile.arena_data_shndx = idx;
3838                         } else {
3839                                 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3840                                         idx, name);
3841                         }
3842                 } else if (sh->sh_type == SHT_REL) {
3843                         int targ_sec_idx = sh->sh_info; /* points to other section */
3844
3845                         if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3846                             targ_sec_idx >= obj->efile.sec_cnt)
3847                                 return -LIBBPF_ERRNO__FORMAT;
3848
3849                         /* Only do relo for section with exec instructions */
3850                         if (!section_have_execinstr(obj, targ_sec_idx) &&
3851                             strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3852                             strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3853                             strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3854                             strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3855                             strcmp(name, ".rel" MAPS_ELF_SEC)) {
3856                                 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3857                                         idx, name, targ_sec_idx,
3858                                         elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3859                                 continue;
3860                         }
3861
3862                         sec_desc->sec_type = SEC_RELO;
3863                         sec_desc->shdr = sh;
3864                         sec_desc->data = data;
3865                 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3866                                                          str_has_pfx(name, BSS_SEC "."))) {
3867                         sec_desc->sec_type = SEC_BSS;
3868                         sec_desc->shdr = sh;
3869                         sec_desc->data = data;
3870                 } else {
3871                         pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3872                                 (size_t)sh->sh_size);
3873                 }
3874         }
3875
3876         if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3877                 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3878                 return -LIBBPF_ERRNO__FORMAT;
3879         }
3880
3881         /* sort BPF programs by section name and in-section instruction offset
3882          * for faster search
3883          */
3884         if (obj->nr_programs)
3885                 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3886
3887         return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3888 }
3889
3890 static bool sym_is_extern(const Elf64_Sym *sym)
3891 {
3892         int bind = ELF64_ST_BIND(sym->st_info);
3893         /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3894         return sym->st_shndx == SHN_UNDEF &&
3895                (bind == STB_GLOBAL || bind == STB_WEAK) &&
3896                ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3897 }
3898
3899 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3900 {
3901         int bind = ELF64_ST_BIND(sym->st_info);
3902         int type = ELF64_ST_TYPE(sym->st_info);
3903
3904         /* in .text section */
3905         if (sym->st_shndx != text_shndx)
3906                 return false;
3907
3908         /* local function */
3909         if (bind == STB_LOCAL && type == STT_SECTION)
3910                 return true;
3911
3912         /* global function */
3913         return bind == STB_GLOBAL && type == STT_FUNC;
3914 }
3915
3916 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3917 {
3918         const struct btf_type *t;
3919         const char *tname;
3920         int i, n;
3921
3922         if (!btf)
3923                 return -ESRCH;
3924
3925         n = btf__type_cnt(btf);
3926         for (i = 1; i < n; i++) {
3927                 t = btf__type_by_id(btf, i);
3928
3929                 if (!btf_is_var(t) && !btf_is_func(t))
3930                         continue;
3931
3932                 tname = btf__name_by_offset(btf, t->name_off);
3933                 if (strcmp(tname, ext_name))
3934                         continue;
3935
3936                 if (btf_is_var(t) &&
3937                     btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3938                         return -EINVAL;
3939
3940                 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3941                         return -EINVAL;
3942
3943                 return i;
3944         }
3945
3946         return -ENOENT;
3947 }
3948
3949 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3950         const struct btf_var_secinfo *vs;
3951         const struct btf_type *t;
3952         int i, j, n;
3953
3954         if (!btf)
3955                 return -ESRCH;
3956
3957         n = btf__type_cnt(btf);
3958         for (i = 1; i < n; i++) {
3959                 t = btf__type_by_id(btf, i);
3960
3961                 if (!btf_is_datasec(t))
3962                         continue;
3963
3964                 vs = btf_var_secinfos(t);
3965                 for (j = 0; j < btf_vlen(t); j++, vs++) {
3966                         if (vs->type == ext_btf_id)
3967                                 return i;
3968                 }
3969         }
3970
3971         return -ENOENT;
3972 }
3973
3974 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3975                                      bool *is_signed)
3976 {
3977         const struct btf_type *t;
3978         const char *name;
3979
3980         t = skip_mods_and_typedefs(btf, id, NULL);
3981         name = btf__name_by_offset(btf, t->name_off);
3982
3983         if (is_signed)
3984                 *is_signed = false;
3985         switch (btf_kind(t)) {
3986         case BTF_KIND_INT: {
3987                 int enc = btf_int_encoding(t);
3988
3989                 if (enc & BTF_INT_BOOL)
3990                         return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3991                 if (is_signed)
3992                         *is_signed = enc & BTF_INT_SIGNED;
3993                 if (t->size == 1)
3994                         return KCFG_CHAR;
3995                 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3996                         return KCFG_UNKNOWN;
3997                 return KCFG_INT;
3998         }
3999         case BTF_KIND_ENUM:
4000                 if (t->size != 4)
4001                         return KCFG_UNKNOWN;
4002                 if (strcmp(name, "libbpf_tristate"))
4003                         return KCFG_UNKNOWN;
4004                 return KCFG_TRISTATE;
4005         case BTF_KIND_ENUM64:
4006                 if (strcmp(name, "libbpf_tristate"))
4007                         return KCFG_UNKNOWN;
4008                 return KCFG_TRISTATE;
4009         case BTF_KIND_ARRAY:
4010                 if (btf_array(t)->nelems == 0)
4011                         return KCFG_UNKNOWN;
4012                 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4013                         return KCFG_UNKNOWN;
4014                 return KCFG_CHAR_ARR;
4015         default:
4016                 return KCFG_UNKNOWN;
4017         }
4018 }
4019
4020 static int cmp_externs(const void *_a, const void *_b)
4021 {
4022         const struct extern_desc *a = _a;
4023         const struct extern_desc *b = _b;
4024
4025         if (a->type != b->type)
4026                 return a->type < b->type ? -1 : 1;
4027
4028         if (a->type == EXT_KCFG) {
4029                 /* descending order by alignment requirements */
4030                 if (a->kcfg.align != b->kcfg.align)
4031                         return a->kcfg.align > b->kcfg.align ? -1 : 1;
4032                 /* ascending order by size, within same alignment class */
4033                 if (a->kcfg.sz != b->kcfg.sz)
4034                         return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4035         }
4036
4037         /* resolve ties by name */
4038         return strcmp(a->name, b->name);
4039 }
4040
4041 static int find_int_btf_id(const struct btf *btf)
4042 {
4043         const struct btf_type *t;
4044         int i, n;
4045
4046         n = btf__type_cnt(btf);
4047         for (i = 1; i < n; i++) {
4048                 t = btf__type_by_id(btf, i);
4049
4050                 if (btf_is_int(t) && btf_int_bits(t) == 32)
4051                         return i;
4052         }
4053
4054         return 0;
4055 }
4056
4057 static int add_dummy_ksym_var(struct btf *btf)
4058 {
4059         int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4060         const struct btf_var_secinfo *vs;
4061         const struct btf_type *sec;
4062
4063         if (!btf)
4064                 return 0;
4065
4066         sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4067                                             BTF_KIND_DATASEC);
4068         if (sec_btf_id < 0)
4069                 return 0;
4070
4071         sec = btf__type_by_id(btf, sec_btf_id);
4072         vs = btf_var_secinfos(sec);
4073         for (i = 0; i < btf_vlen(sec); i++, vs++) {
4074                 const struct btf_type *vt;
4075
4076                 vt = btf__type_by_id(btf, vs->type);
4077                 if (btf_is_func(vt))
4078                         break;
4079         }
4080
4081         /* No func in ksyms sec.  No need to add dummy var. */
4082         if (i == btf_vlen(sec))
4083                 return 0;
4084
4085         int_btf_id = find_int_btf_id(btf);
4086         dummy_var_btf_id = btf__add_var(btf,
4087                                         "dummy_ksym",
4088                                         BTF_VAR_GLOBAL_ALLOCATED,
4089                                         int_btf_id);
4090         if (dummy_var_btf_id < 0)
4091                 pr_warn("cannot create a dummy_ksym var\n");
4092
4093         return dummy_var_btf_id;
4094 }
4095
4096 static int bpf_object__collect_externs(struct bpf_object *obj)
4097 {
4098         struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4099         const struct btf_type *t;
4100         struct extern_desc *ext;
4101         int i, n, off, dummy_var_btf_id;
4102         const char *ext_name, *sec_name;
4103         size_t ext_essent_len;
4104         Elf_Scn *scn;
4105         Elf64_Shdr *sh;
4106
4107         if (!obj->efile.symbols)
4108                 return 0;
4109
4110         scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4111         sh = elf_sec_hdr(obj, scn);
4112         if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4113                 return -LIBBPF_ERRNO__FORMAT;
4114
4115         dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4116         if (dummy_var_btf_id < 0)
4117                 return dummy_var_btf_id;
4118
4119         n = sh->sh_size / sh->sh_entsize;
4120         pr_debug("looking for externs among %d symbols...\n", n);
4121
4122         for (i = 0; i < n; i++) {
4123                 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4124
4125                 if (!sym)
4126                         return -LIBBPF_ERRNO__FORMAT;
4127                 if (!sym_is_extern(sym))
4128                         continue;
4129                 ext_name = elf_sym_str(obj, sym->st_name);
4130                 if (!ext_name || !ext_name[0])
4131                         continue;
4132
4133                 ext = obj->externs;
4134                 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4135                 if (!ext)
4136                         return -ENOMEM;
4137                 obj->externs = ext;
4138                 ext = &ext[obj->nr_extern];
4139                 memset(ext, 0, sizeof(*ext));
4140                 obj->nr_extern++;
4141
4142                 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4143                 if (ext->btf_id <= 0) {
4144                         pr_warn("failed to find BTF for extern '%s': %d\n",
4145                                 ext_name, ext->btf_id);
4146                         return ext->btf_id;
4147                 }
4148                 t = btf__type_by_id(obj->btf, ext->btf_id);
4149                 ext->name = btf__name_by_offset(obj->btf, t->name_off);
4150                 ext->sym_idx = i;
4151                 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4152
4153                 ext_essent_len = bpf_core_essential_name_len(ext->name);
4154                 ext->essent_name = NULL;
4155                 if (ext_essent_len != strlen(ext->name)) {
4156                         ext->essent_name = strndup(ext->name, ext_essent_len);
4157                         if (!ext->essent_name)
4158                                 return -ENOMEM;
4159                 }
4160
4161                 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4162                 if (ext->sec_btf_id <= 0) {
4163                         pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4164                                 ext_name, ext->btf_id, ext->sec_btf_id);
4165                         return ext->sec_btf_id;
4166                 }
4167                 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4168                 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4169
4170                 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4171                         if (btf_is_func(t)) {
4172                                 pr_warn("extern function %s is unsupported under %s section\n",
4173                                         ext->name, KCONFIG_SEC);
4174                                 return -ENOTSUP;
4175                         }
4176                         kcfg_sec = sec;
4177                         ext->type = EXT_KCFG;
4178                         ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4179                         if (ext->kcfg.sz <= 0) {
4180                                 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4181                                         ext_name, ext->kcfg.sz);
4182                                 return ext->kcfg.sz;
4183                         }
4184                         ext->kcfg.align = btf__align_of(obj->btf, t->type);
4185                         if (ext->kcfg.align <= 0) {
4186                                 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4187                                         ext_name, ext->kcfg.align);
4188                                 return -EINVAL;
4189                         }
4190                         ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4191                                                         &ext->kcfg.is_signed);
4192                         if (ext->kcfg.type == KCFG_UNKNOWN) {
4193                                 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4194                                 return -ENOTSUP;
4195                         }
4196                 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4197                         ksym_sec = sec;
4198                         ext->type = EXT_KSYM;
4199                         skip_mods_and_typedefs(obj->btf, t->type,
4200                                                &ext->ksym.type_id);
4201                 } else {
4202                         pr_warn("unrecognized extern section '%s'\n", sec_name);
4203                         return -ENOTSUP;
4204                 }
4205         }
4206         pr_debug("collected %d externs total\n", obj->nr_extern);
4207
4208         if (!obj->nr_extern)
4209                 return 0;
4210
4211         /* sort externs by type, for kcfg ones also by (align, size, name) */
4212         qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4213
4214         /* for .ksyms section, we need to turn all externs into allocated
4215          * variables in BTF to pass kernel verification; we do this by
4216          * pretending that each extern is a 8-byte variable
4217          */
4218         if (ksym_sec) {
4219                 /* find existing 4-byte integer type in BTF to use for fake
4220                  * extern variables in DATASEC
4221                  */
4222                 int int_btf_id = find_int_btf_id(obj->btf);
4223                 /* For extern function, a dummy_var added earlier
4224                  * will be used to replace the vs->type and
4225                  * its name string will be used to refill
4226                  * the missing param's name.
4227                  */
4228                 const struct btf_type *dummy_var;
4229
4230                 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4231                 for (i = 0; i < obj->nr_extern; i++) {
4232                         ext = &obj->externs[i];
4233                         if (ext->type != EXT_KSYM)
4234                                 continue;
4235                         pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4236                                  i, ext->sym_idx, ext->name);
4237                 }
4238
4239                 sec = ksym_sec;
4240                 n = btf_vlen(sec);
4241                 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4242                         struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4243                         struct btf_type *vt;
4244
4245                         vt = (void *)btf__type_by_id(obj->btf, vs->type);
4246                         ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4247                         ext = find_extern_by_name(obj, ext_name);
4248                         if (!ext) {
4249                                 pr_warn("failed to find extern definition for BTF %s '%s'\n",
4250                                         btf_kind_str(vt), ext_name);
4251                                 return -ESRCH;
4252                         }
4253                         if (btf_is_func(vt)) {
4254                                 const struct btf_type *func_proto;
4255                                 struct btf_param *param;
4256                                 int j;
4257
4258                                 func_proto = btf__type_by_id(obj->btf,
4259                                                              vt->type);
4260                                 param = btf_params(func_proto);
4261                                 /* Reuse the dummy_var string if the
4262                                  * func proto does not have param name.
4263                                  */
4264                                 for (j = 0; j < btf_vlen(func_proto); j++)
4265                                         if (param[j].type && !param[j].name_off)
4266                                                 param[j].name_off =
4267                                                         dummy_var->name_off;
4268                                 vs->type = dummy_var_btf_id;
4269                                 vt->info &= ~0xffff;
4270                                 vt->info |= BTF_FUNC_GLOBAL;
4271                         } else {
4272                                 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4273                                 vt->type = int_btf_id;
4274                         }
4275                         vs->offset = off;
4276                         vs->size = sizeof(int);
4277                 }
4278                 sec->size = off;
4279         }
4280
4281         if (kcfg_sec) {
4282                 sec = kcfg_sec;
4283                 /* for kcfg externs calculate their offsets within a .kconfig map */
4284                 off = 0;
4285                 for (i = 0; i < obj->nr_extern; i++) {
4286                         ext = &obj->externs[i];
4287                         if (ext->type != EXT_KCFG)
4288                                 continue;
4289
4290                         ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4291                         off = ext->kcfg.data_off + ext->kcfg.sz;
4292                         pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4293                                  i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4294                 }
4295                 sec->size = off;
4296                 n = btf_vlen(sec);
4297                 for (i = 0; i < n; i++) {
4298                         struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4299
4300                         t = btf__type_by_id(obj->btf, vs->type);
4301                         ext_name = btf__name_by_offset(obj->btf, t->name_off);
4302                         ext = find_extern_by_name(obj, ext_name);
4303                         if (!ext) {
4304                                 pr_warn("failed to find extern definition for BTF var '%s'\n",
4305                                         ext_name);
4306                                 return -ESRCH;
4307                         }
4308                         btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4309                         vs->offset = ext->kcfg.data_off;
4310                 }
4311         }
4312         return 0;
4313 }
4314
4315 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4316 {
4317         return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4318 }
4319
4320 struct bpf_program *
4321 bpf_object__find_program_by_name(const struct bpf_object *obj,
4322                                  const char *name)
4323 {
4324         struct bpf_program *prog;
4325
4326         bpf_object__for_each_program(prog, obj) {
4327                 if (prog_is_subprog(obj, prog))
4328                         continue;
4329                 if (!strcmp(prog->name, name))
4330                         return prog;
4331         }
4332         return errno = ENOENT, NULL;
4333 }
4334
4335 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4336                                       int shndx)
4337 {
4338         switch (obj->efile.secs[shndx].sec_type) {
4339         case SEC_BSS:
4340         case SEC_DATA:
4341         case SEC_RODATA:
4342                 return true;
4343         default:
4344                 return false;
4345         }
4346 }
4347
4348 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4349                                       int shndx)
4350 {
4351         return shndx == obj->efile.btf_maps_shndx;
4352 }
4353
4354 static enum libbpf_map_type
4355 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4356 {
4357         if (shndx == obj->efile.symbols_shndx)
4358                 return LIBBPF_MAP_KCONFIG;
4359
4360         switch (obj->efile.secs[shndx].sec_type) {
4361         case SEC_BSS:
4362                 return LIBBPF_MAP_BSS;
4363         case SEC_DATA:
4364                 return LIBBPF_MAP_DATA;
4365         case SEC_RODATA:
4366                 return LIBBPF_MAP_RODATA;
4367         default:
4368                 return LIBBPF_MAP_UNSPEC;
4369         }
4370 }
4371
4372 static int bpf_program__record_reloc(struct bpf_program *prog,
4373                                      struct reloc_desc *reloc_desc,
4374                                      __u32 insn_idx, const char *sym_name,
4375                                      const Elf64_Sym *sym, const Elf64_Rel *rel)
4376 {
4377         struct bpf_insn *insn = &prog->insns[insn_idx];
4378         size_t map_idx, nr_maps = prog->obj->nr_maps;
4379         struct bpf_object *obj = prog->obj;
4380         __u32 shdr_idx = sym->st_shndx;
4381         enum libbpf_map_type type;
4382         const char *sym_sec_name;
4383         struct bpf_map *map;
4384
4385         if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4386                 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4387                         prog->name, sym_name, insn_idx, insn->code);
4388                 return -LIBBPF_ERRNO__RELOC;
4389         }
4390
4391         if (sym_is_extern(sym)) {
4392                 int sym_idx = ELF64_R_SYM(rel->r_info);
4393                 int i, n = obj->nr_extern;
4394                 struct extern_desc *ext;
4395
4396                 for (i = 0; i < n; i++) {
4397                         ext = &obj->externs[i];
4398                         if (ext->sym_idx == sym_idx)
4399                                 break;
4400                 }
4401                 if (i >= n) {
4402                         pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4403                                 prog->name, sym_name, sym_idx);
4404                         return -LIBBPF_ERRNO__RELOC;
4405                 }
4406                 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4407                          prog->name, i, ext->name, ext->sym_idx, insn_idx);
4408                 if (insn->code == (BPF_JMP | BPF_CALL))
4409                         reloc_desc->type = RELO_EXTERN_CALL;
4410                 else
4411                         reloc_desc->type = RELO_EXTERN_LD64;
4412                 reloc_desc->insn_idx = insn_idx;
4413                 reloc_desc->ext_idx = i;
4414                 return 0;
4415         }
4416
4417         /* sub-program call relocation */
4418         if (is_call_insn(insn)) {
4419                 if (insn->src_reg != BPF_PSEUDO_CALL) {
4420                         pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4421                         return -LIBBPF_ERRNO__RELOC;
4422                 }
4423                 /* text_shndx can be 0, if no default "main" program exists */
4424                 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4425                         sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4426                         pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4427                                 prog->name, sym_name, sym_sec_name);
4428                         return -LIBBPF_ERRNO__RELOC;
4429                 }
4430                 if (sym->st_value % BPF_INSN_SZ) {
4431                         pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4432                                 prog->name, sym_name, (size_t)sym->st_value);
4433                         return -LIBBPF_ERRNO__RELOC;
4434                 }
4435                 reloc_desc->type = RELO_CALL;
4436                 reloc_desc->insn_idx = insn_idx;
4437                 reloc_desc->sym_off = sym->st_value;
4438                 return 0;
4439         }
4440
4441         if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4442                 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4443                         prog->name, sym_name, shdr_idx);
4444                 return -LIBBPF_ERRNO__RELOC;
4445         }
4446
4447         /* loading subprog addresses */
4448         if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4449                 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4450                  * local_func: sym->st_value = 0, insn->imm = offset in the section.
4451                  */
4452                 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4453                         pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4454                                 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4455                         return -LIBBPF_ERRNO__RELOC;
4456                 }
4457
4458                 reloc_desc->type = RELO_SUBPROG_ADDR;
4459                 reloc_desc->insn_idx = insn_idx;
4460                 reloc_desc->sym_off = sym->st_value;
4461                 return 0;
4462         }
4463
4464         type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4465         sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4466
4467         /* arena data relocation */
4468         if (shdr_idx == obj->efile.arena_data_shndx) {
4469                 reloc_desc->type = RELO_DATA;
4470                 reloc_desc->insn_idx = insn_idx;
4471                 reloc_desc->map_idx = obj->arena_map - obj->maps;
4472                 reloc_desc->sym_off = sym->st_value;
4473                 return 0;
4474         }
4475
4476         /* generic map reference relocation */
4477         if (type == LIBBPF_MAP_UNSPEC) {
4478                 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4479                         pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4480                                 prog->name, sym_name, sym_sec_name);
4481                         return -LIBBPF_ERRNO__RELOC;
4482                 }
4483                 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4484                         map = &obj->maps[map_idx];
4485                         if (map->libbpf_type != type ||
4486                             map->sec_idx != sym->st_shndx ||
4487                             map->sec_offset != sym->st_value)
4488                                 continue;
4489                         pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4490                                  prog->name, map_idx, map->name, map->sec_idx,
4491                                  map->sec_offset, insn_idx);
4492                         break;
4493                 }
4494                 if (map_idx >= nr_maps) {
4495                         pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4496                                 prog->name, sym_sec_name, (size_t)sym->st_value);
4497                         return -LIBBPF_ERRNO__RELOC;
4498                 }
4499                 reloc_desc->type = RELO_LD64;
4500                 reloc_desc->insn_idx = insn_idx;
4501                 reloc_desc->map_idx = map_idx;
4502                 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4503                 return 0;
4504         }
4505
4506         /* global data map relocation */
4507         if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4508                 pr_warn("prog '%s': bad data relo against section '%s'\n",
4509                         prog->name, sym_sec_name);
4510                 return -LIBBPF_ERRNO__RELOC;
4511         }
4512         for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4513                 map = &obj->maps[map_idx];
4514                 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4515                         continue;
4516                 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4517                          prog->name, map_idx, map->name, map->sec_idx,
4518                          map->sec_offset, insn_idx);
4519                 break;
4520         }
4521         if (map_idx >= nr_maps) {
4522                 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4523                         prog->name, sym_sec_name);
4524                 return -LIBBPF_ERRNO__RELOC;
4525         }
4526
4527         reloc_desc->type = RELO_DATA;
4528         reloc_desc->insn_idx = insn_idx;
4529         reloc_desc->map_idx = map_idx;
4530         reloc_desc->sym_off = sym->st_value;
4531         return 0;
4532 }
4533
4534 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4535 {
4536         return insn_idx >= prog->sec_insn_off &&
4537                insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4538 }
4539
4540 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4541                                                  size_t sec_idx, size_t insn_idx)
4542 {
4543         int l = 0, r = obj->nr_programs - 1, m;
4544         struct bpf_program *prog;
4545
4546         if (!obj->nr_programs)
4547                 return NULL;
4548
4549         while (l < r) {
4550                 m = l + (r - l + 1) / 2;
4551                 prog = &obj->programs[m];
4552
4553                 if (prog->sec_idx < sec_idx ||
4554                     (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4555                         l = m;
4556                 else
4557                         r = m - 1;
4558         }
4559         /* matching program could be at index l, but it still might be the
4560          * wrong one, so we need to double check conditions for the last time
4561          */
4562         prog = &obj->programs[l];
4563         if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4564                 return prog;
4565         return NULL;
4566 }
4567
4568 static int
4569 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4570 {
4571         const char *relo_sec_name, *sec_name;
4572         size_t sec_idx = shdr->sh_info, sym_idx;
4573         struct bpf_program *prog;
4574         struct reloc_desc *relos;
4575         int err, i, nrels;
4576         const char *sym_name;
4577         __u32 insn_idx;
4578         Elf_Scn *scn;
4579         Elf_Data *scn_data;
4580         Elf64_Sym *sym;
4581         Elf64_Rel *rel;
4582
4583         if (sec_idx >= obj->efile.sec_cnt)
4584                 return -EINVAL;
4585
4586         scn = elf_sec_by_idx(obj, sec_idx);
4587         scn_data = elf_sec_data(obj, scn);
4588         if (!scn_data)
4589                 return -LIBBPF_ERRNO__FORMAT;
4590
4591         relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4592         sec_name = elf_sec_name(obj, scn);
4593         if (!relo_sec_name || !sec_name)
4594                 return -EINVAL;
4595
4596         pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4597                  relo_sec_name, sec_idx, sec_name);
4598         nrels = shdr->sh_size / shdr->sh_entsize;
4599
4600         for (i = 0; i < nrels; i++) {
4601                 rel = elf_rel_by_idx(data, i);
4602                 if (!rel) {
4603                         pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4604                         return -LIBBPF_ERRNO__FORMAT;
4605                 }
4606
4607                 sym_idx = ELF64_R_SYM(rel->r_info);
4608                 sym = elf_sym_by_idx(obj, sym_idx);
4609                 if (!sym) {
4610                         pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4611                                 relo_sec_name, sym_idx, i);
4612                         return -LIBBPF_ERRNO__FORMAT;
4613                 }
4614
4615                 if (sym->st_shndx >= obj->efile.sec_cnt) {
4616                         pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4617                                 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4618                         return -LIBBPF_ERRNO__FORMAT;
4619                 }
4620
4621                 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4622                         pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4623                                 relo_sec_name, (size_t)rel->r_offset, i);
4624                         return -LIBBPF_ERRNO__FORMAT;
4625                 }
4626
4627                 insn_idx = rel->r_offset / BPF_INSN_SZ;
4628                 /* relocations against static functions are recorded as
4629                  * relocations against the section that contains a function;
4630                  * in such case, symbol will be STT_SECTION and sym.st_name
4631                  * will point to empty string (0), so fetch section name
4632                  * instead
4633                  */
4634                 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4635                         sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4636                 else
4637                         sym_name = elf_sym_str(obj, sym->st_name);
4638                 sym_name = sym_name ?: "<?";
4639
4640                 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4641                          relo_sec_name, i, insn_idx, sym_name);
4642
4643                 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4644                 if (!prog) {
4645                         pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4646                                 relo_sec_name, i, sec_name, insn_idx);
4647                         continue;
4648                 }
4649
4650                 relos = libbpf_reallocarray(prog->reloc_desc,
4651                                             prog->nr_reloc + 1, sizeof(*relos));
4652                 if (!relos)
4653                         return -ENOMEM;
4654                 prog->reloc_desc = relos;
4655
4656                 /* adjust insn_idx to local BPF program frame of reference */
4657                 insn_idx -= prog->sec_insn_off;
4658                 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4659                                                 insn_idx, sym_name, sym, rel);
4660                 if (err)
4661                         return err;
4662
4663                 prog->nr_reloc++;
4664         }
4665         return 0;
4666 }
4667
4668 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4669 {
4670         int id;
4671
4672         if (!obj->btf)
4673                 return -ENOENT;
4674
4675         /* if it's BTF-defined map, we don't need to search for type IDs.
4676          * For struct_ops map, it does not need btf_key_type_id and
4677          * btf_value_type_id.
4678          */
4679         if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4680                 return 0;
4681
4682         /*
4683          * LLVM annotates global data differently in BTF, that is,
4684          * only as '.data', '.bss' or '.rodata'.
4685          */
4686         if (!bpf_map__is_internal(map))
4687                 return -ENOENT;
4688
4689         id = btf__find_by_name(obj->btf, map->real_name);
4690         if (id < 0)
4691                 return id;
4692
4693         map->btf_key_type_id = 0;
4694         map->btf_value_type_id = id;
4695         return 0;
4696 }
4697
4698 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4699 {
4700         char file[PATH_MAX], buff[4096];
4701         FILE *fp;
4702         __u32 val;
4703         int err;
4704
4705         snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4706         memset(info, 0, sizeof(*info));
4707
4708         fp = fopen(file, "re");
4709         if (!fp) {
4710                 err = -errno;
4711                 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4712                         err);
4713                 return err;
4714         }
4715
4716         while (fgets(buff, sizeof(buff), fp)) {
4717                 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4718                         info->type = val;
4719                 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4720                         info->key_size = val;
4721                 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4722                         info->value_size = val;
4723                 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4724                         info->max_entries = val;
4725                 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4726                         info->map_flags = val;
4727         }
4728
4729         fclose(fp);
4730
4731         return 0;
4732 }
4733
4734 bool bpf_map__autocreate(const struct bpf_map *map)
4735 {
4736         return map->autocreate;
4737 }
4738
4739 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4740 {
4741         if (map->obj->loaded)
4742                 return libbpf_err(-EBUSY);
4743
4744         map->autocreate = autocreate;
4745         return 0;
4746 }
4747
4748 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4749 {
4750         struct bpf_map_info info;
4751         __u32 len = sizeof(info), name_len;
4752         int new_fd, err;
4753         char *new_name;
4754
4755         memset(&info, 0, len);
4756         err = bpf_map_get_info_by_fd(fd, &info, &len);
4757         if (err && errno == EINVAL)
4758                 err = bpf_get_map_info_from_fdinfo(fd, &info);
4759         if (err)
4760                 return libbpf_err(err);
4761
4762         name_len = strlen(info.name);
4763         if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4764                 new_name = strdup(map->name);
4765         else
4766                 new_name = strdup(info.name);
4767
4768         if (!new_name)
4769                 return libbpf_err(-errno);
4770
4771         /*
4772          * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4773          * This is similar to what we do in ensure_good_fd(), but without
4774          * closing original FD.
4775          */
4776         new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4777         if (new_fd < 0) {
4778                 err = -errno;
4779                 goto err_free_new_name;
4780         }
4781
4782         err = reuse_fd(map->fd, new_fd);
4783         if (err)
4784                 goto err_free_new_name;
4785
4786         free(map->name);
4787
4788         map->name = new_name;
4789         map->def.type = info.type;
4790         map->def.key_size = info.key_size;
4791         map->def.value_size = info.value_size;
4792         map->def.max_entries = info.max_entries;
4793         map->def.map_flags = info.map_flags;
4794         map->btf_key_type_id = info.btf_key_type_id;
4795         map->btf_value_type_id = info.btf_value_type_id;
4796         map->reused = true;
4797         map->map_extra = info.map_extra;
4798
4799         return 0;
4800
4801 err_free_new_name:
4802         free(new_name);
4803         return libbpf_err(err);
4804 }
4805
4806 __u32 bpf_map__max_entries(const struct bpf_map *map)
4807 {
4808         return map->def.max_entries;
4809 }
4810
4811 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4812 {
4813         if (!bpf_map_type__is_map_in_map(map->def.type))
4814                 return errno = EINVAL, NULL;
4815
4816         return map->inner_map;
4817 }
4818
4819 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4820 {
4821         if (map->obj->loaded)
4822                 return libbpf_err(-EBUSY);
4823
4824         map->def.max_entries = max_entries;
4825
4826         /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4827         if (map_is_ringbuf(map))
4828                 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4829
4830         return 0;
4831 }
4832
4833 static int bpf_object_prepare_token(struct bpf_object *obj)
4834 {
4835         const char *bpffs_path;
4836         int bpffs_fd = -1, token_fd, err;
4837         bool mandatory;
4838         enum libbpf_print_level level;
4839
4840         /* token is explicitly prevented */
4841         if (obj->token_path && obj->token_path[0] == '\0') {
4842                 pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4843                 return 0;
4844         }
4845
4846         mandatory = obj->token_path != NULL;
4847         level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4848
4849         bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4850         bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4851         if (bpffs_fd < 0) {
4852                 err = -errno;
4853                 __pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n",
4854                      obj->name, err, bpffs_path,
4855                      mandatory ? "" : ", skipping optional step...");
4856                 return mandatory ? err : 0;
4857         }
4858
4859         token_fd = bpf_token_create(bpffs_fd, 0);
4860         close(bpffs_fd);
4861         if (token_fd < 0) {
4862                 if (!mandatory && token_fd == -ENOENT) {
4863                         pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
4864                                  obj->name, bpffs_path);
4865                         return 0;
4866                 }
4867                 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
4868                      obj->name, token_fd, bpffs_path,
4869                      mandatory ? "" : ", skipping optional step...");
4870                 return mandatory ? token_fd : 0;
4871         }
4872
4873         obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
4874         if (!obj->feat_cache) {
4875                 close(token_fd);
4876                 return -ENOMEM;
4877         }
4878
4879         obj->token_fd = token_fd;
4880         obj->feat_cache->token_fd = token_fd;
4881
4882         return 0;
4883 }
4884
4885 static int
4886 bpf_object__probe_loading(struct bpf_object *obj)
4887 {
4888         char *cp, errmsg[STRERR_BUFSIZE];
4889         struct bpf_insn insns[] = {
4890                 BPF_MOV64_IMM(BPF_REG_0, 0),
4891                 BPF_EXIT_INSN(),
4892         };
4893         int ret, insn_cnt = ARRAY_SIZE(insns);
4894         LIBBPF_OPTS(bpf_prog_load_opts, opts,
4895                 .token_fd = obj->token_fd,
4896                 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
4897         );
4898
4899         if (obj->gen_loader)
4900                 return 0;
4901
4902         ret = bump_rlimit_memlock();
4903         if (ret)
4904                 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4905
4906         /* make sure basic loading works */
4907         ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
4908         if (ret < 0)
4909                 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
4910         if (ret < 0) {
4911                 ret = errno;
4912                 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4913                 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4914                         "program. Make sure your kernel supports BPF "
4915                         "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4916                         "set to big enough value.\n", __func__, cp, ret);
4917                 return -ret;
4918         }
4919         close(ret);
4920
4921         return 0;
4922 }
4923
4924 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4925 {
4926         if (obj->gen_loader)
4927                 /* To generate loader program assume the latest kernel
4928                  * to avoid doing extra prog_load, map_create syscalls.
4929                  */
4930                 return true;
4931
4932         if (obj->token_fd)
4933                 return feat_supported(obj->feat_cache, feat_id);
4934
4935         return feat_supported(NULL, feat_id);
4936 }
4937
4938 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4939 {
4940         struct bpf_map_info map_info;
4941         char msg[STRERR_BUFSIZE];
4942         __u32 map_info_len = sizeof(map_info);
4943         int err;
4944
4945         memset(&map_info, 0, map_info_len);
4946         err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
4947         if (err && errno == EINVAL)
4948                 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4949         if (err) {
4950                 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4951                         libbpf_strerror_r(errno, msg, sizeof(msg)));
4952                 return false;
4953         }
4954
4955         return (map_info.type == map->def.type &&
4956                 map_info.key_size == map->def.key_size &&
4957                 map_info.value_size == map->def.value_size &&
4958                 map_info.max_entries == map->def.max_entries &&
4959                 map_info.map_flags == map->def.map_flags &&
4960                 map_info.map_extra == map->map_extra);
4961 }
4962
4963 static int
4964 bpf_object__reuse_map(struct bpf_map *map)
4965 {
4966         char *cp, errmsg[STRERR_BUFSIZE];
4967         int err, pin_fd;
4968
4969         pin_fd = bpf_obj_get(map->pin_path);
4970         if (pin_fd < 0) {
4971                 err = -errno;
4972                 if (err == -ENOENT) {
4973                         pr_debug("found no pinned map to reuse at '%s'\n",
4974                                  map->pin_path);
4975                         return 0;
4976                 }
4977
4978                 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4979                 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4980                         map->pin_path, cp);
4981                 return err;
4982         }
4983
4984         if (!map_is_reuse_compat(map, pin_fd)) {
4985                 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4986                         map->pin_path);
4987                 close(pin_fd);
4988                 return -EINVAL;
4989         }
4990
4991         err = bpf_map__reuse_fd(map, pin_fd);
4992         close(pin_fd);
4993         if (err)
4994                 return err;
4995
4996         map->pinned = true;
4997         pr_debug("reused pinned map at '%s'\n", map->pin_path);
4998
4999         return 0;
5000 }
5001
5002 static int
5003 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5004 {
5005         enum libbpf_map_type map_type = map->libbpf_type;
5006         char *cp, errmsg[STRERR_BUFSIZE];
5007         int err, zero = 0;
5008
5009         if (obj->gen_loader) {
5010                 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5011                                          map->mmaped, map->def.value_size);
5012                 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5013                         bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5014                 return 0;
5015         }
5016
5017         err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5018         if (err) {
5019                 err = -errno;
5020                 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5021                 pr_warn("Error setting initial map(%s) contents: %s\n",
5022                         map->name, cp);
5023                 return err;
5024         }
5025
5026         /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5027         if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5028                 err = bpf_map_freeze(map->fd);
5029                 if (err) {
5030                         err = -errno;
5031                         cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5032                         pr_warn("Error freezing map(%s) as read-only: %s\n",
5033                                 map->name, cp);
5034                         return err;
5035                 }
5036         }
5037         return 0;
5038 }
5039
5040 static void bpf_map__destroy(struct bpf_map *map);
5041
5042 static bool map_is_created(const struct bpf_map *map)
5043 {
5044         return map->obj->loaded || map->reused;
5045 }
5046
5047 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5048 {
5049         LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5050         struct bpf_map_def *def = &map->def;
5051         const char *map_name = NULL;
5052         int err = 0, map_fd;
5053
5054         if (kernel_supports(obj, FEAT_PROG_NAME))
5055                 map_name = map->name;
5056         create_attr.map_ifindex = map->map_ifindex;
5057         create_attr.map_flags = def->map_flags;
5058         create_attr.numa_node = map->numa_node;
5059         create_attr.map_extra = map->map_extra;
5060         create_attr.token_fd = obj->token_fd;
5061         if (obj->token_fd)
5062                 create_attr.map_flags |= BPF_F_TOKEN_FD;
5063
5064         if (bpf_map__is_struct_ops(map)) {
5065                 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5066                 if (map->mod_btf_fd >= 0) {
5067                         create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5068                         create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5069                 }
5070         }
5071
5072         if (obj->btf && btf__fd(obj->btf) >= 0) {
5073                 create_attr.btf_fd = btf__fd(obj->btf);
5074                 create_attr.btf_key_type_id = map->btf_key_type_id;
5075                 create_attr.btf_value_type_id = map->btf_value_type_id;
5076         }
5077
5078         if (bpf_map_type__is_map_in_map(def->type)) {
5079                 if (map->inner_map) {
5080                         err = map_set_def_max_entries(map->inner_map);
5081                         if (err)
5082                                 return err;
5083                         err = bpf_object__create_map(obj, map->inner_map, true);
5084                         if (err) {
5085                                 pr_warn("map '%s': failed to create inner map: %d\n",
5086                                         map->name, err);
5087                                 return err;
5088                         }
5089                         map->inner_map_fd = map->inner_map->fd;
5090                 }
5091                 if (map->inner_map_fd >= 0)
5092                         create_attr.inner_map_fd = map->inner_map_fd;
5093         }
5094
5095         switch (def->type) {
5096         case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5097         case BPF_MAP_TYPE_CGROUP_ARRAY:
5098         case BPF_MAP_TYPE_STACK_TRACE:
5099         case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5100         case BPF_MAP_TYPE_HASH_OF_MAPS:
5101         case BPF_MAP_TYPE_DEVMAP:
5102         case BPF_MAP_TYPE_DEVMAP_HASH:
5103         case BPF_MAP_TYPE_CPUMAP:
5104         case BPF_MAP_TYPE_XSKMAP:
5105         case BPF_MAP_TYPE_SOCKMAP:
5106         case BPF_MAP_TYPE_SOCKHASH:
5107         case BPF_MAP_TYPE_QUEUE:
5108         case BPF_MAP_TYPE_STACK:
5109         case BPF_MAP_TYPE_ARENA:
5110                 create_attr.btf_fd = 0;
5111                 create_attr.btf_key_type_id = 0;
5112                 create_attr.btf_value_type_id = 0;
5113                 map->btf_key_type_id = 0;
5114                 map->btf_value_type_id = 0;
5115                 break;
5116         case BPF_MAP_TYPE_STRUCT_OPS:
5117                 create_attr.btf_value_type_id = 0;
5118                 break;
5119         default:
5120                 break;
5121         }
5122
5123         if (obj->gen_loader) {
5124                 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5125                                     def->key_size, def->value_size, def->max_entries,
5126                                     &create_attr, is_inner ? -1 : map - obj->maps);
5127                 /* We keep pretenting we have valid FD to pass various fd >= 0
5128                  * checks by just keeping original placeholder FDs in place.
5129                  * See bpf_object__add_map() comment.
5130                  * This placeholder fd will not be used with any syscall and
5131                  * will be reset to -1 eventually.
5132                  */
5133                 map_fd = map->fd;
5134         } else {
5135                 map_fd = bpf_map_create(def->type, map_name,
5136                                         def->key_size, def->value_size,
5137                                         def->max_entries, &create_attr);
5138         }
5139         if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5140                 char *cp, errmsg[STRERR_BUFSIZE];
5141
5142                 err = -errno;
5143                 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5144                 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5145                         map->name, cp, err);
5146                 create_attr.btf_fd = 0;
5147                 create_attr.btf_key_type_id = 0;
5148                 create_attr.btf_value_type_id = 0;
5149                 map->btf_key_type_id = 0;
5150                 map->btf_value_type_id = 0;
5151                 map_fd = bpf_map_create(def->type, map_name,
5152                                         def->key_size, def->value_size,
5153                                         def->max_entries, &create_attr);
5154         }
5155
5156         if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5157                 if (obj->gen_loader)
5158                         map->inner_map->fd = -1;
5159                 bpf_map__destroy(map->inner_map);
5160                 zfree(&map->inner_map);
5161         }
5162
5163         if (map_fd < 0)
5164                 return map_fd;
5165
5166         /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5167         if (map->fd == map_fd)
5168                 return 0;
5169
5170         /* Keep placeholder FD value but now point it to the BPF map object.
5171          * This way everything that relied on this map's FD (e.g., relocated
5172          * ldimm64 instructions) will stay valid and won't need adjustments.
5173          * map->fd stays valid but now point to what map_fd points to.
5174          */
5175         return reuse_fd(map->fd, map_fd);
5176 }
5177
5178 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5179 {
5180         const struct bpf_map *targ_map;
5181         unsigned int i;
5182         int fd, err = 0;
5183
5184         for (i = 0; i < map->init_slots_sz; i++) {
5185                 if (!map->init_slots[i])
5186                         continue;
5187
5188                 targ_map = map->init_slots[i];
5189                 fd = targ_map->fd;
5190
5191                 if (obj->gen_loader) {
5192                         bpf_gen__populate_outer_map(obj->gen_loader,
5193                                                     map - obj->maps, i,
5194                                                     targ_map - obj->maps);
5195                 } else {
5196                         err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5197                 }
5198                 if (err) {
5199                         err = -errno;
5200                         pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5201                                 map->name, i, targ_map->name, fd, err);
5202                         return err;
5203                 }
5204                 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5205                          map->name, i, targ_map->name, fd);
5206         }
5207
5208         zfree(&map->init_slots);
5209         map->init_slots_sz = 0;
5210
5211         return 0;
5212 }
5213
5214 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5215 {
5216         const struct bpf_program *targ_prog;
5217         unsigned int i;
5218         int fd, err;
5219
5220         if (obj->gen_loader)
5221                 return -ENOTSUP;
5222
5223         for (i = 0; i < map->init_slots_sz; i++) {
5224                 if (!map->init_slots[i])
5225                         continue;
5226
5227                 targ_prog = map->init_slots[i];
5228                 fd = bpf_program__fd(targ_prog);
5229
5230                 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5231                 if (err) {
5232                         err = -errno;
5233                         pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5234                                 map->name, i, targ_prog->name, fd, err);
5235                         return err;
5236                 }
5237                 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5238                          map->name, i, targ_prog->name, fd);
5239         }
5240
5241         zfree(&map->init_slots);
5242         map->init_slots_sz = 0;
5243
5244         return 0;
5245 }
5246
5247 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5248 {
5249         struct bpf_map *map;
5250         int i, err;
5251
5252         for (i = 0; i < obj->nr_maps; i++) {
5253                 map = &obj->maps[i];
5254
5255                 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5256                         continue;
5257
5258                 err = init_prog_array_slots(obj, map);
5259                 if (err < 0)
5260                         return err;
5261         }
5262         return 0;
5263 }
5264
5265 static int map_set_def_max_entries(struct bpf_map *map)
5266 {
5267         if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5268                 int nr_cpus;
5269
5270                 nr_cpus = libbpf_num_possible_cpus();
5271                 if (nr_cpus < 0) {
5272                         pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5273                                 map->name, nr_cpus);
5274                         return nr_cpus;
5275                 }
5276                 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5277                 map->def.max_entries = nr_cpus;
5278         }
5279
5280         return 0;
5281 }
5282
5283 static int
5284 bpf_object__create_maps(struct bpf_object *obj)
5285 {
5286         struct bpf_map *map;
5287         char *cp, errmsg[STRERR_BUFSIZE];
5288         unsigned int i, j;
5289         int err;
5290         bool retried;
5291
5292         for (i = 0; i < obj->nr_maps; i++) {
5293                 map = &obj->maps[i];
5294
5295                 /* To support old kernels, we skip creating global data maps
5296                  * (.rodata, .data, .kconfig, etc); later on, during program
5297                  * loading, if we detect that at least one of the to-be-loaded
5298                  * programs is referencing any global data map, we'll error
5299                  * out with program name and relocation index logged.
5300                  * This approach allows to accommodate Clang emitting
5301                  * unnecessary .rodata.str1.1 sections for string literals,
5302                  * but also it allows to have CO-RE applications that use
5303                  * global variables in some of BPF programs, but not others.
5304                  * If those global variable-using programs are not loaded at
5305                  * runtime due to bpf_program__set_autoload(prog, false),
5306                  * bpf_object loading will succeed just fine even on old
5307                  * kernels.
5308                  */
5309                 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5310                         map->autocreate = false;
5311
5312                 if (!map->autocreate) {
5313                         pr_debug("map '%s': skipped auto-creating...\n", map->name);
5314                         continue;
5315                 }
5316
5317                 err = map_set_def_max_entries(map);
5318                 if (err)
5319                         goto err_out;
5320
5321                 retried = false;
5322 retry:
5323                 if (map->pin_path) {
5324                         err = bpf_object__reuse_map(map);
5325                         if (err) {
5326                                 pr_warn("map '%s': error reusing pinned map\n",
5327                                         map->name);
5328                                 goto err_out;
5329                         }
5330                         if (retried && map->fd < 0) {
5331                                 pr_warn("map '%s': cannot find pinned map\n",
5332                                         map->name);
5333                                 err = -ENOENT;
5334                                 goto err_out;
5335                         }
5336                 }
5337
5338                 if (map->reused) {
5339                         pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5340                                  map->name, map->fd);
5341                 } else {
5342                         err = bpf_object__create_map(obj, map, false);
5343                         if (err)
5344                                 goto err_out;
5345
5346                         pr_debug("map '%s': created successfully, fd=%d\n",
5347                                  map->name, map->fd);
5348
5349                         if (bpf_map__is_internal(map)) {
5350                                 err = bpf_object__populate_internal_map(obj, map);
5351                                 if (err < 0)
5352                                         goto err_out;
5353                         }
5354                         if (map->def.type == BPF_MAP_TYPE_ARENA) {
5355                                 map->mmaped = mmap((void *)(long)map->map_extra,
5356                                                    bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5357                                                    map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5358                                                    map->fd, 0);
5359                                 if (map->mmaped == MAP_FAILED) {
5360                                         err = -errno;
5361                                         map->mmaped = NULL;
5362                                         pr_warn("map '%s': failed to mmap arena: %d\n",
5363                                                 map->name, err);
5364                                         return err;
5365                                 }
5366                                 if (obj->arena_data) {
5367                                         memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5368                                         zfree(&obj->arena_data);
5369                                 }
5370                         }
5371                         if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5372                                 err = init_map_in_map_slots(obj, map);
5373                                 if (err < 0)
5374                                         goto err_out;
5375                         }
5376                 }
5377
5378                 if (map->pin_path && !map->pinned) {
5379                         err = bpf_map__pin(map, NULL);
5380                         if (err) {
5381                                 if (!retried && err == -EEXIST) {
5382                                         retried = true;
5383                                         goto retry;
5384                                 }
5385                                 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5386                                         map->name, map->pin_path, err);
5387                                 goto err_out;
5388                         }
5389                 }
5390         }
5391
5392         return 0;
5393
5394 err_out:
5395         cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5396         pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5397         pr_perm_msg(err);
5398         for (j = 0; j < i; j++)
5399                 zclose(obj->maps[j].fd);
5400         return err;
5401 }
5402
5403 static bool bpf_core_is_flavor_sep(const char *s)
5404 {
5405         /* check X___Y name pattern, where X and Y are not underscores */
5406         return s[0] != '_' &&                                 /* X */
5407                s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5408                s[4] != '_';                                   /* Y */
5409 }
5410
5411 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5412  * before last triple underscore. Struct name part after last triple
5413  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5414  */
5415 size_t bpf_core_essential_name_len(const char *name)
5416 {
5417         size_t n = strlen(name);
5418         int i;
5419
5420         for (i = n - 5; i >= 0; i--) {
5421                 if (bpf_core_is_flavor_sep(name + i))
5422                         return i + 1;
5423         }
5424         return n;
5425 }
5426
5427 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5428 {
5429         if (!cands)
5430                 return;
5431
5432         free(cands->cands);
5433         free(cands);
5434 }
5435
5436 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5437                        size_t local_essent_len,
5438                        const struct btf *targ_btf,
5439                        const char *targ_btf_name,
5440                        int targ_start_id,
5441                        struct bpf_core_cand_list *cands)
5442 {
5443         struct bpf_core_cand *new_cands, *cand;
5444         const struct btf_type *t, *local_t;
5445         const char *targ_name, *local_name;
5446         size_t targ_essent_len;
5447         int n, i;
5448
5449         local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5450         local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5451
5452         n = btf__type_cnt(targ_btf);
5453         for (i = targ_start_id; i < n; i++) {
5454                 t = btf__type_by_id(targ_btf, i);
5455                 if (!btf_kind_core_compat(t, local_t))
5456                         continue;
5457
5458                 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5459                 if (str_is_empty(targ_name))
5460                         continue;
5461
5462                 targ_essent_len = bpf_core_essential_name_len(targ_name);
5463                 if (targ_essent_len != local_essent_len)
5464                         continue;
5465
5466                 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5467                         continue;
5468
5469                 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5470                          local_cand->id, btf_kind_str(local_t),
5471                          local_name, i, btf_kind_str(t), targ_name,
5472                          targ_btf_name);
5473                 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5474                                               sizeof(*cands->cands));
5475                 if (!new_cands)
5476                         return -ENOMEM;
5477
5478                 cand = &new_cands[cands->len];
5479                 cand->btf = targ_btf;
5480                 cand->id = i;
5481
5482                 cands->cands = new_cands;
5483                 cands->len++;
5484         }
5485         return 0;
5486 }
5487
5488 static int load_module_btfs(struct bpf_object *obj)
5489 {
5490         struct bpf_btf_info info;
5491         struct module_btf *mod_btf;
5492         struct btf *btf;
5493         char name[64];
5494         __u32 id = 0, len;
5495         int err, fd;
5496
5497         if (obj->btf_modules_loaded)
5498                 return 0;
5499
5500         if (obj->gen_loader)
5501                 return 0;
5502
5503         /* don't do this again, even if we find no module BTFs */
5504         obj->btf_modules_loaded = true;
5505
5506         /* kernel too old to support module BTFs */
5507         if (!kernel_supports(obj, FEAT_MODULE_BTF))
5508                 return 0;
5509
5510         while (true) {
5511                 err = bpf_btf_get_next_id(id, &id);
5512                 if (err && errno == ENOENT)
5513                         return 0;
5514                 if (err && errno == EPERM) {
5515                         pr_debug("skipping module BTFs loading, missing privileges\n");
5516                         return 0;
5517                 }
5518                 if (err) {
5519                         err = -errno;
5520                         pr_warn("failed to iterate BTF objects: %d\n", err);
5521                         return err;
5522                 }
5523
5524                 fd = bpf_btf_get_fd_by_id(id);
5525                 if (fd < 0) {
5526                         if (errno == ENOENT)
5527                                 continue; /* expected race: BTF was unloaded */
5528                         err = -errno;
5529                         pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5530                         return err;
5531                 }
5532
5533                 len = sizeof(info);
5534                 memset(&info, 0, sizeof(info));
5535                 info.name = ptr_to_u64(name);
5536                 info.name_len = sizeof(name);
5537
5538                 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5539                 if (err) {
5540                         err = -errno;
5541                         pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5542                         goto err_out;
5543                 }
5544
5545                 /* ignore non-module BTFs */
5546                 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5547                         close(fd);
5548                         continue;
5549                 }
5550
5551                 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5552                 err = libbpf_get_error(btf);
5553                 if (err) {
5554                         pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5555                                 name, id, err);
5556                         goto err_out;
5557                 }
5558
5559                 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5560                                         sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5561                 if (err)
5562                         goto err_out;
5563
5564                 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5565
5566                 mod_btf->btf = btf;
5567                 mod_btf->id = id;
5568                 mod_btf->fd = fd;
5569                 mod_btf->name = strdup(name);
5570                 if (!mod_btf->name) {
5571                         err = -ENOMEM;
5572                         goto err_out;
5573                 }
5574                 continue;
5575
5576 err_out:
5577                 close(fd);
5578                 return err;
5579         }
5580
5581         return 0;
5582 }
5583
5584 static struct bpf_core_cand_list *
5585 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5586 {
5587         struct bpf_core_cand local_cand = {};
5588         struct bpf_core_cand_list *cands;
5589         const struct btf *main_btf;
5590         const struct btf_type *local_t;
5591         const char *local_name;
5592         size_t local_essent_len;
5593         int err, i;
5594
5595         local_cand.btf = local_btf;
5596         local_cand.id = local_type_id;
5597         local_t = btf__type_by_id(local_btf, local_type_id);
5598         if (!local_t)
5599                 return ERR_PTR(-EINVAL);
5600
5601         local_name = btf__name_by_offset(local_btf, local_t->name_off);
5602         if (str_is_empty(local_name))
5603                 return ERR_PTR(-EINVAL);
5604         local_essent_len = bpf_core_essential_name_len(local_name);
5605
5606         cands = calloc(1, sizeof(*cands));
5607         if (!cands)
5608                 return ERR_PTR(-ENOMEM);
5609
5610         /* Attempt to find target candidates in vmlinux BTF first */
5611         main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5612         err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5613         if (err)
5614                 goto err_out;
5615
5616         /* if vmlinux BTF has any candidate, don't got for module BTFs */
5617         if (cands->len)
5618                 return cands;
5619
5620         /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5621         if (obj->btf_vmlinux_override)
5622                 return cands;
5623
5624         /* now look through module BTFs, trying to still find candidates */
5625         err = load_module_btfs(obj);
5626         if (err)
5627                 goto err_out;
5628
5629         for (i = 0; i < obj->btf_module_cnt; i++) {
5630                 err = bpf_core_add_cands(&local_cand, local_essent_len,
5631                                          obj->btf_modules[i].btf,
5632                                          obj->btf_modules[i].name,
5633                                          btf__type_cnt(obj->btf_vmlinux),
5634                                          cands);
5635                 if (err)
5636                         goto err_out;
5637         }
5638
5639         return cands;
5640 err_out:
5641         bpf_core_free_cands(cands);
5642         return ERR_PTR(err);
5643 }
5644
5645 /* Check local and target types for compatibility. This check is used for
5646  * type-based CO-RE relocations and follow slightly different rules than
5647  * field-based relocations. This function assumes that root types were already
5648  * checked for name match. Beyond that initial root-level name check, names
5649  * are completely ignored. Compatibility rules are as follows:
5650  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5651  *     kind should match for local and target types (i.e., STRUCT is not
5652  *     compatible with UNION);
5653  *   - for ENUMs, the size is ignored;
5654  *   - for INT, size and signedness are ignored;
5655  *   - for ARRAY, dimensionality is ignored, element types are checked for
5656  *     compatibility recursively;
5657  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5658  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5659  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5660  *     number of input args and compatible return and argument types.
5661  * These rules are not set in stone and probably will be adjusted as we get
5662  * more experience with using BPF CO-RE relocations.
5663  */
5664 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5665                               const struct btf *targ_btf, __u32 targ_id)
5666 {
5667         return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5668 }
5669
5670 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5671                          const struct btf *targ_btf, __u32 targ_id)
5672 {
5673         return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5674 }
5675
5676 static size_t bpf_core_hash_fn(const long key, void *ctx)
5677 {
5678         return key;
5679 }
5680
5681 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5682 {
5683         return k1 == k2;
5684 }
5685
5686 static int record_relo_core(struct bpf_program *prog,
5687                             const struct bpf_core_relo *core_relo, int insn_idx)
5688 {
5689         struct reloc_desc *relos, *relo;
5690
5691         relos = libbpf_reallocarray(prog->reloc_desc,
5692                                     prog->nr_reloc + 1, sizeof(*relos));
5693         if (!relos)
5694                 return -ENOMEM;
5695         relo = &relos[prog->nr_reloc];
5696         relo->type = RELO_CORE;
5697         relo->insn_idx = insn_idx;
5698         relo->core_relo = core_relo;
5699         prog->reloc_desc = relos;
5700         prog->nr_reloc++;
5701         return 0;
5702 }
5703
5704 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5705 {
5706         struct reloc_desc *relo;
5707         int i;
5708
5709         for (i = 0; i < prog->nr_reloc; i++) {
5710                 relo = &prog->reloc_desc[i];
5711                 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5712                         continue;
5713
5714                 return relo->core_relo;
5715         }
5716
5717         return NULL;
5718 }
5719
5720 static int bpf_core_resolve_relo(struct bpf_program *prog,
5721                                  const struct bpf_core_relo *relo,
5722                                  int relo_idx,
5723                                  const struct btf *local_btf,
5724                                  struct hashmap *cand_cache,
5725                                  struct bpf_core_relo_res *targ_res)
5726 {
5727         struct bpf_core_spec specs_scratch[3] = {};
5728         struct bpf_core_cand_list *cands = NULL;
5729         const char *prog_name = prog->name;
5730         const struct btf_type *local_type;
5731         const char *local_name;
5732         __u32 local_id = relo->type_id;
5733         int err;
5734
5735         local_type = btf__type_by_id(local_btf, local_id);
5736         if (!local_type)
5737                 return -EINVAL;
5738
5739         local_name = btf__name_by_offset(local_btf, local_type->name_off);
5740         if (!local_name)
5741                 return -EINVAL;
5742
5743         if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5744             !hashmap__find(cand_cache, local_id, &cands)) {
5745                 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5746                 if (IS_ERR(cands)) {
5747                         pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5748                                 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5749                                 local_name, PTR_ERR(cands));
5750                         return PTR_ERR(cands);
5751                 }
5752                 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5753                 if (err) {
5754                         bpf_core_free_cands(cands);
5755                         return err;
5756                 }
5757         }
5758
5759         return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5760                                        targ_res);
5761 }
5762
5763 static int
5764 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5765 {
5766         const struct btf_ext_info_sec *sec;
5767         struct bpf_core_relo_res targ_res;
5768         const struct bpf_core_relo *rec;
5769         const struct btf_ext_info *seg;
5770         struct hashmap_entry *entry;
5771         struct hashmap *cand_cache = NULL;
5772         struct bpf_program *prog;
5773         struct bpf_insn *insn;
5774         const char *sec_name;
5775         int i, err = 0, insn_idx, sec_idx, sec_num;
5776
5777         if (obj->btf_ext->core_relo_info.len == 0)
5778                 return 0;
5779
5780         if (targ_btf_path) {
5781                 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5782                 err = libbpf_get_error(obj->btf_vmlinux_override);
5783                 if (err) {
5784                         pr_warn("failed to parse target BTF: %d\n", err);
5785                         return err;
5786                 }
5787         }
5788
5789         cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5790         if (IS_ERR(cand_cache)) {
5791                 err = PTR_ERR(cand_cache);
5792                 goto out;
5793         }
5794
5795         seg = &obj->btf_ext->core_relo_info;
5796         sec_num = 0;
5797         for_each_btf_ext_sec(seg, sec) {
5798                 sec_idx = seg->sec_idxs[sec_num];
5799                 sec_num++;
5800
5801                 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5802                 if (str_is_empty(sec_name)) {
5803                         err = -EINVAL;
5804                         goto out;
5805                 }
5806
5807                 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5808
5809                 for_each_btf_ext_rec(seg, sec, i, rec) {
5810                         if (rec->insn_off % BPF_INSN_SZ)
5811                                 return -EINVAL;
5812                         insn_idx = rec->insn_off / BPF_INSN_SZ;
5813                         prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5814                         if (!prog) {
5815                                 /* When __weak subprog is "overridden" by another instance
5816                                  * of the subprog from a different object file, linker still
5817                                  * appends all the .BTF.ext info that used to belong to that
5818                                  * eliminated subprogram.
5819                                  * This is similar to what x86-64 linker does for relocations.
5820                                  * So just ignore such relocations just like we ignore
5821                                  * subprog instructions when discovering subprograms.
5822                                  */
5823                                 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5824                                          sec_name, i, insn_idx);
5825                                 continue;
5826                         }
5827                         /* no need to apply CO-RE relocation if the program is
5828                          * not going to be loaded
5829                          */
5830                         if (!prog->autoload)
5831                                 continue;
5832
5833                         /* adjust insn_idx from section frame of reference to the local
5834                          * program's frame of reference; (sub-)program code is not yet
5835                          * relocated, so it's enough to just subtract in-section offset
5836                          */
5837                         insn_idx = insn_idx - prog->sec_insn_off;
5838                         if (insn_idx >= prog->insns_cnt)
5839                                 return -EINVAL;
5840                         insn = &prog->insns[insn_idx];
5841
5842                         err = record_relo_core(prog, rec, insn_idx);
5843                         if (err) {
5844                                 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5845                                         prog->name, i, err);
5846                                 goto out;
5847                         }
5848
5849                         if (prog->obj->gen_loader)
5850                                 continue;
5851
5852                         err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5853                         if (err) {
5854                                 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5855                                         prog->name, i, err);
5856                                 goto out;
5857                         }
5858
5859                         err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5860                         if (err) {
5861                                 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5862                                         prog->name, i, insn_idx, err);
5863                                 goto out;
5864                         }
5865                 }
5866         }
5867
5868 out:
5869         /* obj->btf_vmlinux and module BTFs are freed after object load */
5870         btf__free(obj->btf_vmlinux_override);
5871         obj->btf_vmlinux_override = NULL;
5872
5873         if (!IS_ERR_OR_NULL(cand_cache)) {
5874                 hashmap__for_each_entry(cand_cache, entry, i) {
5875                         bpf_core_free_cands(entry->pvalue);
5876                 }
5877                 hashmap__free(cand_cache);
5878         }
5879         return err;
5880 }
5881
5882 /* base map load ldimm64 special constant, used also for log fixup logic */
5883 #define POISON_LDIMM64_MAP_BASE 2001000000
5884 #define POISON_LDIMM64_MAP_PFX "200100"
5885
5886 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5887                                int insn_idx, struct bpf_insn *insn,
5888                                int map_idx, const struct bpf_map *map)
5889 {
5890         int i;
5891
5892         pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5893                  prog->name, relo_idx, insn_idx, map_idx, map->name);
5894
5895         /* we turn single ldimm64 into two identical invalid calls */
5896         for (i = 0; i < 2; i++) {
5897                 insn->code = BPF_JMP | BPF_CALL;
5898                 insn->dst_reg = 0;
5899                 insn->src_reg = 0;
5900                 insn->off = 0;
5901                 /* if this instruction is reachable (not a dead code),
5902                  * verifier will complain with something like:
5903                  * invalid func unknown#2001000123
5904                  * where lower 123 is map index into obj->maps[] array
5905                  */
5906                 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5907
5908                 insn++;
5909         }
5910 }
5911
5912 /* unresolved kfunc call special constant, used also for log fixup logic */
5913 #define POISON_CALL_KFUNC_BASE 2002000000
5914 #define POISON_CALL_KFUNC_PFX "2002"
5915
5916 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5917                               int insn_idx, struct bpf_insn *insn,
5918                               int ext_idx, const struct extern_desc *ext)
5919 {
5920         pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5921                  prog->name, relo_idx, insn_idx, ext->name);
5922
5923         /* we turn kfunc call into invalid helper call with identifiable constant */
5924         insn->code = BPF_JMP | BPF_CALL;
5925         insn->dst_reg = 0;
5926         insn->src_reg = 0;
5927         insn->off = 0;
5928         /* if this instruction is reachable (not a dead code),
5929          * verifier will complain with something like:
5930          * invalid func unknown#2001000123
5931          * where lower 123 is extern index into obj->externs[] array
5932          */
5933         insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5934 }
5935
5936 /* Relocate data references within program code:
5937  *  - map references;
5938  *  - global variable references;
5939  *  - extern references.
5940  */
5941 static int
5942 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5943 {
5944         int i;
5945
5946         for (i = 0; i < prog->nr_reloc; i++) {
5947                 struct reloc_desc *relo = &prog->reloc_desc[i];
5948                 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5949                 const struct bpf_map *map;
5950                 struct extern_desc *ext;
5951
5952                 switch (relo->type) {
5953                 case RELO_LD64:
5954                         map = &obj->maps[relo->map_idx];
5955                         if (obj->gen_loader) {
5956                                 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5957                                 insn[0].imm = relo->map_idx;
5958                         } else if (map->autocreate) {
5959                                 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5960                                 insn[0].imm = map->fd;
5961                         } else {
5962                                 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5963                                                    relo->map_idx, map);
5964                         }
5965                         break;
5966                 case RELO_DATA:
5967                         map = &obj->maps[relo->map_idx];
5968                         insn[1].imm = insn[0].imm + relo->sym_off;
5969                         if (obj->gen_loader) {
5970                                 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5971                                 insn[0].imm = relo->map_idx;
5972                         } else if (map->autocreate) {
5973                                 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5974                                 insn[0].imm = map->fd;
5975                         } else {
5976                                 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5977                                                    relo->map_idx, map);
5978                         }
5979                         break;
5980                 case RELO_EXTERN_LD64:
5981                         ext = &obj->externs[relo->ext_idx];
5982                         if (ext->type == EXT_KCFG) {
5983                                 if (obj->gen_loader) {
5984                                         insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5985                                         insn[0].imm = obj->kconfig_map_idx;
5986                                 } else {
5987                                         insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5988                                         insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5989                                 }
5990                                 insn[1].imm = ext->kcfg.data_off;
5991                         } else /* EXT_KSYM */ {
5992                                 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5993                                         insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5994                                         insn[0].imm = ext->ksym.kernel_btf_id;
5995                                         insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5996                                 } else { /* typeless ksyms or unresolved typed ksyms */
5997                                         insn[0].imm = (__u32)ext->ksym.addr;
5998                                         insn[1].imm = ext->ksym.addr >> 32;
5999                                 }
6000                         }
6001                         break;
6002                 case RELO_EXTERN_CALL:
6003                         ext = &obj->externs[relo->ext_idx];
6004                         insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6005                         if (ext->is_set) {
6006                                 insn[0].imm = ext->ksym.kernel_btf_id;
6007                                 insn[0].off = ext->ksym.btf_fd_idx;
6008                         } else { /* unresolved weak kfunc call */
6009                                 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6010                                                   relo->ext_idx, ext);
6011                         }
6012                         break;
6013                 case RELO_SUBPROG_ADDR:
6014                         if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6015                                 pr_warn("prog '%s': relo #%d: bad insn\n",
6016                                         prog->name, i);
6017                                 return -EINVAL;
6018                         }
6019                         /* handled already */
6020                         break;
6021                 case RELO_CALL:
6022                         /* handled already */
6023                         break;
6024                 case RELO_CORE:
6025                         /* will be handled by bpf_program_record_relos() */
6026                         break;
6027                 default:
6028                         pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6029                                 prog->name, i, relo->type);
6030                         return -EINVAL;
6031                 }
6032         }
6033
6034         return 0;
6035 }
6036
6037 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6038                                     const struct bpf_program *prog,
6039                                     const struct btf_ext_info *ext_info,
6040                                     void **prog_info, __u32 *prog_rec_cnt,
6041                                     __u32 *prog_rec_sz)
6042 {
6043         void *copy_start = NULL, *copy_end = NULL;
6044         void *rec, *rec_end, *new_prog_info;
6045         const struct btf_ext_info_sec *sec;
6046         size_t old_sz, new_sz;
6047         int i, sec_num, sec_idx, off_adj;
6048
6049         sec_num = 0;
6050         for_each_btf_ext_sec(ext_info, sec) {
6051                 sec_idx = ext_info->sec_idxs[sec_num];
6052                 sec_num++;
6053                 if (prog->sec_idx != sec_idx)
6054                         continue;
6055
6056                 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6057                         __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6058
6059                         if (insn_off < prog->sec_insn_off)
6060                                 continue;
6061                         if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6062                                 break;
6063
6064                         if (!copy_start)
6065                                 copy_start = rec;
6066                         copy_end = rec + ext_info->rec_size;
6067                 }
6068
6069                 if (!copy_start)
6070                         return -ENOENT;
6071
6072                 /* append func/line info of a given (sub-)program to the main
6073                  * program func/line info
6074                  */
6075                 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6076                 new_sz = old_sz + (copy_end - copy_start);
6077                 new_prog_info = realloc(*prog_info, new_sz);
6078                 if (!new_prog_info)
6079                         return -ENOMEM;
6080                 *prog_info = new_prog_info;
6081                 *prog_rec_cnt = new_sz / ext_info->rec_size;
6082                 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6083
6084                 /* Kernel instruction offsets are in units of 8-byte
6085                  * instructions, while .BTF.ext instruction offsets generated
6086                  * by Clang are in units of bytes. So convert Clang offsets
6087                  * into kernel offsets and adjust offset according to program
6088                  * relocated position.
6089                  */
6090                 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6091                 rec = new_prog_info + old_sz;
6092                 rec_end = new_prog_info + new_sz;
6093                 for (; rec < rec_end; rec += ext_info->rec_size) {
6094                         __u32 *insn_off = rec;
6095
6096                         *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6097                 }
6098                 *prog_rec_sz = ext_info->rec_size;
6099                 return 0;
6100         }
6101
6102         return -ENOENT;
6103 }
6104
6105 static int
6106 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6107                               struct bpf_program *main_prog,
6108                               const struct bpf_program *prog)
6109 {
6110         int err;
6111
6112         /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6113          * support func/line info
6114          */
6115         if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6116                 return 0;
6117
6118         /* only attempt func info relocation if main program's func_info
6119          * relocation was successful
6120          */
6121         if (main_prog != prog && !main_prog->func_info)
6122                 goto line_info;
6123
6124         err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6125                                        &main_prog->func_info,
6126                                        &main_prog->func_info_cnt,
6127                                        &main_prog->func_info_rec_size);
6128         if (err) {
6129                 if (err != -ENOENT) {
6130                         pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6131                                 prog->name, err);
6132                         return err;
6133                 }
6134                 if (main_prog->func_info) {
6135                         /*
6136                          * Some info has already been found but has problem
6137                          * in the last btf_ext reloc. Must have to error out.
6138                          */
6139                         pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6140                         return err;
6141                 }
6142                 /* Have problem loading the very first info. Ignore the rest. */
6143                 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6144                         prog->name);
6145         }
6146
6147 line_info:
6148         /* don't relocate line info if main program's relocation failed */
6149         if (main_prog != prog && !main_prog->line_info)
6150                 return 0;
6151
6152         err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6153                                        &main_prog->line_info,
6154                                        &main_prog->line_info_cnt,
6155                                        &main_prog->line_info_rec_size);
6156         if (err) {
6157                 if (err != -ENOENT) {
6158                         pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6159                                 prog->name, err);
6160                         return err;
6161                 }
6162                 if (main_prog->line_info) {
6163                         /*
6164                          * Some info has already been found but has problem
6165                          * in the last btf_ext reloc. Must have to error out.
6166                          */
6167                         pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6168                         return err;
6169                 }
6170                 /* Have problem loading the very first info. Ignore the rest. */
6171                 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6172                         prog->name);
6173         }
6174         return 0;
6175 }
6176
6177 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6178 {
6179         size_t insn_idx = *(const size_t *)key;
6180         const struct reloc_desc *relo = elem;
6181
6182         if (insn_idx == relo->insn_idx)
6183                 return 0;
6184         return insn_idx < relo->insn_idx ? -1 : 1;
6185 }
6186
6187 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6188 {
6189         if (!prog->nr_reloc)
6190                 return NULL;
6191         return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6192                        sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6193 }
6194
6195 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6196 {
6197         int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6198         struct reloc_desc *relos;
6199         int i;
6200
6201         if (main_prog == subprog)
6202                 return 0;
6203         relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6204         /* if new count is zero, reallocarray can return a valid NULL result;
6205          * in this case the previous pointer will be freed, so we *have to*
6206          * reassign old pointer to the new value (even if it's NULL)
6207          */
6208         if (!relos && new_cnt)
6209                 return -ENOMEM;
6210         if (subprog->nr_reloc)
6211                 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6212                        sizeof(*relos) * subprog->nr_reloc);
6213
6214         for (i = main_prog->nr_reloc; i < new_cnt; i++)
6215                 relos[i].insn_idx += subprog->sub_insn_off;
6216         /* After insn_idx adjustment the 'relos' array is still sorted
6217          * by insn_idx and doesn't break bsearch.
6218          */
6219         main_prog->reloc_desc = relos;
6220         main_prog->nr_reloc = new_cnt;
6221         return 0;
6222 }
6223
6224 static int
6225 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6226                                 struct bpf_program *subprog)
6227 {
6228        struct bpf_insn *insns;
6229        size_t new_cnt;
6230        int err;
6231
6232        subprog->sub_insn_off = main_prog->insns_cnt;
6233
6234        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6235        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6236        if (!insns) {
6237                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6238                return -ENOMEM;
6239        }
6240        main_prog->insns = insns;
6241        main_prog->insns_cnt = new_cnt;
6242
6243        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6244               subprog->insns_cnt * sizeof(*insns));
6245
6246        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6247                 main_prog->name, subprog->insns_cnt, subprog->name);
6248
6249        /* The subprog insns are now appended. Append its relos too. */
6250        err = append_subprog_relos(main_prog, subprog);
6251        if (err)
6252                return err;
6253        return 0;
6254 }
6255
6256 static int
6257 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6258                        struct bpf_program *prog)
6259 {
6260         size_t sub_insn_idx, insn_idx;
6261         struct bpf_program *subprog;
6262         struct reloc_desc *relo;
6263         struct bpf_insn *insn;
6264         int err;
6265
6266         err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6267         if (err)
6268                 return err;
6269
6270         for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6271                 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6272                 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6273                         continue;
6274
6275                 relo = find_prog_insn_relo(prog, insn_idx);
6276                 if (relo && relo->type == RELO_EXTERN_CALL)
6277                         /* kfunc relocations will be handled later
6278                          * in bpf_object__relocate_data()
6279                          */
6280                         continue;
6281                 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6282                         pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6283                                 prog->name, insn_idx, relo->type);
6284                         return -LIBBPF_ERRNO__RELOC;
6285                 }
6286                 if (relo) {
6287                         /* sub-program instruction index is a combination of
6288                          * an offset of a symbol pointed to by relocation and
6289                          * call instruction's imm field; for global functions,
6290                          * call always has imm = -1, but for static functions
6291                          * relocation is against STT_SECTION and insn->imm
6292                          * points to a start of a static function
6293                          *
6294                          * for subprog addr relocation, the relo->sym_off + insn->imm is
6295                          * the byte offset in the corresponding section.
6296                          */
6297                         if (relo->type == RELO_CALL)
6298                                 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6299                         else
6300                                 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6301                 } else if (insn_is_pseudo_func(insn)) {
6302                         /*
6303                          * RELO_SUBPROG_ADDR relo is always emitted even if both
6304                          * functions are in the same section, so it shouldn't reach here.
6305                          */
6306                         pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6307                                 prog->name, insn_idx);
6308                         return -LIBBPF_ERRNO__RELOC;
6309                 } else {
6310                         /* if subprogram call is to a static function within
6311                          * the same ELF section, there won't be any relocation
6312                          * emitted, but it also means there is no additional
6313                          * offset necessary, insns->imm is relative to
6314                          * instruction's original position within the section
6315                          */
6316                         sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6317                 }
6318
6319                 /* we enforce that sub-programs should be in .text section */
6320                 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6321                 if (!subprog) {
6322                         pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6323                                 prog->name);
6324                         return -LIBBPF_ERRNO__RELOC;
6325                 }
6326
6327                 /* if it's the first call instruction calling into this
6328                  * subprogram (meaning this subprog hasn't been processed
6329                  * yet) within the context of current main program:
6330                  *   - append it at the end of main program's instructions blog;
6331                  *   - process is recursively, while current program is put on hold;
6332                  *   - if that subprogram calls some other not yet processes
6333                  *   subprogram, same thing will happen recursively until
6334                  *   there are no more unprocesses subprograms left to append
6335                  *   and relocate.
6336                  */
6337                 if (subprog->sub_insn_off == 0) {
6338                         err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6339                         if (err)
6340                                 return err;
6341                         err = bpf_object__reloc_code(obj, main_prog, subprog);
6342                         if (err)
6343                                 return err;
6344                 }
6345
6346                 /* main_prog->insns memory could have been re-allocated, so
6347                  * calculate pointer again
6348                  */
6349                 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6350                 /* calculate correct instruction position within current main
6351                  * prog; each main prog can have a different set of
6352                  * subprograms appended (potentially in different order as
6353                  * well), so position of any subprog can be different for
6354                  * different main programs
6355                  */
6356                 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6357
6358                 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6359                          prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6360         }
6361
6362         return 0;
6363 }
6364
6365 /*
6366  * Relocate sub-program calls.
6367  *
6368  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6369  * main prog) is processed separately. For each subprog (non-entry functions,
6370  * that can be called from either entry progs or other subprogs) gets their
6371  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6372  * hasn't been yet appended and relocated within current main prog. Once its
6373  * relocated, sub_insn_off will point at the position within current main prog
6374  * where given subprog was appended. This will further be used to relocate all
6375  * the call instructions jumping into this subprog.
6376  *
6377  * We start with main program and process all call instructions. If the call
6378  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6379  * is zero), subprog instructions are appended at the end of main program's
6380  * instruction array. Then main program is "put on hold" while we recursively
6381  * process newly appended subprogram. If that subprogram calls into another
6382  * subprogram that hasn't been appended, new subprogram is appended again to
6383  * the *main* prog's instructions (subprog's instructions are always left
6384  * untouched, as they need to be in unmodified state for subsequent main progs
6385  * and subprog instructions are always sent only as part of a main prog) and
6386  * the process continues recursively. Once all the subprogs called from a main
6387  * prog or any of its subprogs are appended (and relocated), all their
6388  * positions within finalized instructions array are known, so it's easy to
6389  * rewrite call instructions with correct relative offsets, corresponding to
6390  * desired target subprog.
6391  *
6392  * Its important to realize that some subprogs might not be called from some
6393  * main prog and any of its called/used subprogs. Those will keep their
6394  * subprog->sub_insn_off as zero at all times and won't be appended to current
6395  * main prog and won't be relocated within the context of current main prog.
6396  * They might still be used from other main progs later.
6397  *
6398  * Visually this process can be shown as below. Suppose we have two main
6399  * programs mainA and mainB and BPF object contains three subprogs: subA,
6400  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6401  * subC both call subB:
6402  *
6403  *        +--------+ +-------+
6404  *        |        v v       |
6405  *     +--+---+ +--+-+-+ +---+--+
6406  *     | subA | | subB | | subC |
6407  *     +--+---+ +------+ +---+--+
6408  *        ^                  ^
6409  *        |                  |
6410  *    +---+-------+   +------+----+
6411  *    |   mainA   |   |   mainB   |
6412  *    +-----------+   +-----------+
6413  *
6414  * We'll start relocating mainA, will find subA, append it and start
6415  * processing sub A recursively:
6416  *
6417  *    +-----------+------+
6418  *    |   mainA   | subA |
6419  *    +-----------+------+
6420  *
6421  * At this point we notice that subB is used from subA, so we append it and
6422  * relocate (there are no further subcalls from subB):
6423  *
6424  *    +-----------+------+------+
6425  *    |   mainA   | subA | subB |
6426  *    +-----------+------+------+
6427  *
6428  * At this point, we relocate subA calls, then go one level up and finish with
6429  * relocatin mainA calls. mainA is done.
6430  *
6431  * For mainB process is similar but results in different order. We start with
6432  * mainB and skip subA and subB, as mainB never calls them (at least
6433  * directly), but we see subC is needed, so we append and start processing it:
6434  *
6435  *    +-----------+------+
6436  *    |   mainB   | subC |
6437  *    +-----------+------+
6438  * Now we see subC needs subB, so we go back to it, append and relocate it:
6439  *
6440  *    +-----------+------+------+
6441  *    |   mainB   | subC | subB |
6442  *    +-----------+------+------+
6443  *
6444  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6445  */
6446 static int
6447 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6448 {
6449         struct bpf_program *subprog;
6450         int i, err;
6451
6452         /* mark all subprogs as not relocated (yet) within the context of
6453          * current main program
6454          */
6455         for (i = 0; i < obj->nr_programs; i++) {
6456                 subprog = &obj->programs[i];
6457                 if (!prog_is_subprog(obj, subprog))
6458                         continue;
6459
6460                 subprog->sub_insn_off = 0;
6461         }
6462
6463         err = bpf_object__reloc_code(obj, prog, prog);
6464         if (err)
6465                 return err;
6466
6467         return 0;
6468 }
6469
6470 static void
6471 bpf_object__free_relocs(struct bpf_object *obj)
6472 {
6473         struct bpf_program *prog;
6474         int i;
6475
6476         /* free up relocation descriptors */
6477         for (i = 0; i < obj->nr_programs; i++) {
6478                 prog = &obj->programs[i];
6479                 zfree(&prog->reloc_desc);
6480                 prog->nr_reloc = 0;
6481         }
6482 }
6483
6484 static int cmp_relocs(const void *_a, const void *_b)
6485 {
6486         const struct reloc_desc *a = _a;
6487         const struct reloc_desc *b = _b;
6488
6489         if (a->insn_idx != b->insn_idx)
6490                 return a->insn_idx < b->insn_idx ? -1 : 1;
6491
6492         /* no two relocations should have the same insn_idx, but ... */
6493         if (a->type != b->type)
6494                 return a->type < b->type ? -1 : 1;
6495
6496         return 0;
6497 }
6498
6499 static void bpf_object__sort_relos(struct bpf_object *obj)
6500 {
6501         int i;
6502
6503         for (i = 0; i < obj->nr_programs; i++) {
6504                 struct bpf_program *p = &obj->programs[i];
6505
6506                 if (!p->nr_reloc)
6507                         continue;
6508
6509                 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6510         }
6511 }
6512
6513 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6514 {
6515         const char *str = "exception_callback:";
6516         size_t pfx_len = strlen(str);
6517         int i, j, n;
6518
6519         if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6520                 return 0;
6521
6522         n = btf__type_cnt(obj->btf);
6523         for (i = 1; i < n; i++) {
6524                 const char *name;
6525                 struct btf_type *t;
6526
6527                 t = btf_type_by_id(obj->btf, i);
6528                 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6529                         continue;
6530
6531                 name = btf__str_by_offset(obj->btf, t->name_off);
6532                 if (strncmp(name, str, pfx_len) != 0)
6533                         continue;
6534
6535                 t = btf_type_by_id(obj->btf, t->type);
6536                 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6537                         pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6538                                 prog->name);
6539                         return -EINVAL;
6540                 }
6541                 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6542                         continue;
6543                 /* Multiple callbacks are specified for the same prog,
6544                  * the verifier will eventually return an error for this
6545                  * case, hence simply skip appending a subprog.
6546                  */
6547                 if (prog->exception_cb_idx >= 0) {
6548                         prog->exception_cb_idx = -1;
6549                         break;
6550                 }
6551
6552                 name += pfx_len;
6553                 if (str_is_empty(name)) {
6554                         pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6555                                 prog->name);
6556                         return -EINVAL;
6557                 }
6558
6559                 for (j = 0; j < obj->nr_programs; j++) {
6560                         struct bpf_program *subprog = &obj->programs[j];
6561
6562                         if (!prog_is_subprog(obj, subprog))
6563                                 continue;
6564                         if (strcmp(name, subprog->name) != 0)
6565                                 continue;
6566                         /* Enforce non-hidden, as from verifier point of
6567                          * view it expects global functions, whereas the
6568                          * mark_btf_static fixes up linkage as static.
6569                          */
6570                         if (!subprog->sym_global || subprog->mark_btf_static) {
6571                                 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6572                                         prog->name, subprog->name);
6573                                 return -EINVAL;
6574                         }
6575                         /* Let's see if we already saw a static exception callback with the same name */
6576                         if (prog->exception_cb_idx >= 0) {
6577                                 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6578                                         prog->name, subprog->name);
6579                                 return -EINVAL;
6580                         }
6581                         prog->exception_cb_idx = j;
6582                         break;
6583                 }
6584
6585                 if (prog->exception_cb_idx >= 0)
6586                         continue;
6587
6588                 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6589                 return -ENOENT;
6590         }
6591
6592         return 0;
6593 }
6594
6595 static struct {
6596         enum bpf_prog_type prog_type;
6597         const char *ctx_name;
6598 } global_ctx_map[] = {
6599         { BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
6600         { BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
6601         { BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
6602         { BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
6603         { BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
6604         { BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
6605         { BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
6606         { BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
6607         { BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
6608         { BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
6609         { BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
6610         { BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
6611         { BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
6612         { BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
6613         { BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
6614         { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6615         { BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
6616         { BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
6617         { BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
6618         { BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
6619         { BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
6620         { BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
6621         { BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
6622         { BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
6623         { BPF_PROG_TYPE_XDP,                     "xdp_md" },
6624         /* all other program types don't have "named" context structs */
6625 };
6626
6627 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6628  * for below __builtin_types_compatible_p() checks;
6629  * with this approach we don't need any extra arch-specific #ifdef guards
6630  */
6631 struct pt_regs;
6632 struct user_pt_regs;
6633 struct user_regs_struct;
6634
6635 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6636                                      const char *subprog_name, int arg_idx,
6637                                      int arg_type_id, const char *ctx_name)
6638 {
6639         const struct btf_type *t;
6640         const char *tname;
6641
6642         /* check if existing parameter already matches verifier expectations */
6643         t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6644         if (!btf_is_ptr(t))
6645                 goto out_warn;
6646
6647         /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6648          * and perf_event programs, so check this case early on and forget
6649          * about it for subsequent checks
6650          */
6651         while (btf_is_mod(t))
6652                 t = btf__type_by_id(btf, t->type);
6653         if (btf_is_typedef(t) &&
6654             (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6655                 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6656                 if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6657                         return false; /* canonical type for kprobe/perf_event */
6658         }
6659
6660         /* now we can ignore typedefs moving forward */
6661         t = skip_mods_and_typedefs(btf, t->type, NULL);
6662
6663         /* if it's `void *`, definitely fix up BTF info */
6664         if (btf_is_void(t))
6665                 return true;
6666
6667         /* if it's already proper canonical type, no need to fix up */
6668         tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6669         if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6670                 return false;
6671
6672         /* special cases */
6673         switch (prog->type) {
6674         case BPF_PROG_TYPE_KPROBE:
6675                 /* `struct pt_regs *` is expected, but we need to fix up */
6676                 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6677                         return true;
6678                 break;
6679         case BPF_PROG_TYPE_PERF_EVENT:
6680                 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6681                     btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6682                         return true;
6683                 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6684                     btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6685                         return true;
6686                 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6687                     btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6688                         return true;
6689                 break;
6690         case BPF_PROG_TYPE_RAW_TRACEPOINT:
6691         case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6692                 /* allow u64* as ctx */
6693                 if (btf_is_int(t) && t->size == 8)
6694                         return true;
6695                 break;
6696         default:
6697                 break;
6698         }
6699
6700 out_warn:
6701         pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6702                 prog->name, subprog_name, arg_idx, ctx_name);
6703         return false;
6704 }
6705
6706 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6707 {
6708         int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6709         int i, err, arg_cnt, fn_name_off, linkage;
6710         struct btf_type *fn_t, *fn_proto_t, *t;
6711         struct btf_param *p;
6712
6713         /* caller already validated FUNC -> FUNC_PROTO validity */
6714         fn_t = btf_type_by_id(btf, orig_fn_id);
6715         fn_proto_t = btf_type_by_id(btf, fn_t->type);
6716
6717         /* Note that each btf__add_xxx() operation invalidates
6718          * all btf_type and string pointers, so we need to be
6719          * very careful when cloning BTF types. BTF type
6720          * pointers have to be always refetched. And to avoid
6721          * problems with invalidated string pointers, we
6722          * add empty strings initially, then just fix up
6723          * name_off offsets in place. Offsets are stable for
6724          * existing strings, so that works out.
6725          */
6726         fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6727         linkage = btf_func_linkage(fn_t);
6728         orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6729         ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6730         arg_cnt = btf_vlen(fn_proto_t);
6731
6732         /* clone FUNC_PROTO and its params */
6733         fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6734         if (fn_proto_id < 0)
6735                 return -EINVAL;
6736
6737         for (i = 0; i < arg_cnt; i++) {
6738                 int name_off;
6739
6740                 /* copy original parameter data */
6741                 t = btf_type_by_id(btf, orig_proto_id);
6742                 p = &btf_params(t)[i];
6743                 name_off = p->name_off;
6744
6745                 err = btf__add_func_param(btf, "", p->type);
6746                 if (err)
6747                         return err;
6748
6749                 fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6750                 p = &btf_params(fn_proto_t)[i];
6751                 p->name_off = name_off; /* use remembered str offset */
6752         }
6753
6754         /* clone FUNC now, btf__add_func() enforces non-empty name, so use
6755          * entry program's name as a placeholder, which we replace immediately
6756          * with original name_off
6757          */
6758         fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6759         if (fn_id < 0)
6760                 return -EINVAL;
6761
6762         fn_t = btf_type_by_id(btf, fn_id);
6763         fn_t->name_off = fn_name_off; /* reuse original string */
6764
6765         return fn_id;
6766 }
6767
6768 /* Check if main program or global subprog's function prototype has `arg:ctx`
6769  * argument tags, and, if necessary, substitute correct type to match what BPF
6770  * verifier would expect, taking into account specific program type. This
6771  * allows to support __arg_ctx tag transparently on old kernels that don't yet
6772  * have a native support for it in the verifier, making user's life much
6773  * easier.
6774  */
6775 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6776 {
6777         const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6778         struct bpf_func_info_min *func_rec;
6779         struct btf_type *fn_t, *fn_proto_t;
6780         struct btf *btf = obj->btf;
6781         const struct btf_type *t;
6782         struct btf_param *p;
6783         int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6784         int i, n, arg_idx, arg_cnt, err, rec_idx;
6785         int *orig_ids;
6786
6787         /* no .BTF.ext, no problem */
6788         if (!obj->btf_ext || !prog->func_info)
6789                 return 0;
6790
6791         /* don't do any fix ups if kernel natively supports __arg_ctx */
6792         if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6793                 return 0;
6794
6795         /* some BPF program types just don't have named context structs, so
6796          * this fallback mechanism doesn't work for them
6797          */
6798         for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6799                 if (global_ctx_map[i].prog_type != prog->type)
6800                         continue;
6801                 ctx_name = global_ctx_map[i].ctx_name;
6802                 break;
6803         }
6804         if (!ctx_name)
6805                 return 0;
6806
6807         /* remember original func BTF IDs to detect if we already cloned them */
6808         orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6809         if (!orig_ids)
6810                 return -ENOMEM;
6811         for (i = 0; i < prog->func_info_cnt; i++) {
6812                 func_rec = prog->func_info + prog->func_info_rec_size * i;
6813                 orig_ids[i] = func_rec->type_id;
6814         }
6815
6816         /* go through each DECL_TAG with "arg:ctx" and see if it points to one
6817          * of our subprogs; if yes and subprog is global and needs adjustment,
6818          * clone and adjust FUNC -> FUNC_PROTO combo
6819          */
6820         for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6821                 /* only DECL_TAG with "arg:ctx" value are interesting */
6822                 t = btf__type_by_id(btf, i);
6823                 if (!btf_is_decl_tag(t))
6824                         continue;
6825                 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6826                         continue;
6827
6828                 /* only global funcs need adjustment, if at all */
6829                 orig_fn_id = t->type;
6830                 fn_t = btf_type_by_id(btf, orig_fn_id);
6831                 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6832                         continue;
6833
6834                 /* sanity check FUNC -> FUNC_PROTO chain, just in case */
6835                 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6836                 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6837                         continue;
6838
6839                 /* find corresponding func_info record */
6840                 func_rec = NULL;
6841                 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6842                         if (orig_ids[rec_idx] == t->type) {
6843                                 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6844                                 break;
6845                         }
6846                 }
6847                 /* current main program doesn't call into this subprog */
6848                 if (!func_rec)
6849                         continue;
6850
6851                 /* some more sanity checking of DECL_TAG */
6852                 arg_cnt = btf_vlen(fn_proto_t);
6853                 arg_idx = btf_decl_tag(t)->component_idx;
6854                 if (arg_idx < 0 || arg_idx >= arg_cnt)
6855                         continue;
6856
6857                 /* check if we should fix up argument type */
6858                 p = &btf_params(fn_proto_t)[arg_idx];
6859                 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6860                 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6861                         continue;
6862
6863                 /* clone fn/fn_proto, unless we already did it for another arg */
6864                 if (func_rec->type_id == orig_fn_id) {
6865                         int fn_id;
6866
6867                         fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
6868                         if (fn_id < 0) {
6869                                 err = fn_id;
6870                                 goto err_out;
6871                         }
6872
6873                         /* point func_info record to a cloned FUNC type */
6874                         func_rec->type_id = fn_id;
6875                 }
6876
6877                 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
6878                  * we do it just once per main BPF program, as all global
6879                  * funcs share the same program type, so need only PTR ->
6880                  * STRUCT type chain
6881                  */
6882                 if (ptr_id == 0) {
6883                         struct_id = btf__add_struct(btf, ctx_name, 0);
6884                         ptr_id = btf__add_ptr(btf, struct_id);
6885                         if (ptr_id < 0 || struct_id < 0) {
6886                                 err = -EINVAL;
6887                                 goto err_out;
6888                         }
6889                 }
6890
6891                 /* for completeness, clone DECL_TAG and point it to cloned param */
6892                 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
6893                 if (tag_id < 0) {
6894                         err = -EINVAL;
6895                         goto err_out;
6896                 }
6897
6898                 /* all the BTF manipulations invalidated pointers, refetch them */
6899                 fn_t = btf_type_by_id(btf, func_rec->type_id);
6900                 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6901
6902                 /* fix up type ID pointed to by param */
6903                 p = &btf_params(fn_proto_t)[arg_idx];
6904                 p->type = ptr_id;
6905         }
6906
6907         free(orig_ids);
6908         return 0;
6909 err_out:
6910         free(orig_ids);
6911         return err;
6912 }
6913
6914 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6915 {
6916         struct bpf_program *prog;
6917         size_t i, j;
6918         int err;
6919
6920         if (obj->btf_ext) {
6921                 err = bpf_object__relocate_core(obj, targ_btf_path);
6922                 if (err) {
6923                         pr_warn("failed to perform CO-RE relocations: %d\n",
6924                                 err);
6925                         return err;
6926                 }
6927                 bpf_object__sort_relos(obj);
6928         }
6929
6930         /* Before relocating calls pre-process relocations and mark
6931          * few ld_imm64 instructions that points to subprogs.
6932          * Otherwise bpf_object__reloc_code() later would have to consider
6933          * all ld_imm64 insns as relocation candidates. That would
6934          * reduce relocation speed, since amount of find_prog_insn_relo()
6935          * would increase and most of them will fail to find a relo.
6936          */
6937         for (i = 0; i < obj->nr_programs; i++) {
6938                 prog = &obj->programs[i];
6939                 for (j = 0; j < prog->nr_reloc; j++) {
6940                         struct reloc_desc *relo = &prog->reloc_desc[j];
6941                         struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6942
6943                         /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6944                         if (relo->type == RELO_SUBPROG_ADDR)
6945                                 insn[0].src_reg = BPF_PSEUDO_FUNC;
6946                 }
6947         }
6948
6949         /* relocate subprogram calls and append used subprograms to main
6950          * programs; each copy of subprogram code needs to be relocated
6951          * differently for each main program, because its code location might
6952          * have changed.
6953          * Append subprog relos to main programs to allow data relos to be
6954          * processed after text is completely relocated.
6955          */
6956         for (i = 0; i < obj->nr_programs; i++) {
6957                 prog = &obj->programs[i];
6958                 /* sub-program's sub-calls are relocated within the context of
6959                  * its main program only
6960                  */
6961                 if (prog_is_subprog(obj, prog))
6962                         continue;
6963                 if (!prog->autoload)
6964                         continue;
6965
6966                 err = bpf_object__relocate_calls(obj, prog);
6967                 if (err) {
6968                         pr_warn("prog '%s': failed to relocate calls: %d\n",
6969                                 prog->name, err);
6970                         return err;
6971                 }
6972
6973                 err = bpf_prog_assign_exc_cb(obj, prog);
6974                 if (err)
6975                         return err;
6976                 /* Now, also append exception callback if it has not been done already. */
6977                 if (prog->exception_cb_idx >= 0) {
6978                         struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
6979
6980                         /* Calling exception callback directly is disallowed, which the
6981                          * verifier will reject later. In case it was processed already,
6982                          * we can skip this step, otherwise for all other valid cases we
6983                          * have to append exception callback now.
6984                          */
6985                         if (subprog->sub_insn_off == 0) {
6986                                 err = bpf_object__append_subprog_code(obj, prog, subprog);
6987                                 if (err)
6988                                         return err;
6989                                 err = bpf_object__reloc_code(obj, prog, subprog);
6990                                 if (err)
6991                                         return err;
6992                         }
6993                 }
6994         }
6995         for (i = 0; i < obj->nr_programs; i++) {
6996                 prog = &obj->programs[i];
6997                 if (prog_is_subprog(obj, prog))
6998                         continue;
6999                 if (!prog->autoload)
7000                         continue;
7001
7002                 /* Process data relos for main programs */
7003                 err = bpf_object__relocate_data(obj, prog);
7004                 if (err) {
7005                         pr_warn("prog '%s': failed to relocate data references: %d\n",
7006                                 prog->name, err);
7007                         return err;
7008                 }
7009
7010                 /* Fix up .BTF.ext information, if necessary */
7011                 err = bpf_program_fixup_func_info(obj, prog);
7012                 if (err) {
7013                         pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n",
7014                                 prog->name, err);
7015                         return err;
7016                 }
7017         }
7018
7019         return 0;
7020 }
7021
7022 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7023                                             Elf64_Shdr *shdr, Elf_Data *data);
7024
7025 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7026                                          Elf64_Shdr *shdr, Elf_Data *data)
7027 {
7028         const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7029         int i, j, nrels, new_sz;
7030         const struct btf_var_secinfo *vi = NULL;
7031         const struct btf_type *sec, *var, *def;
7032         struct bpf_map *map = NULL, *targ_map = NULL;
7033         struct bpf_program *targ_prog = NULL;
7034         bool is_prog_array, is_map_in_map;
7035         const struct btf_member *member;
7036         const char *name, *mname, *type;
7037         unsigned int moff;
7038         Elf64_Sym *sym;
7039         Elf64_Rel *rel;
7040         void *tmp;
7041
7042         if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7043                 return -EINVAL;
7044         sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7045         if (!sec)
7046                 return -EINVAL;
7047
7048         nrels = shdr->sh_size / shdr->sh_entsize;
7049         for (i = 0; i < nrels; i++) {
7050                 rel = elf_rel_by_idx(data, i);
7051                 if (!rel) {
7052                         pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7053                         return -LIBBPF_ERRNO__FORMAT;
7054                 }
7055
7056                 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7057                 if (!sym) {
7058                         pr_warn(".maps relo #%d: symbol %zx not found\n",
7059                                 i, (size_t)ELF64_R_SYM(rel->r_info));
7060                         return -LIBBPF_ERRNO__FORMAT;
7061                 }
7062                 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7063
7064                 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7065                          i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7066                          (size_t)rel->r_offset, sym->st_name, name);
7067
7068                 for (j = 0; j < obj->nr_maps; j++) {
7069                         map = &obj->maps[j];
7070                         if (map->sec_idx != obj->efile.btf_maps_shndx)
7071                                 continue;
7072
7073                         vi = btf_var_secinfos(sec) + map->btf_var_idx;
7074                         if (vi->offset <= rel->r_offset &&
7075                             rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7076                                 break;
7077                 }
7078                 if (j == obj->nr_maps) {
7079                         pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7080                                 i, name, (size_t)rel->r_offset);
7081                         return -EINVAL;
7082                 }
7083
7084                 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7085                 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7086                 type = is_map_in_map ? "map" : "prog";
7087                 if (is_map_in_map) {
7088                         if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7089                                 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7090                                         i, name);
7091                                 return -LIBBPF_ERRNO__RELOC;
7092                         }
7093                         if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7094                             map->def.key_size != sizeof(int)) {
7095                                 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7096                                         i, map->name, sizeof(int));
7097                                 return -EINVAL;
7098                         }
7099                         targ_map = bpf_object__find_map_by_name(obj, name);
7100                         if (!targ_map) {
7101                                 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7102                                         i, name);
7103                                 return -ESRCH;
7104                         }
7105                 } else if (is_prog_array) {
7106                         targ_prog = bpf_object__find_program_by_name(obj, name);
7107                         if (!targ_prog) {
7108                                 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7109                                         i, name);
7110                                 return -ESRCH;
7111                         }
7112                         if (targ_prog->sec_idx != sym->st_shndx ||
7113                             targ_prog->sec_insn_off * 8 != sym->st_value ||
7114                             prog_is_subprog(obj, targ_prog)) {
7115                                 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7116                                         i, name);
7117                                 return -LIBBPF_ERRNO__RELOC;
7118                         }
7119                 } else {
7120                         return -EINVAL;
7121                 }
7122
7123                 var = btf__type_by_id(obj->btf, vi->type);
7124                 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7125                 if (btf_vlen(def) == 0)
7126                         return -EINVAL;
7127                 member = btf_members(def) + btf_vlen(def) - 1;
7128                 mname = btf__name_by_offset(obj->btf, member->name_off);
7129                 if (strcmp(mname, "values"))
7130                         return -EINVAL;
7131
7132                 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7133                 if (rel->r_offset - vi->offset < moff)
7134                         return -EINVAL;
7135
7136                 moff = rel->r_offset - vi->offset - moff;
7137                 /* here we use BPF pointer size, which is always 64 bit, as we
7138                  * are parsing ELF that was built for BPF target
7139                  */
7140                 if (moff % bpf_ptr_sz)
7141                         return -EINVAL;
7142                 moff /= bpf_ptr_sz;
7143                 if (moff >= map->init_slots_sz) {
7144                         new_sz = moff + 1;
7145                         tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7146                         if (!tmp)
7147                                 return -ENOMEM;
7148                         map->init_slots = tmp;
7149                         memset(map->init_slots + map->init_slots_sz, 0,
7150                                (new_sz - map->init_slots_sz) * host_ptr_sz);
7151                         map->init_slots_sz = new_sz;
7152                 }
7153                 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7154
7155                 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7156                          i, map->name, moff, type, name);
7157         }
7158
7159         return 0;
7160 }
7161
7162 static int bpf_object__collect_relos(struct bpf_object *obj)
7163 {
7164         int i, err;
7165
7166         for (i = 0; i < obj->efile.sec_cnt; i++) {
7167                 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7168                 Elf64_Shdr *shdr;
7169                 Elf_Data *data;
7170                 int idx;
7171
7172                 if (sec_desc->sec_type != SEC_RELO)
7173                         continue;
7174
7175                 shdr = sec_desc->shdr;
7176                 data = sec_desc->data;
7177                 idx = shdr->sh_info;
7178
7179                 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7180                         pr_warn("internal error at %d\n", __LINE__);
7181                         return -LIBBPF_ERRNO__INTERNAL;
7182                 }
7183
7184                 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7185                         err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7186                 else if (idx == obj->efile.btf_maps_shndx)
7187                         err = bpf_object__collect_map_relos(obj, shdr, data);
7188                 else
7189                         err = bpf_object__collect_prog_relos(obj, shdr, data);
7190                 if (err)
7191                         return err;
7192         }
7193
7194         bpf_object__sort_relos(obj);
7195         return 0;
7196 }
7197
7198 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7199 {
7200         if (BPF_CLASS(insn->code) == BPF_JMP &&
7201             BPF_OP(insn->code) == BPF_CALL &&
7202             BPF_SRC(insn->code) == BPF_K &&
7203             insn->src_reg == 0 &&
7204             insn->dst_reg == 0) {
7205                     *func_id = insn->imm;
7206                     return true;
7207         }
7208         return false;
7209 }
7210
7211 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7212 {
7213         struct bpf_insn *insn = prog->insns;
7214         enum bpf_func_id func_id;
7215         int i;
7216
7217         if (obj->gen_loader)
7218                 return 0;
7219
7220         for (i = 0; i < prog->insns_cnt; i++, insn++) {
7221                 if (!insn_is_helper_call(insn, &func_id))
7222                         continue;
7223
7224                 /* on kernels that don't yet support
7225                  * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7226                  * to bpf_probe_read() which works well for old kernels
7227                  */
7228                 switch (func_id) {
7229                 case BPF_FUNC_probe_read_kernel:
7230                 case BPF_FUNC_probe_read_user:
7231                         if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7232                                 insn->imm = BPF_FUNC_probe_read;
7233                         break;
7234                 case BPF_FUNC_probe_read_kernel_str:
7235                 case BPF_FUNC_probe_read_user_str:
7236                         if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7237                                 insn->imm = BPF_FUNC_probe_read_str;
7238                         break;
7239                 default:
7240                         break;
7241                 }
7242         }
7243         return 0;
7244 }
7245
7246 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7247                                      int *btf_obj_fd, int *btf_type_id);
7248
7249 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7250 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7251                                     struct bpf_prog_load_opts *opts, long cookie)
7252 {
7253         enum sec_def_flags def = cookie;
7254
7255         /* old kernels might not support specifying expected_attach_type */
7256         if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7257                 opts->expected_attach_type = 0;
7258
7259         if (def & SEC_SLEEPABLE)
7260                 opts->prog_flags |= BPF_F_SLEEPABLE;
7261
7262         if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7263                 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7264
7265         /* special check for usdt to use uprobe_multi link */
7266         if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7267                 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7268
7269         if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7270                 int btf_obj_fd = 0, btf_type_id = 0, err;
7271                 const char *attach_name;
7272
7273                 attach_name = strchr(prog->sec_name, '/');
7274                 if (!attach_name) {
7275                         /* if BPF program is annotated with just SEC("fentry")
7276                          * (or similar) without declaratively specifying
7277                          * target, then it is expected that target will be
7278                          * specified with bpf_program__set_attach_target() at
7279                          * runtime before BPF object load step. If not, then
7280                          * there is nothing to load into the kernel as BPF
7281                          * verifier won't be able to validate BPF program
7282                          * correctness anyways.
7283                          */
7284                         pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7285                                 prog->name);
7286                         return -EINVAL;
7287                 }
7288                 attach_name++; /* skip over / */
7289
7290                 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7291                 if (err)
7292                         return err;
7293
7294                 /* cache resolved BTF FD and BTF type ID in the prog */
7295                 prog->attach_btf_obj_fd = btf_obj_fd;
7296                 prog->attach_btf_id = btf_type_id;
7297
7298                 /* but by now libbpf common logic is not utilizing
7299                  * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7300                  * this callback is called after opts were populated by
7301                  * libbpf, so this callback has to update opts explicitly here
7302                  */
7303                 opts->attach_btf_obj_fd = btf_obj_fd;
7304                 opts->attach_btf_id = btf_type_id;
7305         }
7306         return 0;
7307 }
7308
7309 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7310
7311 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7312                                 struct bpf_insn *insns, int insns_cnt,
7313                                 const char *license, __u32 kern_version, int *prog_fd)
7314 {
7315         LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7316         const char *prog_name = NULL;
7317         char *cp, errmsg[STRERR_BUFSIZE];
7318         size_t log_buf_size = 0;
7319         char *log_buf = NULL, *tmp;
7320         int btf_fd, ret, err;
7321         bool own_log_buf = true;
7322         __u32 log_level = prog->log_level;
7323
7324         if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7325                 /*
7326                  * The program type must be set.  Most likely we couldn't find a proper
7327                  * section definition at load time, and thus we didn't infer the type.
7328                  */
7329                 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7330                         prog->name, prog->sec_name);
7331                 return -EINVAL;
7332         }
7333
7334         if (!insns || !insns_cnt)
7335                 return -EINVAL;
7336
7337         if (kernel_supports(obj, FEAT_PROG_NAME))
7338                 prog_name = prog->name;
7339         load_attr.attach_prog_fd = prog->attach_prog_fd;
7340         load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7341         load_attr.attach_btf_id = prog->attach_btf_id;
7342         load_attr.kern_version = kern_version;
7343         load_attr.prog_ifindex = prog->prog_ifindex;
7344
7345         /* specify func_info/line_info only if kernel supports them */
7346         btf_fd = btf__fd(obj->btf);
7347         if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7348                 load_attr.prog_btf_fd = btf_fd;
7349                 load_attr.func_info = prog->func_info;
7350                 load_attr.func_info_rec_size = prog->func_info_rec_size;
7351                 load_attr.func_info_cnt = prog->func_info_cnt;
7352                 load_attr.line_info = prog->line_info;
7353                 load_attr.line_info_rec_size = prog->line_info_rec_size;
7354                 load_attr.line_info_cnt = prog->line_info_cnt;
7355         }
7356         load_attr.log_level = log_level;
7357         load_attr.prog_flags = prog->prog_flags;
7358         load_attr.fd_array = obj->fd_array;
7359
7360         load_attr.token_fd = obj->token_fd;
7361         if (obj->token_fd)
7362                 load_attr.prog_flags |= BPF_F_TOKEN_FD;
7363
7364         /* adjust load_attr if sec_def provides custom preload callback */
7365         if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7366                 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7367                 if (err < 0) {
7368                         pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7369                                 prog->name, err);
7370                         return err;
7371                 }
7372                 insns = prog->insns;
7373                 insns_cnt = prog->insns_cnt;
7374         }
7375
7376         /* allow prog_prepare_load_fn to change expected_attach_type */
7377         load_attr.expected_attach_type = prog->expected_attach_type;
7378
7379         if (obj->gen_loader) {
7380                 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7381                                    license, insns, insns_cnt, &load_attr,
7382                                    prog - obj->programs);
7383                 *prog_fd = -1;
7384                 return 0;
7385         }
7386
7387 retry_load:
7388         /* if log_level is zero, we don't request logs initially even if
7389          * custom log_buf is specified; if the program load fails, then we'll
7390          * bump log_level to 1 and use either custom log_buf or we'll allocate
7391          * our own and retry the load to get details on what failed
7392          */
7393         if (log_level) {
7394                 if (prog->log_buf) {
7395                         log_buf = prog->log_buf;
7396                         log_buf_size = prog->log_size;
7397                         own_log_buf = false;
7398                 } else if (obj->log_buf) {
7399                         log_buf = obj->log_buf;
7400                         log_buf_size = obj->log_size;
7401                         own_log_buf = false;
7402                 } else {
7403                         log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7404                         tmp = realloc(log_buf, log_buf_size);
7405                         if (!tmp) {
7406                                 ret = -ENOMEM;
7407                                 goto out;
7408                         }
7409                         log_buf = tmp;
7410                         log_buf[0] = '\0';
7411                         own_log_buf = true;
7412                 }
7413         }
7414
7415         load_attr.log_buf = log_buf;
7416         load_attr.log_size = log_buf_size;
7417         load_attr.log_level = log_level;
7418
7419         ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7420         if (ret >= 0) {
7421                 if (log_level && own_log_buf) {
7422                         pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7423                                  prog->name, log_buf);
7424                 }
7425
7426                 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7427                         struct bpf_map *map;
7428                         int i;
7429
7430                         for (i = 0; i < obj->nr_maps; i++) {
7431                                 map = &prog->obj->maps[i];
7432                                 if (map->libbpf_type != LIBBPF_MAP_RODATA)
7433                                         continue;
7434
7435                                 if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7436                                         cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7437                                         pr_warn("prog '%s': failed to bind map '%s': %s\n",
7438                                                 prog->name, map->real_name, cp);
7439                                         /* Don't fail hard if can't bind rodata. */
7440                                 }
7441                         }
7442                 }
7443
7444                 *prog_fd = ret;
7445                 ret = 0;
7446                 goto out;
7447         }
7448
7449         if (log_level == 0) {
7450                 log_level = 1;
7451                 goto retry_load;
7452         }
7453         /* On ENOSPC, increase log buffer size and retry, unless custom
7454          * log_buf is specified.
7455          * Be careful to not overflow u32, though. Kernel's log buf size limit
7456          * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7457          * multiply by 2 unless we are sure we'll fit within 32 bits.
7458          * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7459          */
7460         if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7461                 goto retry_load;
7462
7463         ret = -errno;
7464
7465         /* post-process verifier log to improve error descriptions */
7466         fixup_verifier_log(prog, log_buf, log_buf_size);
7467
7468         cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7469         pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7470         pr_perm_msg(ret);
7471
7472         if (own_log_buf && log_buf && log_buf[0] != '\0') {
7473                 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7474                         prog->name, log_buf);
7475         }
7476
7477 out:
7478         if (own_log_buf)
7479                 free(log_buf);
7480         return ret;
7481 }
7482
7483 static char *find_prev_line(char *buf, char *cur)
7484 {
7485         char *p;
7486
7487         if (cur == buf) /* end of a log buf */
7488                 return NULL;
7489
7490         p = cur - 1;
7491         while (p - 1 >= buf && *(p - 1) != '\n')
7492                 p--;
7493
7494         return p;
7495 }
7496
7497 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7498                       char *orig, size_t orig_sz, const char *patch)
7499 {
7500         /* size of the remaining log content to the right from the to-be-replaced part */
7501         size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7502         size_t patch_sz = strlen(patch);
7503
7504         if (patch_sz != orig_sz) {
7505                 /* If patch line(s) are longer than original piece of verifier log,
7506                  * shift log contents by (patch_sz - orig_sz) bytes to the right
7507                  * starting from after to-be-replaced part of the log.
7508                  *
7509                  * If patch line(s) are shorter than original piece of verifier log,
7510                  * shift log contents by (orig_sz - patch_sz) bytes to the left
7511                  * starting from after to-be-replaced part of the log
7512                  *
7513                  * We need to be careful about not overflowing available
7514                  * buf_sz capacity. If that's the case, we'll truncate the end
7515                  * of the original log, as necessary.
7516                  */
7517                 if (patch_sz > orig_sz) {
7518                         if (orig + patch_sz >= buf + buf_sz) {
7519                                 /* patch is big enough to cover remaining space completely */
7520                                 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7521                                 rem_sz = 0;
7522                         } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7523                                 /* patch causes part of remaining log to be truncated */
7524                                 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7525                         }
7526                 }
7527                 /* shift remaining log to the right by calculated amount */
7528                 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7529         }
7530
7531         memcpy(orig, patch, patch_sz);
7532 }
7533
7534 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7535                                        char *buf, size_t buf_sz, size_t log_sz,
7536                                        char *line1, char *line2, char *line3)
7537 {
7538         /* Expected log for failed and not properly guarded CO-RE relocation:
7539          * line1 -> 123: (85) call unknown#195896080
7540          * line2 -> invalid func unknown#195896080
7541          * line3 -> <anything else or end of buffer>
7542          *
7543          * "123" is the index of the instruction that was poisoned. We extract
7544          * instruction index to find corresponding CO-RE relocation and
7545          * replace this part of the log with more relevant information about
7546          * failed CO-RE relocation.
7547          */
7548         const struct bpf_core_relo *relo;
7549         struct bpf_core_spec spec;
7550         char patch[512], spec_buf[256];
7551         int insn_idx, err, spec_len;
7552
7553         if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7554                 return;
7555
7556         relo = find_relo_core(prog, insn_idx);
7557         if (!relo)
7558                 return;
7559
7560         err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7561         if (err)
7562                 return;
7563
7564         spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7565         snprintf(patch, sizeof(patch),
7566                  "%d: <invalid CO-RE relocation>\n"
7567                  "failed to resolve CO-RE relocation %s%s\n",
7568                  insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7569
7570         patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7571 }
7572
7573 static void fixup_log_missing_map_load(struct bpf_program *prog,
7574                                        char *buf, size_t buf_sz, size_t log_sz,
7575                                        char *line1, char *line2, char *line3)
7576 {
7577         /* Expected log for failed and not properly guarded map reference:
7578          * line1 -> 123: (85) call unknown#2001000345
7579          * line2 -> invalid func unknown#2001000345
7580          * line3 -> <anything else or end of buffer>
7581          *
7582          * "123" is the index of the instruction that was poisoned.
7583          * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7584          */
7585         struct bpf_object *obj = prog->obj;
7586         const struct bpf_map *map;
7587         int insn_idx, map_idx;
7588         char patch[128];
7589
7590         if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7591                 return;
7592
7593         map_idx -= POISON_LDIMM64_MAP_BASE;
7594         if (map_idx < 0 || map_idx >= obj->nr_maps)
7595                 return;
7596         map = &obj->maps[map_idx];
7597
7598         snprintf(patch, sizeof(patch),
7599                  "%d: <invalid BPF map reference>\n"
7600                  "BPF map '%s' is referenced but wasn't created\n",
7601                  insn_idx, map->name);
7602
7603         patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7604 }
7605
7606 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7607                                          char *buf, size_t buf_sz, size_t log_sz,
7608                                          char *line1, char *line2, char *line3)
7609 {
7610         /* Expected log for failed and not properly guarded kfunc call:
7611          * line1 -> 123: (85) call unknown#2002000345
7612          * line2 -> invalid func unknown#2002000345
7613          * line3 -> <anything else or end of buffer>
7614          *
7615          * "123" is the index of the instruction that was poisoned.
7616          * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7617          */
7618         struct bpf_object *obj = prog->obj;
7619         const struct extern_desc *ext;
7620         int insn_idx, ext_idx;
7621         char patch[128];
7622
7623         if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7624                 return;
7625
7626         ext_idx -= POISON_CALL_KFUNC_BASE;
7627         if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7628                 return;
7629         ext = &obj->externs[ext_idx];
7630
7631         snprintf(patch, sizeof(patch),
7632                  "%d: <invalid kfunc call>\n"
7633                  "kfunc '%s' is referenced but wasn't resolved\n",
7634                  insn_idx, ext->name);
7635
7636         patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7637 }
7638
7639 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7640 {
7641         /* look for familiar error patterns in last N lines of the log */
7642         const size_t max_last_line_cnt = 10;
7643         char *prev_line, *cur_line, *next_line;
7644         size_t log_sz;
7645         int i;
7646
7647         if (!buf)
7648                 return;
7649
7650         log_sz = strlen(buf) + 1;
7651         next_line = buf + log_sz - 1;
7652
7653         for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7654                 cur_line = find_prev_line(buf, next_line);
7655                 if (!cur_line)
7656                         return;
7657
7658                 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7659                         prev_line = find_prev_line(buf, cur_line);
7660                         if (!prev_line)
7661                                 continue;
7662
7663                         /* failed CO-RE relocation case */
7664                         fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7665                                                    prev_line, cur_line, next_line);
7666                         return;
7667                 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7668                         prev_line = find_prev_line(buf, cur_line);
7669                         if (!prev_line)
7670                                 continue;
7671
7672                         /* reference to uncreated BPF map */
7673                         fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7674                                                    prev_line, cur_line, next_line);
7675                         return;
7676                 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7677                         prev_line = find_prev_line(buf, cur_line);
7678                         if (!prev_line)
7679                                 continue;
7680
7681                         /* reference to unresolved kfunc */
7682                         fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7683                                                      prev_line, cur_line, next_line);
7684                         return;
7685                 }
7686         }
7687 }
7688
7689 static int bpf_program_record_relos(struct bpf_program *prog)
7690 {
7691         struct bpf_object *obj = prog->obj;
7692         int i;
7693
7694         for (i = 0; i < prog->nr_reloc; i++) {
7695                 struct reloc_desc *relo = &prog->reloc_desc[i];
7696                 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7697                 int kind;
7698
7699                 switch (relo->type) {
7700                 case RELO_EXTERN_LD64:
7701                         if (ext->type != EXT_KSYM)
7702                                 continue;
7703                         kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7704                                 BTF_KIND_VAR : BTF_KIND_FUNC;
7705                         bpf_gen__record_extern(obj->gen_loader, ext->name,
7706                                                ext->is_weak, !ext->ksym.type_id,
7707                                                true, kind, relo->insn_idx);
7708                         break;
7709                 case RELO_EXTERN_CALL:
7710                         bpf_gen__record_extern(obj->gen_loader, ext->name,
7711                                                ext->is_weak, false, false, BTF_KIND_FUNC,
7712                                                relo->insn_idx);
7713                         break;
7714                 case RELO_CORE: {
7715                         struct bpf_core_relo cr = {
7716                                 .insn_off = relo->insn_idx * 8,
7717                                 .type_id = relo->core_relo->type_id,
7718                                 .access_str_off = relo->core_relo->access_str_off,
7719                                 .kind = relo->core_relo->kind,
7720                         };
7721
7722                         bpf_gen__record_relo_core(obj->gen_loader, &cr);
7723                         break;
7724                 }
7725                 default:
7726                         continue;
7727                 }
7728         }
7729         return 0;
7730 }
7731
7732 static int
7733 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7734 {
7735         struct bpf_program *prog;
7736         size_t i;
7737         int err;
7738
7739         for (i = 0; i < obj->nr_programs; i++) {
7740                 prog = &obj->programs[i];
7741                 err = bpf_object__sanitize_prog(obj, prog);
7742                 if (err)
7743                         return err;
7744         }
7745
7746         for (i = 0; i < obj->nr_programs; i++) {
7747                 prog = &obj->programs[i];
7748                 if (prog_is_subprog(obj, prog))
7749                         continue;
7750                 if (!prog->autoload) {
7751                         pr_debug("prog '%s': skipped loading\n", prog->name);
7752                         continue;
7753                 }
7754                 prog->log_level |= log_level;
7755
7756                 if (obj->gen_loader)
7757                         bpf_program_record_relos(prog);
7758
7759                 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7760                                            obj->license, obj->kern_version, &prog->fd);
7761                 if (err) {
7762                         pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7763                         return err;
7764                 }
7765         }
7766
7767         bpf_object__free_relocs(obj);
7768         return 0;
7769 }
7770
7771 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7772
7773 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7774 {
7775         struct bpf_program *prog;
7776         int err;
7777
7778         bpf_object__for_each_program(prog, obj) {
7779                 prog->sec_def = find_sec_def(prog->sec_name);
7780                 if (!prog->sec_def) {
7781                         /* couldn't guess, but user might manually specify */
7782                         pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7783                                 prog->name, prog->sec_name);
7784                         continue;
7785                 }
7786
7787                 prog->type = prog->sec_def->prog_type;
7788                 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7789
7790                 /* sec_def can have custom callback which should be called
7791                  * after bpf_program is initialized to adjust its properties
7792                  */
7793                 if (prog->sec_def->prog_setup_fn) {
7794                         err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7795                         if (err < 0) {
7796                                 pr_warn("prog '%s': failed to initialize: %d\n",
7797                                         prog->name, err);
7798                                 return err;
7799                         }
7800                 }
7801         }
7802
7803         return 0;
7804 }
7805
7806 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7807                                           const struct bpf_object_open_opts *opts)
7808 {
7809         const char *obj_name, *kconfig, *btf_tmp_path, *token_path;
7810         struct bpf_object *obj;
7811         char tmp_name[64];
7812         int err;
7813         char *log_buf;
7814         size_t log_size;
7815         __u32 log_level;
7816
7817         if (elf_version(EV_CURRENT) == EV_NONE) {
7818                 pr_warn("failed to init libelf for %s\n",
7819                         path ? : "(mem buf)");
7820                 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7821         }
7822
7823         if (!OPTS_VALID(opts, bpf_object_open_opts))
7824                 return ERR_PTR(-EINVAL);
7825
7826         obj_name = OPTS_GET(opts, object_name, NULL);
7827         if (obj_buf) {
7828                 if (!obj_name) {
7829                         snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7830                                  (unsigned long)obj_buf,
7831                                  (unsigned long)obj_buf_sz);
7832                         obj_name = tmp_name;
7833                 }
7834                 path = obj_name;
7835                 pr_debug("loading object '%s' from buffer\n", obj_name);
7836         }
7837
7838         log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7839         log_size = OPTS_GET(opts, kernel_log_size, 0);
7840         log_level = OPTS_GET(opts, kernel_log_level, 0);
7841         if (log_size > UINT_MAX)
7842                 return ERR_PTR(-EINVAL);
7843         if (log_size && !log_buf)
7844                 return ERR_PTR(-EINVAL);
7845
7846         token_path = OPTS_GET(opts, bpf_token_path, NULL);
7847         /* if user didn't specify bpf_token_path explicitly, check if
7848          * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
7849          * option
7850          */
7851         if (!token_path)
7852                 token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
7853         if (token_path && strlen(token_path) >= PATH_MAX)
7854                 return ERR_PTR(-ENAMETOOLONG);
7855
7856         obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7857         if (IS_ERR(obj))
7858                 return obj;
7859
7860         obj->log_buf = log_buf;
7861         obj->log_size = log_size;
7862         obj->log_level = log_level;
7863
7864         if (token_path) {
7865                 obj->token_path = strdup(token_path);
7866                 if (!obj->token_path) {
7867                         err = -ENOMEM;
7868                         goto out;
7869                 }
7870         }
7871
7872         btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7873         if (btf_tmp_path) {
7874                 if (strlen(btf_tmp_path) >= PATH_MAX) {
7875                         err = -ENAMETOOLONG;
7876                         goto out;
7877                 }
7878                 obj->btf_custom_path = strdup(btf_tmp_path);
7879                 if (!obj->btf_custom_path) {
7880                         err = -ENOMEM;
7881                         goto out;
7882                 }
7883         }
7884
7885         kconfig = OPTS_GET(opts, kconfig, NULL);
7886         if (kconfig) {
7887                 obj->kconfig = strdup(kconfig);
7888                 if (!obj->kconfig) {
7889                         err = -ENOMEM;
7890                         goto out;
7891                 }
7892         }
7893
7894         err = bpf_object__elf_init(obj);
7895         err = err ? : bpf_object__check_endianness(obj);
7896         err = err ? : bpf_object__elf_collect(obj);
7897         err = err ? : bpf_object__collect_externs(obj);
7898         err = err ? : bpf_object_fixup_btf(obj);
7899         err = err ? : bpf_object__init_maps(obj, opts);
7900         err = err ? : bpf_object_init_progs(obj, opts);
7901         err = err ? : bpf_object__collect_relos(obj);
7902         if (err)
7903                 goto out;
7904
7905         bpf_object__elf_finish(obj);
7906
7907         return obj;
7908 out:
7909         bpf_object__close(obj);
7910         return ERR_PTR(err);
7911 }
7912
7913 struct bpf_object *
7914 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7915 {
7916         if (!path)
7917                 return libbpf_err_ptr(-EINVAL);
7918
7919         pr_debug("loading %s\n", path);
7920
7921         return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7922 }
7923
7924 struct bpf_object *bpf_object__open(const char *path)
7925 {
7926         return bpf_object__open_file(path, NULL);
7927 }
7928
7929 struct bpf_object *
7930 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7931                      const struct bpf_object_open_opts *opts)
7932 {
7933         if (!obj_buf || obj_buf_sz == 0)
7934                 return libbpf_err_ptr(-EINVAL);
7935
7936         return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7937 }
7938
7939 static int bpf_object_unload(struct bpf_object *obj)
7940 {
7941         size_t i;
7942
7943         if (!obj)
7944                 return libbpf_err(-EINVAL);
7945
7946         for (i = 0; i < obj->nr_maps; i++) {
7947                 zclose(obj->maps[i].fd);
7948                 if (obj->maps[i].st_ops)
7949                         zfree(&obj->maps[i].st_ops->kern_vdata);
7950         }
7951
7952         for (i = 0; i < obj->nr_programs; i++)
7953                 bpf_program__unload(&obj->programs[i]);
7954
7955         return 0;
7956 }
7957
7958 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7959 {
7960         struct bpf_map *m;
7961
7962         bpf_object__for_each_map(m, obj) {
7963                 if (!bpf_map__is_internal(m))
7964                         continue;
7965                 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7966                         m->def.map_flags &= ~BPF_F_MMAPABLE;
7967         }
7968
7969         return 0;
7970 }
7971
7972 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7973 {
7974         char sym_type, sym_name[500];
7975         unsigned long long sym_addr;
7976         int ret, err = 0;
7977         FILE *f;
7978
7979         f = fopen("/proc/kallsyms", "re");
7980         if (!f) {
7981                 err = -errno;
7982                 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7983                 return err;
7984         }
7985
7986         while (true) {
7987                 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7988                              &sym_addr, &sym_type, sym_name);
7989                 if (ret == EOF && feof(f))
7990                         break;
7991                 if (ret != 3) {
7992                         pr_warn("failed to read kallsyms entry: %d\n", ret);
7993                         err = -EINVAL;
7994                         break;
7995                 }
7996
7997                 err = cb(sym_addr, sym_type, sym_name, ctx);
7998                 if (err)
7999                         break;
8000         }
8001
8002         fclose(f);
8003         return err;
8004 }
8005
8006 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8007                        const char *sym_name, void *ctx)
8008 {
8009         struct bpf_object *obj = ctx;
8010         const struct btf_type *t;
8011         struct extern_desc *ext;
8012
8013         ext = find_extern_by_name(obj, sym_name);
8014         if (!ext || ext->type != EXT_KSYM)
8015                 return 0;
8016
8017         t = btf__type_by_id(obj->btf, ext->btf_id);
8018         if (!btf_is_var(t))
8019                 return 0;
8020
8021         if (ext->is_set && ext->ksym.addr != sym_addr) {
8022                 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8023                         sym_name, ext->ksym.addr, sym_addr);
8024                 return -EINVAL;
8025         }
8026         if (!ext->is_set) {
8027                 ext->is_set = true;
8028                 ext->ksym.addr = sym_addr;
8029                 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8030         }
8031         return 0;
8032 }
8033
8034 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8035 {
8036         return libbpf_kallsyms_parse(kallsyms_cb, obj);
8037 }
8038
8039 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8040                             __u16 kind, struct btf **res_btf,
8041                             struct module_btf **res_mod_btf)
8042 {
8043         struct module_btf *mod_btf;
8044         struct btf *btf;
8045         int i, id, err;
8046
8047         btf = obj->btf_vmlinux;
8048         mod_btf = NULL;
8049         id = btf__find_by_name_kind(btf, ksym_name, kind);
8050
8051         if (id == -ENOENT) {
8052                 err = load_module_btfs(obj);
8053                 if (err)
8054                         return err;
8055
8056                 for (i = 0; i < obj->btf_module_cnt; i++) {
8057                         /* we assume module_btf's BTF FD is always >0 */
8058                         mod_btf = &obj->btf_modules[i];
8059                         btf = mod_btf->btf;
8060                         id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8061                         if (id != -ENOENT)
8062                                 break;
8063                 }
8064         }
8065         if (id <= 0)
8066                 return -ESRCH;
8067
8068         *res_btf = btf;
8069         *res_mod_btf = mod_btf;
8070         return id;
8071 }
8072
8073 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8074                                                struct extern_desc *ext)
8075 {
8076         const struct btf_type *targ_var, *targ_type;
8077         __u32 targ_type_id, local_type_id;
8078         struct module_btf *mod_btf = NULL;
8079         const char *targ_var_name;
8080         struct btf *btf = NULL;
8081         int id, err;
8082
8083         id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8084         if (id < 0) {
8085                 if (id == -ESRCH && ext->is_weak)
8086                         return 0;
8087                 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8088                         ext->name);
8089                 return id;
8090         }
8091
8092         /* find local type_id */
8093         local_type_id = ext->ksym.type_id;
8094
8095         /* find target type_id */
8096         targ_var = btf__type_by_id(btf, id);
8097         targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8098         targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8099
8100         err = bpf_core_types_are_compat(obj->btf, local_type_id,
8101                                         btf, targ_type_id);
8102         if (err <= 0) {
8103                 const struct btf_type *local_type;
8104                 const char *targ_name, *local_name;
8105
8106                 local_type = btf__type_by_id(obj->btf, local_type_id);
8107                 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8108                 targ_name = btf__name_by_offset(btf, targ_type->name_off);
8109
8110                 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8111                         ext->name, local_type_id,
8112                         btf_kind_str(local_type), local_name, targ_type_id,
8113                         btf_kind_str(targ_type), targ_name);
8114                 return -EINVAL;
8115         }
8116
8117         ext->is_set = true;
8118         ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8119         ext->ksym.kernel_btf_id = id;
8120         pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8121                  ext->name, id, btf_kind_str(targ_var), targ_var_name);
8122
8123         return 0;
8124 }
8125
8126 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8127                                                 struct extern_desc *ext)
8128 {
8129         int local_func_proto_id, kfunc_proto_id, kfunc_id;
8130         struct module_btf *mod_btf = NULL;
8131         const struct btf_type *kern_func;
8132         struct btf *kern_btf = NULL;
8133         int ret;
8134
8135         local_func_proto_id = ext->ksym.type_id;
8136
8137         kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8138                                     &mod_btf);
8139         if (kfunc_id < 0) {
8140                 if (kfunc_id == -ESRCH && ext->is_weak)
8141                         return 0;
8142                 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8143                         ext->name);
8144                 return kfunc_id;
8145         }
8146
8147         kern_func = btf__type_by_id(kern_btf, kfunc_id);
8148         kfunc_proto_id = kern_func->type;
8149
8150         ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8151                                         kern_btf, kfunc_proto_id);
8152         if (ret <= 0) {
8153                 if (ext->is_weak)
8154                         return 0;
8155
8156                 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8157                         ext->name, local_func_proto_id,
8158                         mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8159                 return -EINVAL;
8160         }
8161
8162         /* set index for module BTF fd in fd_array, if unset */
8163         if (mod_btf && !mod_btf->fd_array_idx) {
8164                 /* insn->off is s16 */
8165                 if (obj->fd_array_cnt == INT16_MAX) {
8166                         pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8167                                 ext->name, mod_btf->fd_array_idx);
8168                         return -E2BIG;
8169                 }
8170                 /* Cannot use index 0 for module BTF fd */
8171                 if (!obj->fd_array_cnt)
8172                         obj->fd_array_cnt = 1;
8173
8174                 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8175                                         obj->fd_array_cnt + 1);
8176                 if (ret)
8177                         return ret;
8178                 mod_btf->fd_array_idx = obj->fd_array_cnt;
8179                 /* we assume module BTF FD is always >0 */
8180                 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8181         }
8182
8183         ext->is_set = true;
8184         ext->ksym.kernel_btf_id = kfunc_id;
8185         ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8186         /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8187          * populates FD into ld_imm64 insn when it's used to point to kfunc.
8188          * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8189          * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8190          */
8191         ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8192         pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8193                  ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8194
8195         return 0;
8196 }
8197
8198 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8199 {
8200         const struct btf_type *t;
8201         struct extern_desc *ext;
8202         int i, err;
8203
8204         for (i = 0; i < obj->nr_extern; i++) {
8205                 ext = &obj->externs[i];
8206                 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8207                         continue;
8208
8209                 if (obj->gen_loader) {
8210                         ext->is_set = true;
8211                         ext->ksym.kernel_btf_obj_fd = 0;
8212                         ext->ksym.kernel_btf_id = 0;
8213                         continue;
8214                 }
8215                 t = btf__type_by_id(obj->btf, ext->btf_id);
8216                 if (btf_is_var(t))
8217                         err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8218                 else
8219                         err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8220                 if (err)
8221                         return err;
8222         }
8223         return 0;
8224 }
8225
8226 static int bpf_object__resolve_externs(struct bpf_object *obj,
8227                                        const char *extra_kconfig)
8228 {
8229         bool need_config = false, need_kallsyms = false;
8230         bool need_vmlinux_btf = false;
8231         struct extern_desc *ext;
8232         void *kcfg_data = NULL;
8233         int err, i;
8234
8235         if (obj->nr_extern == 0)
8236                 return 0;
8237
8238         if (obj->kconfig_map_idx >= 0)
8239                 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8240
8241         for (i = 0; i < obj->nr_extern; i++) {
8242                 ext = &obj->externs[i];
8243
8244                 if (ext->type == EXT_KSYM) {
8245                         if (ext->ksym.type_id)
8246                                 need_vmlinux_btf = true;
8247                         else
8248                                 need_kallsyms = true;
8249                         continue;
8250                 } else if (ext->type == EXT_KCFG) {
8251                         void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8252                         __u64 value = 0;
8253
8254                         /* Kconfig externs need actual /proc/config.gz */
8255                         if (str_has_pfx(ext->name, "CONFIG_")) {
8256                                 need_config = true;
8257                                 continue;
8258                         }
8259
8260                         /* Virtual kcfg externs are customly handled by libbpf */
8261                         if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8262                                 value = get_kernel_version();
8263                                 if (!value) {
8264                                         pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8265                                         return -EINVAL;
8266                                 }
8267                         } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8268                                 value = kernel_supports(obj, FEAT_BPF_COOKIE);
8269                         } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8270                                 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8271                         } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8272                                 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8273                                  * __kconfig externs, where LINUX_ ones are virtual and filled out
8274                                  * customly by libbpf (their values don't come from Kconfig).
8275                                  * If LINUX_xxx variable is not recognized by libbpf, but is marked
8276                                  * __weak, it defaults to zero value, just like for CONFIG_xxx
8277                                  * externs.
8278                                  */
8279                                 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8280                                 return -EINVAL;
8281                         }
8282
8283                         err = set_kcfg_value_num(ext, ext_ptr, value);
8284                         if (err)
8285                                 return err;
8286                         pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8287                                  ext->name, (long long)value);
8288                 } else {
8289                         pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8290                         return -EINVAL;
8291                 }
8292         }
8293         if (need_config && extra_kconfig) {
8294                 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8295                 if (err)
8296                         return -EINVAL;
8297                 need_config = false;
8298                 for (i = 0; i < obj->nr_extern; i++) {
8299                         ext = &obj->externs[i];
8300                         if (ext->type == EXT_KCFG && !ext->is_set) {
8301                                 need_config = true;
8302                                 break;
8303                         }
8304                 }
8305         }
8306         if (need_config) {
8307                 err = bpf_object__read_kconfig_file(obj, kcfg_data);
8308                 if (err)
8309                         return -EINVAL;
8310         }
8311         if (need_kallsyms) {
8312                 err = bpf_object__read_kallsyms_file(obj);
8313                 if (err)
8314                         return -EINVAL;
8315         }
8316         if (need_vmlinux_btf) {
8317                 err = bpf_object__resolve_ksyms_btf_id(obj);
8318                 if (err)
8319                         return -EINVAL;
8320         }
8321         for (i = 0; i < obj->nr_extern; i++) {
8322                 ext = &obj->externs[i];
8323
8324                 if (!ext->is_set && !ext->is_weak) {
8325                         pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8326                         return -ESRCH;
8327                 } else if (!ext->is_set) {
8328                         pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8329                                  ext->name);
8330                 }
8331         }
8332
8333         return 0;
8334 }
8335
8336 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8337 {
8338         struct bpf_struct_ops *st_ops;
8339         __u32 i;
8340
8341         st_ops = map->st_ops;
8342         for (i = 0; i < btf_vlen(st_ops->type); i++) {
8343                 struct bpf_program *prog = st_ops->progs[i];
8344                 void *kern_data;
8345                 int prog_fd;
8346
8347                 if (!prog)
8348                         continue;
8349
8350                 prog_fd = bpf_program__fd(prog);
8351                 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8352                 *(unsigned long *)kern_data = prog_fd;
8353         }
8354 }
8355
8356 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8357 {
8358         struct bpf_map *map;
8359         int i;
8360
8361         for (i = 0; i < obj->nr_maps; i++) {
8362                 map = &obj->maps[i];
8363
8364                 if (!bpf_map__is_struct_ops(map))
8365                         continue;
8366
8367                 if (!map->autocreate)
8368                         continue;
8369
8370                 bpf_map_prepare_vdata(map);
8371         }
8372
8373         return 0;
8374 }
8375
8376 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8377 {
8378         int err, i;
8379
8380         if (!obj)
8381                 return libbpf_err(-EINVAL);
8382
8383         if (obj->loaded) {
8384                 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8385                 return libbpf_err(-EINVAL);
8386         }
8387
8388         if (obj->gen_loader)
8389                 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8390
8391         err = bpf_object_prepare_token(obj);
8392         err = err ? : bpf_object__probe_loading(obj);
8393         err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8394         err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8395         err = err ? : bpf_object__sanitize_maps(obj);
8396         err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8397         err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8398         err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8399         err = err ? : bpf_object__sanitize_and_load_btf(obj);
8400         err = err ? : bpf_object__create_maps(obj);
8401         err = err ? : bpf_object__load_progs(obj, extra_log_level);
8402         err = err ? : bpf_object_init_prog_arrays(obj);
8403         err = err ? : bpf_object_prepare_struct_ops(obj);
8404
8405         if (obj->gen_loader) {
8406                 /* reset FDs */
8407                 if (obj->btf)
8408                         btf__set_fd(obj->btf, -1);
8409                 if (!err)
8410                         err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8411         }
8412
8413         /* clean up fd_array */
8414         zfree(&obj->fd_array);
8415
8416         /* clean up module BTFs */
8417         for (i = 0; i < obj->btf_module_cnt; i++) {
8418                 close(obj->btf_modules[i].fd);
8419                 btf__free(obj->btf_modules[i].btf);
8420                 free(obj->btf_modules[i].name);
8421         }
8422         free(obj->btf_modules);
8423
8424         /* clean up vmlinux BTF */
8425         btf__free(obj->btf_vmlinux);
8426         obj->btf_vmlinux = NULL;
8427
8428         obj->loaded = true; /* doesn't matter if successfully or not */
8429
8430         if (err)
8431                 goto out;
8432
8433         return 0;
8434 out:
8435         /* unpin any maps that were auto-pinned during load */
8436         for (i = 0; i < obj->nr_maps; i++)
8437                 if (obj->maps[i].pinned && !obj->maps[i].reused)
8438                         bpf_map__unpin(&obj->maps[i], NULL);
8439
8440         bpf_object_unload(obj);
8441         pr_warn("failed to load object '%s'\n", obj->path);
8442         return libbpf_err(err);
8443 }
8444
8445 int bpf_object__load(struct bpf_object *obj)
8446 {
8447         return bpf_object_load(obj, 0, NULL);
8448 }
8449
8450 static int make_parent_dir(const char *path)
8451 {
8452         char *cp, errmsg[STRERR_BUFSIZE];
8453         char *dname, *dir;
8454         int err = 0;
8455
8456         dname = strdup(path);
8457         if (dname == NULL)
8458                 return -ENOMEM;
8459
8460         dir = dirname(dname);
8461         if (mkdir(dir, 0700) && errno != EEXIST)
8462                 err = -errno;
8463
8464         free(dname);
8465         if (err) {
8466                 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8467                 pr_warn("failed to mkdir %s: %s\n", path, cp);
8468         }
8469         return err;
8470 }
8471
8472 static int check_path(const char *path)
8473 {
8474         char *cp, errmsg[STRERR_BUFSIZE];
8475         struct statfs st_fs;
8476         char *dname, *dir;
8477         int err = 0;
8478
8479         if (path == NULL)
8480                 return -EINVAL;
8481
8482         dname = strdup(path);
8483         if (dname == NULL)
8484                 return -ENOMEM;
8485
8486         dir = dirname(dname);
8487         if (statfs(dir, &st_fs)) {
8488                 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8489                 pr_warn("failed to statfs %s: %s\n", dir, cp);
8490                 err = -errno;
8491         }
8492         free(dname);
8493
8494         if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8495                 pr_warn("specified path %s is not on BPF FS\n", path);
8496                 err = -EINVAL;
8497         }
8498
8499         return err;
8500 }
8501
8502 int bpf_program__pin(struct bpf_program *prog, const char *path)
8503 {
8504         char *cp, errmsg[STRERR_BUFSIZE];
8505         int err;
8506
8507         if (prog->fd < 0) {
8508                 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8509                 return libbpf_err(-EINVAL);
8510         }
8511
8512         err = make_parent_dir(path);
8513         if (err)
8514                 return libbpf_err(err);
8515
8516         err = check_path(path);
8517         if (err)
8518                 return libbpf_err(err);
8519
8520         if (bpf_obj_pin(prog->fd, path)) {
8521                 err = -errno;
8522                 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8523                 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8524                 return libbpf_err(err);
8525         }
8526
8527         pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8528         return 0;
8529 }
8530
8531 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8532 {
8533         int err;
8534
8535         if (prog->fd < 0) {
8536                 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8537                 return libbpf_err(-EINVAL);
8538         }
8539
8540         err = check_path(path);
8541         if (err)
8542                 return libbpf_err(err);
8543
8544         err = unlink(path);
8545         if (err)
8546                 return libbpf_err(-errno);
8547
8548         pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8549         return 0;
8550 }
8551
8552 int bpf_map__pin(struct bpf_map *map, const char *path)
8553 {
8554         char *cp, errmsg[STRERR_BUFSIZE];
8555         int err;
8556
8557         if (map == NULL) {
8558                 pr_warn("invalid map pointer\n");
8559                 return libbpf_err(-EINVAL);
8560         }
8561
8562         if (map->pin_path) {
8563                 if (path && strcmp(path, map->pin_path)) {
8564                         pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8565                                 bpf_map__name(map), map->pin_path, path);
8566                         return libbpf_err(-EINVAL);
8567                 } else if (map->pinned) {
8568                         pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8569                                  bpf_map__name(map), map->pin_path);
8570                         return 0;
8571                 }
8572         } else {
8573                 if (!path) {
8574                         pr_warn("missing a path to pin map '%s' at\n",
8575                                 bpf_map__name(map));
8576                         return libbpf_err(-EINVAL);
8577                 } else if (map->pinned) {
8578                         pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8579                         return libbpf_err(-EEXIST);
8580                 }
8581
8582                 map->pin_path = strdup(path);
8583                 if (!map->pin_path) {
8584                         err = -errno;
8585                         goto out_err;
8586                 }
8587         }
8588
8589         err = make_parent_dir(map->pin_path);
8590         if (err)
8591                 return libbpf_err(err);
8592
8593         err = check_path(map->pin_path);
8594         if (err)
8595                 return libbpf_err(err);
8596
8597         if (bpf_obj_pin(map->fd, map->pin_path)) {
8598                 err = -errno;
8599                 goto out_err;
8600         }
8601
8602         map->pinned = true;
8603         pr_debug("pinned map '%s'\n", map->pin_path);
8604
8605         return 0;
8606
8607 out_err:
8608         cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8609         pr_warn("failed to pin map: %s\n", cp);
8610         return libbpf_err(err);
8611 }
8612
8613 int bpf_map__unpin(struct bpf_map *map, const char *path)
8614 {
8615         int err;
8616
8617         if (map == NULL) {
8618                 pr_warn("invalid map pointer\n");
8619                 return libbpf_err(-EINVAL);
8620         }
8621
8622         if (map->pin_path) {
8623                 if (path && strcmp(path, map->pin_path)) {
8624                         pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8625                                 bpf_map__name(map), map->pin_path, path);
8626                         return libbpf_err(-EINVAL);
8627                 }
8628                 path = map->pin_path;
8629         } else if (!path) {
8630                 pr_warn("no path to unpin map '%s' from\n",
8631                         bpf_map__name(map));
8632                 return libbpf_err(-EINVAL);
8633         }
8634
8635         err = check_path(path);
8636         if (err)
8637                 return libbpf_err(err);
8638
8639         err = unlink(path);
8640         if (err != 0)
8641                 return libbpf_err(-errno);
8642
8643         map->pinned = false;
8644         pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8645
8646         return 0;
8647 }
8648
8649 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8650 {
8651         char *new = NULL;
8652
8653         if (path) {
8654                 new = strdup(path);
8655                 if (!new)
8656                         return libbpf_err(-errno);
8657         }
8658
8659         free(map->pin_path);
8660         map->pin_path = new;
8661         return 0;
8662 }
8663
8664 __alias(bpf_map__pin_path)
8665 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8666
8667 const char *bpf_map__pin_path(const struct bpf_map *map)
8668 {
8669         return map->pin_path;
8670 }
8671
8672 bool bpf_map__is_pinned(const struct bpf_map *map)
8673 {
8674         return map->pinned;
8675 }
8676
8677 static void sanitize_pin_path(char *s)
8678 {
8679         /* bpffs disallows periods in path names */
8680         while (*s) {
8681                 if (*s == '.')
8682                         *s = '_';
8683                 s++;
8684         }
8685 }
8686
8687 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8688 {
8689         struct bpf_map *map;
8690         int err;
8691
8692         if (!obj)
8693                 return libbpf_err(-ENOENT);
8694
8695         if (!obj->loaded) {
8696                 pr_warn("object not yet loaded; load it first\n");
8697                 return libbpf_err(-ENOENT);
8698         }
8699
8700         bpf_object__for_each_map(map, obj) {
8701                 char *pin_path = NULL;
8702                 char buf[PATH_MAX];
8703
8704                 if (!map->autocreate)
8705                         continue;
8706
8707                 if (path) {
8708                         err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8709                         if (err)
8710                                 goto err_unpin_maps;
8711                         sanitize_pin_path(buf);
8712                         pin_path = buf;
8713                 } else if (!map->pin_path) {
8714                         continue;
8715                 }
8716
8717                 err = bpf_map__pin(map, pin_path);
8718                 if (err)
8719                         goto err_unpin_maps;
8720         }
8721
8722         return 0;
8723
8724 err_unpin_maps:
8725         while ((map = bpf_object__prev_map(obj, map))) {
8726                 if (!map->pin_path)
8727                         continue;
8728
8729                 bpf_map__unpin(map, NULL);
8730         }
8731
8732         return libbpf_err(err);
8733 }
8734
8735 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8736 {
8737         struct bpf_map *map;
8738         int err;
8739
8740         if (!obj)
8741                 return libbpf_err(-ENOENT);
8742
8743         bpf_object__for_each_map(map, obj) {
8744                 char *pin_path = NULL;
8745                 char buf[PATH_MAX];
8746
8747                 if (path) {
8748                         err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8749                         if (err)
8750                                 return libbpf_err(err);
8751                         sanitize_pin_path(buf);
8752                         pin_path = buf;
8753                 } else if (!map->pin_path) {
8754                         continue;
8755                 }
8756
8757                 err = bpf_map__unpin(map, pin_path);
8758                 if (err)
8759                         return libbpf_err(err);
8760         }
8761
8762         return 0;
8763 }
8764
8765 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8766 {
8767         struct bpf_program *prog;
8768         char buf[PATH_MAX];
8769         int err;
8770
8771         if (!obj)
8772                 return libbpf_err(-ENOENT);
8773
8774         if (!obj->loaded) {
8775                 pr_warn("object not yet loaded; load it first\n");
8776                 return libbpf_err(-ENOENT);
8777         }
8778
8779         bpf_object__for_each_program(prog, obj) {
8780                 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8781                 if (err)
8782                         goto err_unpin_programs;
8783
8784                 err = bpf_program__pin(prog, buf);
8785                 if (err)
8786                         goto err_unpin_programs;
8787         }
8788
8789         return 0;
8790
8791 err_unpin_programs:
8792         while ((prog = bpf_object__prev_program(obj, prog))) {
8793                 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8794                         continue;
8795
8796                 bpf_program__unpin(prog, buf);
8797         }
8798
8799         return libbpf_err(err);
8800 }
8801
8802 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8803 {
8804         struct bpf_program *prog;
8805         int err;
8806
8807         if (!obj)
8808                 return libbpf_err(-ENOENT);
8809
8810         bpf_object__for_each_program(prog, obj) {
8811                 char buf[PATH_MAX];
8812
8813                 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8814                 if (err)
8815                         return libbpf_err(err);
8816
8817                 err = bpf_program__unpin(prog, buf);
8818                 if (err)
8819                         return libbpf_err(err);
8820         }
8821
8822         return 0;
8823 }
8824
8825 int bpf_object__pin(struct bpf_object *obj, const char *path)
8826 {
8827         int err;
8828
8829         err = bpf_object__pin_maps(obj, path);
8830         if (err)
8831                 return libbpf_err(err);
8832
8833         err = bpf_object__pin_programs(obj, path);
8834         if (err) {
8835                 bpf_object__unpin_maps(obj, path);
8836                 return libbpf_err(err);
8837         }
8838
8839         return 0;
8840 }
8841
8842 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8843 {
8844         int err;
8845
8846         err = bpf_object__unpin_programs(obj, path);
8847         if (err)
8848                 return libbpf_err(err);
8849
8850         err = bpf_object__unpin_maps(obj, path);
8851         if (err)
8852                 return libbpf_err(err);
8853
8854         return 0;
8855 }
8856
8857 static void bpf_map__destroy(struct bpf_map *map)
8858 {
8859         if (map->inner_map) {
8860                 bpf_map__destroy(map->inner_map);
8861                 zfree(&map->inner_map);
8862         }
8863
8864         zfree(&map->init_slots);
8865         map->init_slots_sz = 0;
8866
8867         if (map->mmaped && map->mmaped != map->obj->arena_data)
8868                 munmap(map->mmaped, bpf_map_mmap_sz(map));
8869         map->mmaped = NULL;
8870
8871         if (map->st_ops) {
8872                 zfree(&map->st_ops->data);
8873                 zfree(&map->st_ops->progs);
8874                 zfree(&map->st_ops->kern_func_off);
8875                 zfree(&map->st_ops);
8876         }
8877
8878         zfree(&map->name);
8879         zfree(&map->real_name);
8880         zfree(&map->pin_path);
8881
8882         if (map->fd >= 0)
8883                 zclose(map->fd);
8884 }
8885
8886 void bpf_object__close(struct bpf_object *obj)
8887 {
8888         size_t i;
8889
8890         if (IS_ERR_OR_NULL(obj))
8891                 return;
8892
8893         usdt_manager_free(obj->usdt_man);
8894         obj->usdt_man = NULL;
8895
8896         bpf_gen__free(obj->gen_loader);
8897         bpf_object__elf_finish(obj);
8898         bpf_object_unload(obj);
8899         btf__free(obj->btf);
8900         btf__free(obj->btf_vmlinux);
8901         btf_ext__free(obj->btf_ext);
8902
8903         for (i = 0; i < obj->nr_maps; i++)
8904                 bpf_map__destroy(&obj->maps[i]);
8905
8906         zfree(&obj->btf_custom_path);
8907         zfree(&obj->kconfig);
8908
8909         for (i = 0; i < obj->nr_extern; i++)
8910                 zfree(&obj->externs[i].essent_name);
8911
8912         zfree(&obj->externs);
8913         obj->nr_extern = 0;
8914
8915         zfree(&obj->maps);
8916         obj->nr_maps = 0;
8917
8918         if (obj->programs && obj->nr_programs) {
8919                 for (i = 0; i < obj->nr_programs; i++)
8920                         bpf_program__exit(&obj->programs[i]);
8921         }
8922         zfree(&obj->programs);
8923
8924         zfree(&obj->feat_cache);
8925         zfree(&obj->token_path);
8926         if (obj->token_fd > 0)
8927                 close(obj->token_fd);
8928
8929         zfree(&obj->arena_data);
8930
8931         free(obj);
8932 }
8933
8934 const char *bpf_object__name(const struct bpf_object *obj)
8935 {
8936         return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8937 }
8938
8939 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8940 {
8941         return obj ? obj->kern_version : 0;
8942 }
8943
8944 struct btf *bpf_object__btf(const struct bpf_object *obj)
8945 {
8946         return obj ? obj->btf : NULL;
8947 }
8948
8949 int bpf_object__btf_fd(const struct bpf_object *obj)
8950 {
8951         return obj->btf ? btf__fd(obj->btf) : -1;
8952 }
8953
8954 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8955 {
8956         if (obj->loaded)
8957                 return libbpf_err(-EINVAL);
8958
8959         obj->kern_version = kern_version;
8960
8961         return 0;
8962 }
8963
8964 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8965 {
8966         struct bpf_gen *gen;
8967
8968         if (!opts)
8969                 return -EFAULT;
8970         if (!OPTS_VALID(opts, gen_loader_opts))
8971                 return -EINVAL;
8972         gen = calloc(sizeof(*gen), 1);
8973         if (!gen)
8974                 return -ENOMEM;
8975         gen->opts = opts;
8976         obj->gen_loader = gen;
8977         return 0;
8978 }
8979
8980 static struct bpf_program *
8981 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8982                     bool forward)
8983 {
8984         size_t nr_programs = obj->nr_programs;
8985         ssize_t idx;
8986
8987         if (!nr_programs)
8988                 return NULL;
8989
8990         if (!p)
8991                 /* Iter from the beginning */
8992                 return forward ? &obj->programs[0] :
8993                         &obj->programs[nr_programs - 1];
8994
8995         if (p->obj != obj) {
8996                 pr_warn("error: program handler doesn't match object\n");
8997                 return errno = EINVAL, NULL;
8998         }
8999
9000         idx = (p - obj->programs) + (forward ? 1 : -1);
9001         if (idx >= obj->nr_programs || idx < 0)
9002                 return NULL;
9003         return &obj->programs[idx];
9004 }
9005
9006 struct bpf_program *
9007 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9008 {
9009         struct bpf_program *prog = prev;
9010
9011         do {
9012                 prog = __bpf_program__iter(prog, obj, true);
9013         } while (prog && prog_is_subprog(obj, prog));
9014
9015         return prog;
9016 }
9017
9018 struct bpf_program *
9019 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9020 {
9021         struct bpf_program *prog = next;
9022
9023         do {
9024                 prog = __bpf_program__iter(prog, obj, false);
9025         } while (prog && prog_is_subprog(obj, prog));
9026
9027         return prog;
9028 }
9029
9030 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9031 {
9032         prog->prog_ifindex = ifindex;
9033 }
9034
9035 const char *bpf_program__name(const struct bpf_program *prog)
9036 {
9037         return prog->name;
9038 }
9039
9040 const char *bpf_program__section_name(const struct bpf_program *prog)
9041 {
9042         return prog->sec_name;
9043 }
9044
9045 bool bpf_program__autoload(const struct bpf_program *prog)
9046 {
9047         return prog->autoload;
9048 }
9049
9050 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9051 {
9052         if (prog->obj->loaded)
9053                 return libbpf_err(-EINVAL);
9054
9055         prog->autoload = autoload;
9056         return 0;
9057 }
9058
9059 bool bpf_program__autoattach(const struct bpf_program *prog)
9060 {
9061         return prog->autoattach;
9062 }
9063
9064 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9065 {
9066         prog->autoattach = autoattach;
9067 }
9068
9069 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9070 {
9071         return prog->insns;
9072 }
9073
9074 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9075 {
9076         return prog->insns_cnt;
9077 }
9078
9079 int bpf_program__set_insns(struct bpf_program *prog,
9080                            struct bpf_insn *new_insns, size_t new_insn_cnt)
9081 {
9082         struct bpf_insn *insns;
9083
9084         if (prog->obj->loaded)
9085                 return -EBUSY;
9086
9087         insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9088         /* NULL is a valid return from reallocarray if the new count is zero */
9089         if (!insns && new_insn_cnt) {
9090                 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9091                 return -ENOMEM;
9092         }
9093         memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9094
9095         prog->insns = insns;
9096         prog->insns_cnt = new_insn_cnt;
9097         return 0;
9098 }
9099
9100 int bpf_program__fd(const struct bpf_program *prog)
9101 {
9102         if (!prog)
9103                 return libbpf_err(-EINVAL);
9104
9105         if (prog->fd < 0)
9106                 return libbpf_err(-ENOENT);
9107
9108         return prog->fd;
9109 }
9110
9111 __alias(bpf_program__type)
9112 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9113
9114 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9115 {
9116         return prog->type;
9117 }
9118
9119 static size_t custom_sec_def_cnt;
9120 static struct bpf_sec_def *custom_sec_defs;
9121 static struct bpf_sec_def custom_fallback_def;
9122 static bool has_custom_fallback_def;
9123 static int last_custom_sec_def_handler_id;
9124
9125 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9126 {
9127         if (prog->obj->loaded)
9128                 return libbpf_err(-EBUSY);
9129
9130         /* if type is not changed, do nothing */
9131         if (prog->type == type)
9132                 return 0;
9133
9134         prog->type = type;
9135
9136         /* If a program type was changed, we need to reset associated SEC()
9137          * handler, as it will be invalid now. The only exception is a generic
9138          * fallback handler, which by definition is program type-agnostic and
9139          * is a catch-all custom handler, optionally set by the application,
9140          * so should be able to handle any type of BPF program.
9141          */
9142         if (prog->sec_def != &custom_fallback_def)
9143                 prog->sec_def = NULL;
9144         return 0;
9145 }
9146
9147 __alias(bpf_program__expected_attach_type)
9148 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9149
9150 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9151 {
9152         return prog->expected_attach_type;
9153 }
9154
9155 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9156                                            enum bpf_attach_type type)
9157 {
9158         if (prog->obj->loaded)
9159                 return libbpf_err(-EBUSY);
9160
9161         prog->expected_attach_type = type;
9162         return 0;
9163 }
9164
9165 __u32 bpf_program__flags(const struct bpf_program *prog)
9166 {
9167         return prog->prog_flags;
9168 }
9169
9170 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9171 {
9172         if (prog->obj->loaded)
9173                 return libbpf_err(-EBUSY);
9174
9175         prog->prog_flags = flags;
9176         return 0;
9177 }
9178
9179 __u32 bpf_program__log_level(const struct bpf_program *prog)
9180 {
9181         return prog->log_level;
9182 }
9183
9184 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9185 {
9186         if (prog->obj->loaded)
9187                 return libbpf_err(-EBUSY);
9188
9189         prog->log_level = log_level;
9190         return 0;
9191 }
9192
9193 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9194 {
9195         *log_size = prog->log_size;
9196         return prog->log_buf;
9197 }
9198
9199 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9200 {
9201         if (log_size && !log_buf)
9202                 return -EINVAL;
9203         if (prog->log_size > UINT_MAX)
9204                 return -EINVAL;
9205         if (prog->obj->loaded)
9206                 return -EBUSY;
9207
9208         prog->log_buf = log_buf;
9209         prog->log_size = log_size;
9210         return 0;
9211 }
9212
9213 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {                        \
9214         .sec = (char *)sec_pfx,                                             \
9215         .prog_type = BPF_PROG_TYPE_##ptype,                                 \
9216         .expected_attach_type = atype,                                      \
9217         .cookie = (long)(flags),                                            \
9218         .prog_prepare_load_fn = libbpf_prepare_prog_load,                   \
9219         __VA_ARGS__                                                         \
9220 }
9221
9222 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9223 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9224 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9225 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9226 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9227 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9228 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9229 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9230 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9231 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9232 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9233
9234 static const struct bpf_sec_def section_defs[] = {
9235         SEC_DEF("socket",               SOCKET_FILTER, 0, SEC_NONE),
9236         SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9237         SEC_DEF("sk_reuseport",         SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9238         SEC_DEF("kprobe+",              KPROBE, 0, SEC_NONE, attach_kprobe),
9239         SEC_DEF("uprobe+",              KPROBE, 0, SEC_NONE, attach_uprobe),
9240         SEC_DEF("uprobe.s+",            KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9241         SEC_DEF("kretprobe+",           KPROBE, 0, SEC_NONE, attach_kprobe),
9242         SEC_DEF("uretprobe+",           KPROBE, 0, SEC_NONE, attach_uprobe),
9243         SEC_DEF("uretprobe.s+",         KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9244         SEC_DEF("kprobe.multi+",        KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9245         SEC_DEF("kretprobe.multi+",     KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9246         SEC_DEF("uprobe.multi+",        KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9247         SEC_DEF("uretprobe.multi+",     KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9248         SEC_DEF("uprobe.multi.s+",      KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9249         SEC_DEF("uretprobe.multi.s+",   KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9250         SEC_DEF("ksyscall+",            KPROBE, 0, SEC_NONE, attach_ksyscall),
9251         SEC_DEF("kretsyscall+",         KPROBE, 0, SEC_NONE, attach_ksyscall),
9252         SEC_DEF("usdt+",                KPROBE, 0, SEC_USDT, attach_usdt),
9253         SEC_DEF("usdt.s+",              KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9254         SEC_DEF("tc/ingress",           SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9255         SEC_DEF("tc/egress",            SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9256         SEC_DEF("tcx/ingress",          SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9257         SEC_DEF("tcx/egress",           SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9258         SEC_DEF("tc",                   SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9259         SEC_DEF("classifier",           SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9260         SEC_DEF("action",               SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9261         SEC_DEF("netkit/primary",       SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9262         SEC_DEF("netkit/peer",          SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9263         SEC_DEF("tracepoint+",          TRACEPOINT, 0, SEC_NONE, attach_tp),
9264         SEC_DEF("tp+",                  TRACEPOINT, 0, SEC_NONE, attach_tp),
9265         SEC_DEF("raw_tracepoint+",      RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9266         SEC_DEF("raw_tp+",              RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9267         SEC_DEF("raw_tracepoint.w+",    RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9268         SEC_DEF("raw_tp.w+",            RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9269         SEC_DEF("tp_btf+",              TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9270         SEC_DEF("fentry+",              TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9271         SEC_DEF("fmod_ret+",            TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9272         SEC_DEF("fexit+",               TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9273         SEC_DEF("fentry.s+",            TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9274         SEC_DEF("fmod_ret.s+",          TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9275         SEC_DEF("fexit.s+",             TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9276         SEC_DEF("freplace+",            EXT, 0, SEC_ATTACH_BTF, attach_trace),
9277         SEC_DEF("lsm+",                 LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9278         SEC_DEF("lsm.s+",               LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9279         SEC_DEF("lsm_cgroup+",          LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9280         SEC_DEF("iter+",                TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9281         SEC_DEF("iter.s+",              TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9282         SEC_DEF("syscall",              SYSCALL, 0, SEC_SLEEPABLE),
9283         SEC_DEF("xdp.frags/devmap",     XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9284         SEC_DEF("xdp/devmap",           XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9285         SEC_DEF("xdp.frags/cpumap",     XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9286         SEC_DEF("xdp/cpumap",           XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9287         SEC_DEF("xdp.frags",            XDP, BPF_XDP, SEC_XDP_FRAGS),
9288         SEC_DEF("xdp",                  XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9289         SEC_DEF("perf_event",           PERF_EVENT, 0, SEC_NONE),
9290         SEC_DEF("lwt_in",               LWT_IN, 0, SEC_NONE),
9291         SEC_DEF("lwt_out",              LWT_OUT, 0, SEC_NONE),
9292         SEC_DEF("lwt_xmit",             LWT_XMIT, 0, SEC_NONE),
9293         SEC_DEF("lwt_seg6local",        LWT_SEG6LOCAL, 0, SEC_NONE),
9294         SEC_DEF("sockops",              SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9295         SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9296         SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9297         SEC_DEF("sk_skb",               SK_SKB, 0, SEC_NONE),
9298         SEC_DEF("sk_msg",               SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9299         SEC_DEF("lirc_mode2",           LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9300         SEC_DEF("flow_dissector",       FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9301         SEC_DEF("cgroup_skb/ingress",   CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9302         SEC_DEF("cgroup_skb/egress",    CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9303         SEC_DEF("cgroup/skb",           CGROUP_SKB, 0, SEC_NONE),
9304         SEC_DEF("cgroup/sock_create",   CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9305         SEC_DEF("cgroup/sock_release",  CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9306         SEC_DEF("cgroup/sock",          CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9307         SEC_DEF("cgroup/post_bind4",    CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9308         SEC_DEF("cgroup/post_bind6",    CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9309         SEC_DEF("cgroup/bind4",         CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9310         SEC_DEF("cgroup/bind6",         CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9311         SEC_DEF("cgroup/connect4",      CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9312         SEC_DEF("cgroup/connect6",      CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9313         SEC_DEF("cgroup/connect_unix",  CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9314         SEC_DEF("cgroup/sendmsg4",      CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9315         SEC_DEF("cgroup/sendmsg6",      CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9316         SEC_DEF("cgroup/sendmsg_unix",  CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9317         SEC_DEF("cgroup/recvmsg4",      CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9318         SEC_DEF("cgroup/recvmsg6",      CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9319         SEC_DEF("cgroup/recvmsg_unix",  CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9320         SEC_DEF("cgroup/getpeername4",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9321         SEC_DEF("cgroup/getpeername6",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9322         SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9323         SEC_DEF("cgroup/getsockname4",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9324         SEC_DEF("cgroup/getsockname6",  CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9325         SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9326         SEC_DEF("cgroup/sysctl",        CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9327         SEC_DEF("cgroup/getsockopt",    CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9328         SEC_DEF("cgroup/setsockopt",    CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9329         SEC_DEF("cgroup/dev",           CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9330         SEC_DEF("struct_ops+",          STRUCT_OPS, 0, SEC_NONE),
9331         SEC_DEF("struct_ops.s+",        STRUCT_OPS, 0, SEC_SLEEPABLE),
9332         SEC_DEF("sk_lookup",            SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9333         SEC_DEF("netfilter",            NETFILTER, BPF_NETFILTER, SEC_NONE),
9334 };
9335
9336 int libbpf_register_prog_handler(const char *sec,
9337                                  enum bpf_prog_type prog_type,
9338                                  enum bpf_attach_type exp_attach_type,
9339                                  const struct libbpf_prog_handler_opts *opts)
9340 {
9341         struct bpf_sec_def *sec_def;
9342
9343         if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9344                 return libbpf_err(-EINVAL);
9345
9346         if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9347                 return libbpf_err(-E2BIG);
9348
9349         if (sec) {
9350                 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9351                                               sizeof(*sec_def));
9352                 if (!sec_def)
9353                         return libbpf_err(-ENOMEM);
9354
9355                 custom_sec_defs = sec_def;
9356                 sec_def = &custom_sec_defs[custom_sec_def_cnt];
9357         } else {
9358                 if (has_custom_fallback_def)
9359                         return libbpf_err(-EBUSY);
9360
9361                 sec_def = &custom_fallback_def;
9362         }
9363
9364         sec_def->sec = sec ? strdup(sec) : NULL;
9365         if (sec && !sec_def->sec)
9366                 return libbpf_err(-ENOMEM);
9367
9368         sec_def->prog_type = prog_type;
9369         sec_def->expected_attach_type = exp_attach_type;
9370         sec_def->cookie = OPTS_GET(opts, cookie, 0);
9371
9372         sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9373         sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9374         sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9375
9376         sec_def->handler_id = ++last_custom_sec_def_handler_id;
9377
9378         if (sec)
9379                 custom_sec_def_cnt++;
9380         else
9381                 has_custom_fallback_def = true;
9382
9383         return sec_def->handler_id;
9384 }
9385
9386 int libbpf_unregister_prog_handler(int handler_id)
9387 {
9388         struct bpf_sec_def *sec_defs;
9389         int i;
9390
9391         if (handler_id <= 0)
9392                 return libbpf_err(-EINVAL);
9393
9394         if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9395                 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9396                 has_custom_fallback_def = false;
9397                 return 0;
9398         }
9399
9400         for (i = 0; i < custom_sec_def_cnt; i++) {
9401                 if (custom_sec_defs[i].handler_id == handler_id)
9402                         break;
9403         }
9404
9405         if (i == custom_sec_def_cnt)
9406                 return libbpf_err(-ENOENT);
9407
9408         free(custom_sec_defs[i].sec);
9409         for (i = i + 1; i < custom_sec_def_cnt; i++)
9410                 custom_sec_defs[i - 1] = custom_sec_defs[i];
9411         custom_sec_def_cnt--;
9412
9413         /* try to shrink the array, but it's ok if we couldn't */
9414         sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9415         /* if new count is zero, reallocarray can return a valid NULL result;
9416          * in this case the previous pointer will be freed, so we *have to*
9417          * reassign old pointer to the new value (even if it's NULL)
9418          */
9419         if (sec_defs || custom_sec_def_cnt == 0)
9420                 custom_sec_defs = sec_defs;
9421
9422         return 0;
9423 }
9424
9425 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9426 {
9427         size_t len = strlen(sec_def->sec);
9428
9429         /* "type/" always has to have proper SEC("type/extras") form */
9430         if (sec_def->sec[len - 1] == '/') {
9431                 if (str_has_pfx(sec_name, sec_def->sec))
9432                         return true;
9433                 return false;
9434         }
9435
9436         /* "type+" means it can be either exact SEC("type") or
9437          * well-formed SEC("type/extras") with proper '/' separator
9438          */
9439         if (sec_def->sec[len - 1] == '+') {
9440                 len--;
9441                 /* not even a prefix */
9442                 if (strncmp(sec_name, sec_def->sec, len) != 0)
9443                         return false;
9444                 /* exact match or has '/' separator */
9445                 if (sec_name[len] == '\0' || sec_name[len] == '/')
9446                         return true;
9447                 return false;
9448         }
9449
9450         return strcmp(sec_name, sec_def->sec) == 0;
9451 }
9452
9453 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9454 {
9455         const struct bpf_sec_def *sec_def;
9456         int i, n;
9457
9458         n = custom_sec_def_cnt;
9459         for (i = 0; i < n; i++) {
9460                 sec_def = &custom_sec_defs[i];
9461                 if (sec_def_matches(sec_def, sec_name))
9462                         return sec_def;
9463         }
9464
9465         n = ARRAY_SIZE(section_defs);
9466         for (i = 0; i < n; i++) {
9467                 sec_def = &section_defs[i];
9468                 if (sec_def_matches(sec_def, sec_name))
9469                         return sec_def;
9470         }
9471
9472         if (has_custom_fallback_def)
9473                 return &custom_fallback_def;
9474
9475         return NULL;
9476 }
9477
9478 #define MAX_TYPE_NAME_SIZE 32
9479
9480 static char *libbpf_get_type_names(bool attach_type)
9481 {
9482         int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9483         char *buf;
9484
9485         buf = malloc(len);
9486         if (!buf)
9487                 return NULL;
9488
9489         buf[0] = '\0';
9490         /* Forge string buf with all available names */
9491         for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9492                 const struct bpf_sec_def *sec_def = &section_defs[i];
9493
9494                 if (attach_type) {
9495                         if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9496                                 continue;
9497
9498                         if (!(sec_def->cookie & SEC_ATTACHABLE))
9499                                 continue;
9500                 }
9501
9502                 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9503                         free(buf);
9504                         return NULL;
9505                 }
9506                 strcat(buf, " ");
9507                 strcat(buf, section_defs[i].sec);
9508         }
9509
9510         return buf;
9511 }
9512
9513 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9514                              enum bpf_attach_type *expected_attach_type)
9515 {
9516         const struct bpf_sec_def *sec_def;
9517         char *type_names;
9518
9519         if (!name)
9520                 return libbpf_err(-EINVAL);
9521
9522         sec_def = find_sec_def(name);
9523         if (sec_def) {
9524                 *prog_type = sec_def->prog_type;
9525                 *expected_attach_type = sec_def->expected_attach_type;
9526                 return 0;
9527         }
9528
9529         pr_debug("failed to guess program type from ELF section '%s'\n", name);
9530         type_names = libbpf_get_type_names(false);
9531         if (type_names != NULL) {
9532                 pr_debug("supported section(type) names are:%s\n", type_names);
9533                 free(type_names);
9534         }
9535
9536         return libbpf_err(-ESRCH);
9537 }
9538
9539 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9540 {
9541         if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9542                 return NULL;
9543
9544         return attach_type_name[t];
9545 }
9546
9547 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9548 {
9549         if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9550                 return NULL;
9551
9552         return link_type_name[t];
9553 }
9554
9555 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9556 {
9557         if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9558                 return NULL;
9559
9560         return map_type_name[t];
9561 }
9562
9563 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9564 {
9565         if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9566                 return NULL;
9567
9568         return prog_type_name[t];
9569 }
9570
9571 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9572                                                      int sec_idx,
9573                                                      size_t offset)
9574 {
9575         struct bpf_map *map;
9576         size_t i;
9577
9578         for (i = 0; i < obj->nr_maps; i++) {
9579                 map = &obj->maps[i];
9580                 if (!bpf_map__is_struct_ops(map))
9581                         continue;
9582                 if (map->sec_idx == sec_idx &&
9583                     map->sec_offset <= offset &&
9584                     offset - map->sec_offset < map->def.value_size)
9585                         return map;
9586         }
9587
9588         return NULL;
9589 }
9590
9591 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9592  * st_ops->data for shadow type.
9593  */
9594 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9595                                             Elf64_Shdr *shdr, Elf_Data *data)
9596 {
9597         const struct btf_member *member;
9598         struct bpf_struct_ops *st_ops;
9599         struct bpf_program *prog;
9600         unsigned int shdr_idx;
9601         const struct btf *btf;
9602         struct bpf_map *map;
9603         unsigned int moff, insn_idx;
9604         const char *name;
9605         __u32 member_idx;
9606         Elf64_Sym *sym;
9607         Elf64_Rel *rel;
9608         int i, nrels;
9609
9610         btf = obj->btf;
9611         nrels = shdr->sh_size / shdr->sh_entsize;
9612         for (i = 0; i < nrels; i++) {
9613                 rel = elf_rel_by_idx(data, i);
9614                 if (!rel) {
9615                         pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9616                         return -LIBBPF_ERRNO__FORMAT;
9617                 }
9618
9619                 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9620                 if (!sym) {
9621                         pr_warn("struct_ops reloc: symbol %zx not found\n",
9622                                 (size_t)ELF64_R_SYM(rel->r_info));
9623                         return -LIBBPF_ERRNO__FORMAT;
9624                 }
9625
9626                 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9627                 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9628                 if (!map) {
9629                         pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9630                                 (size_t)rel->r_offset);
9631                         return -EINVAL;
9632                 }
9633
9634                 moff = rel->r_offset - map->sec_offset;
9635                 shdr_idx = sym->st_shndx;
9636                 st_ops = map->st_ops;
9637                 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9638                          map->name,
9639                          (long long)(rel->r_info >> 32),
9640                          (long long)sym->st_value,
9641                          shdr_idx, (size_t)rel->r_offset,
9642                          map->sec_offset, sym->st_name, name);
9643
9644                 if (shdr_idx >= SHN_LORESERVE) {
9645                         pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9646                                 map->name, (size_t)rel->r_offset, shdr_idx);
9647                         return -LIBBPF_ERRNO__RELOC;
9648                 }
9649                 if (sym->st_value % BPF_INSN_SZ) {
9650                         pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9651                                 map->name, (unsigned long long)sym->st_value);
9652                         return -LIBBPF_ERRNO__FORMAT;
9653                 }
9654                 insn_idx = sym->st_value / BPF_INSN_SZ;
9655
9656                 member = find_member_by_offset(st_ops->type, moff * 8);
9657                 if (!member) {
9658                         pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9659                                 map->name, moff);
9660                         return -EINVAL;
9661                 }
9662                 member_idx = member - btf_members(st_ops->type);
9663                 name = btf__name_by_offset(btf, member->name_off);
9664
9665                 if (!resolve_func_ptr(btf, member->type, NULL)) {
9666                         pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9667                                 map->name, name);
9668                         return -EINVAL;
9669                 }
9670
9671                 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9672                 if (!prog) {
9673                         pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9674                                 map->name, shdr_idx, name);
9675                         return -EINVAL;
9676                 }
9677
9678                 /* prevent the use of BPF prog with invalid type */
9679                 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9680                         pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9681                                 map->name, prog->name);
9682                         return -EINVAL;
9683                 }
9684
9685                 st_ops->progs[member_idx] = prog;
9686
9687                 /* st_ops->data will be exposed to users, being returned by
9688                  * bpf_map__initial_value() as a pointer to the shadow
9689                  * type. All function pointers in the original struct type
9690                  * should be converted to a pointer to struct bpf_program
9691                  * in the shadow type.
9692                  */
9693                 *((struct bpf_program **)(st_ops->data + moff)) = prog;
9694         }
9695
9696         return 0;
9697 }
9698
9699 #define BTF_TRACE_PREFIX "btf_trace_"
9700 #define BTF_LSM_PREFIX "bpf_lsm_"
9701 #define BTF_ITER_PREFIX "bpf_iter_"
9702 #define BTF_MAX_NAME_SIZE 128
9703
9704 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9705                                 const char **prefix, int *kind)
9706 {
9707         switch (attach_type) {
9708         case BPF_TRACE_RAW_TP:
9709                 *prefix = BTF_TRACE_PREFIX;
9710                 *kind = BTF_KIND_TYPEDEF;
9711                 break;
9712         case BPF_LSM_MAC:
9713         case BPF_LSM_CGROUP:
9714                 *prefix = BTF_LSM_PREFIX;
9715                 *kind = BTF_KIND_FUNC;
9716                 break;
9717         case BPF_TRACE_ITER:
9718                 *prefix = BTF_ITER_PREFIX;
9719                 *kind = BTF_KIND_FUNC;
9720                 break;
9721         default:
9722                 *prefix = "";
9723                 *kind = BTF_KIND_FUNC;
9724         }
9725 }
9726
9727 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9728                                    const char *name, __u32 kind)
9729 {
9730         char btf_type_name[BTF_MAX_NAME_SIZE];
9731         int ret;
9732
9733         ret = snprintf(btf_type_name, sizeof(btf_type_name),
9734                        "%s%s", prefix, name);
9735         /* snprintf returns the number of characters written excluding the
9736          * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9737          * indicates truncation.
9738          */
9739         if (ret < 0 || ret >= sizeof(btf_type_name))
9740                 return -ENAMETOOLONG;
9741         return btf__find_by_name_kind(btf, btf_type_name, kind);
9742 }
9743
9744 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9745                                      enum bpf_attach_type attach_type)
9746 {
9747         const char *prefix;
9748         int kind;
9749
9750         btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9751         return find_btf_by_prefix_kind(btf, prefix, name, kind);
9752 }
9753
9754 int libbpf_find_vmlinux_btf_id(const char *name,
9755                                enum bpf_attach_type attach_type)
9756 {
9757         struct btf *btf;
9758         int err;
9759
9760         btf = btf__load_vmlinux_btf();
9761         err = libbpf_get_error(btf);
9762         if (err) {
9763                 pr_warn("vmlinux BTF is not found\n");
9764                 return libbpf_err(err);
9765         }
9766
9767         err = find_attach_btf_id(btf, name, attach_type);
9768         if (err <= 0)
9769                 pr_warn("%s is not found in vmlinux BTF\n", name);
9770
9771         btf__free(btf);
9772         return libbpf_err(err);
9773 }
9774
9775 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9776 {
9777         struct bpf_prog_info info;
9778         __u32 info_len = sizeof(info);
9779         struct btf *btf;
9780         int err;
9781
9782         memset(&info, 0, info_len);
9783         err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9784         if (err) {
9785                 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9786                         attach_prog_fd, err);
9787                 return err;
9788         }
9789
9790         err = -EINVAL;
9791         if (!info.btf_id) {
9792                 pr_warn("The target program doesn't have BTF\n");
9793                 goto out;
9794         }
9795         btf = btf__load_from_kernel_by_id(info.btf_id);
9796         err = libbpf_get_error(btf);
9797         if (err) {
9798                 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9799                 goto out;
9800         }
9801         err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9802         btf__free(btf);
9803         if (err <= 0) {
9804                 pr_warn("%s is not found in prog's BTF\n", name);
9805                 goto out;
9806         }
9807 out:
9808         return err;
9809 }
9810
9811 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9812                               enum bpf_attach_type attach_type,
9813                               int *btf_obj_fd, int *btf_type_id)
9814 {
9815         int ret, i;
9816
9817         ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9818         if (ret > 0) {
9819                 *btf_obj_fd = 0; /* vmlinux BTF */
9820                 *btf_type_id = ret;
9821                 return 0;
9822         }
9823         if (ret != -ENOENT)
9824                 return ret;
9825
9826         ret = load_module_btfs(obj);
9827         if (ret)
9828                 return ret;
9829
9830         for (i = 0; i < obj->btf_module_cnt; i++) {
9831                 const struct module_btf *mod = &obj->btf_modules[i];
9832
9833                 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9834                 if (ret > 0) {
9835                         *btf_obj_fd = mod->fd;
9836                         *btf_type_id = ret;
9837                         return 0;
9838                 }
9839                 if (ret == -ENOENT)
9840                         continue;
9841
9842                 return ret;
9843         }
9844
9845         return -ESRCH;
9846 }
9847
9848 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9849                                      int *btf_obj_fd, int *btf_type_id)
9850 {
9851         enum bpf_attach_type attach_type = prog->expected_attach_type;
9852         __u32 attach_prog_fd = prog->attach_prog_fd;
9853         int err = 0;
9854
9855         /* BPF program's BTF ID */
9856         if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9857                 if (!attach_prog_fd) {
9858                         pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9859                         return -EINVAL;
9860                 }
9861                 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9862                 if (err < 0) {
9863                         pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9864                                  prog->name, attach_prog_fd, attach_name, err);
9865                         return err;
9866                 }
9867                 *btf_obj_fd = 0;
9868                 *btf_type_id = err;
9869                 return 0;
9870         }
9871
9872         /* kernel/module BTF ID */
9873         if (prog->obj->gen_loader) {
9874                 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9875                 *btf_obj_fd = 0;
9876                 *btf_type_id = 1;
9877         } else {
9878                 err = find_kernel_btf_id(prog->obj, attach_name,
9879                                          attach_type, btf_obj_fd,
9880                                          btf_type_id);
9881         }
9882         if (err) {
9883                 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9884                         prog->name, attach_name, err);
9885                 return err;
9886         }
9887         return 0;
9888 }
9889
9890 int libbpf_attach_type_by_name(const char *name,
9891                                enum bpf_attach_type *attach_type)
9892 {
9893         char *type_names;
9894         const struct bpf_sec_def *sec_def;
9895
9896         if (!name)
9897                 return libbpf_err(-EINVAL);
9898
9899         sec_def = find_sec_def(name);
9900         if (!sec_def) {
9901                 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9902                 type_names = libbpf_get_type_names(true);
9903                 if (type_names != NULL) {
9904                         pr_debug("attachable section(type) names are:%s\n", type_names);
9905                         free(type_names);
9906                 }
9907
9908                 return libbpf_err(-EINVAL);
9909         }
9910
9911         if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9912                 return libbpf_err(-EINVAL);
9913         if (!(sec_def->cookie & SEC_ATTACHABLE))
9914                 return libbpf_err(-EINVAL);
9915
9916         *attach_type = sec_def->expected_attach_type;
9917         return 0;
9918 }
9919
9920 int bpf_map__fd(const struct bpf_map *map)
9921 {
9922         if (!map)
9923                 return libbpf_err(-EINVAL);
9924         if (!map_is_created(map))
9925                 return -1;
9926         return map->fd;
9927 }
9928
9929 static bool map_uses_real_name(const struct bpf_map *map)
9930 {
9931         /* Since libbpf started to support custom .data.* and .rodata.* maps,
9932          * their user-visible name differs from kernel-visible name. Users see
9933          * such map's corresponding ELF section name as a map name.
9934          * This check distinguishes .data/.rodata from .data.* and .rodata.*
9935          * maps to know which name has to be returned to the user.
9936          */
9937         if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9938                 return true;
9939         if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9940                 return true;
9941         return false;
9942 }
9943
9944 const char *bpf_map__name(const struct bpf_map *map)
9945 {
9946         if (!map)
9947                 return NULL;
9948
9949         if (map_uses_real_name(map))
9950                 return map->real_name;
9951
9952         return map->name;
9953 }
9954
9955 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9956 {
9957         return map->def.type;
9958 }
9959
9960 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9961 {
9962         if (map_is_created(map))
9963                 return libbpf_err(-EBUSY);
9964         map->def.type = type;
9965         return 0;
9966 }
9967
9968 __u32 bpf_map__map_flags(const struct bpf_map *map)
9969 {
9970         return map->def.map_flags;
9971 }
9972
9973 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9974 {
9975         if (map_is_created(map))
9976                 return libbpf_err(-EBUSY);
9977         map->def.map_flags = flags;
9978         return 0;
9979 }
9980
9981 __u64 bpf_map__map_extra(const struct bpf_map *map)
9982 {
9983         return map->map_extra;
9984 }
9985
9986 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9987 {
9988         if (map_is_created(map))
9989                 return libbpf_err(-EBUSY);
9990         map->map_extra = map_extra;
9991         return 0;
9992 }
9993
9994 __u32 bpf_map__numa_node(const struct bpf_map *map)
9995 {
9996         return map->numa_node;
9997 }
9998
9999 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10000 {
10001         if (map_is_created(map))
10002                 return libbpf_err(-EBUSY);
10003         map->numa_node = numa_node;
10004         return 0;
10005 }
10006
10007 __u32 bpf_map__key_size(const struct bpf_map *map)
10008 {
10009         return map->def.key_size;
10010 }
10011
10012 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10013 {
10014         if (map_is_created(map))
10015                 return libbpf_err(-EBUSY);
10016         map->def.key_size = size;
10017         return 0;
10018 }
10019
10020 __u32 bpf_map__value_size(const struct bpf_map *map)
10021 {
10022         return map->def.value_size;
10023 }
10024
10025 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10026 {
10027         struct btf *btf;
10028         struct btf_type *datasec_type, *var_type;
10029         struct btf_var_secinfo *var;
10030         const struct btf_type *array_type;
10031         const struct btf_array *array;
10032         int vlen, element_sz, new_array_id;
10033         __u32 nr_elements;
10034
10035         /* check btf existence */
10036         btf = bpf_object__btf(map->obj);
10037         if (!btf)
10038                 return -ENOENT;
10039
10040         /* verify map is datasec */
10041         datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10042         if (!btf_is_datasec(datasec_type)) {
10043                 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10044                         bpf_map__name(map));
10045                 return -EINVAL;
10046         }
10047
10048         /* verify datasec has at least one var */
10049         vlen = btf_vlen(datasec_type);
10050         if (vlen == 0) {
10051                 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10052                         bpf_map__name(map));
10053                 return -EINVAL;
10054         }
10055
10056         /* verify last var in the datasec is an array */
10057         var = &btf_var_secinfos(datasec_type)[vlen - 1];
10058         var_type = btf_type_by_id(btf, var->type);
10059         array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10060         if (!btf_is_array(array_type)) {
10061                 pr_warn("map '%s': cannot be resized, last var must be an array\n",
10062                         bpf_map__name(map));
10063                 return -EINVAL;
10064         }
10065
10066         /* verify request size aligns with array */
10067         array = btf_array(array_type);
10068         element_sz = btf__resolve_size(btf, array->type);
10069         if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10070                 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10071                         bpf_map__name(map), element_sz, size);
10072                 return -EINVAL;
10073         }
10074
10075         /* create a new array based on the existing array, but with new length */
10076         nr_elements = (size - var->offset) / element_sz;
10077         new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10078         if (new_array_id < 0)
10079                 return new_array_id;
10080
10081         /* adding a new btf type invalidates existing pointers to btf objects,
10082          * so refresh pointers before proceeding
10083          */
10084         datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10085         var = &btf_var_secinfos(datasec_type)[vlen - 1];
10086         var_type = btf_type_by_id(btf, var->type);
10087
10088         /* finally update btf info */
10089         datasec_type->size = size;
10090         var->size = size - var->offset;
10091         var_type->type = new_array_id;
10092
10093         return 0;
10094 }
10095
10096 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10097 {
10098         if (map->obj->loaded || map->reused)
10099                 return libbpf_err(-EBUSY);
10100
10101         if (map->mmaped) {
10102                 size_t mmap_old_sz, mmap_new_sz;
10103                 int err;
10104
10105                 if (map->def.type != BPF_MAP_TYPE_ARRAY)
10106                         return -EOPNOTSUPP;
10107
10108                 mmap_old_sz = bpf_map_mmap_sz(map);
10109                 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10110                 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10111                 if (err) {
10112                         pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10113                                 bpf_map__name(map), err);
10114                         return err;
10115                 }
10116                 err = map_btf_datasec_resize(map, size);
10117                 if (err && err != -ENOENT) {
10118                         pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10119                                 bpf_map__name(map), err);
10120                         map->btf_value_type_id = 0;
10121                         map->btf_key_type_id = 0;
10122                 }
10123         }
10124
10125         map->def.value_size = size;
10126         return 0;
10127 }
10128
10129 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10130 {
10131         return map ? map->btf_key_type_id : 0;
10132 }
10133
10134 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10135 {
10136         return map ? map->btf_value_type_id : 0;
10137 }
10138
10139 int bpf_map__set_initial_value(struct bpf_map *map,
10140                                const void *data, size_t size)
10141 {
10142         size_t actual_sz;
10143
10144         if (map->obj->loaded || map->reused)
10145                 return libbpf_err(-EBUSY);
10146
10147         if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10148                 return libbpf_err(-EINVAL);
10149
10150         if (map->def.type == BPF_MAP_TYPE_ARENA)
10151                 actual_sz = map->obj->arena_data_sz;
10152         else
10153                 actual_sz = map->def.value_size;
10154         if (size != actual_sz)
10155                 return libbpf_err(-EINVAL);
10156
10157         memcpy(map->mmaped, data, size);
10158         return 0;
10159 }
10160
10161 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10162 {
10163         if (bpf_map__is_struct_ops(map)) {
10164                 if (psize)
10165                         *psize = map->def.value_size;
10166                 return map->st_ops->data;
10167         }
10168
10169         if (!map->mmaped)
10170                 return NULL;
10171
10172         if (map->def.type == BPF_MAP_TYPE_ARENA)
10173                 *psize = map->obj->arena_data_sz;
10174         else
10175                 *psize = map->def.value_size;
10176
10177         return map->mmaped;
10178 }
10179
10180 bool bpf_map__is_internal(const struct bpf_map *map)
10181 {
10182         return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10183 }
10184
10185 __u32 bpf_map__ifindex(const struct bpf_map *map)
10186 {
10187         return map->map_ifindex;
10188 }
10189
10190 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10191 {
10192         if (map_is_created(map))
10193                 return libbpf_err(-EBUSY);
10194         map->map_ifindex = ifindex;
10195         return 0;
10196 }
10197
10198 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10199 {
10200         if (!bpf_map_type__is_map_in_map(map->def.type)) {
10201                 pr_warn("error: unsupported map type\n");
10202                 return libbpf_err(-EINVAL);
10203         }
10204         if (map->inner_map_fd != -1) {
10205                 pr_warn("error: inner_map_fd already specified\n");
10206                 return libbpf_err(-EINVAL);
10207         }
10208         if (map->inner_map) {
10209                 bpf_map__destroy(map->inner_map);
10210                 zfree(&map->inner_map);
10211         }
10212         map->inner_map_fd = fd;
10213         return 0;
10214 }
10215
10216 static struct bpf_map *
10217 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10218 {
10219         ssize_t idx;
10220         struct bpf_map *s, *e;
10221
10222         if (!obj || !obj->maps)
10223                 return errno = EINVAL, NULL;
10224
10225         s = obj->maps;
10226         e = obj->maps + obj->nr_maps;
10227
10228         if ((m < s) || (m >= e)) {
10229                 pr_warn("error in %s: map handler doesn't belong to object\n",
10230                          __func__);
10231                 return errno = EINVAL, NULL;
10232         }
10233
10234         idx = (m - obj->maps) + i;
10235         if (idx >= obj->nr_maps || idx < 0)
10236                 return NULL;
10237         return &obj->maps[idx];
10238 }
10239
10240 struct bpf_map *
10241 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10242 {
10243         if (prev == NULL)
10244                 return obj->maps;
10245
10246         return __bpf_map__iter(prev, obj, 1);
10247 }
10248
10249 struct bpf_map *
10250 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10251 {
10252         if (next == NULL) {
10253                 if (!obj->nr_maps)
10254                         return NULL;
10255                 return obj->maps + obj->nr_maps - 1;
10256         }
10257
10258         return __bpf_map__iter(next, obj, -1);
10259 }
10260
10261 struct bpf_map *
10262 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10263 {
10264         struct bpf_map *pos;
10265
10266         bpf_object__for_each_map(pos, obj) {
10267                 /* if it's a special internal map name (which always starts
10268                  * with dot) then check if that special name matches the
10269                  * real map name (ELF section name)
10270                  */
10271                 if (name[0] == '.') {
10272                         if (pos->real_name && strcmp(pos->real_name, name) == 0)
10273                                 return pos;
10274                         continue;
10275                 }
10276                 /* otherwise map name has to be an exact match */
10277                 if (map_uses_real_name(pos)) {
10278                         if (strcmp(pos->real_name, name) == 0)
10279                                 return pos;
10280                         continue;
10281                 }
10282                 if (strcmp(pos->name, name) == 0)
10283                         return pos;
10284         }
10285         return errno = ENOENT, NULL;
10286 }
10287
10288 int
10289 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10290 {
10291         return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10292 }
10293
10294 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10295                            size_t value_sz, bool check_value_sz)
10296 {
10297         if (!map_is_created(map)) /* map is not yet created */
10298                 return -ENOENT;
10299
10300         if (map->def.key_size != key_sz) {
10301                 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10302                         map->name, key_sz, map->def.key_size);
10303                 return -EINVAL;
10304         }
10305
10306         if (!check_value_sz)
10307                 return 0;
10308
10309         switch (map->def.type) {
10310         case BPF_MAP_TYPE_PERCPU_ARRAY:
10311         case BPF_MAP_TYPE_PERCPU_HASH:
10312         case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10313         case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10314                 int num_cpu = libbpf_num_possible_cpus();
10315                 size_t elem_sz = roundup(map->def.value_size, 8);
10316
10317                 if (value_sz != num_cpu * elem_sz) {
10318                         pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10319                                 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10320                         return -EINVAL;
10321                 }
10322                 break;
10323         }
10324         default:
10325                 if (map->def.value_size != value_sz) {
10326                         pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10327                                 map->name, value_sz, map->def.value_size);
10328                         return -EINVAL;
10329                 }
10330                 break;
10331         }
10332         return 0;
10333 }
10334
10335 int bpf_map__lookup_elem(const struct bpf_map *map,
10336                          const void *key, size_t key_sz,
10337                          void *value, size_t value_sz, __u64 flags)
10338 {
10339         int err;
10340
10341         err = validate_map_op(map, key_sz, value_sz, true);
10342         if (err)
10343                 return libbpf_err(err);
10344
10345         return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10346 }
10347
10348 int bpf_map__update_elem(const struct bpf_map *map,
10349                          const void *key, size_t key_sz,
10350                          const void *value, size_t value_sz, __u64 flags)
10351 {
10352         int err;
10353
10354         err = validate_map_op(map, key_sz, value_sz, true);
10355         if (err)
10356                 return libbpf_err(err);
10357
10358         return bpf_map_update_elem(map->fd, key, value, flags);
10359 }
10360
10361 int bpf_map__delete_elem(const struct bpf_map *map,
10362                          const void *key, size_t key_sz, __u64 flags)
10363 {
10364         int err;
10365
10366         err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10367         if (err)
10368                 return libbpf_err(err);
10369
10370         return bpf_map_delete_elem_flags(map->fd, key, flags);
10371 }
10372
10373 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10374                                     const void *key, size_t key_sz,
10375                                     void *value, size_t value_sz, __u64 flags)
10376 {
10377         int err;
10378
10379         err = validate_map_op(map, key_sz, value_sz, true);
10380         if (err)
10381                 return libbpf_err(err);
10382
10383         return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10384 }
10385
10386 int bpf_map__get_next_key(const struct bpf_map *map,
10387                           const void *cur_key, void *next_key, size_t key_sz)
10388 {
10389         int err;
10390
10391         err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10392         if (err)
10393                 return libbpf_err(err);
10394
10395         return bpf_map_get_next_key(map->fd, cur_key, next_key);
10396 }
10397
10398 long libbpf_get_error(const void *ptr)
10399 {
10400         if (!IS_ERR_OR_NULL(ptr))
10401                 return 0;
10402
10403         if (IS_ERR(ptr))
10404                 errno = -PTR_ERR(ptr);
10405
10406         /* If ptr == NULL, then errno should be already set by the failing
10407          * API, because libbpf never returns NULL on success and it now always
10408          * sets errno on error. So no extra errno handling for ptr == NULL
10409          * case.
10410          */
10411         return -errno;
10412 }
10413
10414 /* Replace link's underlying BPF program with the new one */
10415 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10416 {
10417         int ret;
10418
10419         ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10420         return libbpf_err_errno(ret);
10421 }
10422
10423 /* Release "ownership" of underlying BPF resource (typically, BPF program
10424  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10425  * link, when destructed through bpf_link__destroy() call won't attempt to
10426  * detach/unregisted that BPF resource. This is useful in situations where,
10427  * say, attached BPF program has to outlive userspace program that attached it
10428  * in the system. Depending on type of BPF program, though, there might be
10429  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10430  * exit of userspace program doesn't trigger automatic detachment and clean up
10431  * inside the kernel.
10432  */
10433 void bpf_link__disconnect(struct bpf_link *link)
10434 {
10435         link->disconnected = true;
10436 }
10437
10438 int bpf_link__destroy(struct bpf_link *link)
10439 {
10440         int err = 0;
10441
10442         if (IS_ERR_OR_NULL(link))
10443                 return 0;
10444
10445         if (!link->disconnected && link->detach)
10446                 err = link->detach(link);
10447         if (link->pin_path)
10448                 free(link->pin_path);
10449         if (link->dealloc)
10450                 link->dealloc(link);
10451         else
10452                 free(link);
10453
10454         return libbpf_err(err);
10455 }
10456
10457 int bpf_link__fd(const struct bpf_link *link)
10458 {
10459         return link->fd;
10460 }
10461
10462 const char *bpf_link__pin_path(const struct bpf_link *link)
10463 {
10464         return link->pin_path;
10465 }
10466
10467 static int bpf_link__detach_fd(struct bpf_link *link)
10468 {
10469         return libbpf_err_errno(close(link->fd));
10470 }
10471
10472 struct bpf_link *bpf_link__open(const char *path)
10473 {
10474         struct bpf_link *link;
10475         int fd;
10476
10477         fd = bpf_obj_get(path);
10478         if (fd < 0) {
10479                 fd = -errno;
10480                 pr_warn("failed to open link at %s: %d\n", path, fd);
10481                 return libbpf_err_ptr(fd);
10482         }
10483
10484         link = calloc(1, sizeof(*link));
10485         if (!link) {
10486                 close(fd);
10487                 return libbpf_err_ptr(-ENOMEM);
10488         }
10489         link->detach = &bpf_link__detach_fd;
10490         link->fd = fd;
10491
10492         link->pin_path = strdup(path);
10493         if (!link->pin_path) {
10494                 bpf_link__destroy(link);
10495                 return libbpf_err_ptr(-ENOMEM);
10496         }
10497
10498         return link;
10499 }
10500
10501 int bpf_link__detach(struct bpf_link *link)
10502 {
10503         return bpf_link_detach(link->fd) ? -errno : 0;
10504 }
10505
10506 int bpf_link__pin(struct bpf_link *link, const char *path)
10507 {
10508         int err;
10509
10510         if (link->pin_path)
10511                 return libbpf_err(-EBUSY);
10512         err = make_parent_dir(path);
10513         if (err)
10514                 return libbpf_err(err);
10515         err = check_path(path);
10516         if (err)
10517                 return libbpf_err(err);
10518
10519         link->pin_path = strdup(path);
10520         if (!link->pin_path)
10521                 return libbpf_err(-ENOMEM);
10522
10523         if (bpf_obj_pin(link->fd, link->pin_path)) {
10524                 err = -errno;
10525                 zfree(&link->pin_path);
10526                 return libbpf_err(err);
10527         }
10528
10529         pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10530         return 0;
10531 }
10532
10533 int bpf_link__unpin(struct bpf_link *link)
10534 {
10535         int err;
10536
10537         if (!link->pin_path)
10538                 return libbpf_err(-EINVAL);
10539
10540         err = unlink(link->pin_path);
10541         if (err != 0)
10542                 return -errno;
10543
10544         pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10545         zfree(&link->pin_path);
10546         return 0;
10547 }
10548
10549 struct bpf_link_perf {
10550         struct bpf_link link;
10551         int perf_event_fd;
10552         /* legacy kprobe support: keep track of probe identifier and type */
10553         char *legacy_probe_name;
10554         bool legacy_is_kprobe;
10555         bool legacy_is_retprobe;
10556 };
10557
10558 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10559 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10560
10561 static int bpf_link_perf_detach(struct bpf_link *link)
10562 {
10563         struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10564         int err = 0;
10565
10566         if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10567                 err = -errno;
10568
10569         if (perf_link->perf_event_fd != link->fd)
10570                 close(perf_link->perf_event_fd);
10571         close(link->fd);
10572
10573         /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10574         if (perf_link->legacy_probe_name) {
10575                 if (perf_link->legacy_is_kprobe) {
10576                         err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10577                                                          perf_link->legacy_is_retprobe);
10578                 } else {
10579                         err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10580                                                          perf_link->legacy_is_retprobe);
10581                 }
10582         }
10583
10584         return err;
10585 }
10586
10587 static void bpf_link_perf_dealloc(struct bpf_link *link)
10588 {
10589         struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10590
10591         free(perf_link->legacy_probe_name);
10592         free(perf_link);
10593 }
10594
10595 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10596                                                      const struct bpf_perf_event_opts *opts)
10597 {
10598         char errmsg[STRERR_BUFSIZE];
10599         struct bpf_link_perf *link;
10600         int prog_fd, link_fd = -1, err;
10601         bool force_ioctl_attach;
10602
10603         if (!OPTS_VALID(opts, bpf_perf_event_opts))
10604                 return libbpf_err_ptr(-EINVAL);
10605
10606         if (pfd < 0) {
10607                 pr_warn("prog '%s': invalid perf event FD %d\n",
10608                         prog->name, pfd);
10609                 return libbpf_err_ptr(-EINVAL);
10610         }
10611         prog_fd = bpf_program__fd(prog);
10612         if (prog_fd < 0) {
10613                 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10614                         prog->name);
10615                 return libbpf_err_ptr(-EINVAL);
10616         }
10617
10618         link = calloc(1, sizeof(*link));
10619         if (!link)
10620                 return libbpf_err_ptr(-ENOMEM);
10621         link->link.detach = &bpf_link_perf_detach;
10622         link->link.dealloc = &bpf_link_perf_dealloc;
10623         link->perf_event_fd = pfd;
10624
10625         force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10626         if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10627                 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10628                         .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10629
10630                 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10631                 if (link_fd < 0) {
10632                         err = -errno;
10633                         pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10634                                 prog->name, pfd,
10635                                 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10636                         goto err_out;
10637                 }
10638                 link->link.fd = link_fd;
10639         } else {
10640                 if (OPTS_GET(opts, bpf_cookie, 0)) {
10641                         pr_warn("prog '%s': user context value is not supported\n", prog->name);
10642                         err = -EOPNOTSUPP;
10643                         goto err_out;
10644                 }
10645
10646                 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10647                         err = -errno;
10648                         pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10649                                 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10650                         if (err == -EPROTO)
10651                                 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10652                                         prog->name, pfd);
10653                         goto err_out;
10654                 }
10655                 link->link.fd = pfd;
10656         }
10657         if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10658                 err = -errno;
10659                 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10660                         prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10661                 goto err_out;
10662         }
10663
10664         return &link->link;
10665 err_out:
10666         if (link_fd >= 0)
10667                 close(link_fd);
10668         free(link);
10669         return libbpf_err_ptr(err);
10670 }
10671
10672 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10673 {
10674         return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10675 }
10676
10677 /*
10678  * this function is expected to parse integer in the range of [0, 2^31-1] from
10679  * given file using scanf format string fmt. If actual parsed value is
10680  * negative, the result might be indistinguishable from error
10681  */
10682 static int parse_uint_from_file(const char *file, const char *fmt)
10683 {
10684         char buf[STRERR_BUFSIZE];
10685         int err, ret;
10686         FILE *f;
10687
10688         f = fopen(file, "re");
10689         if (!f) {
10690                 err = -errno;
10691                 pr_debug("failed to open '%s': %s\n", file,
10692                          libbpf_strerror_r(err, buf, sizeof(buf)));
10693                 return err;
10694         }
10695         err = fscanf(f, fmt, &ret);
10696         if (err != 1) {
10697                 err = err == EOF ? -EIO : -errno;
10698                 pr_debug("failed to parse '%s': %s\n", file,
10699                         libbpf_strerror_r(err, buf, sizeof(buf)));
10700                 fclose(f);
10701                 return err;
10702         }
10703         fclose(f);
10704         return ret;
10705 }
10706
10707 static int determine_kprobe_perf_type(void)
10708 {
10709         const char *file = "/sys/bus/event_source/devices/kprobe/type";
10710
10711         return parse_uint_from_file(file, "%d\n");
10712 }
10713
10714 static int determine_uprobe_perf_type(void)
10715 {
10716         const char *file = "/sys/bus/event_source/devices/uprobe/type";
10717
10718         return parse_uint_from_file(file, "%d\n");
10719 }
10720
10721 static int determine_kprobe_retprobe_bit(void)
10722 {
10723         const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10724
10725         return parse_uint_from_file(file, "config:%d\n");
10726 }
10727
10728 static int determine_uprobe_retprobe_bit(void)
10729 {
10730         const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10731
10732         return parse_uint_from_file(file, "config:%d\n");
10733 }
10734
10735 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10736 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10737
10738 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10739                                  uint64_t offset, int pid, size_t ref_ctr_off)
10740 {
10741         const size_t attr_sz = sizeof(struct perf_event_attr);
10742         struct perf_event_attr attr;
10743         char errmsg[STRERR_BUFSIZE];
10744         int type, pfd;
10745
10746         if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10747                 return -EINVAL;
10748
10749         memset(&attr, 0, attr_sz);
10750
10751         type = uprobe ? determine_uprobe_perf_type()
10752                       : determine_kprobe_perf_type();
10753         if (type < 0) {
10754                 pr_warn("failed to determine %s perf type: %s\n",
10755                         uprobe ? "uprobe" : "kprobe",
10756                         libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10757                 return type;
10758         }
10759         if (retprobe) {
10760                 int bit = uprobe ? determine_uprobe_retprobe_bit()
10761                                  : determine_kprobe_retprobe_bit();
10762
10763                 if (bit < 0) {
10764                         pr_warn("failed to determine %s retprobe bit: %s\n",
10765                                 uprobe ? "uprobe" : "kprobe",
10766                                 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10767                         return bit;
10768                 }
10769                 attr.config |= 1 << bit;
10770         }
10771         attr.size = attr_sz;
10772         attr.type = type;
10773         attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10774         attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10775         attr.config2 = offset;           /* kprobe_addr or probe_offset */
10776
10777         /* pid filter is meaningful only for uprobes */
10778         pfd = syscall(__NR_perf_event_open, &attr,
10779                       pid < 0 ? -1 : pid /* pid */,
10780                       pid == -1 ? 0 : -1 /* cpu */,
10781                       -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10782         return pfd >= 0 ? pfd : -errno;
10783 }
10784
10785 static int append_to_file(const char *file, const char *fmt, ...)
10786 {
10787         int fd, n, err = 0;
10788         va_list ap;
10789         char buf[1024];
10790
10791         va_start(ap, fmt);
10792         n = vsnprintf(buf, sizeof(buf), fmt, ap);
10793         va_end(ap);
10794
10795         if (n < 0 || n >= sizeof(buf))
10796                 return -EINVAL;
10797
10798         fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10799         if (fd < 0)
10800                 return -errno;
10801
10802         if (write(fd, buf, n) < 0)
10803                 err = -errno;
10804
10805         close(fd);
10806         return err;
10807 }
10808
10809 #define DEBUGFS "/sys/kernel/debug/tracing"
10810 #define TRACEFS "/sys/kernel/tracing"
10811
10812 static bool use_debugfs(void)
10813 {
10814         static int has_debugfs = -1;
10815
10816         if (has_debugfs < 0)
10817                 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10818
10819         return has_debugfs == 1;
10820 }
10821
10822 static const char *tracefs_path(void)
10823 {
10824         return use_debugfs() ? DEBUGFS : TRACEFS;
10825 }
10826
10827 static const char *tracefs_kprobe_events(void)
10828 {
10829         return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10830 }
10831
10832 static const char *tracefs_uprobe_events(void)
10833 {
10834         return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10835 }
10836
10837 static const char *tracefs_available_filter_functions(void)
10838 {
10839         return use_debugfs() ? DEBUGFS"/available_filter_functions"
10840                              : TRACEFS"/available_filter_functions";
10841 }
10842
10843 static const char *tracefs_available_filter_functions_addrs(void)
10844 {
10845         return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10846                              : TRACEFS"/available_filter_functions_addrs";
10847 }
10848
10849 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10850                                          const char *kfunc_name, size_t offset)
10851 {
10852         static int index = 0;
10853         int i;
10854
10855         snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10856                  __sync_fetch_and_add(&index, 1));
10857
10858         /* sanitize binary_path in the probe name */
10859         for (i = 0; buf[i]; i++) {
10860                 if (!isalnum(buf[i]))
10861                         buf[i] = '_';
10862         }
10863 }
10864
10865 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10866                                    const char *kfunc_name, size_t offset)
10867 {
10868         return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10869                               retprobe ? 'r' : 'p',
10870                               retprobe ? "kretprobes" : "kprobes",
10871                               probe_name, kfunc_name, offset);
10872 }
10873
10874 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10875 {
10876         return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10877                               retprobe ? "kretprobes" : "kprobes", probe_name);
10878 }
10879
10880 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10881 {
10882         char file[256];
10883
10884         snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10885                  tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10886
10887         return parse_uint_from_file(file, "%d\n");
10888 }
10889
10890 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10891                                          const char *kfunc_name, size_t offset, int pid)
10892 {
10893         const size_t attr_sz = sizeof(struct perf_event_attr);
10894         struct perf_event_attr attr;
10895         char errmsg[STRERR_BUFSIZE];
10896         int type, pfd, err;
10897
10898         err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10899         if (err < 0) {
10900                 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10901                         kfunc_name, offset,
10902                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10903                 return err;
10904         }
10905         type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10906         if (type < 0) {
10907                 err = type;
10908                 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10909                         kfunc_name, offset,
10910                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10911                 goto err_clean_legacy;
10912         }
10913
10914         memset(&attr, 0, attr_sz);
10915         attr.size = attr_sz;
10916         attr.config = type;
10917         attr.type = PERF_TYPE_TRACEPOINT;
10918
10919         pfd = syscall(__NR_perf_event_open, &attr,
10920                       pid < 0 ? -1 : pid, /* pid */
10921                       pid == -1 ? 0 : -1, /* cpu */
10922                       -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10923         if (pfd < 0) {
10924                 err = -errno;
10925                 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10926                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10927                 goto err_clean_legacy;
10928         }
10929         return pfd;
10930
10931 err_clean_legacy:
10932         /* Clear the newly added legacy kprobe_event */
10933         remove_kprobe_event_legacy(probe_name, retprobe);
10934         return err;
10935 }
10936
10937 static const char *arch_specific_syscall_pfx(void)
10938 {
10939 #if defined(__x86_64__)
10940         return "x64";
10941 #elif defined(__i386__)
10942         return "ia32";
10943 #elif defined(__s390x__)
10944         return "s390x";
10945 #elif defined(__s390__)
10946         return "s390";
10947 #elif defined(__arm__)
10948         return "arm";
10949 #elif defined(__aarch64__)
10950         return "arm64";
10951 #elif defined(__mips__)
10952         return "mips";
10953 #elif defined(__riscv)
10954         return "riscv";
10955 #elif defined(__powerpc__)
10956         return "powerpc";
10957 #elif defined(__powerpc64__)
10958         return "powerpc64";
10959 #else
10960         return NULL;
10961 #endif
10962 }
10963
10964 int probe_kern_syscall_wrapper(int token_fd)
10965 {
10966         char syscall_name[64];
10967         const char *ksys_pfx;
10968
10969         ksys_pfx = arch_specific_syscall_pfx();
10970         if (!ksys_pfx)
10971                 return 0;
10972
10973         snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10974
10975         if (determine_kprobe_perf_type() >= 0) {
10976                 int pfd;
10977
10978                 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10979                 if (pfd >= 0)
10980                         close(pfd);
10981
10982                 return pfd >= 0 ? 1 : 0;
10983         } else { /* legacy mode */
10984                 char probe_name[128];
10985
10986                 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10987                 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10988                         return 0;
10989
10990                 (void)remove_kprobe_event_legacy(probe_name, false);
10991                 return 1;
10992         }
10993 }
10994
10995 struct bpf_link *
10996 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10997                                 const char *func_name,
10998                                 const struct bpf_kprobe_opts *opts)
10999 {
11000         DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11001         enum probe_attach_mode attach_mode;
11002         char errmsg[STRERR_BUFSIZE];
11003         char *legacy_probe = NULL;
11004         struct bpf_link *link;
11005         size_t offset;
11006         bool retprobe, legacy;
11007         int pfd, err;
11008
11009         if (!OPTS_VALID(opts, bpf_kprobe_opts))
11010                 return libbpf_err_ptr(-EINVAL);
11011
11012         attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11013         retprobe = OPTS_GET(opts, retprobe, false);
11014         offset = OPTS_GET(opts, offset, 0);
11015         pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11016
11017         legacy = determine_kprobe_perf_type() < 0;
11018         switch (attach_mode) {
11019         case PROBE_ATTACH_MODE_LEGACY:
11020                 legacy = true;
11021                 pe_opts.force_ioctl_attach = true;
11022                 break;
11023         case PROBE_ATTACH_MODE_PERF:
11024                 if (legacy)
11025                         return libbpf_err_ptr(-ENOTSUP);
11026                 pe_opts.force_ioctl_attach = true;
11027                 break;
11028         case PROBE_ATTACH_MODE_LINK:
11029                 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11030                         return libbpf_err_ptr(-ENOTSUP);
11031                 break;
11032         case PROBE_ATTACH_MODE_DEFAULT:
11033                 break;
11034         default:
11035                 return libbpf_err_ptr(-EINVAL);
11036         }
11037
11038         if (!legacy) {
11039                 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11040                                             func_name, offset,
11041                                             -1 /* pid */, 0 /* ref_ctr_off */);
11042         } else {
11043                 char probe_name[256];
11044
11045                 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11046                                              func_name, offset);
11047
11048                 legacy_probe = strdup(probe_name);
11049                 if (!legacy_probe)
11050                         return libbpf_err_ptr(-ENOMEM);
11051
11052                 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11053                                                     offset, -1 /* pid */);
11054         }
11055         if (pfd < 0) {
11056                 err = -errno;
11057                 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11058                         prog->name, retprobe ? "kretprobe" : "kprobe",
11059                         func_name, offset,
11060                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11061                 goto err_out;
11062         }
11063         link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11064         err = libbpf_get_error(link);
11065         if (err) {
11066                 close(pfd);
11067                 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11068                         prog->name, retprobe ? "kretprobe" : "kprobe",
11069                         func_name, offset,
11070                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11071                 goto err_clean_legacy;
11072         }
11073         if (legacy) {
11074                 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11075
11076                 perf_link->legacy_probe_name = legacy_probe;
11077                 perf_link->legacy_is_kprobe = true;
11078                 perf_link->legacy_is_retprobe = retprobe;
11079         }
11080
11081         return link;
11082
11083 err_clean_legacy:
11084         if (legacy)
11085                 remove_kprobe_event_legacy(legacy_probe, retprobe);
11086 err_out:
11087         free(legacy_probe);
11088         return libbpf_err_ptr(err);
11089 }
11090
11091 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11092                                             bool retprobe,
11093                                             const char *func_name)
11094 {
11095         DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11096                 .retprobe = retprobe,
11097         );
11098
11099         return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11100 }
11101
11102 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11103                                               const char *syscall_name,
11104                                               const struct bpf_ksyscall_opts *opts)
11105 {
11106         LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11107         char func_name[128];
11108
11109         if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11110                 return libbpf_err_ptr(-EINVAL);
11111
11112         if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11113                 /* arch_specific_syscall_pfx() should never return NULL here
11114                  * because it is guarded by kernel_supports(). However, since
11115                  * compiler does not know that we have an explicit conditional
11116                  * as well.
11117                  */
11118                 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11119                          arch_specific_syscall_pfx() ? : "", syscall_name);
11120         } else {
11121                 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11122         }
11123
11124         kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11125         kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11126
11127         return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11128 }
11129
11130 /* Adapted from perf/util/string.c */
11131 bool glob_match(const char *str, const char *pat)
11132 {
11133         while (*str && *pat && *pat != '*') {
11134                 if (*pat == '?') {      /* Matches any single character */
11135                         str++;
11136                         pat++;
11137                         continue;
11138                 }
11139                 if (*str != *pat)
11140                         return false;
11141                 str++;
11142                 pat++;
11143         }
11144         /* Check wild card */
11145         if (*pat == '*') {
11146                 while (*pat == '*')
11147                         pat++;
11148                 if (!*pat) /* Tail wild card matches all */
11149                         return true;
11150                 while (*str)
11151                         if (glob_match(str++, pat))
11152                                 return true;
11153         }
11154         return !*str && !*pat;
11155 }
11156
11157 struct kprobe_multi_resolve {
11158         const char *pattern;
11159         unsigned long *addrs;
11160         size_t cap;
11161         size_t cnt;
11162 };
11163
11164 struct avail_kallsyms_data {
11165         char **syms;
11166         size_t cnt;
11167         struct kprobe_multi_resolve *res;
11168 };
11169
11170 static int avail_func_cmp(const void *a, const void *b)
11171 {
11172         return strcmp(*(const char **)a, *(const char **)b);
11173 }
11174
11175 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11176                              const char *sym_name, void *ctx)
11177 {
11178         struct avail_kallsyms_data *data = ctx;
11179         struct kprobe_multi_resolve *res = data->res;
11180         int err;
11181
11182         if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11183                 return 0;
11184
11185         err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11186         if (err)
11187                 return err;
11188
11189         res->addrs[res->cnt++] = (unsigned long)sym_addr;
11190         return 0;
11191 }
11192
11193 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11194 {
11195         const char *available_functions_file = tracefs_available_filter_functions();
11196         struct avail_kallsyms_data data;
11197         char sym_name[500];
11198         FILE *f;
11199         int err = 0, ret, i;
11200         char **syms = NULL;
11201         size_t cap = 0, cnt = 0;
11202
11203         f = fopen(available_functions_file, "re");
11204         if (!f) {
11205                 err = -errno;
11206                 pr_warn("failed to open %s: %d\n", available_functions_file, err);
11207                 return err;
11208         }
11209
11210         while (true) {
11211                 char *name;
11212
11213                 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11214                 if (ret == EOF && feof(f))
11215                         break;
11216
11217                 if (ret != 1) {
11218                         pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11219                         err = -EINVAL;
11220                         goto cleanup;
11221                 }
11222
11223                 if (!glob_match(sym_name, res->pattern))
11224                         continue;
11225
11226                 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11227                 if (err)
11228                         goto cleanup;
11229
11230                 name = strdup(sym_name);
11231                 if (!name) {
11232                         err = -errno;
11233                         goto cleanup;
11234                 }
11235
11236                 syms[cnt++] = name;
11237         }
11238
11239         /* no entries found, bail out */
11240         if (cnt == 0) {
11241                 err = -ENOENT;
11242                 goto cleanup;
11243         }
11244
11245         /* sort available functions */
11246         qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11247
11248         data.syms = syms;
11249         data.res = res;
11250         data.cnt = cnt;
11251         libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11252
11253         if (res->cnt == 0)
11254                 err = -ENOENT;
11255
11256 cleanup:
11257         for (i = 0; i < cnt; i++)
11258                 free((char *)syms[i]);
11259         free(syms);
11260
11261         fclose(f);
11262         return err;
11263 }
11264
11265 static bool has_available_filter_functions_addrs(void)
11266 {
11267         return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11268 }
11269
11270 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11271 {
11272         const char *available_path = tracefs_available_filter_functions_addrs();
11273         char sym_name[500];
11274         FILE *f;
11275         int ret, err = 0;
11276         unsigned long long sym_addr;
11277
11278         f = fopen(available_path, "re");
11279         if (!f) {
11280                 err = -errno;
11281                 pr_warn("failed to open %s: %d\n", available_path, err);
11282                 return err;
11283         }
11284
11285         while (true) {
11286                 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11287                 if (ret == EOF && feof(f))
11288                         break;
11289
11290                 if (ret != 2) {
11291                         pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11292                                 ret);
11293                         err = -EINVAL;
11294                         goto cleanup;
11295                 }
11296
11297                 if (!glob_match(sym_name, res->pattern))
11298                         continue;
11299
11300                 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11301                                         sizeof(*res->addrs), res->cnt + 1);
11302                 if (err)
11303                         goto cleanup;
11304
11305                 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11306         }
11307
11308         if (res->cnt == 0)
11309                 err = -ENOENT;
11310
11311 cleanup:
11312         fclose(f);
11313         return err;
11314 }
11315
11316 struct bpf_link *
11317 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11318                                       const char *pattern,
11319                                       const struct bpf_kprobe_multi_opts *opts)
11320 {
11321         LIBBPF_OPTS(bpf_link_create_opts, lopts);
11322         struct kprobe_multi_resolve res = {
11323                 .pattern = pattern,
11324         };
11325         struct bpf_link *link = NULL;
11326         char errmsg[STRERR_BUFSIZE];
11327         const unsigned long *addrs;
11328         int err, link_fd, prog_fd;
11329         const __u64 *cookies;
11330         const char **syms;
11331         bool retprobe;
11332         size_t cnt;
11333
11334         if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11335                 return libbpf_err_ptr(-EINVAL);
11336
11337         syms    = OPTS_GET(opts, syms, false);
11338         addrs   = OPTS_GET(opts, addrs, false);
11339         cnt     = OPTS_GET(opts, cnt, false);
11340         cookies = OPTS_GET(opts, cookies, false);
11341
11342         if (!pattern && !addrs && !syms)
11343                 return libbpf_err_ptr(-EINVAL);
11344         if (pattern && (addrs || syms || cookies || cnt))
11345                 return libbpf_err_ptr(-EINVAL);
11346         if (!pattern && !cnt)
11347                 return libbpf_err_ptr(-EINVAL);
11348         if (addrs && syms)
11349                 return libbpf_err_ptr(-EINVAL);
11350
11351         if (pattern) {
11352                 if (has_available_filter_functions_addrs())
11353                         err = libbpf_available_kprobes_parse(&res);
11354                 else
11355                         err = libbpf_available_kallsyms_parse(&res);
11356                 if (err)
11357                         goto error;
11358                 addrs = res.addrs;
11359                 cnt = res.cnt;
11360         }
11361
11362         retprobe = OPTS_GET(opts, retprobe, false);
11363
11364         lopts.kprobe_multi.syms = syms;
11365         lopts.kprobe_multi.addrs = addrs;
11366         lopts.kprobe_multi.cookies = cookies;
11367         lopts.kprobe_multi.cnt = cnt;
11368         lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11369
11370         link = calloc(1, sizeof(*link));
11371         if (!link) {
11372                 err = -ENOMEM;
11373                 goto error;
11374         }
11375         link->detach = &bpf_link__detach_fd;
11376
11377         prog_fd = bpf_program__fd(prog);
11378         link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11379         if (link_fd < 0) {
11380                 err = -errno;
11381                 pr_warn("prog '%s': failed to attach: %s\n",
11382                         prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11383                 goto error;
11384         }
11385         link->fd = link_fd;
11386         free(res.addrs);
11387         return link;
11388
11389 error:
11390         free(link);
11391         free(res.addrs);
11392         return libbpf_err_ptr(err);
11393 }
11394
11395 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11396 {
11397         DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11398         unsigned long offset = 0;
11399         const char *func_name;
11400         char *func;
11401         int n;
11402
11403         *link = NULL;
11404
11405         /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11406         if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11407                 return 0;
11408
11409         opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11410         if (opts.retprobe)
11411                 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11412         else
11413                 func_name = prog->sec_name + sizeof("kprobe/") - 1;
11414
11415         n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11416         if (n < 1) {
11417                 pr_warn("kprobe name is invalid: %s\n", func_name);
11418                 return -EINVAL;
11419         }
11420         if (opts.retprobe && offset != 0) {
11421                 free(func);
11422                 pr_warn("kretprobes do not support offset specification\n");
11423                 return -EINVAL;
11424         }
11425
11426         opts.offset = offset;
11427         *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11428         free(func);
11429         return libbpf_get_error(*link);
11430 }
11431
11432 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11433 {
11434         LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11435         const char *syscall_name;
11436
11437         *link = NULL;
11438
11439         /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11440         if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11441                 return 0;
11442
11443         opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11444         if (opts.retprobe)
11445                 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11446         else
11447                 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11448
11449         *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11450         return *link ? 0 : -errno;
11451 }
11452
11453 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11454 {
11455         LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11456         const char *spec;
11457         char *pattern;
11458         int n;
11459
11460         *link = NULL;
11461
11462         /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11463         if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11464             strcmp(prog->sec_name, "kretprobe.multi") == 0)
11465                 return 0;
11466
11467         opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11468         if (opts.retprobe)
11469                 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11470         else
11471                 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11472
11473         n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11474         if (n < 1) {
11475                 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11476                 return -EINVAL;
11477         }
11478
11479         *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11480         free(pattern);
11481         return libbpf_get_error(*link);
11482 }
11483
11484 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11485 {
11486         char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11487         LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11488         int n, ret = -EINVAL;
11489
11490         *link = NULL;
11491
11492         n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11493                    &probe_type, &binary_path, &func_name);
11494         switch (n) {
11495         case 1:
11496                 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11497                 ret = 0;
11498                 break;
11499         case 3:
11500                 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11501                 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11502                 ret = libbpf_get_error(*link);
11503                 break;
11504         default:
11505                 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11506                         prog->sec_name);
11507                 break;
11508         }
11509         free(probe_type);
11510         free(binary_path);
11511         free(func_name);
11512         return ret;
11513 }
11514
11515 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11516                                          const char *binary_path, uint64_t offset)
11517 {
11518         int i;
11519
11520         snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11521
11522         /* sanitize binary_path in the probe name */
11523         for (i = 0; buf[i]; i++) {
11524                 if (!isalnum(buf[i]))
11525                         buf[i] = '_';
11526         }
11527 }
11528
11529 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11530                                           const char *binary_path, size_t offset)
11531 {
11532         return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11533                               retprobe ? 'r' : 'p',
11534                               retprobe ? "uretprobes" : "uprobes",
11535                               probe_name, binary_path, offset);
11536 }
11537
11538 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11539 {
11540         return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11541                               retprobe ? "uretprobes" : "uprobes", probe_name);
11542 }
11543
11544 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11545 {
11546         char file[512];
11547
11548         snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11549                  tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11550
11551         return parse_uint_from_file(file, "%d\n");
11552 }
11553
11554 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11555                                          const char *binary_path, size_t offset, int pid)
11556 {
11557         const size_t attr_sz = sizeof(struct perf_event_attr);
11558         struct perf_event_attr attr;
11559         int type, pfd, err;
11560
11561         err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11562         if (err < 0) {
11563                 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11564                         binary_path, (size_t)offset, err);
11565                 return err;
11566         }
11567         type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11568         if (type < 0) {
11569                 err = type;
11570                 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11571                         binary_path, offset, err);
11572                 goto err_clean_legacy;
11573         }
11574
11575         memset(&attr, 0, attr_sz);
11576         attr.size = attr_sz;
11577         attr.config = type;
11578         attr.type = PERF_TYPE_TRACEPOINT;
11579
11580         pfd = syscall(__NR_perf_event_open, &attr,
11581                       pid < 0 ? -1 : pid, /* pid */
11582                       pid == -1 ? 0 : -1, /* cpu */
11583                       -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11584         if (pfd < 0) {
11585                 err = -errno;
11586                 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11587                 goto err_clean_legacy;
11588         }
11589         return pfd;
11590
11591 err_clean_legacy:
11592         /* Clear the newly added legacy uprobe_event */
11593         remove_uprobe_event_legacy(probe_name, retprobe);
11594         return err;
11595 }
11596
11597 /* Find offset of function name in archive specified by path. Currently
11598  * supported are .zip files that do not compress their contents, as used on
11599  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11600  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11601  * library functions.
11602  *
11603  * An overview of the APK format specifically provided here:
11604  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11605  */
11606 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11607                                               const char *func_name)
11608 {
11609         struct zip_archive *archive;
11610         struct zip_entry entry;
11611         long ret;
11612         Elf *elf;
11613
11614         archive = zip_archive_open(archive_path);
11615         if (IS_ERR(archive)) {
11616                 ret = PTR_ERR(archive);
11617                 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11618                 return ret;
11619         }
11620
11621         ret = zip_archive_find_entry(archive, file_name, &entry);
11622         if (ret) {
11623                 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11624                         archive_path, ret);
11625                 goto out;
11626         }
11627         pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11628                  (unsigned long)entry.data_offset);
11629
11630         if (entry.compression) {
11631                 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11632                         archive_path);
11633                 ret = -LIBBPF_ERRNO__FORMAT;
11634                 goto out;
11635         }
11636
11637         elf = elf_memory((void *)entry.data, entry.data_length);
11638         if (!elf) {
11639                 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11640                         elf_errmsg(-1));
11641                 ret = -LIBBPF_ERRNO__LIBELF;
11642                 goto out;
11643         }
11644
11645         ret = elf_find_func_offset(elf, file_name, func_name);
11646         if (ret > 0) {
11647                 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11648                          func_name, file_name, archive_path, entry.data_offset, ret,
11649                          ret + entry.data_offset);
11650                 ret += entry.data_offset;
11651         }
11652         elf_end(elf);
11653
11654 out:
11655         zip_archive_close(archive);
11656         return ret;
11657 }
11658
11659 static const char *arch_specific_lib_paths(void)
11660 {
11661         /*
11662          * Based on https://packages.debian.org/sid/libc6.
11663          *
11664          * Assume that the traced program is built for the same architecture
11665          * as libbpf, which should cover the vast majority of cases.
11666          */
11667 #if defined(__x86_64__)
11668         return "/lib/x86_64-linux-gnu";
11669 #elif defined(__i386__)
11670         return "/lib/i386-linux-gnu";
11671 #elif defined(__s390x__)
11672         return "/lib/s390x-linux-gnu";
11673 #elif defined(__s390__)
11674         return "/lib/s390-linux-gnu";
11675 #elif defined(__arm__) && defined(__SOFTFP__)
11676         return "/lib/arm-linux-gnueabi";
11677 #elif defined(__arm__) && !defined(__SOFTFP__)
11678         return "/lib/arm-linux-gnueabihf";
11679 #elif defined(__aarch64__)
11680         return "/lib/aarch64-linux-gnu";
11681 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11682         return "/lib/mips64el-linux-gnuabi64";
11683 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11684         return "/lib/mipsel-linux-gnu";
11685 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11686         return "/lib/powerpc64le-linux-gnu";
11687 #elif defined(__sparc__) && defined(__arch64__)
11688         return "/lib/sparc64-linux-gnu";
11689 #elif defined(__riscv) && __riscv_xlen == 64
11690         return "/lib/riscv64-linux-gnu";
11691 #else
11692         return NULL;
11693 #endif
11694 }
11695
11696 /* Get full path to program/shared library. */
11697 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11698 {
11699         const char *search_paths[3] = {};
11700         int i, perm;
11701
11702         if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11703                 search_paths[0] = getenv("LD_LIBRARY_PATH");
11704                 search_paths[1] = "/usr/lib64:/usr/lib";
11705                 search_paths[2] = arch_specific_lib_paths();
11706                 perm = R_OK;
11707         } else {
11708                 search_paths[0] = getenv("PATH");
11709                 search_paths[1] = "/usr/bin:/usr/sbin";
11710                 perm = R_OK | X_OK;
11711         }
11712
11713         for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11714                 const char *s;
11715
11716                 if (!search_paths[i])
11717                         continue;
11718                 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11719                         char *next_path;
11720                         int seg_len;
11721
11722                         if (s[0] == ':')
11723                                 s++;
11724                         next_path = strchr(s, ':');
11725                         seg_len = next_path ? next_path - s : strlen(s);
11726                         if (!seg_len)
11727                                 continue;
11728                         snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11729                         /* ensure it has required permissions */
11730                         if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11731                                 continue;
11732                         pr_debug("resolved '%s' to '%s'\n", file, result);
11733                         return 0;
11734                 }
11735         }
11736         return -ENOENT;
11737 }
11738
11739 struct bpf_link *
11740 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11741                                  pid_t pid,
11742                                  const char *path,
11743                                  const char *func_pattern,
11744                                  const struct bpf_uprobe_multi_opts *opts)
11745 {
11746         const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11747         LIBBPF_OPTS(bpf_link_create_opts, lopts);
11748         unsigned long *resolved_offsets = NULL;
11749         int err = 0, link_fd, prog_fd;
11750         struct bpf_link *link = NULL;
11751         char errmsg[STRERR_BUFSIZE];
11752         char full_path[PATH_MAX];
11753         const __u64 *cookies;
11754         const char **syms;
11755         size_t cnt;
11756
11757         if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11758                 return libbpf_err_ptr(-EINVAL);
11759
11760         syms = OPTS_GET(opts, syms, NULL);
11761         offsets = OPTS_GET(opts, offsets, NULL);
11762         ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11763         cookies = OPTS_GET(opts, cookies, NULL);
11764         cnt = OPTS_GET(opts, cnt, 0);
11765
11766         /*
11767          * User can specify 2 mutually exclusive set of inputs:
11768          *
11769          * 1) use only path/func_pattern/pid arguments
11770          *
11771          * 2) use path/pid with allowed combinations of:
11772          *    syms/offsets/ref_ctr_offsets/cookies/cnt
11773          *
11774          *    - syms and offsets are mutually exclusive
11775          *    - ref_ctr_offsets and cookies are optional
11776          *
11777          * Any other usage results in error.
11778          */
11779
11780         if (!path)
11781                 return libbpf_err_ptr(-EINVAL);
11782         if (!func_pattern && cnt == 0)
11783                 return libbpf_err_ptr(-EINVAL);
11784
11785         if (func_pattern) {
11786                 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11787                         return libbpf_err_ptr(-EINVAL);
11788         } else {
11789                 if (!!syms == !!offsets)
11790                         return libbpf_err_ptr(-EINVAL);
11791         }
11792
11793         if (func_pattern) {
11794                 if (!strchr(path, '/')) {
11795                         err = resolve_full_path(path, full_path, sizeof(full_path));
11796                         if (err) {
11797                                 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11798                                         prog->name, path, err);
11799                                 return libbpf_err_ptr(err);
11800                         }
11801                         path = full_path;
11802                 }
11803
11804                 err = elf_resolve_pattern_offsets(path, func_pattern,
11805                                                   &resolved_offsets, &cnt);
11806                 if (err < 0)
11807                         return libbpf_err_ptr(err);
11808                 offsets = resolved_offsets;
11809         } else if (syms) {
11810                 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
11811                 if (err < 0)
11812                         return libbpf_err_ptr(err);
11813                 offsets = resolved_offsets;
11814         }
11815
11816         lopts.uprobe_multi.path = path;
11817         lopts.uprobe_multi.offsets = offsets;
11818         lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11819         lopts.uprobe_multi.cookies = cookies;
11820         lopts.uprobe_multi.cnt = cnt;
11821         lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11822
11823         if (pid == 0)
11824                 pid = getpid();
11825         if (pid > 0)
11826                 lopts.uprobe_multi.pid = pid;
11827
11828         link = calloc(1, sizeof(*link));
11829         if (!link) {
11830                 err = -ENOMEM;
11831                 goto error;
11832         }
11833         link->detach = &bpf_link__detach_fd;
11834
11835         prog_fd = bpf_program__fd(prog);
11836         link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11837         if (link_fd < 0) {
11838                 err = -errno;
11839                 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11840                         prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11841                 goto error;
11842         }
11843         link->fd = link_fd;
11844         free(resolved_offsets);
11845         return link;
11846
11847 error:
11848         free(resolved_offsets);
11849         free(link);
11850         return libbpf_err_ptr(err);
11851 }
11852
11853 LIBBPF_API struct bpf_link *
11854 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11855                                 const char *binary_path, size_t func_offset,
11856                                 const struct bpf_uprobe_opts *opts)
11857 {
11858         const char *archive_path = NULL, *archive_sep = NULL;
11859         char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11860         DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11861         enum probe_attach_mode attach_mode;
11862         char full_path[PATH_MAX];
11863         struct bpf_link *link;
11864         size_t ref_ctr_off;
11865         int pfd, err;
11866         bool retprobe, legacy;
11867         const char *func_name;
11868
11869         if (!OPTS_VALID(opts, bpf_uprobe_opts))
11870                 return libbpf_err_ptr(-EINVAL);
11871
11872         attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11873         retprobe = OPTS_GET(opts, retprobe, false);
11874         ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11875         pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11876
11877         if (!binary_path)
11878                 return libbpf_err_ptr(-EINVAL);
11879
11880         /* Check if "binary_path" refers to an archive. */
11881         archive_sep = strstr(binary_path, "!/");
11882         if (archive_sep) {
11883                 full_path[0] = '\0';
11884                 libbpf_strlcpy(full_path, binary_path,
11885                                min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11886                 archive_path = full_path;
11887                 binary_path = archive_sep + 2;
11888         } else if (!strchr(binary_path, '/')) {
11889                 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11890                 if (err) {
11891                         pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11892                                 prog->name, binary_path, err);
11893                         return libbpf_err_ptr(err);
11894                 }
11895                 binary_path = full_path;
11896         }
11897         func_name = OPTS_GET(opts, func_name, NULL);
11898         if (func_name) {
11899                 long sym_off;
11900
11901                 if (archive_path) {
11902                         sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11903                                                                     func_name);
11904                         binary_path = archive_path;
11905                 } else {
11906                         sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11907                 }
11908                 if (sym_off < 0)
11909                         return libbpf_err_ptr(sym_off);
11910                 func_offset += sym_off;
11911         }
11912
11913         legacy = determine_uprobe_perf_type() < 0;
11914         switch (attach_mode) {
11915         case PROBE_ATTACH_MODE_LEGACY:
11916                 legacy = true;
11917                 pe_opts.force_ioctl_attach = true;
11918                 break;
11919         case PROBE_ATTACH_MODE_PERF:
11920                 if (legacy)
11921                         return libbpf_err_ptr(-ENOTSUP);
11922                 pe_opts.force_ioctl_attach = true;
11923                 break;
11924         case PROBE_ATTACH_MODE_LINK:
11925                 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11926                         return libbpf_err_ptr(-ENOTSUP);
11927                 break;
11928         case PROBE_ATTACH_MODE_DEFAULT:
11929                 break;
11930         default:
11931                 return libbpf_err_ptr(-EINVAL);
11932         }
11933
11934         if (!legacy) {
11935                 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11936                                             func_offset, pid, ref_ctr_off);
11937         } else {
11938                 char probe_name[PATH_MAX + 64];
11939
11940                 if (ref_ctr_off)
11941                         return libbpf_err_ptr(-EINVAL);
11942
11943                 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11944                                              binary_path, func_offset);
11945
11946                 legacy_probe = strdup(probe_name);
11947                 if (!legacy_probe)
11948                         return libbpf_err_ptr(-ENOMEM);
11949
11950                 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11951                                                     binary_path, func_offset, pid);
11952         }
11953         if (pfd < 0) {
11954                 err = -errno;
11955                 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11956                         prog->name, retprobe ? "uretprobe" : "uprobe",
11957                         binary_path, func_offset,
11958                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11959                 goto err_out;
11960         }
11961
11962         link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11963         err = libbpf_get_error(link);
11964         if (err) {
11965                 close(pfd);
11966                 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11967                         prog->name, retprobe ? "uretprobe" : "uprobe",
11968                         binary_path, func_offset,
11969                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11970                 goto err_clean_legacy;
11971         }
11972         if (legacy) {
11973                 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11974
11975                 perf_link->legacy_probe_name = legacy_probe;
11976                 perf_link->legacy_is_kprobe = false;
11977                 perf_link->legacy_is_retprobe = retprobe;
11978         }
11979         return link;
11980
11981 err_clean_legacy:
11982         if (legacy)
11983                 remove_uprobe_event_legacy(legacy_probe, retprobe);
11984 err_out:
11985         free(legacy_probe);
11986         return libbpf_err_ptr(err);
11987 }
11988
11989 /* Format of u[ret]probe section definition supporting auto-attach:
11990  * u[ret]probe/binary:function[+offset]
11991  *
11992  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11993  * full binary path via bpf_program__attach_uprobe_opts.
11994  *
11995  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11996  * specified (and auto-attach is not possible) or the above format is specified for
11997  * auto-attach.
11998  */
11999 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12000 {
12001         DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12002         char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12003         int n, c, ret = -EINVAL;
12004         long offset = 0;
12005
12006         *link = NULL;
12007
12008         n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12009                    &probe_type, &binary_path, &func_name);
12010         switch (n) {
12011         case 1:
12012                 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12013                 ret = 0;
12014                 break;
12015         case 2:
12016                 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12017                         prog->name, prog->sec_name);
12018                 break;
12019         case 3:
12020                 /* check if user specifies `+offset`, if yes, this should be
12021                  * the last part of the string, make sure sscanf read to EOL
12022                  */
12023                 func_off = strrchr(func_name, '+');
12024                 if (func_off) {
12025                         n = sscanf(func_off, "+%li%n", &offset, &c);
12026                         if (n == 1 && *(func_off + c) == '\0')
12027                                 func_off[0] = '\0';
12028                         else
12029                                 offset = 0;
12030                 }
12031                 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12032                                 strcmp(probe_type, "uretprobe.s") == 0;
12033                 if (opts.retprobe && offset != 0) {
12034                         pr_warn("prog '%s': uretprobes do not support offset specification\n",
12035                                 prog->name);
12036                         break;
12037                 }
12038                 opts.func_name = func_name;
12039                 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12040                 ret = libbpf_get_error(*link);
12041                 break;
12042         default:
12043                 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12044                         prog->sec_name);
12045                 break;
12046         }
12047         free(probe_type);
12048         free(binary_path);
12049         free(func_name);
12050
12051         return ret;
12052 }
12053
12054 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12055                                             bool retprobe, pid_t pid,
12056                                             const char *binary_path,
12057                                             size_t func_offset)
12058 {
12059         DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12060
12061         return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12062 }
12063
12064 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12065                                           pid_t pid, const char *binary_path,
12066                                           const char *usdt_provider, const char *usdt_name,
12067                                           const struct bpf_usdt_opts *opts)
12068 {
12069         char resolved_path[512];
12070         struct bpf_object *obj = prog->obj;
12071         struct bpf_link *link;
12072         __u64 usdt_cookie;
12073         int err;
12074
12075         if (!OPTS_VALID(opts, bpf_uprobe_opts))
12076                 return libbpf_err_ptr(-EINVAL);
12077
12078         if (bpf_program__fd(prog) < 0) {
12079                 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
12080                         prog->name);
12081                 return libbpf_err_ptr(-EINVAL);
12082         }
12083
12084         if (!binary_path)
12085                 return libbpf_err_ptr(-EINVAL);
12086
12087         if (!strchr(binary_path, '/')) {
12088                 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12089                 if (err) {
12090                         pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12091                                 prog->name, binary_path, err);
12092                         return libbpf_err_ptr(err);
12093                 }
12094                 binary_path = resolved_path;
12095         }
12096
12097         /* USDT manager is instantiated lazily on first USDT attach. It will
12098          * be destroyed together with BPF object in bpf_object__close().
12099          */
12100         if (IS_ERR(obj->usdt_man))
12101                 return libbpf_ptr(obj->usdt_man);
12102         if (!obj->usdt_man) {
12103                 obj->usdt_man = usdt_manager_new(obj);
12104                 if (IS_ERR(obj->usdt_man))
12105                         return libbpf_ptr(obj->usdt_man);
12106         }
12107
12108         usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12109         link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12110                                         usdt_provider, usdt_name, usdt_cookie);
12111         err = libbpf_get_error(link);
12112         if (err)
12113                 return libbpf_err_ptr(err);
12114         return link;
12115 }
12116
12117 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12118 {
12119         char *path = NULL, *provider = NULL, *name = NULL;
12120         const char *sec_name;
12121         int n, err;
12122
12123         sec_name = bpf_program__section_name(prog);
12124         if (strcmp(sec_name, "usdt") == 0) {
12125                 /* no auto-attach for just SEC("usdt") */
12126                 *link = NULL;
12127                 return 0;
12128         }
12129
12130         n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12131         if (n != 3) {
12132                 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12133                         sec_name);
12134                 err = -EINVAL;
12135         } else {
12136                 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12137                                                  provider, name, NULL);
12138                 err = libbpf_get_error(*link);
12139         }
12140         free(path);
12141         free(provider);
12142         free(name);
12143         return err;
12144 }
12145
12146 static int determine_tracepoint_id(const char *tp_category,
12147                                    const char *tp_name)
12148 {
12149         char file[PATH_MAX];
12150         int ret;
12151
12152         ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12153                        tracefs_path(), tp_category, tp_name);
12154         if (ret < 0)
12155                 return -errno;
12156         if (ret >= sizeof(file)) {
12157                 pr_debug("tracepoint %s/%s path is too long\n",
12158                          tp_category, tp_name);
12159                 return -E2BIG;
12160         }
12161         return parse_uint_from_file(file, "%d\n");
12162 }
12163
12164 static int perf_event_open_tracepoint(const char *tp_category,
12165                                       const char *tp_name)
12166 {
12167         const size_t attr_sz = sizeof(struct perf_event_attr);
12168         struct perf_event_attr attr;
12169         char errmsg[STRERR_BUFSIZE];
12170         int tp_id, pfd, err;
12171
12172         tp_id = determine_tracepoint_id(tp_category, tp_name);
12173         if (tp_id < 0) {
12174                 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12175                         tp_category, tp_name,
12176                         libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12177                 return tp_id;
12178         }
12179
12180         memset(&attr, 0, attr_sz);
12181         attr.type = PERF_TYPE_TRACEPOINT;
12182         attr.size = attr_sz;
12183         attr.config = tp_id;
12184
12185         pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12186                       -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12187         if (pfd < 0) {
12188                 err = -errno;
12189                 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12190                         tp_category, tp_name,
12191                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12192                 return err;
12193         }
12194         return pfd;
12195 }
12196
12197 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12198                                                      const char *tp_category,
12199                                                      const char *tp_name,
12200                                                      const struct bpf_tracepoint_opts *opts)
12201 {
12202         DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12203         char errmsg[STRERR_BUFSIZE];
12204         struct bpf_link *link;
12205         int pfd, err;
12206
12207         if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12208                 return libbpf_err_ptr(-EINVAL);
12209
12210         pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12211
12212         pfd = perf_event_open_tracepoint(tp_category, tp_name);
12213         if (pfd < 0) {
12214                 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12215                         prog->name, tp_category, tp_name,
12216                         libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12217                 return libbpf_err_ptr(pfd);
12218         }
12219         link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12220         err = libbpf_get_error(link);
12221         if (err) {
12222                 close(pfd);
12223                 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12224                         prog->name, tp_category, tp_name,
12225                         libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12226                 return libbpf_err_ptr(err);
12227         }
12228         return link;
12229 }
12230
12231 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12232                                                 const char *tp_category,
12233                                                 const char *tp_name)
12234 {
12235         return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12236 }
12237
12238 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12239 {
12240         char *sec_name, *tp_cat, *tp_name;
12241
12242         *link = NULL;
12243
12244         /* no auto-attach for SEC("tp") or SEC("tracepoint") */
12245         if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12246                 return 0;
12247
12248         sec_name = strdup(prog->sec_name);
12249         if (!sec_name)
12250                 return -ENOMEM;
12251
12252         /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12253         if (str_has_pfx(prog->sec_name, "tp/"))
12254                 tp_cat = sec_name + sizeof("tp/") - 1;
12255         else
12256                 tp_cat = sec_name + sizeof("tracepoint/") - 1;
12257         tp_name = strchr(tp_cat, '/');
12258         if (!tp_name) {
12259                 free(sec_name);
12260                 return -EINVAL;
12261         }
12262         *tp_name = '\0';
12263         tp_name++;
12264
12265         *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12266         free(sec_name);
12267         return libbpf_get_error(*link);
12268 }
12269
12270 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12271                                                     const char *tp_name)
12272 {
12273         char errmsg[STRERR_BUFSIZE];
12274         struct bpf_link *link;
12275         int prog_fd, pfd;
12276
12277         prog_fd = bpf_program__fd(prog);
12278         if (prog_fd < 0) {
12279                 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12280                 return libbpf_err_ptr(-EINVAL);
12281         }
12282
12283         link = calloc(1, sizeof(*link));
12284         if (!link)
12285                 return libbpf_err_ptr(-ENOMEM);
12286         link->detach = &bpf_link__detach_fd;
12287
12288         pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
12289         if (pfd < 0) {
12290                 pfd = -errno;
12291                 free(link);
12292                 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12293                         prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12294                 return libbpf_err_ptr(pfd);
12295         }
12296         link->fd = pfd;
12297         return link;
12298 }
12299
12300 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12301 {
12302         static const char *const prefixes[] = {
12303                 "raw_tp",
12304                 "raw_tracepoint",
12305                 "raw_tp.w",
12306                 "raw_tracepoint.w",
12307         };
12308         size_t i;
12309         const char *tp_name = NULL;
12310
12311         *link = NULL;
12312
12313         for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12314                 size_t pfx_len;
12315
12316                 if (!str_has_pfx(prog->sec_name, prefixes[i]))
12317                         continue;
12318
12319                 pfx_len = strlen(prefixes[i]);
12320                 /* no auto-attach case of, e.g., SEC("raw_tp") */
12321                 if (prog->sec_name[pfx_len] == '\0')
12322                         return 0;
12323
12324                 if (prog->sec_name[pfx_len] != '/')
12325                         continue;
12326
12327                 tp_name = prog->sec_name + pfx_len + 1;
12328                 break;
12329         }
12330
12331         if (!tp_name) {
12332                 pr_warn("prog '%s': invalid section name '%s'\n",
12333                         prog->name, prog->sec_name);
12334                 return -EINVAL;
12335         }
12336
12337         *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12338         return libbpf_get_error(*link);
12339 }
12340
12341 /* Common logic for all BPF program types that attach to a btf_id */
12342 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12343                                                    const struct bpf_trace_opts *opts)
12344 {
12345         LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12346         char errmsg[STRERR_BUFSIZE];
12347         struct bpf_link *link;
12348         int prog_fd, pfd;
12349
12350         if (!OPTS_VALID(opts, bpf_trace_opts))
12351                 return libbpf_err_ptr(-EINVAL);
12352
12353         prog_fd = bpf_program__fd(prog);
12354         if (prog_fd < 0) {
12355                 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12356                 return libbpf_err_ptr(-EINVAL);
12357         }
12358
12359         link = calloc(1, sizeof(*link));
12360         if (!link)
12361                 return libbpf_err_ptr(-ENOMEM);
12362         link->detach = &bpf_link__detach_fd;
12363
12364         /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12365         link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12366         pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12367         if (pfd < 0) {
12368                 pfd = -errno;
12369                 free(link);
12370                 pr_warn("prog '%s': failed to attach: %s\n",
12371                         prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12372                 return libbpf_err_ptr(pfd);
12373         }
12374         link->fd = pfd;
12375         return link;
12376 }
12377
12378 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12379 {
12380         return bpf_program__attach_btf_id(prog, NULL);
12381 }
12382
12383 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12384                                                 const struct bpf_trace_opts *opts)
12385 {
12386         return bpf_program__attach_btf_id(prog, opts);
12387 }
12388
12389 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12390 {
12391         return bpf_program__attach_btf_id(prog, NULL);
12392 }
12393
12394 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12395 {
12396         *link = bpf_program__attach_trace(prog);
12397         return libbpf_get_error(*link);
12398 }
12399
12400 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12401 {
12402         *link = bpf_program__attach_lsm(prog);
12403         return libbpf_get_error(*link);
12404 }
12405
12406 static struct bpf_link *
12407 bpf_program_attach_fd(const struct bpf_program *prog,
12408                       int target_fd, const char *target_name,
12409                       const struct bpf_link_create_opts *opts)
12410 {
12411         enum bpf_attach_type attach_type;
12412         char errmsg[STRERR_BUFSIZE];
12413         struct bpf_link *link;
12414         int prog_fd, link_fd;
12415
12416         prog_fd = bpf_program__fd(prog);
12417         if (prog_fd < 0) {
12418                 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12419                 return libbpf_err_ptr(-EINVAL);
12420         }
12421
12422         link = calloc(1, sizeof(*link));
12423         if (!link)
12424                 return libbpf_err_ptr(-ENOMEM);
12425         link->detach = &bpf_link__detach_fd;
12426
12427         attach_type = bpf_program__expected_attach_type(prog);
12428         link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12429         if (link_fd < 0) {
12430                 link_fd = -errno;
12431                 free(link);
12432                 pr_warn("prog '%s': failed to attach to %s: %s\n",
12433                         prog->name, target_name,
12434                         libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12435                 return libbpf_err_ptr(link_fd);
12436         }
12437         link->fd = link_fd;
12438         return link;
12439 }
12440
12441 struct bpf_link *
12442 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12443 {
12444         return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12445 }
12446
12447 struct bpf_link *
12448 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12449 {
12450         return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12451 }
12452
12453 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12454 {
12455         /* target_fd/target_ifindex use the same field in LINK_CREATE */
12456         return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12457 }
12458
12459 struct bpf_link *
12460 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12461                         const struct bpf_tcx_opts *opts)
12462 {
12463         LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12464         __u32 relative_id;
12465         int relative_fd;
12466
12467         if (!OPTS_VALID(opts, bpf_tcx_opts))
12468                 return libbpf_err_ptr(-EINVAL);
12469
12470         relative_id = OPTS_GET(opts, relative_id, 0);
12471         relative_fd = OPTS_GET(opts, relative_fd, 0);
12472
12473         /* validate we don't have unexpected combinations of non-zero fields */
12474         if (!ifindex) {
12475                 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12476                         prog->name);
12477                 return libbpf_err_ptr(-EINVAL);
12478         }
12479         if (relative_fd && relative_id) {
12480                 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12481                         prog->name);
12482                 return libbpf_err_ptr(-EINVAL);
12483         }
12484
12485         link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12486         link_create_opts.tcx.relative_fd = relative_fd;
12487         link_create_opts.tcx.relative_id = relative_id;
12488         link_create_opts.flags = OPTS_GET(opts, flags, 0);
12489
12490         /* target_fd/target_ifindex use the same field in LINK_CREATE */
12491         return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12492 }
12493
12494 struct bpf_link *
12495 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12496                            const struct bpf_netkit_opts *opts)
12497 {
12498         LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12499         __u32 relative_id;
12500         int relative_fd;
12501
12502         if (!OPTS_VALID(opts, bpf_netkit_opts))
12503                 return libbpf_err_ptr(-EINVAL);
12504
12505         relative_id = OPTS_GET(opts, relative_id, 0);
12506         relative_fd = OPTS_GET(opts, relative_fd, 0);
12507
12508         /* validate we don't have unexpected combinations of non-zero fields */
12509         if (!ifindex) {
12510                 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12511                         prog->name);
12512                 return libbpf_err_ptr(-EINVAL);
12513         }
12514         if (relative_fd && relative_id) {
12515                 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12516                         prog->name);
12517                 return libbpf_err_ptr(-EINVAL);
12518         }
12519
12520         link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12521         link_create_opts.netkit.relative_fd = relative_fd;
12522         link_create_opts.netkit.relative_id = relative_id;
12523         link_create_opts.flags = OPTS_GET(opts, flags, 0);
12524
12525         return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12526 }
12527
12528 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12529                                               int target_fd,
12530                                               const char *attach_func_name)
12531 {
12532         int btf_id;
12533
12534         if (!!target_fd != !!attach_func_name) {
12535                 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12536                         prog->name);
12537                 return libbpf_err_ptr(-EINVAL);
12538         }
12539
12540         if (prog->type != BPF_PROG_TYPE_EXT) {
12541                 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12542                         prog->name);
12543                 return libbpf_err_ptr(-EINVAL);
12544         }
12545
12546         if (target_fd) {
12547                 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12548
12549                 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12550                 if (btf_id < 0)
12551                         return libbpf_err_ptr(btf_id);
12552
12553                 target_opts.target_btf_id = btf_id;
12554
12555                 return bpf_program_attach_fd(prog, target_fd, "freplace",
12556                                              &target_opts);
12557         } else {
12558                 /* no target, so use raw_tracepoint_open for compatibility
12559                  * with old kernels
12560                  */
12561                 return bpf_program__attach_trace(prog);
12562         }
12563 }
12564
12565 struct bpf_link *
12566 bpf_program__attach_iter(const struct bpf_program *prog,
12567                          const struct bpf_iter_attach_opts *opts)
12568 {
12569         DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12570         char errmsg[STRERR_BUFSIZE];
12571         struct bpf_link *link;
12572         int prog_fd, link_fd;
12573         __u32 target_fd = 0;
12574
12575         if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12576                 return libbpf_err_ptr(-EINVAL);
12577
12578         link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12579         link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12580
12581         prog_fd = bpf_program__fd(prog);
12582         if (prog_fd < 0) {
12583                 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12584                 return libbpf_err_ptr(-EINVAL);
12585         }
12586
12587         link = calloc(1, sizeof(*link));
12588         if (!link)
12589                 return libbpf_err_ptr(-ENOMEM);
12590         link->detach = &bpf_link__detach_fd;
12591
12592         link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12593                                   &link_create_opts);
12594         if (link_fd < 0) {
12595                 link_fd = -errno;
12596                 free(link);
12597                 pr_warn("prog '%s': failed to attach to iterator: %s\n",
12598                         prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12599                 return libbpf_err_ptr(link_fd);
12600         }
12601         link->fd = link_fd;
12602         return link;
12603 }
12604
12605 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12606 {
12607         *link = bpf_program__attach_iter(prog, NULL);
12608         return libbpf_get_error(*link);
12609 }
12610
12611 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12612                                                const struct bpf_netfilter_opts *opts)
12613 {
12614         LIBBPF_OPTS(bpf_link_create_opts, lopts);
12615         struct bpf_link *link;
12616         int prog_fd, link_fd;
12617
12618         if (!OPTS_VALID(opts, bpf_netfilter_opts))
12619                 return libbpf_err_ptr(-EINVAL);
12620
12621         prog_fd = bpf_program__fd(prog);
12622         if (prog_fd < 0) {
12623                 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12624                 return libbpf_err_ptr(-EINVAL);
12625         }
12626
12627         link = calloc(1, sizeof(*link));
12628         if (!link)
12629                 return libbpf_err_ptr(-ENOMEM);
12630
12631         link->detach = &bpf_link__detach_fd;
12632
12633         lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12634         lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12635         lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12636         lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12637
12638         link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12639         if (link_fd < 0) {
12640                 char errmsg[STRERR_BUFSIZE];
12641
12642                 link_fd = -errno;
12643                 free(link);
12644                 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12645                         prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12646                 return libbpf_err_ptr(link_fd);
12647         }
12648         link->fd = link_fd;
12649
12650         return link;
12651 }
12652
12653 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12654 {
12655         struct bpf_link *link = NULL;
12656         int err;
12657
12658         if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12659                 return libbpf_err_ptr(-EOPNOTSUPP);
12660
12661         err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12662         if (err)
12663                 return libbpf_err_ptr(err);
12664
12665         /* When calling bpf_program__attach() explicitly, auto-attach support
12666          * is expected to work, so NULL returned link is considered an error.
12667          * This is different for skeleton's attach, see comment in
12668          * bpf_object__attach_skeleton().
12669          */
12670         if (!link)
12671                 return libbpf_err_ptr(-EOPNOTSUPP);
12672
12673         return link;
12674 }
12675
12676 struct bpf_link_struct_ops {
12677         struct bpf_link link;
12678         int map_fd;
12679 };
12680
12681 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12682 {
12683         struct bpf_link_struct_ops *st_link;
12684         __u32 zero = 0;
12685
12686         st_link = container_of(link, struct bpf_link_struct_ops, link);
12687
12688         if (st_link->map_fd < 0)
12689                 /* w/o a real link */
12690                 return bpf_map_delete_elem(link->fd, &zero);
12691
12692         return close(link->fd);
12693 }
12694
12695 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12696 {
12697         struct bpf_link_struct_ops *link;
12698         __u32 zero = 0;
12699         int err, fd;
12700
12701         if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12702                 return libbpf_err_ptr(-EINVAL);
12703
12704         link = calloc(1, sizeof(*link));
12705         if (!link)
12706                 return libbpf_err_ptr(-EINVAL);
12707
12708         /* kern_vdata should be prepared during the loading phase. */
12709         err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12710         /* It can be EBUSY if the map has been used to create or
12711          * update a link before.  We don't allow updating the value of
12712          * a struct_ops once it is set.  That ensures that the value
12713          * never changed.  So, it is safe to skip EBUSY.
12714          */
12715         if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12716                 free(link);
12717                 return libbpf_err_ptr(err);
12718         }
12719
12720         link->link.detach = bpf_link__detach_struct_ops;
12721
12722         if (!(map->def.map_flags & BPF_F_LINK)) {
12723                 /* w/o a real link */
12724                 link->link.fd = map->fd;
12725                 link->map_fd = -1;
12726                 return &link->link;
12727         }
12728
12729         fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12730         if (fd < 0) {
12731                 free(link);
12732                 return libbpf_err_ptr(fd);
12733         }
12734
12735         link->link.fd = fd;
12736         link->map_fd = map->fd;
12737
12738         return &link->link;
12739 }
12740
12741 /*
12742  * Swap the back struct_ops of a link with a new struct_ops map.
12743  */
12744 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12745 {
12746         struct bpf_link_struct_ops *st_ops_link;
12747         __u32 zero = 0;
12748         int err;
12749
12750         if (!bpf_map__is_struct_ops(map) || !map_is_created(map))
12751                 return -EINVAL;
12752
12753         st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12754         /* Ensure the type of a link is correct */
12755         if (st_ops_link->map_fd < 0)
12756                 return -EINVAL;
12757
12758         err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12759         /* It can be EBUSY if the map has been used to create or
12760          * update a link before.  We don't allow updating the value of
12761          * a struct_ops once it is set.  That ensures that the value
12762          * never changed.  So, it is safe to skip EBUSY.
12763          */
12764         if (err && err != -EBUSY)
12765                 return err;
12766
12767         err = bpf_link_update(link->fd, map->fd, NULL);
12768         if (err < 0)
12769                 return err;
12770
12771         st_ops_link->map_fd = map->fd;
12772
12773         return 0;
12774 }
12775
12776 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12777                                                           void *private_data);
12778
12779 static enum bpf_perf_event_ret
12780 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12781                        void **copy_mem, size_t *copy_size,
12782                        bpf_perf_event_print_t fn, void *private_data)
12783 {
12784         struct perf_event_mmap_page *header = mmap_mem;
12785         __u64 data_head = ring_buffer_read_head(header);
12786         __u64 data_tail = header->data_tail;
12787         void *base = ((__u8 *)header) + page_size;
12788         int ret = LIBBPF_PERF_EVENT_CONT;
12789         struct perf_event_header *ehdr;
12790         size_t ehdr_size;
12791
12792         while (data_head != data_tail) {
12793                 ehdr = base + (data_tail & (mmap_size - 1));
12794                 ehdr_size = ehdr->size;
12795
12796                 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12797                         void *copy_start = ehdr;
12798                         size_t len_first = base + mmap_size - copy_start;
12799                         size_t len_secnd = ehdr_size - len_first;
12800
12801                         if (*copy_size < ehdr_size) {
12802                                 free(*copy_mem);
12803                                 *copy_mem = malloc(ehdr_size);
12804                                 if (!*copy_mem) {
12805                                         *copy_size = 0;
12806                                         ret = LIBBPF_PERF_EVENT_ERROR;
12807                                         break;
12808                                 }
12809                                 *copy_size = ehdr_size;
12810                         }
12811
12812                         memcpy(*copy_mem, copy_start, len_first);
12813                         memcpy(*copy_mem + len_first, base, len_secnd);
12814                         ehdr = *copy_mem;
12815                 }
12816
12817                 ret = fn(ehdr, private_data);
12818                 data_tail += ehdr_size;
12819                 if (ret != LIBBPF_PERF_EVENT_CONT)
12820                         break;
12821         }
12822
12823         ring_buffer_write_tail(header, data_tail);
12824         return libbpf_err(ret);
12825 }
12826
12827 struct perf_buffer;
12828
12829 struct perf_buffer_params {
12830         struct perf_event_attr *attr;
12831         /* if event_cb is specified, it takes precendence */
12832         perf_buffer_event_fn event_cb;
12833         /* sample_cb and lost_cb are higher-level common-case callbacks */
12834         perf_buffer_sample_fn sample_cb;
12835         perf_buffer_lost_fn lost_cb;
12836         void *ctx;
12837         int cpu_cnt;
12838         int *cpus;
12839         int *map_keys;
12840 };
12841
12842 struct perf_cpu_buf {
12843         struct perf_buffer *pb;
12844         void *base; /* mmap()'ed memory */
12845         void *buf; /* for reconstructing segmented data */
12846         size_t buf_size;
12847         int fd;
12848         int cpu;
12849         int map_key;
12850 };
12851
12852 struct perf_buffer {
12853         perf_buffer_event_fn event_cb;
12854         perf_buffer_sample_fn sample_cb;
12855         perf_buffer_lost_fn lost_cb;
12856         void *ctx; /* passed into callbacks */
12857
12858         size_t page_size;
12859         size_t mmap_size;
12860         struct perf_cpu_buf **cpu_bufs;
12861         struct epoll_event *events;
12862         int cpu_cnt; /* number of allocated CPU buffers */
12863         int epoll_fd; /* perf event FD */
12864         int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12865 };
12866
12867 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12868                                       struct perf_cpu_buf *cpu_buf)
12869 {
12870         if (!cpu_buf)
12871                 return;
12872         if (cpu_buf->base &&
12873             munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12874                 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12875         if (cpu_buf->fd >= 0) {
12876                 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12877                 close(cpu_buf->fd);
12878         }
12879         free(cpu_buf->buf);
12880         free(cpu_buf);
12881 }
12882
12883 void perf_buffer__free(struct perf_buffer *pb)
12884 {
12885         int i;
12886
12887         if (IS_ERR_OR_NULL(pb))
12888                 return;
12889         if (pb->cpu_bufs) {
12890                 for (i = 0; i < pb->cpu_cnt; i++) {
12891                         struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12892
12893                         if (!cpu_buf)
12894                                 continue;
12895
12896                         bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12897                         perf_buffer__free_cpu_buf(pb, cpu_buf);
12898                 }
12899                 free(pb->cpu_bufs);
12900         }
12901         if (pb->epoll_fd >= 0)
12902                 close(pb->epoll_fd);
12903         free(pb->events);
12904         free(pb);
12905 }
12906
12907 static struct perf_cpu_buf *
12908 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12909                           int cpu, int map_key)
12910 {
12911         struct perf_cpu_buf *cpu_buf;
12912         char msg[STRERR_BUFSIZE];
12913         int err;
12914
12915         cpu_buf = calloc(1, sizeof(*cpu_buf));
12916         if (!cpu_buf)
12917                 return ERR_PTR(-ENOMEM);
12918
12919         cpu_buf->pb = pb;
12920         cpu_buf->cpu = cpu;
12921         cpu_buf->map_key = map_key;
12922
12923         cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12924                               -1, PERF_FLAG_FD_CLOEXEC);
12925         if (cpu_buf->fd < 0) {
12926                 err = -errno;
12927                 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12928                         cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12929                 goto error;
12930         }
12931
12932         cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12933                              PROT_READ | PROT_WRITE, MAP_SHARED,
12934                              cpu_buf->fd, 0);
12935         if (cpu_buf->base == MAP_FAILED) {
12936                 cpu_buf->base = NULL;
12937                 err = -errno;
12938                 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12939                         cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12940                 goto error;
12941         }
12942
12943         if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12944                 err = -errno;
12945                 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12946                         cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12947                 goto error;
12948         }
12949
12950         return cpu_buf;
12951
12952 error:
12953         perf_buffer__free_cpu_buf(pb, cpu_buf);
12954         return (struct perf_cpu_buf *)ERR_PTR(err);
12955 }
12956
12957 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12958                                               struct perf_buffer_params *p);
12959
12960 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12961                                      perf_buffer_sample_fn sample_cb,
12962                                      perf_buffer_lost_fn lost_cb,
12963                                      void *ctx,
12964                                      const struct perf_buffer_opts *opts)
12965 {
12966         const size_t attr_sz = sizeof(struct perf_event_attr);
12967         struct perf_buffer_params p = {};
12968         struct perf_event_attr attr;
12969         __u32 sample_period;
12970
12971         if (!OPTS_VALID(opts, perf_buffer_opts))
12972                 return libbpf_err_ptr(-EINVAL);
12973
12974         sample_period = OPTS_GET(opts, sample_period, 1);
12975         if (!sample_period)
12976                 sample_period = 1;
12977
12978         memset(&attr, 0, attr_sz);
12979         attr.size = attr_sz;
12980         attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12981         attr.type = PERF_TYPE_SOFTWARE;
12982         attr.sample_type = PERF_SAMPLE_RAW;
12983         attr.sample_period = sample_period;
12984         attr.wakeup_events = sample_period;
12985
12986         p.attr = &attr;
12987         p.sample_cb = sample_cb;
12988         p.lost_cb = lost_cb;
12989         p.ctx = ctx;
12990
12991         return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12992 }
12993
12994 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12995                                          struct perf_event_attr *attr,
12996                                          perf_buffer_event_fn event_cb, void *ctx,
12997                                          const struct perf_buffer_raw_opts *opts)
12998 {
12999         struct perf_buffer_params p = {};
13000
13001         if (!attr)
13002                 return libbpf_err_ptr(-EINVAL);
13003
13004         if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13005                 return libbpf_err_ptr(-EINVAL);
13006
13007         p.attr = attr;
13008         p.event_cb = event_cb;
13009         p.ctx = ctx;
13010         p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13011         p.cpus = OPTS_GET(opts, cpus, NULL);
13012         p.map_keys = OPTS_GET(opts, map_keys, NULL);
13013
13014         return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13015 }
13016
13017 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13018                                               struct perf_buffer_params *p)
13019 {
13020         const char *online_cpus_file = "/sys/devices/system/cpu/online";
13021         struct bpf_map_info map;
13022         char msg[STRERR_BUFSIZE];
13023         struct perf_buffer *pb;
13024         bool *online = NULL;
13025         __u32 map_info_len;
13026         int err, i, j, n;
13027
13028         if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13029                 pr_warn("page count should be power of two, but is %zu\n",
13030                         page_cnt);
13031                 return ERR_PTR(-EINVAL);
13032         }
13033
13034         /* best-effort sanity checks */
13035         memset(&map, 0, sizeof(map));
13036         map_info_len = sizeof(map);
13037         err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13038         if (err) {
13039                 err = -errno;
13040                 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13041                  * -EBADFD, -EFAULT, or -E2BIG on real error
13042                  */
13043                 if (err != -EINVAL) {
13044                         pr_warn("failed to get map info for map FD %d: %s\n",
13045                                 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13046                         return ERR_PTR(err);
13047                 }
13048                 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13049                          map_fd);
13050         } else {
13051                 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13052                         pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13053                                 map.name);
13054                         return ERR_PTR(-EINVAL);
13055                 }
13056         }
13057
13058         pb = calloc(1, sizeof(*pb));
13059         if (!pb)
13060                 return ERR_PTR(-ENOMEM);
13061
13062         pb->event_cb = p->event_cb;
13063         pb->sample_cb = p->sample_cb;
13064         pb->lost_cb = p->lost_cb;
13065         pb->ctx = p->ctx;
13066
13067         pb->page_size = getpagesize();
13068         pb->mmap_size = pb->page_size * page_cnt;
13069         pb->map_fd = map_fd;
13070
13071         pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13072         if (pb->epoll_fd < 0) {
13073                 err = -errno;
13074                 pr_warn("failed to create epoll instance: %s\n",
13075                         libbpf_strerror_r(err, msg, sizeof(msg)));
13076                 goto error;
13077         }
13078
13079         if (p->cpu_cnt > 0) {
13080                 pb->cpu_cnt = p->cpu_cnt;
13081         } else {
13082                 pb->cpu_cnt = libbpf_num_possible_cpus();
13083                 if (pb->cpu_cnt < 0) {
13084                         err = pb->cpu_cnt;
13085                         goto error;
13086                 }
13087                 if (map.max_entries && map.max_entries < pb->cpu_cnt)
13088                         pb->cpu_cnt = map.max_entries;
13089         }
13090
13091         pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13092         if (!pb->events) {
13093                 err = -ENOMEM;
13094                 pr_warn("failed to allocate events: out of memory\n");
13095                 goto error;
13096         }
13097         pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13098         if (!pb->cpu_bufs) {
13099                 err = -ENOMEM;
13100                 pr_warn("failed to allocate buffers: out of memory\n");
13101                 goto error;
13102         }
13103
13104         err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13105         if (err) {
13106                 pr_warn("failed to get online CPU mask: %d\n", err);
13107                 goto error;
13108         }
13109
13110         for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13111                 struct perf_cpu_buf *cpu_buf;
13112                 int cpu, map_key;
13113
13114                 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13115                 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13116
13117                 /* in case user didn't explicitly requested particular CPUs to
13118                  * be attached to, skip offline/not present CPUs
13119                  */
13120                 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13121                         continue;
13122
13123                 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13124                 if (IS_ERR(cpu_buf)) {
13125                         err = PTR_ERR(cpu_buf);
13126                         goto error;
13127                 }
13128
13129                 pb->cpu_bufs[j] = cpu_buf;
13130
13131                 err = bpf_map_update_elem(pb->map_fd, &map_key,
13132                                           &cpu_buf->fd, 0);
13133                 if (err) {
13134                         err = -errno;
13135                         pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13136                                 cpu, map_key, cpu_buf->fd,
13137                                 libbpf_strerror_r(err, msg, sizeof(msg)));
13138                         goto error;
13139                 }
13140
13141                 pb->events[j].events = EPOLLIN;
13142                 pb->events[j].data.ptr = cpu_buf;
13143                 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13144                               &pb->events[j]) < 0) {
13145                         err = -errno;
13146                         pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13147                                 cpu, cpu_buf->fd,
13148                                 libbpf_strerror_r(err, msg, sizeof(msg)));
13149                         goto error;
13150                 }
13151                 j++;
13152         }
13153         pb->cpu_cnt = j;
13154         free(online);
13155
13156         return pb;
13157
13158 error:
13159         free(online);
13160         if (pb)
13161                 perf_buffer__free(pb);
13162         return ERR_PTR(err);
13163 }
13164
13165 struct perf_sample_raw {
13166         struct perf_event_header header;
13167         uint32_t size;
13168         char data[];
13169 };
13170
13171 struct perf_sample_lost {
13172         struct perf_event_header header;
13173         uint64_t id;
13174         uint64_t lost;
13175         uint64_t sample_id;
13176 };
13177
13178 static enum bpf_perf_event_ret
13179 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13180 {
13181         struct perf_cpu_buf *cpu_buf = ctx;
13182         struct perf_buffer *pb = cpu_buf->pb;
13183         void *data = e;
13184
13185         /* user wants full control over parsing perf event */
13186         if (pb->event_cb)
13187                 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13188
13189         switch (e->type) {
13190         case PERF_RECORD_SAMPLE: {
13191                 struct perf_sample_raw *s = data;
13192
13193                 if (pb->sample_cb)
13194                         pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13195                 break;
13196         }
13197         case PERF_RECORD_LOST: {
13198                 struct perf_sample_lost *s = data;
13199
13200                 if (pb->lost_cb)
13201                         pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13202                 break;
13203         }
13204         default:
13205                 pr_warn("unknown perf sample type %d\n", e->type);
13206                 return LIBBPF_PERF_EVENT_ERROR;
13207         }
13208         return LIBBPF_PERF_EVENT_CONT;
13209 }
13210
13211 static int perf_buffer__process_records(struct perf_buffer *pb,
13212                                         struct perf_cpu_buf *cpu_buf)
13213 {
13214         enum bpf_perf_event_ret ret;
13215
13216         ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13217                                      pb->page_size, &cpu_buf->buf,
13218                                      &cpu_buf->buf_size,
13219                                      perf_buffer__process_record, cpu_buf);
13220         if (ret != LIBBPF_PERF_EVENT_CONT)
13221                 return ret;
13222         return 0;
13223 }
13224
13225 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13226 {
13227         return pb->epoll_fd;
13228 }
13229
13230 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13231 {
13232         int i, cnt, err;
13233
13234         cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13235         if (cnt < 0)
13236                 return -errno;
13237
13238         for (i = 0; i < cnt; i++) {
13239                 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13240
13241                 err = perf_buffer__process_records(pb, cpu_buf);
13242                 if (err) {
13243                         pr_warn("error while processing records: %d\n", err);
13244                         return libbpf_err(err);
13245                 }
13246         }
13247         return cnt;
13248 }
13249
13250 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13251  * manager.
13252  */
13253 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13254 {
13255         return pb->cpu_cnt;
13256 }
13257
13258 /*
13259  * Return perf_event FD of a ring buffer in *buf_idx* slot of
13260  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13261  * select()/poll()/epoll() Linux syscalls.
13262  */
13263 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13264 {
13265         struct perf_cpu_buf *cpu_buf;
13266
13267         if (buf_idx >= pb->cpu_cnt)
13268                 return libbpf_err(-EINVAL);
13269
13270         cpu_buf = pb->cpu_bufs[buf_idx];
13271         if (!cpu_buf)
13272                 return libbpf_err(-ENOENT);
13273
13274         return cpu_buf->fd;
13275 }
13276
13277 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13278 {
13279         struct perf_cpu_buf *cpu_buf;
13280
13281         if (buf_idx >= pb->cpu_cnt)
13282                 return libbpf_err(-EINVAL);
13283
13284         cpu_buf = pb->cpu_bufs[buf_idx];
13285         if (!cpu_buf)
13286                 return libbpf_err(-ENOENT);
13287
13288         *buf = cpu_buf->base;
13289         *buf_size = pb->mmap_size;
13290         return 0;
13291 }
13292
13293 /*
13294  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13295  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13296  * consume, do nothing and return success.
13297  * Returns:
13298  *   - 0 on success;
13299  *   - <0 on failure.
13300  */
13301 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13302 {
13303         struct perf_cpu_buf *cpu_buf;
13304
13305         if (buf_idx >= pb->cpu_cnt)
13306                 return libbpf_err(-EINVAL);
13307
13308         cpu_buf = pb->cpu_bufs[buf_idx];
13309         if (!cpu_buf)
13310                 return libbpf_err(-ENOENT);
13311
13312         return perf_buffer__process_records(pb, cpu_buf);
13313 }
13314
13315 int perf_buffer__consume(struct perf_buffer *pb)
13316 {
13317         int i, err;
13318
13319         for (i = 0; i < pb->cpu_cnt; i++) {
13320                 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13321
13322                 if (!cpu_buf)
13323                         continue;
13324
13325                 err = perf_buffer__process_records(pb, cpu_buf);
13326                 if (err) {
13327                         pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13328                         return libbpf_err(err);
13329                 }
13330         }
13331         return 0;
13332 }
13333
13334 int bpf_program__set_attach_target(struct bpf_program *prog,
13335                                    int attach_prog_fd,
13336                                    const char *attach_func_name)
13337 {
13338         int btf_obj_fd = 0, btf_id = 0, err;
13339
13340         if (!prog || attach_prog_fd < 0)
13341                 return libbpf_err(-EINVAL);
13342
13343         if (prog->obj->loaded)
13344                 return libbpf_err(-EINVAL);
13345
13346         if (attach_prog_fd && !attach_func_name) {
13347                 /* remember attach_prog_fd and let bpf_program__load() find
13348                  * BTF ID during the program load
13349                  */
13350                 prog->attach_prog_fd = attach_prog_fd;
13351                 return 0;
13352         }
13353
13354         if (attach_prog_fd) {
13355                 btf_id = libbpf_find_prog_btf_id(attach_func_name,
13356                                                  attach_prog_fd);
13357                 if (btf_id < 0)
13358                         return libbpf_err(btf_id);
13359         } else {
13360                 if (!attach_func_name)
13361                         return libbpf_err(-EINVAL);
13362
13363                 /* load btf_vmlinux, if not yet */
13364                 err = bpf_object__load_vmlinux_btf(prog->obj, true);
13365                 if (err)
13366                         return libbpf_err(err);
13367                 err = find_kernel_btf_id(prog->obj, attach_func_name,
13368                                          prog->expected_attach_type,
13369                                          &btf_obj_fd, &btf_id);
13370                 if (err)
13371                         return libbpf_err(err);
13372         }
13373
13374         prog->attach_btf_id = btf_id;
13375         prog->attach_btf_obj_fd = btf_obj_fd;
13376         prog->attach_prog_fd = attach_prog_fd;
13377         return 0;
13378 }
13379
13380 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13381 {
13382         int err = 0, n, len, start, end = -1;
13383         bool *tmp;
13384
13385         *mask = NULL;
13386         *mask_sz = 0;
13387
13388         /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13389         while (*s) {
13390                 if (*s == ',' || *s == '\n') {
13391                         s++;
13392                         continue;
13393                 }
13394                 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13395                 if (n <= 0 || n > 2) {
13396                         pr_warn("Failed to get CPU range %s: %d\n", s, n);
13397                         err = -EINVAL;
13398                         goto cleanup;
13399                 } else if (n == 1) {
13400                         end = start;
13401                 }
13402                 if (start < 0 || start > end) {
13403                         pr_warn("Invalid CPU range [%d,%d] in %s\n",
13404                                 start, end, s);
13405                         err = -EINVAL;
13406                         goto cleanup;
13407                 }
13408                 tmp = realloc(*mask, end + 1);
13409                 if (!tmp) {
13410                         err = -ENOMEM;
13411                         goto cleanup;
13412                 }
13413                 *mask = tmp;
13414                 memset(tmp + *mask_sz, 0, start - *mask_sz);
13415                 memset(tmp + start, 1, end - start + 1);
13416                 *mask_sz = end + 1;
13417                 s += len;
13418         }
13419         if (!*mask_sz) {
13420                 pr_warn("Empty CPU range\n");
13421                 return -EINVAL;
13422         }
13423         return 0;
13424 cleanup:
13425         free(*mask);
13426         *mask = NULL;
13427         return err;
13428 }
13429
13430 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13431 {
13432         int fd, err = 0, len;
13433         char buf[128];
13434
13435         fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13436         if (fd < 0) {
13437                 err = -errno;
13438                 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13439                 return err;
13440         }
13441         len = read(fd, buf, sizeof(buf));
13442         close(fd);
13443         if (len <= 0) {
13444                 err = len ? -errno : -EINVAL;
13445                 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13446                 return err;
13447         }
13448         if (len >= sizeof(buf)) {
13449                 pr_warn("CPU mask is too big in file %s\n", fcpu);
13450                 return -E2BIG;
13451         }
13452         buf[len] = '\0';
13453
13454         return parse_cpu_mask_str(buf, mask, mask_sz);
13455 }
13456
13457 int libbpf_num_possible_cpus(void)
13458 {
13459         static const char *fcpu = "/sys/devices/system/cpu/possible";
13460         static int cpus;
13461         int err, n, i, tmp_cpus;
13462         bool *mask;
13463
13464         tmp_cpus = READ_ONCE(cpus);
13465         if (tmp_cpus > 0)
13466                 return tmp_cpus;
13467
13468         err = parse_cpu_mask_file(fcpu, &mask, &n);
13469         if (err)
13470                 return libbpf_err(err);
13471
13472         tmp_cpus = 0;
13473         for (i = 0; i < n; i++) {
13474                 if (mask[i])
13475                         tmp_cpus++;
13476         }
13477         free(mask);
13478
13479         WRITE_ONCE(cpus, tmp_cpus);
13480         return tmp_cpus;
13481 }
13482
13483 static int populate_skeleton_maps(const struct bpf_object *obj,
13484                                   struct bpf_map_skeleton *maps,
13485                                   size_t map_cnt)
13486 {
13487         int i;
13488
13489         for (i = 0; i < map_cnt; i++) {
13490                 struct bpf_map **map = maps[i].map;
13491                 const char *name = maps[i].name;
13492                 void **mmaped = maps[i].mmaped;
13493
13494                 *map = bpf_object__find_map_by_name(obj, name);
13495                 if (!*map) {
13496                         pr_warn("failed to find skeleton map '%s'\n", name);
13497                         return -ESRCH;
13498                 }
13499
13500                 /* externs shouldn't be pre-setup from user code */
13501                 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13502                         *mmaped = (*map)->mmaped;
13503         }
13504         return 0;
13505 }
13506
13507 static int populate_skeleton_progs(const struct bpf_object *obj,
13508                                    struct bpf_prog_skeleton *progs,
13509                                    size_t prog_cnt)
13510 {
13511         int i;
13512
13513         for (i = 0; i < prog_cnt; i++) {
13514                 struct bpf_program **prog = progs[i].prog;
13515                 const char *name = progs[i].name;
13516
13517                 *prog = bpf_object__find_program_by_name(obj, name);
13518                 if (!*prog) {
13519                         pr_warn("failed to find skeleton program '%s'\n", name);
13520                         return -ESRCH;
13521                 }
13522         }
13523         return 0;
13524 }
13525
13526 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13527                               const struct bpf_object_open_opts *opts)
13528 {
13529         DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13530                 .object_name = s->name,
13531         );
13532         struct bpf_object *obj;
13533         int err;
13534
13535         /* Attempt to preserve opts->object_name, unless overriden by user
13536          * explicitly. Overwriting object name for skeletons is discouraged,
13537          * as it breaks global data maps, because they contain object name
13538          * prefix as their own map name prefix. When skeleton is generated,
13539          * bpftool is making an assumption that this name will stay the same.
13540          */
13541         if (opts) {
13542                 memcpy(&skel_opts, opts, sizeof(*opts));
13543                 if (!opts->object_name)
13544                         skel_opts.object_name = s->name;
13545         }
13546
13547         obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13548         err = libbpf_get_error(obj);
13549         if (err) {
13550                 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13551                         s->name, err);
13552                 return libbpf_err(err);
13553         }
13554
13555         *s->obj = obj;
13556         err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13557         if (err) {
13558                 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13559                 return libbpf_err(err);
13560         }
13561
13562         err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13563         if (err) {
13564                 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13565                 return libbpf_err(err);
13566         }
13567
13568         return 0;
13569 }
13570
13571 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13572 {
13573         int err, len, var_idx, i;
13574         const char *var_name;
13575         const struct bpf_map *map;
13576         struct btf *btf;
13577         __u32 map_type_id;
13578         const struct btf_type *map_type, *var_type;
13579         const struct bpf_var_skeleton *var_skel;
13580         struct btf_var_secinfo *var;
13581
13582         if (!s->obj)
13583                 return libbpf_err(-EINVAL);
13584
13585         btf = bpf_object__btf(s->obj);
13586         if (!btf) {
13587                 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13588                         bpf_object__name(s->obj));
13589                 return libbpf_err(-errno);
13590         }
13591
13592         err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13593         if (err) {
13594                 pr_warn("failed to populate subskeleton maps: %d\n", err);
13595                 return libbpf_err(err);
13596         }
13597
13598         err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13599         if (err) {
13600                 pr_warn("failed to populate subskeleton maps: %d\n", err);
13601                 return libbpf_err(err);
13602         }
13603
13604         for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13605                 var_skel = &s->vars[var_idx];
13606                 map = *var_skel->map;
13607                 map_type_id = bpf_map__btf_value_type_id(map);
13608                 map_type = btf__type_by_id(btf, map_type_id);
13609
13610                 if (!btf_is_datasec(map_type)) {
13611                         pr_warn("type for map '%1$s' is not a datasec: %2$s",
13612                                 bpf_map__name(map),
13613                                 __btf_kind_str(btf_kind(map_type)));
13614                         return libbpf_err(-EINVAL);
13615                 }
13616
13617                 len = btf_vlen(map_type);
13618                 var = btf_var_secinfos(map_type);
13619                 for (i = 0; i < len; i++, var++) {
13620                         var_type = btf__type_by_id(btf, var->type);
13621                         var_name = btf__name_by_offset(btf, var_type->name_off);
13622                         if (strcmp(var_name, var_skel->name) == 0) {
13623                                 *var_skel->addr = map->mmaped + var->offset;
13624                                 break;
13625                         }
13626                 }
13627         }
13628         return 0;
13629 }
13630
13631 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13632 {
13633         if (!s)
13634                 return;
13635         free(s->maps);
13636         free(s->progs);
13637         free(s->vars);
13638         free(s);
13639 }
13640
13641 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13642 {
13643         int i, err;
13644
13645         err = bpf_object__load(*s->obj);
13646         if (err) {
13647                 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13648                 return libbpf_err(err);
13649         }
13650
13651         for (i = 0; i < s->map_cnt; i++) {
13652                 struct bpf_map *map = *s->maps[i].map;
13653                 size_t mmap_sz = bpf_map_mmap_sz(map);
13654                 int prot, map_fd = map->fd;
13655                 void **mmaped = s->maps[i].mmaped;
13656
13657                 if (!mmaped)
13658                         continue;
13659
13660                 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13661                         *mmaped = NULL;
13662                         continue;
13663                 }
13664
13665                 if (map->def.type == BPF_MAP_TYPE_ARENA) {
13666                         *mmaped = map->mmaped;
13667                         continue;
13668                 }
13669
13670                 if (map->def.map_flags & BPF_F_RDONLY_PROG)
13671                         prot = PROT_READ;
13672                 else
13673                         prot = PROT_READ | PROT_WRITE;
13674
13675                 /* Remap anonymous mmap()-ed "map initialization image" as
13676                  * a BPF map-backed mmap()-ed memory, but preserving the same
13677                  * memory address. This will cause kernel to change process'
13678                  * page table to point to a different piece of kernel memory,
13679                  * but from userspace point of view memory address (and its
13680                  * contents, being identical at this point) will stay the
13681                  * same. This mapping will be released by bpf_object__close()
13682                  * as per normal clean up procedure, so we don't need to worry
13683                  * about it from skeleton's clean up perspective.
13684                  */
13685                 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13686                 if (*mmaped == MAP_FAILED) {
13687                         err = -errno;
13688                         *mmaped = NULL;
13689                         pr_warn("failed to re-mmap() map '%s': %d\n",
13690                                  bpf_map__name(map), err);
13691                         return libbpf_err(err);
13692                 }
13693         }
13694
13695         return 0;
13696 }
13697
13698 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13699 {
13700         int i, err;
13701
13702         for (i = 0; i < s->prog_cnt; i++) {
13703                 struct bpf_program *prog = *s->progs[i].prog;
13704                 struct bpf_link **link = s->progs[i].link;
13705
13706                 if (!prog->autoload || !prog->autoattach)
13707                         continue;
13708
13709                 /* auto-attaching not supported for this program */
13710                 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13711                         continue;
13712
13713                 /* if user already set the link manually, don't attempt auto-attach */
13714                 if (*link)
13715                         continue;
13716
13717                 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13718                 if (err) {
13719                         pr_warn("prog '%s': failed to auto-attach: %d\n",
13720                                 bpf_program__name(prog), err);
13721                         return libbpf_err(err);
13722                 }
13723
13724                 /* It's possible that for some SEC() definitions auto-attach
13725                  * is supported in some cases (e.g., if definition completely
13726                  * specifies target information), but is not in other cases.
13727                  * SEC("uprobe") is one such case. If user specified target
13728                  * binary and function name, such BPF program can be
13729                  * auto-attached. But if not, it shouldn't trigger skeleton's
13730                  * attach to fail. It should just be skipped.
13731                  * attach_fn signals such case with returning 0 (no error) and
13732                  * setting link to NULL.
13733                  */
13734         }
13735
13736         return 0;
13737 }
13738
13739 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13740 {
13741         int i;
13742
13743         for (i = 0; i < s->prog_cnt; i++) {
13744                 struct bpf_link **link = s->progs[i].link;
13745
13746                 bpf_link__destroy(*link);
13747                 *link = NULL;
13748         }
13749 }
13750
13751 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13752 {
13753         if (!s)
13754                 return;
13755
13756         if (s->progs)
13757                 bpf_object__detach_skeleton(s);
13758         if (s->obj)
13759                 bpf_object__close(*s->obj);
13760         free(s->maps);
13761         free(s->progs);
13762         free(s);
13763 }