33411ca0cc90f02bab7114aa4ea546f9a40fc3f2
[linux-2.6-block.git] / tools / include / linux / compiler.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _TOOLS_LINUX_COMPILER_H_
3 #define _TOOLS_LINUX_COMPILER_H_
4
5 #ifndef __ASSEMBLY__
6
7 #include <linux/compiler_types.h>
8
9 #ifndef __compiletime_error
10 # define __compiletime_error(message)
11 #endif
12
13 #ifdef __OPTIMIZE__
14 # define __compiletime_assert(condition, msg, prefix, suffix)           \
15         do {                                                            \
16                 extern void prefix ## suffix(void) __compiletime_error(msg); \
17                 if (!(condition))                                       \
18                         prefix ## suffix();                             \
19         } while (0)
20 #else
21 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
22 #endif
23
24 #define _compiletime_assert(condition, msg, prefix, suffix) \
25         __compiletime_assert(condition, msg, prefix, suffix)
26
27 /**
28  * compiletime_assert - break build and emit msg if condition is false
29  * @condition: a compile-time constant condition to check
30  * @msg:       a message to emit if condition is false
31  *
32  * In tradition of POSIX assert, this macro will break the build if the
33  * supplied condition is *false*, emitting the supplied error message if the
34  * compiler has support to do so.
35  */
36 #define compiletime_assert(condition, msg) \
37         _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
38
39 /* Optimization barrier */
40 /* The "volatile" is due to gcc bugs */
41 #define barrier() __asm__ __volatile__("": : :"memory")
42
43 #ifndef __always_inline
44 # define __always_inline        inline __attribute__((always_inline))
45 #endif
46
47 #ifndef __always_unused
48 #define __always_unused __attribute__((__unused__))
49 #endif
50
51 #ifndef __noreturn
52 #define __noreturn __attribute__((__noreturn__))
53 #endif
54
55 #ifndef unreachable
56 #define unreachable() __builtin_unreachable()
57 #endif
58
59 #ifndef noinline
60 #define noinline
61 #endif
62
63 #ifndef __nocf_check
64 #define __nocf_check __attribute__((nocf_check))
65 #endif
66
67 #ifndef __naked
68 #define __naked __attribute__((__naked__))
69 #endif
70
71 /* Are two types/vars the same type (ignoring qualifiers)? */
72 #ifndef __same_type
73 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
74 #endif
75
76 /*
77  * This returns a constant expression while determining if an argument is
78  * a constant expression, most importantly without evaluating the argument.
79  * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
80  */
81 #define __is_constexpr(x) \
82         (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
83
84 /*
85  * Similar to statically_true() but produces a constant expression
86  *
87  * To be used in conjunction with macros, such as BUILD_BUG_ON_ZERO(),
88  * which require their input to be a constant expression and for which
89  * statically_true() would otherwise fail.
90  *
91  * This is a trade-off: const_true() requires all its operands to be
92  * compile time constants. Else, it would always returns false even on
93  * the most trivial cases like:
94  *
95  *   true || non_const_var
96  *
97  * On the opposite, statically_true() is able to fold more complex
98  * tautologies and will return true on expressions such as:
99  *
100  *   !(non_const_var * 8 % 4)
101  *
102  * For the general case, statically_true() is better.
103  */
104 #define const_true(x) __builtin_choose_expr(__is_constexpr(x), x, false)
105
106 #ifdef __ANDROID__
107 /*
108  * FIXME: Big hammer to get rid of tons of:
109  *   "warning: always_inline function might not be inlinable"
110  *
111  * At least on android-ndk-r12/platforms/android-24/arch-arm
112  */
113 #undef __always_inline
114 #define __always_inline inline
115 #endif
116
117 #define __user
118 #define __rcu
119 #define __read_mostly
120
121 #ifndef __attribute_const__
122 # define __attribute_const__
123 #endif
124
125 #ifndef __maybe_unused
126 # define __maybe_unused         __attribute__((unused))
127 #endif
128
129 #ifndef __used
130 # define __used         __attribute__((__unused__))
131 #endif
132
133 #ifndef __packed
134 # define __packed               __attribute__((__packed__))
135 #endif
136
137 #ifndef __force
138 # define __force
139 #endif
140
141 #ifndef __weak
142 # define __weak                 __attribute__((weak))
143 #endif
144
145 #ifndef likely
146 # define likely(x)              __builtin_expect(!!(x), 1)
147 #endif
148
149 #ifndef unlikely
150 # define unlikely(x)            __builtin_expect(!!(x), 0)
151 #endif
152
153 #include <linux/types.h>
154
155 /*
156  * Following functions are taken from kernel sources and
157  * break aliasing rules in their original form.
158  *
159  * While kernel is compiled with -fno-strict-aliasing,
160  * perf uses -Wstrict-aliasing=3 which makes build fail
161  * under gcc 4.4.
162  *
163  * Using extra __may_alias__ type to allow aliasing
164  * in this case.
165  */
166 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
167 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
168 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
169 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
170
171 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
172 {
173         switch (size) {
174         case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
175         case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
176         case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
177         case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
178         default:
179                 barrier();
180                 __builtin_memcpy((void *)res, (const void *)p, size);
181                 barrier();
182         }
183 }
184
185 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
186 {
187         switch (size) {
188         case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
189         case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
190         case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
191         case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
192         default:
193                 barrier();
194                 __builtin_memcpy((void *)p, (const void *)res, size);
195                 barrier();
196         }
197 }
198
199 /*
200  * Prevent the compiler from merging or refetching reads or writes. The
201  * compiler is also forbidden from reordering successive instances of
202  * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
203  * particular ordering. One way to make the compiler aware of ordering is to
204  * put the two invocations of READ_ONCE or WRITE_ONCE in different C
205  * statements.
206  *
207  * These two macros will also work on aggregate data types like structs or
208  * unions. If the size of the accessed data type exceeds the word size of
209  * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
210  * fall back to memcpy and print a compile-time warning.
211  *
212  * Their two major use cases are: (1) Mediating communication between
213  * process-level code and irq/NMI handlers, all running on the same CPU,
214  * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
215  * mutilate accesses that either do not require ordering or that interact
216  * with an explicit memory barrier or atomic instruction that provides the
217  * required ordering.
218  */
219
220 #define READ_ONCE(x)                                    \
221 ({                                                      \
222         union { typeof(x) __val; char __c[1]; } __u =   \
223                 { .__c = { 0 } };                       \
224         __read_once_size(&(x), __u.__c, sizeof(x));     \
225         __u.__val;                                      \
226 })
227
228 #define WRITE_ONCE(x, val)                              \
229 ({                                                      \
230         union { typeof(x) __val; char __c[1]; } __u =   \
231                 { .__val = (val) };                     \
232         __write_once_size(&(x), __u.__c, sizeof(x));    \
233         __u.__val;                                      \
234 })
235
236
237 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
238 #define ___PASTE(a, b) a##b
239 #define __PASTE(a, b) ___PASTE(a, b)
240
241 #ifndef OPTIMIZER_HIDE_VAR
242 /* Make the optimizer believe the variable can be manipulated arbitrarily. */
243 #define OPTIMIZER_HIDE_VAR(var)                                         \
244         __asm__ ("" : "=r" (var) : "0" (var))
245 #endif
246
247 #ifndef __BUILD_BUG_ON_ZERO_MSG
248 #if defined(__clang__)
249 #define __BUILD_BUG_ON_ZERO_MSG(e, msg, ...) ((int)(sizeof(struct { int:(-!!(e)); })))
250 #else
251 #define __BUILD_BUG_ON_ZERO_MSG(e, msg, ...) ((int)sizeof(struct {_Static_assert(!(e), msg);}))
252 #endif
253 #endif
254
255 #endif /* __ASSEMBLY__ */
256
257 #endif /* _TOOLS_LINUX_COMPILER_H */