a6810d9b653171705193fe126e16d319b5029edd
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17 #include "zbd.h"
18 #include "oslib/asprintf.h"
19
20 #ifdef WIN32
21 #define LOG_MSEC_SLACK  2
22 #else
23 #define LOG_MSEC_SLACK  1
24 #endif
25
26 struct fio_sem *stat_sem;
27
28 void clear_rusage_stat(struct thread_data *td)
29 {
30         struct thread_stat *ts = &td->ts;
31
32         fio_getrusage(&td->ru_start);
33         ts->usr_time = ts->sys_time = 0;
34         ts->ctx = 0;
35         ts->minf = ts->majf = 0;
36 }
37
38 void update_rusage_stat(struct thread_data *td)
39 {
40         struct thread_stat *ts = &td->ts;
41
42         fio_getrusage(&td->ru_end);
43         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
44                                         &td->ru_end.ru_utime);
45         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
46                                         &td->ru_end.ru_stime);
47         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
48                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
49         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
50         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
51
52         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
53 }
54
55 /*
56  * Given a latency, return the index of the corresponding bucket in
57  * the structure tracking percentiles.
58  *
59  * (1) find the group (and error bits) that the value (latency)
60  * belongs to by looking at its MSB. (2) find the bucket number in the
61  * group by looking at the index bits.
62  *
63  */
64 static unsigned int plat_val_to_idx(unsigned long long val)
65 {
66         unsigned int msb, error_bits, base, offset, idx;
67
68         /* Find MSB starting from bit 0 */
69         if (val == 0)
70                 msb = 0;
71         else
72                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
73
74         /*
75          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
76          * all bits of the sample as index
77          */
78         if (msb <= FIO_IO_U_PLAT_BITS)
79                 return val;
80
81         /* Compute the number of error bits to discard*/
82         error_bits = msb - FIO_IO_U_PLAT_BITS;
83
84         /* Compute the number of buckets before the group */
85         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
86
87         /*
88          * Discard the error bits and apply the mask to find the
89          * index for the buckets in the group
90          */
91         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
92
93         /* Make sure the index does not exceed (array size - 1) */
94         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
95                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
96
97         return idx;
98 }
99
100 /*
101  * Convert the given index of the bucket array to the value
102  * represented by the bucket
103  */
104 static unsigned long long plat_idx_to_val(unsigned int idx)
105 {
106         unsigned int error_bits;
107         unsigned long long k, base;
108
109         assert(idx < FIO_IO_U_PLAT_NR);
110
111         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
112          * all bits of the sample as index */
113         if (idx < (FIO_IO_U_PLAT_VAL << 1))
114                 return idx;
115
116         /* Find the group and compute the minimum value of that group */
117         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
118         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
119
120         /* Find its bucket number of the group */
121         k = idx % FIO_IO_U_PLAT_VAL;
122
123         /* Return the mean of the range of the bucket */
124         return base + ((k + 0.5) * (1 << error_bits));
125 }
126
127 static int double_cmp(const void *a, const void *b)
128 {
129         const fio_fp64_t fa = *(const fio_fp64_t *) a;
130         const fio_fp64_t fb = *(const fio_fp64_t *) b;
131         int cmp = 0;
132
133         if (fa.u.f > fb.u.f)
134                 cmp = 1;
135         else if (fa.u.f < fb.u.f)
136                 cmp = -1;
137
138         return cmp;
139 }
140
141 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
142                                    fio_fp64_t *plist, unsigned long long **output,
143                                    unsigned long long *maxv, unsigned long long *minv)
144 {
145         unsigned long long sum = 0;
146         unsigned int len, i, j = 0;
147         unsigned long long *ovals = NULL;
148         bool is_last;
149
150         *minv = -1ULL;
151         *maxv = 0;
152
153         len = 0;
154         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
155                 len++;
156
157         if (!len)
158                 return 0;
159
160         /*
161          * Sort the percentile list. Note that it may already be sorted if
162          * we are using the default values, but since it's a short list this
163          * isn't a worry. Also note that this does not work for NaN values.
164          */
165         if (len > 1)
166                 qsort(plist, len, sizeof(plist[0]), double_cmp);
167
168         ovals = malloc(len * sizeof(*ovals));
169         if (!ovals)
170                 return 0;
171
172         /*
173          * Calculate bucket values, note down max and min values
174          */
175         is_last = false;
176         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
177                 sum += io_u_plat[i];
178                 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
179                         assert(plist[j].u.f <= 100.0);
180
181                         ovals[j] = plat_idx_to_val(i);
182                         if (ovals[j] < *minv)
183                                 *minv = ovals[j];
184                         if (ovals[j] > *maxv)
185                                 *maxv = ovals[j];
186
187                         is_last = (j == len - 1) != 0;
188                         if (is_last)
189                                 break;
190
191                         j++;
192                 }
193         }
194
195         if (!is_last)
196                 log_err("fio: error calculating latency percentiles\n");
197
198         *output = ovals;
199         return len;
200 }
201
202 /*
203  * Find and display the p-th percentile of clat
204  */
205 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
206                                   fio_fp64_t *plist, unsigned int precision,
207                                   const char *pre, struct buf_output *out)
208 {
209         unsigned int divisor, len, i, j = 0;
210         unsigned long long minv, maxv;
211         unsigned long long *ovals;
212         int per_line, scale_down, time_width;
213         bool is_last;
214         char fmt[32];
215
216         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
217         if (!len || !ovals)
218                 return;
219
220         /*
221          * We default to nsecs, but if the value range is such that we
222          * should scale down to usecs or msecs, do that.
223          */
224         if (minv > 2000000 && maxv > 99999999ULL) {
225                 scale_down = 2;
226                 divisor = 1000000;
227                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
228         } else if (minv > 2000 && maxv > 99999) {
229                 scale_down = 1;
230                 divisor = 1000;
231                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
232         } else {
233                 scale_down = 0;
234                 divisor = 1;
235                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
236         }
237
238
239         time_width = max(5, (int) (log10(maxv / divisor) + 1));
240         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
241                         precision, time_width);
242         /* fmt will be something like " %5.2fth=[%4llu]%c" */
243         per_line = (80 - 7) / (precision + 10 + time_width);
244
245         for (j = 0; j < len; j++) {
246                 /* for formatting */
247                 if (j != 0 && (j % per_line) == 0)
248                         log_buf(out, "     |");
249
250                 /* end of the list */
251                 is_last = (j == len - 1) != 0;
252
253                 for (i = 0; i < scale_down; i++)
254                         ovals[j] = (ovals[j] + 999) / 1000;
255
256                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
257
258                 if (is_last)
259                         break;
260
261                 if ((j % per_line) == per_line - 1)     /* for formatting */
262                         log_buf(out, "\n");
263         }
264
265         free(ovals);
266 }
267
268 static int get_nr_prios_with_samples(struct thread_stat *ts, enum fio_ddir ddir)
269 {
270         int i, nr_prios_with_samples = 0;
271
272         for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
273                 if (ts->clat_prio[ddir][i].clat_stat.samples)
274                         nr_prios_with_samples++;
275         }
276
277         return nr_prios_with_samples;
278 }
279
280 bool calc_lat(struct io_stat *is, unsigned long long *min,
281               unsigned long long *max, double *mean, double *dev)
282 {
283         double n = (double) is->samples;
284
285         if (n == 0)
286                 return false;
287
288         *min = is->min_val;
289         *max = is->max_val;
290         *mean = is->mean.u.f;
291
292         if (n > 1.0)
293                 *dev = sqrt(is->S.u.f / (n - 1.0));
294         else
295                 *dev = 0;
296
297         return true;
298 }
299
300 void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out) 
301 {
302         char *io, *agg, *min, *max;
303         char *ioalt, *aggalt, *minalt, *maxalt;
304         uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0;
305         uint64_t min_run = -1, max_run = 0;
306         const int i2p = is_power_of_2(rs->kb_base);
307         int i;
308
309         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
310                 if (!rs->max_run[i])
311                         continue;
312                 io_mix += rs->iobytes[i];
313                 agg_mix += rs->agg[i];
314                 min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
315                 max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
316                 min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
317                 max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
318         }
319         io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
320         ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
321         agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
322         aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
323         min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
324         minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
325         max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
326         maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
327         log_buf(out, "  MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
328                         agg, aggalt, min, max, minalt, maxalt, io, ioalt,
329                         (unsigned long long) min_run,
330                         (unsigned long long) max_run);
331         free(io);
332         free(agg);
333         free(min);
334         free(max);
335         free(ioalt);
336         free(aggalt);
337         free(minalt);
338         free(maxalt);
339 }
340
341 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
342 {
343         char *io, *agg, *min, *max;
344         char *ioalt, *aggalt, *minalt, *maxalt;
345         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
346         int i;
347
348         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
349
350         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
351                 const int i2p = is_power_of_2(rs->kb_base);
352
353                 if (!rs->max_run[i])
354                         continue;
355
356                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
357                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
358                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
359                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
360                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
361                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
362                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
363                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
364                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
365                                 (rs->unified_rw_rep == UNIFIED_MIXED) ? "  MIXED" : str[i],
366                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
367                                 (unsigned long long) rs->min_run[i],
368                                 (unsigned long long) rs->max_run[i]);
369
370                 free(io);
371                 free(agg);
372                 free(min);
373                 free(max);
374                 free(ioalt);
375                 free(aggalt);
376                 free(minalt);
377                 free(maxalt);
378         }
379
380         /* Need to aggregate statisitics to show mixed values */
381         if (rs->unified_rw_rep == UNIFIED_BOTH)
382                 show_mixed_group_stats(rs, out);
383 }
384
385 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
386 {
387         int i;
388
389         /*
390          * Do depth distribution calculations
391          */
392         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
393                 if (total) {
394                         io_u_dist[i] = (double) map[i] / (double) total;
395                         io_u_dist[i] *= 100.0;
396                         if (io_u_dist[i] < 0.1 && map[i])
397                                 io_u_dist[i] = 0.1;
398                 } else
399                         io_u_dist[i] = 0.0;
400         }
401 }
402
403 static void stat_calc_lat(struct thread_stat *ts, double *dst,
404                           uint64_t *src, int nr)
405 {
406         unsigned long total = ddir_rw_sum(ts->total_io_u);
407         int i;
408
409         /*
410          * Do latency distribution calculations
411          */
412         for (i = 0; i < nr; i++) {
413                 if (total) {
414                         dst[i] = (double) src[i] / (double) total;
415                         dst[i] *= 100.0;
416                         if (dst[i] < 0.01 && src[i])
417                                 dst[i] = 0.01;
418                 } else
419                         dst[i] = 0.0;
420         }
421 }
422
423 /*
424  * To keep the terse format unaltered, add all of the ns latency
425  * buckets to the first us latency bucket
426  */
427 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
428 {
429         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
430         int i;
431
432         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
433
434         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
435                 ntotal += ts->io_u_lat_n[i];
436
437         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
438 }
439
440 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
441 {
442         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
443 }
444
445 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
446 {
447         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
448 }
449
450 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
451 {
452         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
453 }
454
455 static void display_lat(const char *name, unsigned long long min,
456                         unsigned long long max, double mean, double dev,
457                         struct buf_output *out)
458 {
459         const char *base = "(nsec)";
460         char *minp, *maxp;
461
462         if (nsec_to_msec(&min, &max, &mean, &dev))
463                 base = "(msec)";
464         else if (nsec_to_usec(&min, &max, &mean, &dev))
465                 base = "(usec)";
466
467         minp = num2str(min, 6, 1, 0, N2S_NONE);
468         maxp = num2str(max, 6, 1, 0, N2S_NONE);
469
470         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
471                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
472
473         free(minp);
474         free(maxp);
475 }
476
477 static struct thread_stat *gen_mixed_ddir_stats_from_ts(struct thread_stat *ts)
478 {
479         struct thread_stat *ts_lcl;
480
481         /*
482          * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
483          * Trims (ddir = 2)
484          */
485         ts_lcl = malloc(sizeof(struct thread_stat));
486         if (!ts_lcl) {
487                 log_err("fio: failed to allocate local thread stat\n");
488                 return NULL;
489         }
490
491         init_thread_stat(ts_lcl);
492
493         /* calculate mixed stats  */
494         ts_lcl->unified_rw_rep = UNIFIED_MIXED;
495         ts_lcl->lat_percentiles = ts->lat_percentiles;
496         ts_lcl->clat_percentiles = ts->clat_percentiles;
497         ts_lcl->slat_percentiles = ts->slat_percentiles;
498         ts_lcl->percentile_precision = ts->percentile_precision;
499         memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
500
501         sum_thread_stats(ts_lcl, ts);
502
503         return ts_lcl;
504 }
505
506 static double convert_agg_kbytes_percent(struct group_run_stats *rs,
507                                          enum fio_ddir ddir, int mean)
508 {
509         double p_of_agg = 100.0;
510         if (rs && rs->agg[ddir] > 1024) {
511                 p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
512
513                 if (p_of_agg > 100.0)
514                         p_of_agg = 100.0;
515         }
516         return p_of_agg;
517 }
518
519 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
520                              enum fio_ddir ddir, struct buf_output *out)
521 {
522         unsigned long runt;
523         unsigned long long min, max, bw, iops;
524         double mean, dev;
525         char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
526         int i2p, i;
527         const char *clat_type = ts->lat_percentiles ? "lat" : "clat";
528
529         if (ddir_sync(ddir)) {
530                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
531                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
532                         display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
533                         show_clat_percentiles(ts->io_u_sync_plat,
534                                                 ts->sync_stat.samples,
535                                                 ts->percentile_list,
536                                                 ts->percentile_precision,
537                                                 io_ddir_name(ddir), out);
538                 }
539                 return;
540         }
541
542         assert(ddir_rw(ddir));
543
544         if (!ts->runtime[ddir])
545                 return;
546
547         i2p = is_power_of_2(rs->kb_base);
548         runt = ts->runtime[ddir];
549
550         bw = (1000 * ts->io_bytes[ddir]) / runt;
551         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
552         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
553         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
554
555         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
556         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
557         if (ddir == DDIR_WRITE)
558                 post_st = zbd_write_status(ts);
559         else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
560                 uint64_t total;
561                 double hit;
562
563                 total = ts->cachehit + ts->cachemiss;
564                 hit = (double) ts->cachehit / (double) total;
565                 hit *= 100.0;
566                 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
567                         post_st = NULL;
568         }
569
570         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
571                         (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
572                         iops_p, bw_p, bw_p_alt, io_p,
573                         (unsigned long long) ts->runtime[ddir],
574                         post_st ? : "");
575
576         free(post_st);
577         free(io_p);
578         free(bw_p);
579         free(bw_p_alt);
580         free(iops_p);
581
582         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
583                 display_lat("slat", min, max, mean, dev, out);
584         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
585                 display_lat("clat", min, max, mean, dev, out);
586         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
587                 display_lat(" lat", min, max, mean, dev, out);
588
589         /* Only print per prio stats if there are >= 2 prios with samples */
590         if (get_nr_prios_with_samples(ts, ddir) >= 2) {
591                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
592                         if (calc_lat(&ts->clat_prio[ddir][i].clat_stat, &min,
593                                      &max, &mean, &dev)) {
594                                 char buf[64];
595
596                                 snprintf(buf, sizeof(buf),
597                                          "%s prio %u/%u",
598                                          clat_type,
599                                          ts->clat_prio[ddir][i].ioprio >> 13,
600                                          ts->clat_prio[ddir][i].ioprio & 7);
601                                 display_lat(buf, min, max, mean, dev, out);
602                         }
603                 }
604         }
605
606         if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
607                 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
608                                         ts->slat_stat[ddir].samples,
609                                         ts->percentile_list,
610                                         ts->percentile_precision, "slat", out);
611         if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
612                 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
613                                         ts->clat_stat[ddir].samples,
614                                         ts->percentile_list,
615                                         ts->percentile_precision, "clat", out);
616         if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
617                 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
618                                         ts->lat_stat[ddir].samples,
619                                         ts->percentile_list,
620                                         ts->percentile_precision, "lat", out);
621
622         if (ts->clat_percentiles || ts->lat_percentiles) {
623                 char prio_name[64];
624                 uint64_t samples;
625
626                 if (ts->lat_percentiles)
627                         samples = ts->lat_stat[ddir].samples;
628                 else
629                         samples = ts->clat_stat[ddir].samples;
630
631                 /* Only print per prio stats if there are >= 2 prios with samples */
632                 if (get_nr_prios_with_samples(ts, ddir) >= 2) {
633                         for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
634                                 uint64_t prio_samples = ts->clat_prio[ddir][i].clat_stat.samples;
635
636                                 if (prio_samples > 0) {
637                                         snprintf(prio_name, sizeof(prio_name),
638                                                  "%s prio %u/%u (%.2f%% of IOs)",
639                                                  clat_type,
640                                                  ts->clat_prio[ddir][i].ioprio >> 13,
641                                                  ts->clat_prio[ddir][i].ioprio & 7,
642                                                  100. * (double) prio_samples / (double) samples);
643                                         show_clat_percentiles(ts->clat_prio[ddir][i].io_u_plat,
644                                                               prio_samples, ts->percentile_list,
645                                                               ts->percentile_precision,
646                                                               prio_name, out);
647                                 }
648                         }
649                 }
650         }
651
652         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
653                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
654                 const char *bw_str;
655
656                 if ((rs->unit_base == 1) && i2p)
657                         bw_str = "Kibit";
658                 else if (rs->unit_base == 1)
659                         bw_str = "kbit";
660                 else if (i2p)
661                         bw_str = "KiB";
662                 else
663                         bw_str = "kB";
664
665                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
666
667                 if (rs->unit_base == 1) {
668                         min *= 8.0;
669                         max *= 8.0;
670                         mean *= 8.0;
671                         dev *= 8.0;
672                 }
673
674                 if (mean > fkb_base * fkb_base) {
675                         min /= fkb_base;
676                         max /= fkb_base;
677                         mean /= fkb_base;
678                         dev /= fkb_base;
679                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
680                 }
681
682                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
683                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
684                         bw_str, min, max, p_of_agg, mean, dev,
685                         (&ts->bw_stat[ddir])->samples);
686         }
687         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
688                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
689                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
690                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
691         }
692 }
693
694 static void show_mixed_ddir_status(struct group_run_stats *rs,
695                                    struct thread_stat *ts,
696                                    struct buf_output *out)
697 {
698         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
699
700         if (ts_lcl)
701                 show_ddir_status(rs, ts_lcl, DDIR_READ, out);
702
703         free_clat_prio_stats(ts_lcl);
704         free(ts_lcl);
705 }
706
707 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
708                      const char *msg, struct buf_output *out)
709 {
710         bool new_line = true, shown = false;
711         int i, line = 0;
712
713         for (i = 0; i < nr; i++) {
714                 if (io_u_lat[i] <= 0.0)
715                         continue;
716                 shown = true;
717                 if (new_line) {
718                         if (line)
719                                 log_buf(out, "\n");
720                         log_buf(out, "  lat (%s)   : ", msg);
721                         new_line = false;
722                         line = 0;
723                 }
724                 if (line)
725                         log_buf(out, ", ");
726                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
727                 line++;
728                 if (line == 5)
729                         new_line = true;
730         }
731
732         if (shown)
733                 log_buf(out, "\n");
734
735         return true;
736 }
737
738 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
739 {
740         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
741                                  "250=", "500=", "750=", "1000=", };
742
743         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
744 }
745
746 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
747 {
748         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
749                                  "250=", "500=", "750=", "1000=", };
750
751         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
752 }
753
754 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
755 {
756         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
757                                  "250=", "500=", "750=", "1000=", "2000=",
758                                  ">=2000=", };
759
760         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
761 }
762
763 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
764 {
765         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
766         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
767         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
768
769         stat_calc_lat_n(ts, io_u_lat_n);
770         stat_calc_lat_u(ts, io_u_lat_u);
771         stat_calc_lat_m(ts, io_u_lat_m);
772
773         show_lat_n(io_u_lat_n, out);
774         show_lat_u(io_u_lat_u, out);
775         show_lat_m(io_u_lat_m, out);
776 }
777
778 static int block_state_category(int block_state)
779 {
780         switch (block_state) {
781         case BLOCK_STATE_UNINIT:
782                 return 0;
783         case BLOCK_STATE_TRIMMED:
784         case BLOCK_STATE_WRITTEN:
785                 return 1;
786         case BLOCK_STATE_WRITE_FAILURE:
787         case BLOCK_STATE_TRIM_FAILURE:
788                 return 2;
789         default:
790                 /* Silence compile warning on some BSDs and have a return */
791                 assert(0);
792                 return -1;
793         }
794 }
795
796 static int compare_block_infos(const void *bs1, const void *bs2)
797 {
798         uint64_t block1 = *(uint64_t *)bs1;
799         uint64_t block2 = *(uint64_t *)bs2;
800         int state1 = BLOCK_INFO_STATE(block1);
801         int state2 = BLOCK_INFO_STATE(block2);
802         int bscat1 = block_state_category(state1);
803         int bscat2 = block_state_category(state2);
804         int cycles1 = BLOCK_INFO_TRIMS(block1);
805         int cycles2 = BLOCK_INFO_TRIMS(block2);
806
807         if (bscat1 < bscat2)
808                 return -1;
809         if (bscat1 > bscat2)
810                 return 1;
811
812         if (cycles1 < cycles2)
813                 return -1;
814         if (cycles1 > cycles2)
815                 return 1;
816
817         if (state1 < state2)
818                 return -1;
819         if (state1 > state2)
820                 return 1;
821
822         assert(block1 == block2);
823         return 0;
824 }
825
826 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
827                                   fio_fp64_t *plist, unsigned int **percentiles,
828                                   unsigned int *types)
829 {
830         int len = 0;
831         int i, nr_uninit;
832
833         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
834
835         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
836                 len++;
837
838         if (!len)
839                 return 0;
840
841         /*
842          * Sort the percentile list. Note that it may already be sorted if
843          * we are using the default values, but since it's a short list this
844          * isn't a worry. Also note that this does not work for NaN values.
845          */
846         if (len > 1)
847                 qsort(plist, len, sizeof(plist[0]), double_cmp);
848
849         /* Start only after the uninit entries end */
850         for (nr_uninit = 0;
851              nr_uninit < nr_block_infos
852                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
853              nr_uninit ++)
854                 ;
855
856         if (nr_uninit == nr_block_infos)
857                 return 0;
858
859         *percentiles = calloc(len, sizeof(**percentiles));
860
861         for (i = 0; i < len; i++) {
862                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
863                                 + nr_uninit;
864                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
865         }
866
867         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
868         for (i = 0; i < nr_block_infos; i++)
869                 types[BLOCK_INFO_STATE(block_infos[i])]++;
870
871         return len;
872 }
873
874 static const char *block_state_names[] = {
875         [BLOCK_STATE_UNINIT] = "unwritten",
876         [BLOCK_STATE_TRIMMED] = "trimmed",
877         [BLOCK_STATE_WRITTEN] = "written",
878         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
879         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
880 };
881
882 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
883                              fio_fp64_t *plist, struct buf_output *out)
884 {
885         int len, pos, i;
886         unsigned int *percentiles = NULL;
887         unsigned int block_state_counts[BLOCK_STATE_COUNT];
888
889         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
890                                      &percentiles, block_state_counts);
891
892         log_buf(out, "  block lifetime percentiles :\n   |");
893         pos = 0;
894         for (i = 0; i < len; i++) {
895                 uint32_t block_info = percentiles[i];
896 #define LINE_LENGTH     75
897                 char str[LINE_LENGTH];
898                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
899                                      plist[i].u.f, block_info,
900                                      i == len - 1 ? '\n' : ',');
901                 assert(strln < LINE_LENGTH);
902                 if (pos + strln > LINE_LENGTH) {
903                         pos = 0;
904                         log_buf(out, "\n   |");
905                 }
906                 log_buf(out, "%s", str);
907                 pos += strln;
908 #undef LINE_LENGTH
909         }
910         if (percentiles)
911                 free(percentiles);
912
913         log_buf(out, "        states               :");
914         for (i = 0; i < BLOCK_STATE_COUNT; i++)
915                 log_buf(out, " %s=%u%c",
916                          block_state_names[i], block_state_counts[i],
917                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
918 }
919
920 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
921 {
922         char *p1, *p1alt, *p2;
923         unsigned long long bw_mean, iops_mean;
924         const int i2p = is_power_of_2(ts->kb_base);
925
926         if (!ts->ss_dur)
927                 return;
928
929         bw_mean = steadystate_bw_mean(ts);
930         iops_mean = steadystate_iops_mean(ts);
931
932         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
933         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
934         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
935
936         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
937                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
938                 p1, p1alt, p2,
939                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
940                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
941                 ts->ss_criterion.u.f,
942                 ts->ss_state & FIO_SS_PCT ? "%" : "");
943
944         free(p1);
945         free(p1alt);
946         free(p2);
947 }
948
949 static void show_agg_stats(struct disk_util_agg *agg, int terse,
950                            struct buf_output *out)
951 {
952         if (!agg->slavecount)
953                 return;
954
955         if (!terse) {
956                 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
957                          "aggrticks=%llu/%llu, aggrin_queue=%llu, "
958                          "aggrutil=%3.2f%%",
959                         (unsigned long long) agg->ios[0] / agg->slavecount,
960                         (unsigned long long) agg->ios[1] / agg->slavecount,
961                         (unsigned long long) agg->merges[0] / agg->slavecount,
962                         (unsigned long long) agg->merges[1] / agg->slavecount,
963                         (unsigned long long) agg->ticks[0] / agg->slavecount,
964                         (unsigned long long) agg->ticks[1] / agg->slavecount,
965                         (unsigned long long) agg->time_in_queue / agg->slavecount,
966                         agg->max_util.u.f);
967         } else {
968                 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
969                         (unsigned long long) agg->ios[0] / agg->slavecount,
970                         (unsigned long long) agg->ios[1] / agg->slavecount,
971                         (unsigned long long) agg->merges[0] / agg->slavecount,
972                         (unsigned long long) agg->merges[1] / agg->slavecount,
973                         (unsigned long long) agg->ticks[0] / agg->slavecount,
974                         (unsigned long long) agg->ticks[1] / agg->slavecount,
975                         (unsigned long long) agg->time_in_queue / agg->slavecount,
976                         agg->max_util.u.f);
977         }
978 }
979
980 static void aggregate_slaves_stats(struct disk_util *masterdu)
981 {
982         struct disk_util_agg *agg = &masterdu->agg;
983         struct disk_util_stat *dus;
984         struct flist_head *entry;
985         struct disk_util *slavedu;
986         double util;
987
988         flist_for_each(entry, &masterdu->slaves) {
989                 slavedu = flist_entry(entry, struct disk_util, slavelist);
990                 dus = &slavedu->dus;
991                 agg->ios[0] += dus->s.ios[0];
992                 agg->ios[1] += dus->s.ios[1];
993                 agg->merges[0] += dus->s.merges[0];
994                 agg->merges[1] += dus->s.merges[1];
995                 agg->sectors[0] += dus->s.sectors[0];
996                 agg->sectors[1] += dus->s.sectors[1];
997                 agg->ticks[0] += dus->s.ticks[0];
998                 agg->ticks[1] += dus->s.ticks[1];
999                 agg->time_in_queue += dus->s.time_in_queue;
1000                 agg->slavecount++;
1001
1002                 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
1003                 /* System utilization is the utilization of the
1004                  * component with the highest utilization.
1005                  */
1006                 if (util > agg->max_util.u.f)
1007                         agg->max_util.u.f = util;
1008
1009         }
1010
1011         if (agg->max_util.u.f > 100.0)
1012                 agg->max_util.u.f = 100.0;
1013 }
1014
1015 void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
1016                      int terse, struct buf_output *out)
1017 {
1018         double util = 0;
1019
1020         if (dus->s.msec)
1021                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1022         if (util > 100.0)
1023                 util = 100.0;
1024
1025         if (!terse) {
1026                 if (agg->slavecount)
1027                         log_buf(out, "  ");
1028
1029                 log_buf(out, "  %s: ios=%llu/%llu, merge=%llu/%llu, "
1030                          "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
1031                                 dus->name,
1032                                 (unsigned long long) dus->s.ios[0],
1033                                 (unsigned long long) dus->s.ios[1],
1034                                 (unsigned long long) dus->s.merges[0],
1035                                 (unsigned long long) dus->s.merges[1],
1036                                 (unsigned long long) dus->s.ticks[0],
1037                                 (unsigned long long) dus->s.ticks[1],
1038                                 (unsigned long long) dus->s.time_in_queue,
1039                                 util);
1040         } else {
1041                 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1042                                 dus->name,
1043                                 (unsigned long long) dus->s.ios[0],
1044                                 (unsigned long long) dus->s.ios[1],
1045                                 (unsigned long long) dus->s.merges[0],
1046                                 (unsigned long long) dus->s.merges[1],
1047                                 (unsigned long long) dus->s.ticks[0],
1048                                 (unsigned long long) dus->s.ticks[1],
1049                                 (unsigned long long) dus->s.time_in_queue,
1050                                 util);
1051         }
1052
1053         /*
1054          * If the device has slaves, aggregate the stats for
1055          * those slave devices also.
1056          */
1057         show_agg_stats(agg, terse, out);
1058
1059         if (!terse)
1060                 log_buf(out, "\n");
1061 }
1062
1063 void json_array_add_disk_util(struct disk_util_stat *dus,
1064                 struct disk_util_agg *agg, struct json_array *array)
1065 {
1066         struct json_object *obj;
1067         double util = 0;
1068
1069         if (dus->s.msec)
1070                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1071         if (util > 100.0)
1072                 util = 100.0;
1073
1074         obj = json_create_object();
1075         json_array_add_value_object(array, obj);
1076
1077         json_object_add_value_string(obj, "name", (const char *)dus->name);
1078         json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1079         json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1080         json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1081         json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1082         json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1083         json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1084         json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1085         json_object_add_value_float(obj, "util", util);
1086
1087         /*
1088          * If the device has slaves, aggregate the stats for
1089          * those slave devices also.
1090          */
1091         if (!agg->slavecount)
1092                 return;
1093         json_object_add_value_int(obj, "aggr_read_ios",
1094                                 agg->ios[0] / agg->slavecount);
1095         json_object_add_value_int(obj, "aggr_write_ios",
1096                                 agg->ios[1] / agg->slavecount);
1097         json_object_add_value_int(obj, "aggr_read_merges",
1098                                 agg->merges[0] / agg->slavecount);
1099         json_object_add_value_int(obj, "aggr_write_merge",
1100                                 agg->merges[1] / agg->slavecount);
1101         json_object_add_value_int(obj, "aggr_read_ticks",
1102                                 agg->ticks[0] / agg->slavecount);
1103         json_object_add_value_int(obj, "aggr_write_ticks",
1104                                 agg->ticks[1] / agg->slavecount);
1105         json_object_add_value_int(obj, "aggr_in_queue",
1106                                 agg->time_in_queue / agg->slavecount);
1107         json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1108 }
1109
1110 static void json_object_add_disk_utils(struct json_object *obj,
1111                                        struct flist_head *head)
1112 {
1113         struct json_array *array = json_create_array();
1114         struct flist_head *entry;
1115         struct disk_util *du;
1116
1117         json_object_add_value_array(obj, "disk_util", array);
1118
1119         flist_for_each(entry, head) {
1120                 du = flist_entry(entry, struct disk_util, list);
1121
1122                 aggregate_slaves_stats(du);
1123                 json_array_add_disk_util(&du->dus, &du->agg, array);
1124         }
1125 }
1126
1127 void show_disk_util(int terse, struct json_object *parent,
1128                     struct buf_output *out)
1129 {
1130         struct flist_head *entry;
1131         struct disk_util *du;
1132         bool do_json;
1133
1134         if (!is_running_backend())
1135                 return;
1136
1137         if (flist_empty(&disk_list))
1138                 return;
1139
1140         if ((output_format & FIO_OUTPUT_JSON) && parent)
1141                 do_json = true;
1142         else
1143                 do_json = false;
1144
1145         if (!terse && !do_json)
1146                 log_buf(out, "\nDisk stats (read/write):\n");
1147
1148         if (do_json) {
1149                 json_object_add_disk_utils(parent, &disk_list);
1150         } else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1151                 flist_for_each(entry, &disk_list) {
1152                         du = flist_entry(entry, struct disk_util, list);
1153
1154                         aggregate_slaves_stats(du);
1155                         print_disk_util(&du->dus, &du->agg, terse, out);
1156                 }
1157         }
1158 }
1159
1160 static void show_thread_status_normal(struct thread_stat *ts,
1161                                       struct group_run_stats *rs,
1162                                       struct buf_output *out)
1163 {
1164         double usr_cpu, sys_cpu;
1165         unsigned long runtime;
1166         double io_u_dist[FIO_IO_U_MAP_NR];
1167         time_t time_p;
1168         char time_buf[32];
1169
1170         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1171                 return;
1172
1173         memset(time_buf, 0, sizeof(time_buf));
1174
1175         time(&time_p);
1176         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1177
1178         if (!ts->error) {
1179                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1180                                         ts->name, ts->groupid, ts->members,
1181                                         ts->error, (int) ts->pid, time_buf);
1182         } else {
1183                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1184                                         ts->name, ts->groupid, ts->members,
1185                                         ts->error, ts->verror, (int) ts->pid,
1186                                         time_buf);
1187         }
1188
1189         if (strlen(ts->description))
1190                 log_buf(out, "  Description  : [%s]\n", ts->description);
1191
1192         for_each_rw_ddir(ddir) {
1193                 if (ts->io_bytes[ddir])
1194                         show_ddir_status(rs, ts, ddir, out);
1195         }
1196
1197         if (ts->unified_rw_rep == UNIFIED_BOTH)
1198                 show_mixed_ddir_status(rs, ts, out);
1199
1200         show_latencies(ts, out);
1201
1202         if (ts->sync_stat.samples)
1203                 show_ddir_status(rs, ts, DDIR_SYNC, out);
1204
1205         runtime = ts->total_run_time;
1206         if (runtime) {
1207                 double runt = (double) runtime;
1208
1209                 usr_cpu = (double) ts->usr_time * 100 / runt;
1210                 sys_cpu = (double) ts->sys_time * 100 / runt;
1211         } else {
1212                 usr_cpu = 0;
1213                 sys_cpu = 0;
1214         }
1215
1216         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1217                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1218                         (unsigned long long) ts->ctx,
1219                         (unsigned long long) ts->majf,
1220                         (unsigned long long) ts->minf);
1221
1222         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1223         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1224                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1225                                         io_u_dist[1], io_u_dist[2],
1226                                         io_u_dist[3], io_u_dist[4],
1227                                         io_u_dist[5], io_u_dist[6]);
1228
1229         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1230         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1231                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1232                                         io_u_dist[1], io_u_dist[2],
1233                                         io_u_dist[3], io_u_dist[4],
1234                                         io_u_dist[5], io_u_dist[6]);
1235         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1236         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1237                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1238                                         io_u_dist[1], io_u_dist[2],
1239                                         io_u_dist[3], io_u_dist[4],
1240                                         io_u_dist[5], io_u_dist[6]);
1241         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
1242                                  " short=%llu,%llu,%llu,0"
1243                                  " dropped=%llu,%llu,%llu,0\n",
1244                                         (unsigned long long) ts->total_io_u[0],
1245                                         (unsigned long long) ts->total_io_u[1],
1246                                         (unsigned long long) ts->total_io_u[2],
1247                                         (unsigned long long) ts->total_io_u[3],
1248                                         (unsigned long long) ts->short_io_u[0],
1249                                         (unsigned long long) ts->short_io_u[1],
1250                                         (unsigned long long) ts->short_io_u[2],
1251                                         (unsigned long long) ts->drop_io_u[0],
1252                                         (unsigned long long) ts->drop_io_u[1],
1253                                         (unsigned long long) ts->drop_io_u[2]);
1254         if (ts->continue_on_error) {
1255                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
1256                                         (unsigned long long)ts->total_err_count,
1257                                         ts->first_error,
1258                                         strerror(ts->first_error));
1259         }
1260         if (ts->latency_depth) {
1261                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1262                                         (unsigned long long)ts->latency_target,
1263                                         (unsigned long long)ts->latency_window,
1264                                         ts->latency_percentile.u.f,
1265                                         ts->latency_depth);
1266         }
1267
1268         if (ts->nr_block_infos)
1269                 show_block_infos(ts->nr_block_infos, ts->block_infos,
1270                                   ts->percentile_list, out);
1271
1272         if (ts->ss_dur)
1273                 show_ss_normal(ts, out);
1274 }
1275
1276 static void show_ddir_status_terse(struct thread_stat *ts,
1277                                    struct group_run_stats *rs,
1278                                    enum fio_ddir ddir, int ver,
1279                                    struct buf_output *out)
1280 {
1281         unsigned long long min, max, minv, maxv, bw, iops;
1282         unsigned long long *ovals = NULL;
1283         double mean, dev;
1284         unsigned int len;
1285         int i, bw_stat;
1286
1287         assert(ddir_rw(ddir));
1288
1289         iops = bw = 0;
1290         if (ts->runtime[ddir]) {
1291                 uint64_t runt = ts->runtime[ddir];
1292
1293                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1294                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1295         }
1296
1297         log_buf(out, ";%llu;%llu;%llu;%llu",
1298                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1299                                         (unsigned long long) ts->runtime[ddir]);
1300
1301         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1302                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1303         else
1304                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1305
1306         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1307                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1308         else
1309                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1310
1311         if (ts->lat_percentiles) {
1312                 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1313                                         ts->lat_stat[ddir].samples,
1314                                         ts->percentile_list, &ovals, &maxv,
1315                                         &minv);
1316         } else if (ts->clat_percentiles) {
1317                 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1318                                         ts->clat_stat[ddir].samples,
1319                                         ts->percentile_list, &ovals, &maxv,
1320                                         &minv);
1321         } else {
1322                 len = 0;
1323         }
1324
1325         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1326                 if (i >= len) {
1327                         log_buf(out, ";0%%=0");
1328                         continue;
1329                 }
1330                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1331         }
1332
1333         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1334                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1335         else
1336                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1337
1338         free(ovals);
1339
1340         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1341         if (bw_stat) {
1342                 double p_of_agg = 100.0;
1343
1344                 if (rs->agg[ddir]) {
1345                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1346                         if (p_of_agg > 100.0)
1347                                 p_of_agg = 100.0;
1348                 }
1349
1350                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1351         } else {
1352                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1353         }
1354
1355         if (ver == 5) {
1356                 if (bw_stat)
1357                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1358                 else
1359                         log_buf(out, ";%lu", 0UL);
1360
1361                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1362                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1363                                 mean, dev, (&ts->iops_stat[ddir])->samples);
1364                 else
1365                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1366         }
1367 }
1368
1369 static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1370                                    struct group_run_stats *rs,
1371                                    int ver, struct buf_output *out)
1372 {
1373         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1374
1375         if (ts_lcl)
1376                 show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1377
1378         free_clat_prio_stats(ts_lcl);
1379         free(ts_lcl);
1380 }
1381
1382 static struct json_object *add_ddir_lat_json(struct thread_stat *ts,
1383                                              uint32_t percentiles,
1384                                              struct io_stat *lat_stat,
1385                                              uint64_t *io_u_plat)
1386 {
1387         char buf[120];
1388         double mean, dev;
1389         unsigned int i, len;
1390         struct json_object *lat_object, *percentile_object, *clat_bins_object;
1391         unsigned long long min, max, maxv, minv, *ovals = NULL;
1392
1393         if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1394                 min = max = 0;
1395                 mean = dev = 0.0;
1396         }
1397         lat_object = json_create_object();
1398         json_object_add_value_int(lat_object, "min", min);
1399         json_object_add_value_int(lat_object, "max", max);
1400         json_object_add_value_float(lat_object, "mean", mean);
1401         json_object_add_value_float(lat_object, "stddev", dev);
1402         json_object_add_value_int(lat_object, "N", lat_stat->samples);
1403
1404         if (percentiles && lat_stat->samples) {
1405                 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1406                                 ts->percentile_list, &ovals, &maxv, &minv);
1407
1408                 if (len > FIO_IO_U_LIST_MAX_LEN)
1409                         len = FIO_IO_U_LIST_MAX_LEN;
1410
1411                 percentile_object = json_create_object();
1412                 json_object_add_value_object(lat_object, "percentile", percentile_object);
1413                 for (i = 0; i < len; i++) {
1414                         snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1415                         json_object_add_value_int(percentile_object, buf, ovals[i]);
1416                 }
1417                 free(ovals);
1418
1419                 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1420                         clat_bins_object = json_create_object();
1421                         json_object_add_value_object(lat_object, "bins", clat_bins_object);
1422
1423                         for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1424                                 if (io_u_plat[i]) {
1425                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1426                                         json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1427                                 }
1428                 }
1429         }
1430
1431         return lat_object;
1432 }
1433
1434 static void add_ddir_status_json(struct thread_stat *ts,
1435                                  struct group_run_stats *rs, enum fio_ddir ddir,
1436                                  struct json_object *parent)
1437 {
1438         unsigned long long min, max;
1439         unsigned long long bw_bytes, bw;
1440         double mean, dev, iops;
1441         struct json_object *dir_object, *tmp_object;
1442         double p_of_agg = 100.0;
1443
1444         assert(ddir_rw(ddir) || ddir_sync(ddir));
1445
1446         if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1447                 return;
1448
1449         dir_object = json_create_object();
1450         json_object_add_value_object(parent,
1451                 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1452
1453         if (ddir_rw(ddir)) {
1454                 bw_bytes = 0;
1455                 bw = 0;
1456                 iops = 0.0;
1457                 if (ts->runtime[ddir]) {
1458                         uint64_t runt = ts->runtime[ddir];
1459
1460                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1461                         bw = bw_bytes / 1024; /* KiB/s */
1462                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1463                 }
1464
1465                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1466                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1467                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1468                 json_object_add_value_int(dir_object, "bw", bw);
1469                 json_object_add_value_float(dir_object, "iops", iops);
1470                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1471                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1472                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1473                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1474
1475                 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1476                                 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1477                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1478
1479                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1480                                 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1481                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1482
1483                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1484                                 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1485                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1486         } else {
1487                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1488                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1489                                 &ts->sync_stat, ts->io_u_sync_plat);
1490                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1491         }
1492
1493         if (!ddir_rw(ddir))
1494                 return;
1495
1496         /* Only print PRIO latencies if some high priority samples were gathered */
1497         if (ts->clat_high_prio_stat[ddir].samples > 0) {
1498                 const char *high, *low;
1499
1500                 if (ts->lat_percentiles) {
1501                         high = "lat_high_prio";
1502                         low = "lat_low_prio";
1503                 } else {
1504                         high = "clat_high_prio";
1505                         low = "clat_low_prio";
1506                 }
1507
1508                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1509                                 &ts->clat_high_prio_stat[ddir], ts->io_u_plat_high_prio[ddir]);
1510                 json_object_add_value_object(dir_object, high, tmp_object);
1511
1512                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1513                                 &ts->clat_low_prio_stat[ddir], ts->io_u_plat_low_prio[ddir]);
1514                 json_object_add_value_object(dir_object, low, tmp_object);
1515         }
1516
1517         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1518                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1519         } else {
1520                 min = max = 0;
1521                 p_of_agg = mean = dev = 0.0;
1522         }
1523
1524         json_object_add_value_int(dir_object, "bw_min", min);
1525         json_object_add_value_int(dir_object, "bw_max", max);
1526         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1527         json_object_add_value_float(dir_object, "bw_mean", mean);
1528         json_object_add_value_float(dir_object, "bw_dev", dev);
1529         json_object_add_value_int(dir_object, "bw_samples",
1530                                 (&ts->bw_stat[ddir])->samples);
1531
1532         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1533                 min = max = 0;
1534                 mean = dev = 0.0;
1535         }
1536         json_object_add_value_int(dir_object, "iops_min", min);
1537         json_object_add_value_int(dir_object, "iops_max", max);
1538         json_object_add_value_float(dir_object, "iops_mean", mean);
1539         json_object_add_value_float(dir_object, "iops_stddev", dev);
1540         json_object_add_value_int(dir_object, "iops_samples",
1541                                 (&ts->iops_stat[ddir])->samples);
1542
1543         if (ts->cachehit + ts->cachemiss) {
1544                 uint64_t total;
1545                 double hit;
1546
1547                 total = ts->cachehit + ts->cachemiss;
1548                 hit = (double) ts->cachehit / (double) total;
1549                 hit *= 100.0;
1550                 json_object_add_value_float(dir_object, "cachehit", hit);
1551         }
1552 }
1553
1554 static void add_mixed_ddir_status_json(struct thread_stat *ts,
1555                 struct group_run_stats *rs, struct json_object *parent)
1556 {
1557         struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1558
1559         /* add the aggregated stats to json parent */
1560         if (ts_lcl)
1561                 add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1562
1563         free_clat_prio_stats(ts_lcl);
1564         free(ts_lcl);
1565 }
1566
1567 static void show_thread_status_terse_all(struct thread_stat *ts,
1568                                          struct group_run_stats *rs, int ver,
1569                                          struct buf_output *out)
1570 {
1571         double io_u_dist[FIO_IO_U_MAP_NR];
1572         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1573         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1574         double usr_cpu, sys_cpu;
1575         int i;
1576
1577         /* General Info */
1578         if (ver == 2)
1579                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1580         else
1581                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1582                         ts->name, ts->groupid, ts->error);
1583
1584         /* Log Read Status, or mixed if unified_rw_rep = 1 */
1585         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1586         if (ts->unified_rw_rep != UNIFIED_MIXED) {
1587                 /* Log Write Status */
1588                 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1589                 /* Log Trim Status */
1590                 if (ver == 2 || ver == 4 || ver == 5)
1591                         show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1592         }
1593         if (ts->unified_rw_rep == UNIFIED_BOTH)
1594                 show_mixed_ddir_status_terse(ts, rs, ver, out);
1595         /* CPU Usage */
1596         if (ts->total_run_time) {
1597                 double runt = (double) ts->total_run_time;
1598
1599                 usr_cpu = (double) ts->usr_time * 100 / runt;
1600                 sys_cpu = (double) ts->sys_time * 100 / runt;
1601         } else {
1602                 usr_cpu = 0;
1603                 sys_cpu = 0;
1604         }
1605
1606         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1607                                                 (unsigned long long) ts->ctx,
1608                                                 (unsigned long long) ts->majf,
1609                                                 (unsigned long long) ts->minf);
1610
1611         /* Calc % distribution of IO depths, usecond, msecond latency */
1612         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1613         stat_calc_lat_nu(ts, io_u_lat_u);
1614         stat_calc_lat_m(ts, io_u_lat_m);
1615
1616         /* Only show fixed 7 I/O depth levels*/
1617         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1618                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1619                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1620
1621         /* Microsecond latency */
1622         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1623                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1624         /* Millisecond latency */
1625         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1626                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1627
1628         /* disk util stats, if any */
1629         if (ver >= 3 && is_running_backend())
1630                 show_disk_util(1, NULL, out);
1631
1632         /* Additional output if continue_on_error set - default off*/
1633         if (ts->continue_on_error)
1634                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1635
1636         /* Additional output if description is set */
1637         if (strlen(ts->description)) {
1638                 if (ver == 2)
1639                         log_buf(out, "\n");
1640                 log_buf(out, ";%s", ts->description);
1641         }
1642
1643         log_buf(out, "\n");
1644 }
1645
1646 static void json_add_job_opts(struct json_object *root, const char *name,
1647                               struct flist_head *opt_list)
1648 {
1649         struct json_object *dir_object;
1650         struct flist_head *entry;
1651         struct print_option *p;
1652
1653         if (flist_empty(opt_list))
1654                 return;
1655
1656         dir_object = json_create_object();
1657         json_object_add_value_object(root, name, dir_object);
1658
1659         flist_for_each(entry, opt_list) {
1660                 p = flist_entry(entry, struct print_option, list);
1661                 json_object_add_value_string(dir_object, p->name, p->value);
1662         }
1663 }
1664
1665 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1666                                                    struct group_run_stats *rs,
1667                                                    struct flist_head *opt_list)
1668 {
1669         struct json_object *root, *tmp;
1670         struct jobs_eta *je;
1671         double io_u_dist[FIO_IO_U_MAP_NR];
1672         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1673         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1674         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1675         double usr_cpu, sys_cpu;
1676         int i;
1677         size_t size;
1678
1679         root = json_create_object();
1680         json_object_add_value_string(root, "jobname", ts->name);
1681         json_object_add_value_int(root, "groupid", ts->groupid);
1682         json_object_add_value_int(root, "error", ts->error);
1683
1684         /* ETA Info */
1685         je = get_jobs_eta(true, &size);
1686         if (je) {
1687                 json_object_add_value_int(root, "eta", je->eta_sec);
1688                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1689         }
1690
1691         if (opt_list)
1692                 json_add_job_opts(root, "job options", opt_list);
1693
1694         add_ddir_status_json(ts, rs, DDIR_READ, root);
1695         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1696         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1697         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1698
1699         if (ts->unified_rw_rep == UNIFIED_BOTH)
1700                 add_mixed_ddir_status_json(ts, rs, root);
1701
1702         /* CPU Usage */
1703         if (ts->total_run_time) {
1704                 double runt = (double) ts->total_run_time;
1705
1706                 usr_cpu = (double) ts->usr_time * 100 / runt;
1707                 sys_cpu = (double) ts->sys_time * 100 / runt;
1708         } else {
1709                 usr_cpu = 0;
1710                 sys_cpu = 0;
1711         }
1712         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1713         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1714         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1715         json_object_add_value_int(root, "ctx", ts->ctx);
1716         json_object_add_value_int(root, "majf", ts->majf);
1717         json_object_add_value_int(root, "minf", ts->minf);
1718
1719         /* Calc % distribution of IO depths */
1720         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1721         tmp = json_create_object();
1722         json_object_add_value_object(root, "iodepth_level", tmp);
1723         /* Only show fixed 7 I/O depth levels*/
1724         for (i = 0; i < 7; i++) {
1725                 char name[20];
1726                 if (i < 6)
1727                         snprintf(name, 20, "%d", 1 << i);
1728                 else
1729                         snprintf(name, 20, ">=%d", 1 << i);
1730                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1731         }
1732
1733         /* Calc % distribution of submit IO depths */
1734         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1735         tmp = json_create_object();
1736         json_object_add_value_object(root, "iodepth_submit", tmp);
1737         /* Only show fixed 7 I/O depth levels*/
1738         for (i = 0; i < 7; i++) {
1739                 char name[20];
1740                 if (i == 0)
1741                         snprintf(name, 20, "0");
1742                 else if (i < 6)
1743                         snprintf(name, 20, "%d", 1 << (i+1));
1744                 else
1745                         snprintf(name, 20, ">=%d", 1 << i);
1746                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1747         }
1748
1749         /* Calc % distribution of completion IO depths */
1750         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1751         tmp = json_create_object();
1752         json_object_add_value_object(root, "iodepth_complete", tmp);
1753         /* Only show fixed 7 I/O depth levels*/
1754         for (i = 0; i < 7; i++) {
1755                 char name[20];
1756                 if (i == 0)
1757                         snprintf(name, 20, "0");
1758                 else if (i < 6)
1759                         snprintf(name, 20, "%d", 1 << (i+1));
1760                 else
1761                         snprintf(name, 20, ">=%d", 1 << i);
1762                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1763         }
1764
1765         /* Calc % distribution of nsecond, usecond, msecond latency */
1766         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1767         stat_calc_lat_n(ts, io_u_lat_n);
1768         stat_calc_lat_u(ts, io_u_lat_u);
1769         stat_calc_lat_m(ts, io_u_lat_m);
1770
1771         /* Nanosecond latency */
1772         tmp = json_create_object();
1773         json_object_add_value_object(root, "latency_ns", tmp);
1774         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1775                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1776                                  "250", "500", "750", "1000", };
1777                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1778         }
1779         /* Microsecond latency */
1780         tmp = json_create_object();
1781         json_object_add_value_object(root, "latency_us", tmp);
1782         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1783                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1784                                  "250", "500", "750", "1000", };
1785                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1786         }
1787         /* Millisecond latency */
1788         tmp = json_create_object();
1789         json_object_add_value_object(root, "latency_ms", tmp);
1790         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1791                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1792                                  "250", "500", "750", "1000", "2000",
1793                                  ">=2000", };
1794                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1795         }
1796
1797         /* Additional output if continue_on_error set - default off*/
1798         if (ts->continue_on_error) {
1799                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1800                 json_object_add_value_int(root, "first_error", ts->first_error);
1801         }
1802
1803         if (ts->latency_depth) {
1804                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1805                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1806                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1807                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1808         }
1809
1810         /* Additional output if description is set */
1811         if (strlen(ts->description))
1812                 json_object_add_value_string(root, "desc", ts->description);
1813
1814         if (ts->nr_block_infos) {
1815                 /* Block error histogram and types */
1816                 int len;
1817                 unsigned int *percentiles = NULL;
1818                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1819
1820                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1821                                              ts->percentile_list,
1822                                              &percentiles, block_state_counts);
1823
1824                 if (len) {
1825                         struct json_object *block, *percentile_object, *states;
1826                         int state;
1827                         block = json_create_object();
1828                         json_object_add_value_object(root, "block", block);
1829
1830                         percentile_object = json_create_object();
1831                         json_object_add_value_object(block, "percentiles",
1832                                                      percentile_object);
1833                         for (i = 0; i < len; i++) {
1834                                 char buf[20];
1835                                 snprintf(buf, sizeof(buf), "%f",
1836                                          ts->percentile_list[i].u.f);
1837                                 json_object_add_value_int(percentile_object,
1838                                                           buf,
1839                                                           percentiles[i]);
1840                         }
1841
1842                         states = json_create_object();
1843                         json_object_add_value_object(block, "states", states);
1844                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1845                                 json_object_add_value_int(states,
1846                                         block_state_names[state],
1847                                         block_state_counts[state]);
1848                         }
1849                         free(percentiles);
1850                 }
1851         }
1852
1853         if (ts->ss_dur) {
1854                 struct json_object *data;
1855                 struct json_array *iops, *bw;
1856                 int j, k, l;
1857                 char ss_buf[64];
1858
1859                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1860                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1861                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1862                         (float) ts->ss_limit.u.f,
1863                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1864
1865                 tmp = json_create_object();
1866                 json_object_add_value_object(root, "steadystate", tmp);
1867                 json_object_add_value_string(tmp, "ss", ss_buf);
1868                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1869                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1870
1871                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1872                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1873                 json_object_add_value_string(tmp, "criterion", ss_buf);
1874                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1875                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1876
1877                 data = json_create_object();
1878                 json_object_add_value_object(tmp, "data", data);
1879                 bw = json_create_array();
1880                 iops = json_create_array();
1881
1882                 /*
1883                 ** if ss was attained or the buffer is not full,
1884                 ** ss->head points to the first element in the list.
1885                 ** otherwise it actually points to the second element
1886                 ** in the list
1887                 */
1888                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1889                         j = ts->ss_head;
1890                 else
1891                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1892                 for (l = 0; l < ts->ss_dur; l++) {
1893                         k = (j + l) % ts->ss_dur;
1894                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1895                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1896                 }
1897                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1898                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1899                 json_object_add_value_array(data, "iops", iops);
1900                 json_object_add_value_array(data, "bw", bw);
1901         }
1902
1903         return root;
1904 }
1905
1906 static void show_thread_status_terse(struct thread_stat *ts,
1907                                      struct group_run_stats *rs,
1908                                      struct buf_output *out)
1909 {
1910         if (terse_version >= 2 && terse_version <= 5)
1911                 show_thread_status_terse_all(ts, rs, terse_version, out);
1912         else
1913                 log_err("fio: bad terse version!? %d\n", terse_version);
1914 }
1915
1916 struct json_object *show_thread_status(struct thread_stat *ts,
1917                                        struct group_run_stats *rs,
1918                                        struct flist_head *opt_list,
1919                                        struct buf_output *out)
1920 {
1921         struct json_object *ret = NULL;
1922
1923         if (output_format & FIO_OUTPUT_TERSE)
1924                 show_thread_status_terse(ts, rs,  out);
1925         if (output_format & FIO_OUTPUT_JSON)
1926                 ret = show_thread_status_json(ts, rs, opt_list);
1927         if (output_format & FIO_OUTPUT_NORMAL)
1928                 show_thread_status_normal(ts, rs,  out);
1929
1930         return ret;
1931 }
1932
1933 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1934 {
1935         double mean, S;
1936
1937         dst->min_val = min(dst->min_val, src->min_val);
1938         dst->max_val = max(dst->max_val, src->max_val);
1939
1940         /*
1941          * Compute new mean and S after the merge
1942          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1943          *  #Parallel_algorithm>
1944          */
1945         if (first) {
1946                 mean = src->mean.u.f;
1947                 S = src->S.u.f;
1948         } else {
1949                 double delta = src->mean.u.f - dst->mean.u.f;
1950
1951                 mean = ((src->mean.u.f * src->samples) +
1952                         (dst->mean.u.f * dst->samples)) /
1953                         (dst->samples + src->samples);
1954
1955                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1956                         (dst->samples * src->samples) /
1957                         (dst->samples + src->samples);
1958         }
1959
1960         dst->samples += src->samples;
1961         dst->mean.u.f = mean;
1962         dst->S.u.f = S;
1963
1964 }
1965
1966 /*
1967  * We sum two kinds of stats - one that is time based, in which case we
1968  * apply the proper summing technique, and then one that is iops/bw
1969  * numbers. For group_reporting, we should just add those up, not make
1970  * them the mean of everything.
1971  */
1972 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool pure_sum)
1973 {
1974         bool first = dst->samples == 0;
1975
1976         if (src->samples == 0)
1977                 return;
1978
1979         if (!pure_sum) {
1980                 __sum_stat(dst, src, first);
1981                 return;
1982         }
1983
1984         if (first) {
1985                 dst->min_val = src->min_val;
1986                 dst->max_val = src->max_val;
1987                 dst->samples = src->samples;
1988                 dst->mean.u.f = src->mean.u.f;
1989                 dst->S.u.f = src->S.u.f;
1990         } else {
1991                 dst->min_val += src->min_val;
1992                 dst->max_val += src->max_val;
1993                 dst->samples += src->samples;
1994                 dst->mean.u.f += src->mean.u.f;
1995                 dst->S.u.f += src->S.u.f;
1996         }
1997 }
1998
1999 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
2000 {
2001         int i;
2002
2003         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2004                 if (dst->max_run[i] < src->max_run[i])
2005                         dst->max_run[i] = src->max_run[i];
2006                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
2007                         dst->min_run[i] = src->min_run[i];
2008                 if (dst->max_bw[i] < src->max_bw[i])
2009                         dst->max_bw[i] = src->max_bw[i];
2010                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
2011                         dst->min_bw[i] = src->min_bw[i];
2012
2013                 dst->iobytes[i] += src->iobytes[i];
2014                 dst->agg[i] += src->agg[i];
2015         }
2016
2017         if (!dst->kb_base)
2018                 dst->kb_base = src->kb_base;
2019         if (!dst->unit_base)
2020                 dst->unit_base = src->unit_base;
2021         if (!dst->sig_figs)
2022                 dst->sig_figs = src->sig_figs;
2023 }
2024
2025 /*
2026  * Free the clat_prio_stat arrays allocated by alloc_clat_prio_stat_ddir().
2027  */
2028 void free_clat_prio_stats(struct thread_stat *ts)
2029 {
2030         enum fio_ddir ddir;
2031
2032         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2033                 sfree(ts->clat_prio[ddir]);
2034                 ts->clat_prio[ddir] = NULL;
2035                 ts->nr_clat_prio[ddir] = 0;
2036         }
2037 }
2038
2039 /*
2040  * Allocate a clat_prio_stat array. The array has to be allocated/freed using
2041  * smalloc/sfree, so that it is accessible by the process/thread summing the
2042  * thread_stats.
2043  */
2044 int alloc_clat_prio_stat_ddir(struct thread_stat *ts, enum fio_ddir ddir,
2045                               int nr_prios)
2046 {
2047         struct clat_prio_stat *clat_prio;
2048         int i;
2049
2050         clat_prio = scalloc(nr_prios, sizeof(*ts->clat_prio[ddir]));
2051         if (!clat_prio) {
2052                 log_err("fio: failed to allocate ts clat data\n");
2053                 return 1;
2054         }
2055
2056         for (i = 0; i < nr_prios; i++)
2057                 clat_prio[i].clat_stat.min_val = ULONG_MAX;
2058
2059         ts->clat_prio[ddir] = clat_prio;
2060         ts->nr_clat_prio[ddir] = nr_prios;
2061
2062         return 0;
2063 }
2064
2065 static int grow_clat_prio_stat(struct thread_stat *dst, enum fio_ddir ddir)
2066 {
2067         int curr_len = dst->nr_clat_prio[ddir];
2068         void *new_arr;
2069
2070         new_arr = scalloc(curr_len + 1, sizeof(*dst->clat_prio[ddir]));
2071         if (!new_arr) {
2072                 log_err("fio: failed to grow clat prio array\n");
2073                 return 1;
2074         }
2075
2076         memcpy(new_arr, dst->clat_prio[ddir],
2077                curr_len * sizeof(*dst->clat_prio[ddir]));
2078         sfree(dst->clat_prio[ddir]);
2079
2080         dst->clat_prio[ddir] = new_arr;
2081         dst->clat_prio[ddir][curr_len].clat_stat.min_val = ULONG_MAX;
2082         dst->nr_clat_prio[ddir]++;
2083
2084         return 0;
2085 }
2086
2087 static int find_clat_prio_index(struct thread_stat *dst, enum fio_ddir ddir,
2088                                 uint32_t ioprio)
2089 {
2090         int i, nr_prios = dst->nr_clat_prio[ddir];
2091
2092         for (i = 0; i < nr_prios; i++) {
2093                 if (dst->clat_prio[ddir][i].ioprio == ioprio)
2094                         return i;
2095         }
2096
2097         return -1;
2098 }
2099
2100 static int alloc_or_get_clat_prio_index(struct thread_stat *dst,
2101                                         enum fio_ddir ddir, uint32_t ioprio,
2102                                         int *idx)
2103 {
2104         int index = find_clat_prio_index(dst, ddir, ioprio);
2105
2106         if (index == -1) {
2107                 index = dst->nr_clat_prio[ddir];
2108
2109                 if (grow_clat_prio_stat(dst, ddir))
2110                         return 1;
2111
2112                 dst->clat_prio[ddir][index].ioprio = ioprio;
2113         }
2114
2115         *idx = index;
2116
2117         return 0;
2118 }
2119
2120 static int clat_prio_stats_copy(struct thread_stat *dst, struct thread_stat *src,
2121                                 enum fio_ddir dst_ddir, enum fio_ddir src_ddir)
2122 {
2123         size_t sz = sizeof(*src->clat_prio[src_ddir]) *
2124                 src->nr_clat_prio[src_ddir];
2125
2126         dst->clat_prio[dst_ddir] = smalloc(sz);
2127         if (!dst->clat_prio[dst_ddir]) {
2128                 log_err("fio: failed to alloc clat prio array\n");
2129                 return 1;
2130         }
2131
2132         memcpy(dst->clat_prio[dst_ddir], src->clat_prio[src_ddir], sz);
2133         dst->nr_clat_prio[dst_ddir] = src->nr_clat_prio[src_ddir];
2134
2135         return 0;
2136 }
2137
2138 static int clat_prio_stat_add_samples(struct thread_stat *dst,
2139                                       enum fio_ddir dst_ddir, uint32_t ioprio,
2140                                       struct io_stat *io_stat,
2141                                       uint64_t *io_u_plat)
2142 {
2143         int i, dst_index;
2144
2145         if (!io_stat->samples)
2146                 return 0;
2147
2148         if (alloc_or_get_clat_prio_index(dst, dst_ddir, ioprio, &dst_index))
2149                 return 1;
2150
2151         sum_stat(&dst->clat_prio[dst_ddir][dst_index].clat_stat, io_stat,
2152                  false);
2153
2154         for (i = 0; i < FIO_IO_U_PLAT_NR; i++)
2155                 dst->clat_prio[dst_ddir][dst_index].io_u_plat[i] += io_u_plat[i];
2156
2157         return 0;
2158 }
2159
2160 static int sum_clat_prio_stats_src_single_prio(struct thread_stat *dst,
2161                                                struct thread_stat *src,
2162                                                enum fio_ddir dst_ddir,
2163                                                enum fio_ddir src_ddir)
2164 {
2165         struct io_stat *io_stat;
2166         uint64_t *io_u_plat;
2167
2168         /*
2169          * If src ts has no clat_prio_stat array, then all I/Os were submitted
2170          * using src->ioprio. Thus, the global samples in src->clat_stat (or
2171          * src->lat_stat) can be used as the 'per prio' samples for src->ioprio.
2172          */
2173         assert(!src->clat_prio[src_ddir]);
2174         assert(src->nr_clat_prio[src_ddir] == 0);
2175
2176         if (src->lat_percentiles) {
2177                 io_u_plat = src->io_u_plat[FIO_LAT][src_ddir];
2178                 io_stat = &src->lat_stat[src_ddir];
2179         } else {
2180                 io_u_plat = src->io_u_plat[FIO_CLAT][src_ddir];
2181                 io_stat = &src->clat_stat[src_ddir];
2182         }
2183
2184         return clat_prio_stat_add_samples(dst, dst_ddir, src->ioprio, io_stat,
2185                                           io_u_plat);
2186 }
2187
2188 static int sum_clat_prio_stats_src_multi_prio(struct thread_stat *dst,
2189                                               struct thread_stat *src,
2190                                               enum fio_ddir dst_ddir,
2191                                               enum fio_ddir src_ddir)
2192 {
2193         int i;
2194
2195         /*
2196          * If src ts has a clat_prio_stat array, then there are multiple prios
2197          * in use (i.e. src ts had cmdprio_percentage or cmdprio_bssplit set).
2198          * The samples for the default prio will exist in the src->clat_prio
2199          * array, just like the samples for any other prio.
2200          */
2201         assert(src->clat_prio[src_ddir]);
2202         assert(src->nr_clat_prio[src_ddir]);
2203
2204         /* If the dst ts doesn't yet have a clat_prio array, simply memcpy. */
2205         if (!dst->clat_prio[dst_ddir])
2206                 return clat_prio_stats_copy(dst, src, dst_ddir, src_ddir);
2207
2208         /* The dst ts already has a clat_prio_array, add src stats into it. */
2209         for (i = 0; i < src->nr_clat_prio[src_ddir]; i++) {
2210                 struct io_stat *io_stat = &src->clat_prio[src_ddir][i].clat_stat;
2211                 uint64_t *io_u_plat = src->clat_prio[src_ddir][i].io_u_plat;
2212                 uint32_t ioprio = src->clat_prio[src_ddir][i].ioprio;
2213
2214                 if (clat_prio_stat_add_samples(dst, dst_ddir, ioprio, io_stat, io_u_plat))
2215                         return 1;
2216         }
2217
2218         return 0;
2219 }
2220
2221 static int sum_clat_prio_stats(struct thread_stat *dst, struct thread_stat *src,
2222                                enum fio_ddir dst_ddir, enum fio_ddir src_ddir)
2223 {
2224         if (dst->disable_prio_stat)
2225                 return 0;
2226
2227         if (!src->clat_prio[src_ddir])
2228                 return sum_clat_prio_stats_src_single_prio(dst, src, dst_ddir,
2229                                                            src_ddir);
2230
2231         return sum_clat_prio_stats_src_multi_prio(dst, src, dst_ddir, src_ddir);
2232 }
2233
2234 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src)
2235 {
2236         int k, l, m;
2237
2238         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2239                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2240                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], false);
2241                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], false);
2242                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], false);
2243                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], true);
2244                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], true);
2245                         sum_clat_prio_stats(dst, src, l, l);
2246
2247                         dst->io_bytes[l] += src->io_bytes[l];
2248
2249                         if (dst->runtime[l] < src->runtime[l])
2250                                 dst->runtime[l] = src->runtime[l];
2251                 } else {
2252                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], false);
2253                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], false);
2254                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], false);
2255                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], true);
2256                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], true);
2257                         sum_clat_prio_stats(dst, src, 0, l);
2258
2259                         dst->io_bytes[0] += src->io_bytes[l];
2260
2261                         if (dst->runtime[0] < src->runtime[l])
2262                                 dst->runtime[0] = src->runtime[l];
2263                 }
2264         }
2265
2266         sum_stat(&dst->sync_stat, &src->sync_stat, false);
2267         dst->usr_time += src->usr_time;
2268         dst->sys_time += src->sys_time;
2269         dst->ctx += src->ctx;
2270         dst->majf += src->majf;
2271         dst->minf += src->minf;
2272
2273         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2274                 dst->io_u_map[k] += src->io_u_map[k];
2275                 dst->io_u_submit[k] += src->io_u_submit[k];
2276                 dst->io_u_complete[k] += src->io_u_complete[k];
2277         }
2278
2279         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2280                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2281         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2282                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2283         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2284                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2285
2286         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2287                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2288                         dst->total_io_u[k] += src->total_io_u[k];
2289                         dst->short_io_u[k] += src->short_io_u[k];
2290                         dst->drop_io_u[k] += src->drop_io_u[k];
2291                 } else {
2292                         dst->total_io_u[0] += src->total_io_u[k];
2293                         dst->short_io_u[0] += src->short_io_u[k];
2294                         dst->drop_io_u[0] += src->drop_io_u[k];
2295                 }
2296         }
2297
2298         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2299
2300         for (k = 0; k < FIO_LAT_CNT; k++)
2301                 for (l = 0; l < DDIR_RWDIR_CNT; l++)
2302                         for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2303                                 if (dst->unified_rw_rep != UNIFIED_MIXED)
2304                                         dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2305                                 else
2306                                         dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2307
2308         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2309                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2310
2311         dst->total_run_time += src->total_run_time;
2312         dst->total_submit += src->total_submit;
2313         dst->total_complete += src->total_complete;
2314         dst->nr_zone_resets += src->nr_zone_resets;
2315         dst->cachehit += src->cachehit;
2316         dst->cachemiss += src->cachemiss;
2317 }
2318
2319 void init_group_run_stat(struct group_run_stats *gs)
2320 {
2321         int i;
2322         memset(gs, 0, sizeof(*gs));
2323
2324         for (i = 0; i < DDIR_RWDIR_CNT; i++)
2325                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
2326 }
2327
2328 void init_thread_stat_min_vals(struct thread_stat *ts)
2329 {
2330         int i;
2331
2332         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2333                 ts->clat_stat[i].min_val = ULONG_MAX;
2334                 ts->slat_stat[i].min_val = ULONG_MAX;
2335                 ts->lat_stat[i].min_val = ULONG_MAX;
2336                 ts->bw_stat[i].min_val = ULONG_MAX;
2337                 ts->iops_stat[i].min_val = ULONG_MAX;
2338         }
2339         ts->sync_stat.min_val = ULONG_MAX;
2340 }
2341
2342 void init_thread_stat(struct thread_stat *ts)
2343 {
2344         memset(ts, 0, sizeof(*ts));
2345
2346         init_thread_stat_min_vals(ts);
2347         ts->groupid = -1;
2348 }
2349
2350 static void init_per_prio_stats(struct thread_stat *threadstats, int nr_ts)
2351 {
2352         struct thread_data *td;
2353         struct thread_stat *ts;
2354         int i, j, last_ts, idx;
2355         enum fio_ddir ddir;
2356
2357         j = 0;
2358         last_ts = -1;
2359         idx = 0;
2360
2361         /*
2362          * Loop through all tds, if a td requires per prio stats, temporarily
2363          * store a 1 in ts->disable_prio_stat, and then do an additional
2364          * loop at the end where we invert the ts->disable_prio_stat values.
2365          */
2366         for_each_td(td, i) {
2367                 if (!td->o.stats)
2368                         continue;
2369                 if (idx &&
2370                     (!td->o.group_reporting ||
2371                      (td->o.group_reporting && last_ts != td->groupid))) {
2372                         idx = 0;
2373                         j++;
2374                 }
2375
2376                 last_ts = td->groupid;
2377                 ts = &threadstats[j];
2378
2379                 /* idx == 0 means first td in group, or td is not in a group. */
2380                 if (idx == 0)
2381                         ts->ioprio = td->ioprio;
2382                 else if (td->ioprio != ts->ioprio)
2383                         ts->disable_prio_stat = 1;
2384
2385                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2386                         if (td->ts.clat_prio[ddir]) {
2387                                 ts->disable_prio_stat = 1;
2388                                 break;
2389                         }
2390                 }
2391
2392                 idx++;
2393         }
2394
2395         /* Loop through all dst threadstats and fixup the values. */
2396         for (i = 0; i < nr_ts; i++) {
2397                 ts = &threadstats[i];
2398                 ts->disable_prio_stat = !ts->disable_prio_stat;
2399         }
2400 }
2401
2402 void __show_run_stats(void)
2403 {
2404         struct group_run_stats *runstats, *rs;
2405         struct thread_data *td;
2406         struct thread_stat *threadstats, *ts;
2407         int i, j, k, nr_ts, last_ts, idx;
2408         bool kb_base_warned = false;
2409         bool unit_base_warned = false;
2410         struct json_object *root = NULL;
2411         struct json_array *array = NULL;
2412         struct buf_output output[FIO_OUTPUT_NR];
2413         struct flist_head **opt_lists;
2414
2415         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2416
2417         for (i = 0; i < groupid + 1; i++)
2418                 init_group_run_stat(&runstats[i]);
2419
2420         /*
2421          * find out how many threads stats we need. if group reporting isn't
2422          * enabled, it's one-per-td.
2423          */
2424         nr_ts = 0;
2425         last_ts = -1;
2426         for_each_td(td, i) {
2427                 if (!td->o.group_reporting) {
2428                         nr_ts++;
2429                         continue;
2430                 }
2431                 if (last_ts == td->groupid)
2432                         continue;
2433                 if (!td->o.stats)
2434                         continue;
2435
2436                 last_ts = td->groupid;
2437                 nr_ts++;
2438         }
2439
2440         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2441         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2442
2443         for (i = 0; i < nr_ts; i++) {
2444                 init_thread_stat(&threadstats[i]);
2445                 opt_lists[i] = NULL;
2446         }
2447
2448         init_per_prio_stats(threadstats, nr_ts);
2449
2450         j = 0;
2451         last_ts = -1;
2452         idx = 0;
2453         for_each_td(td, i) {
2454                 if (!td->o.stats)
2455                         continue;
2456                 if (idx && (!td->o.group_reporting ||
2457                     (td->o.group_reporting && last_ts != td->groupid))) {
2458                         idx = 0;
2459                         j++;
2460                 }
2461
2462                 last_ts = td->groupid;
2463
2464                 ts = &threadstats[j];
2465
2466                 ts->clat_percentiles = td->o.clat_percentiles;
2467                 ts->lat_percentiles = td->o.lat_percentiles;
2468                 ts->slat_percentiles = td->o.slat_percentiles;
2469                 ts->percentile_precision = td->o.percentile_precision;
2470                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2471                 opt_lists[j] = &td->opt_list;
2472
2473                 idx++;
2474
2475                 if (ts->groupid == -1) {
2476                         /*
2477                          * These are per-group shared already
2478                          */
2479                         snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2480                         if (td->o.description)
2481                                 snprintf(ts->description,
2482                                          sizeof(ts->description), "%s",
2483                                          td->o.description);
2484                         else
2485                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2486
2487                         /*
2488                          * If multiple entries in this group, this is
2489                          * the first member.
2490                          */
2491                         ts->thread_number = td->thread_number;
2492                         ts->groupid = td->groupid;
2493
2494                         /*
2495                          * first pid in group, not very useful...
2496                          */
2497                         ts->pid = td->pid;
2498
2499                         ts->kb_base = td->o.kb_base;
2500                         ts->unit_base = td->o.unit_base;
2501                         ts->sig_figs = td->o.sig_figs;
2502                         ts->unified_rw_rep = td->o.unified_rw_rep;
2503                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2504                         log_info("fio: kb_base differs for jobs in group, using"
2505                                  " %u as the base\n", ts->kb_base);
2506                         kb_base_warned = true;
2507                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2508                         log_info("fio: unit_base differs for jobs in group, using"
2509                                  " %u as the base\n", ts->unit_base);
2510                         unit_base_warned = true;
2511                 }
2512
2513                 ts->continue_on_error = td->o.continue_on_error;
2514                 ts->total_err_count += td->total_err_count;
2515                 ts->first_error = td->first_error;
2516                 if (!ts->error) {
2517                         if (!td->error && td->o.continue_on_error &&
2518                             td->first_error) {
2519                                 ts->error = td->first_error;
2520                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2521                                          td->verror);
2522                         } else  if (td->error) {
2523                                 ts->error = td->error;
2524                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2525                                          td->verror);
2526                         }
2527                 }
2528
2529                 ts->latency_depth = td->latency_qd;
2530                 ts->latency_target = td->o.latency_target;
2531                 ts->latency_percentile = td->o.latency_percentile;
2532                 ts->latency_window = td->o.latency_window;
2533
2534                 ts->nr_block_infos = td->ts.nr_block_infos;
2535                 for (k = 0; k < ts->nr_block_infos; k++)
2536                         ts->block_infos[k] = td->ts.block_infos[k];
2537
2538                 sum_thread_stats(ts, &td->ts);
2539
2540                 ts->members++;
2541
2542                 if (td->o.ss_dur) {
2543                         ts->ss_state = td->ss.state;
2544                         ts->ss_dur = td->ss.dur;
2545                         ts->ss_head = td->ss.head;
2546                         ts->ss_bw_data = td->ss.bw_data;
2547                         ts->ss_iops_data = td->ss.iops_data;
2548                         ts->ss_limit.u.f = td->ss.limit;
2549                         ts->ss_slope.u.f = td->ss.slope;
2550                         ts->ss_deviation.u.f = td->ss.deviation;
2551                         ts->ss_criterion.u.f = td->ss.criterion;
2552                 }
2553                 else
2554                         ts->ss_dur = ts->ss_state = 0;
2555         }
2556
2557         for (i = 0; i < nr_ts; i++) {
2558                 unsigned long long bw;
2559
2560                 ts = &threadstats[i];
2561                 if (ts->groupid == -1)
2562                         continue;
2563                 rs = &runstats[ts->groupid];
2564                 rs->kb_base = ts->kb_base;
2565                 rs->unit_base = ts->unit_base;
2566                 rs->sig_figs = ts->sig_figs;
2567                 rs->unified_rw_rep |= ts->unified_rw_rep;
2568
2569                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2570                         if (!ts->runtime[j])
2571                                 continue;
2572                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2573                                 rs->min_run[j] = ts->runtime[j];
2574                         if (ts->runtime[j] > rs->max_run[j])
2575                                 rs->max_run[j] = ts->runtime[j];
2576
2577                         bw = 0;
2578                         if (ts->runtime[j])
2579                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2580                         if (bw < rs->min_bw[j])
2581                                 rs->min_bw[j] = bw;
2582                         if (bw > rs->max_bw[j])
2583                                 rs->max_bw[j] = bw;
2584
2585                         rs->iobytes[j] += ts->io_bytes[j];
2586                 }
2587         }
2588
2589         for (i = 0; i < groupid + 1; i++) {
2590                 enum fio_ddir ddir;
2591
2592                 rs = &runstats[i];
2593
2594                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2595                         if (rs->max_run[ddir])
2596                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2597                                                 rs->max_run[ddir];
2598                 }
2599         }
2600
2601         for (i = 0; i < FIO_OUTPUT_NR; i++)
2602                 buf_output_init(&output[i]);
2603
2604         /*
2605          * don't overwrite last signal output
2606          */
2607         if (output_format & FIO_OUTPUT_NORMAL)
2608                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2609         if (output_format & FIO_OUTPUT_JSON) {
2610                 struct thread_data *global;
2611                 char time_buf[32];
2612                 struct timeval now;
2613                 unsigned long long ms_since_epoch;
2614                 time_t tv_sec;
2615
2616                 gettimeofday(&now, NULL);
2617                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2618                                  (unsigned long long)(now.tv_usec) / 1000;
2619
2620                 tv_sec = now.tv_sec;
2621                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2622                 if (time_buf[strlen(time_buf) - 1] == '\n')
2623                         time_buf[strlen(time_buf) - 1] = '\0';
2624
2625                 root = json_create_object();
2626                 json_object_add_value_string(root, "fio version", fio_version_string);
2627                 json_object_add_value_int(root, "timestamp", now.tv_sec);
2628                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2629                 json_object_add_value_string(root, "time", time_buf);
2630                 global = get_global_options();
2631                 json_add_job_opts(root, "global options", &global->opt_list);
2632                 array = json_create_array();
2633                 json_object_add_value_array(root, "jobs", array);
2634         }
2635
2636         if (is_backend)
2637                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2638
2639         for (i = 0; i < nr_ts; i++) {
2640                 ts = &threadstats[i];
2641                 rs = &runstats[ts->groupid];
2642
2643                 if (is_backend) {
2644                         fio_server_send_job_options(opt_lists[i], i);
2645                         fio_server_send_ts(ts, rs);
2646                 } else {
2647                         if (output_format & FIO_OUTPUT_TERSE)
2648                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2649                         if (output_format & FIO_OUTPUT_JSON) {
2650                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2651                                 json_array_add_value_object(array, tmp);
2652                         }
2653                         if (output_format & FIO_OUTPUT_NORMAL)
2654                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2655                 }
2656         }
2657         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2658                 /* disk util stats, if any */
2659                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2660
2661                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2662
2663                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2664                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2665                 json_free_object(root);
2666         }
2667
2668         for (i = 0; i < groupid + 1; i++) {
2669                 rs = &runstats[i];
2670
2671                 rs->groupid = i;
2672                 if (is_backend)
2673                         fio_server_send_gs(rs);
2674                 else if (output_format & FIO_OUTPUT_NORMAL)
2675                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2676         }
2677
2678         if (is_backend)
2679                 fio_server_send_du();
2680         else if (output_format & FIO_OUTPUT_NORMAL) {
2681                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2682                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2683         }
2684
2685         for (i = 0; i < FIO_OUTPUT_NR; i++) {
2686                 struct buf_output *out = &output[i];
2687
2688                 log_info_buf(out->buf, out->buflen);
2689                 buf_output_free(out);
2690         }
2691
2692         fio_idle_prof_cleanup();
2693
2694         log_info_flush();
2695         free(runstats);
2696
2697         /* free arrays allocated by sum_thread_stats(), if any */
2698         for (i = 0; i < nr_ts; i++) {
2699                 ts = &threadstats[i];
2700                 free_clat_prio_stats(ts);
2701         }
2702         free(threadstats);
2703         free(opt_lists);
2704 }
2705
2706 int __show_running_run_stats(void)
2707 {
2708         struct thread_data *td;
2709         unsigned long long *rt;
2710         struct timespec ts;
2711         int i;
2712
2713         fio_sem_down(stat_sem);
2714
2715         rt = malloc(thread_number * sizeof(unsigned long long));
2716         fio_gettime(&ts, NULL);
2717
2718         for_each_td(td, i) {
2719                 td->update_rusage = 1;
2720                 for_each_rw_ddir(ddir) {
2721                         td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2722                 }
2723                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2724
2725                 rt[i] = mtime_since(&td->start, &ts);
2726                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2727                         td->ts.runtime[DDIR_READ] += rt[i];
2728                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2729                         td->ts.runtime[DDIR_WRITE] += rt[i];
2730                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2731                         td->ts.runtime[DDIR_TRIM] += rt[i];
2732         }
2733
2734         for_each_td(td, i) {
2735                 if (td->runstate >= TD_EXITED)
2736                         continue;
2737                 if (td->rusage_sem) {
2738                         td->update_rusage = 1;
2739                         fio_sem_down(td->rusage_sem);
2740                 }
2741                 td->update_rusage = 0;
2742         }
2743
2744         __show_run_stats();
2745
2746         for_each_td(td, i) {
2747                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2748                         td->ts.runtime[DDIR_READ] -= rt[i];
2749                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2750                         td->ts.runtime[DDIR_WRITE] -= rt[i];
2751                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2752                         td->ts.runtime[DDIR_TRIM] -= rt[i];
2753         }
2754
2755         free(rt);
2756         fio_sem_up(stat_sem);
2757
2758         return 0;
2759 }
2760
2761 static bool status_file_disabled;
2762
2763 #define FIO_STATUS_FILE         "fio-dump-status"
2764
2765 static int check_status_file(void)
2766 {
2767         struct stat sb;
2768         const char *temp_dir;
2769         char fio_status_file_path[PATH_MAX];
2770
2771         if (status_file_disabled)
2772                 return 0;
2773
2774         temp_dir = getenv("TMPDIR");
2775         if (temp_dir == NULL) {
2776                 temp_dir = getenv("TEMP");
2777                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2778                         temp_dir = NULL;
2779         }
2780         if (temp_dir == NULL)
2781                 temp_dir = "/tmp";
2782 #ifdef __COVERITY__
2783         __coverity_tainted_data_sanitize__(temp_dir);
2784 #endif
2785
2786         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2787
2788         if (stat(fio_status_file_path, &sb))
2789                 return 0;
2790
2791         if (unlink(fio_status_file_path) < 0) {
2792                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2793                                                         strerror(errno));
2794                 log_err("fio: disabling status file updates\n");
2795                 status_file_disabled = true;
2796         }
2797
2798         return 1;
2799 }
2800
2801 void check_for_running_stats(void)
2802 {
2803         if (check_status_file()) {
2804                 show_running_run_stats();
2805                 return;
2806         }
2807 }
2808
2809 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2810 {
2811         double val = data;
2812         double delta;
2813
2814         if (data > is->max_val)
2815                 is->max_val = data;
2816         if (data < is->min_val)
2817                 is->min_val = data;
2818
2819         delta = val - is->mean.u.f;
2820         if (delta) {
2821                 is->mean.u.f += delta / (is->samples + 1.0);
2822                 is->S.u.f += delta * (val - is->mean.u.f);
2823         }
2824
2825         is->samples++;
2826 }
2827
2828 static inline void add_stat_prio_sample(struct clat_prio_stat *clat_prio,
2829                                         unsigned short clat_prio_index,
2830                                         unsigned long long nsec)
2831 {
2832         if (clat_prio)
2833                 add_stat_sample(&clat_prio[clat_prio_index].clat_stat, nsec);
2834 }
2835
2836 /*
2837  * Return a struct io_logs, which is added to the tail of the log
2838  * list for 'iolog'.
2839  */
2840 static struct io_logs *get_new_log(struct io_log *iolog)
2841 {
2842         size_t new_samples;
2843         struct io_logs *cur_log;
2844
2845         /*
2846          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2847          * forever
2848          */
2849         if (!iolog->cur_log_max) {
2850                 new_samples = iolog->td->o.log_entries;
2851         } else {
2852                 new_samples = iolog->cur_log_max * 2;
2853                 if (new_samples > MAX_LOG_ENTRIES)
2854                         new_samples = MAX_LOG_ENTRIES;
2855         }
2856
2857         cur_log = smalloc(sizeof(*cur_log));
2858         if (cur_log) {
2859                 INIT_FLIST_HEAD(&cur_log->list);
2860                 cur_log->log = calloc(new_samples, log_entry_sz(iolog));
2861                 if (cur_log->log) {
2862                         cur_log->nr_samples = 0;
2863                         cur_log->max_samples = new_samples;
2864                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2865                         iolog->cur_log_max = new_samples;
2866                         return cur_log;
2867                 }
2868                 sfree(cur_log);
2869         }
2870
2871         return NULL;
2872 }
2873
2874 /*
2875  * Add and return a new log chunk, or return current log if big enough
2876  */
2877 static struct io_logs *regrow_log(struct io_log *iolog)
2878 {
2879         struct io_logs *cur_log;
2880         int i;
2881
2882         if (!iolog || iolog->disabled)
2883                 goto disable;
2884
2885         cur_log = iolog_cur_log(iolog);
2886         if (!cur_log) {
2887                 cur_log = get_new_log(iolog);
2888                 if (!cur_log)
2889                         return NULL;
2890         }
2891
2892         if (cur_log->nr_samples < cur_log->max_samples)
2893                 return cur_log;
2894
2895         /*
2896          * No room for a new sample. If we're compressing on the fly, flush
2897          * out the current chunk
2898          */
2899         if (iolog->log_gz) {
2900                 if (iolog_cur_flush(iolog, cur_log)) {
2901                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2902                         return NULL;
2903                 }
2904         }
2905
2906         /*
2907          * Get a new log array, and add to our list
2908          */
2909         cur_log = get_new_log(iolog);
2910         if (!cur_log) {
2911                 log_err("fio: failed extending iolog! Will stop logging.\n");
2912                 return NULL;
2913         }
2914
2915         if (!iolog->pending || !iolog->pending->nr_samples)
2916                 return cur_log;
2917
2918         /*
2919          * Flush pending items to new log
2920          */
2921         for (i = 0; i < iolog->pending->nr_samples; i++) {
2922                 struct io_sample *src, *dst;
2923
2924                 src = get_sample(iolog, iolog->pending, i);
2925                 dst = get_sample(iolog, cur_log, i);
2926                 memcpy(dst, src, log_entry_sz(iolog));
2927         }
2928         cur_log->nr_samples = iolog->pending->nr_samples;
2929
2930         iolog->pending->nr_samples = 0;
2931         return cur_log;
2932 disable:
2933         if (iolog)
2934                 iolog->disabled = true;
2935         return NULL;
2936 }
2937
2938 void regrow_logs(struct thread_data *td)
2939 {
2940         regrow_log(td->slat_log);
2941         regrow_log(td->clat_log);
2942         regrow_log(td->clat_hist_log);
2943         regrow_log(td->lat_log);
2944         regrow_log(td->bw_log);
2945         regrow_log(td->iops_log);
2946         td->flags &= ~TD_F_REGROW_LOGS;
2947 }
2948
2949 void regrow_agg_logs(void)
2950 {
2951         enum fio_ddir ddir;
2952
2953         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2954                 regrow_log(agg_io_log[ddir]);
2955 }
2956
2957 static struct io_logs *get_cur_log(struct io_log *iolog)
2958 {
2959         struct io_logs *cur_log;
2960
2961         cur_log = iolog_cur_log(iolog);
2962         if (!cur_log) {
2963                 cur_log = get_new_log(iolog);
2964                 if (!cur_log)
2965                         return NULL;
2966         }
2967
2968         if (cur_log->nr_samples < cur_log->max_samples)
2969                 return cur_log;
2970
2971         /*
2972          * Out of space. If we're in IO offload mode, or we're not doing
2973          * per unit logging (hence logging happens outside of the IO thread
2974          * as well), add a new log chunk inline. If we're doing inline
2975          * submissions, flag 'td' as needing a log regrow and we'll take
2976          * care of it on the submission side.
2977          */
2978         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2979             !per_unit_log(iolog))
2980                 return regrow_log(iolog);
2981
2982         if (iolog->td)
2983                 iolog->td->flags |= TD_F_REGROW_LOGS;
2984         if (iolog->pending)
2985                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2986         return iolog->pending;
2987 }
2988
2989 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2990                              enum fio_ddir ddir, unsigned long long bs,
2991                              unsigned long t, uint64_t offset,
2992                              unsigned int priority)
2993 {
2994         struct io_logs *cur_log;
2995
2996         if (iolog->disabled)
2997                 return;
2998         if (flist_empty(&iolog->io_logs))
2999                 iolog->avg_last[ddir] = t;
3000
3001         cur_log = get_cur_log(iolog);
3002         if (cur_log) {
3003                 struct io_sample *s;
3004
3005                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
3006
3007                 s->data = data;
3008                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
3009                 io_sample_set_ddir(iolog, s, ddir);
3010                 s->bs = bs;
3011                 s->priority = priority;
3012
3013                 if (iolog->log_offset) {
3014                         struct io_sample_offset *so = (void *) s;
3015
3016                         so->offset = offset;
3017                 }
3018
3019                 cur_log->nr_samples++;
3020                 return;
3021         }
3022
3023         iolog->disabled = true;
3024 }
3025
3026 static inline void reset_io_stat(struct io_stat *ios)
3027 {
3028         ios->min_val = -1ULL;
3029         ios->max_val = ios->samples = 0;
3030         ios->mean.u.f = ios->S.u.f = 0;
3031 }
3032
3033 static inline void reset_io_u_plat(uint64_t *io_u_plat)
3034 {
3035         int i;
3036
3037         for (i = 0; i < FIO_IO_U_PLAT_NR; i++)
3038                 io_u_plat[i] = 0;
3039 }
3040
3041 static inline void reset_clat_prio_stats(struct thread_stat *ts)
3042 {
3043         enum fio_ddir ddir;
3044         int i;
3045
3046         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3047                 if (!ts->clat_prio[ddir])
3048                         continue;
3049
3050                 for (i = 0; i < ts->nr_clat_prio[ddir]; i++) {
3051                         reset_io_stat(&ts->clat_prio[ddir][i].clat_stat);
3052                         reset_io_u_plat(ts->clat_prio[ddir][i].io_u_plat);
3053                 }
3054         }
3055 }
3056
3057 void reset_io_stats(struct thread_data *td)
3058 {
3059         struct thread_stat *ts = &td->ts;
3060         int i, j;
3061
3062         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
3063                 reset_io_stat(&ts->clat_stat[i]);
3064                 reset_io_stat(&ts->slat_stat[i]);
3065                 reset_io_stat(&ts->lat_stat[i]);
3066                 reset_io_stat(&ts->bw_stat[i]);
3067                 reset_io_stat(&ts->iops_stat[i]);
3068
3069                 ts->io_bytes[i] = 0;
3070                 ts->runtime[i] = 0;
3071                 ts->total_io_u[i] = 0;
3072                 ts->short_io_u[i] = 0;
3073                 ts->drop_io_u[i] = 0;
3074         }
3075
3076         for (i = 0; i < FIO_LAT_CNT; i++)
3077                 for (j = 0; j < DDIR_RWDIR_CNT; j++)
3078                         reset_io_u_plat(ts->io_u_plat[i][j]);
3079
3080         reset_clat_prio_stats(ts);
3081
3082         ts->total_io_u[DDIR_SYNC] = 0;
3083         reset_io_u_plat(ts->io_u_sync_plat);
3084
3085         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
3086                 ts->io_u_map[i] = 0;
3087                 ts->io_u_submit[i] = 0;
3088                 ts->io_u_complete[i] = 0;
3089         }
3090
3091         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
3092                 ts->io_u_lat_n[i] = 0;
3093         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
3094                 ts->io_u_lat_u[i] = 0;
3095         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
3096                 ts->io_u_lat_m[i] = 0;
3097
3098         ts->total_submit = 0;
3099         ts->total_complete = 0;
3100         ts->nr_zone_resets = 0;
3101         ts->cachehit = ts->cachemiss = 0;
3102 }
3103
3104 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
3105                               unsigned long elapsed, bool log_max)
3106 {
3107         /*
3108          * Note an entry in the log. Use the mean from the logged samples,
3109          * making sure to properly round up. Only write a log entry if we
3110          * had actual samples done.
3111          */
3112         if (iolog->avg_window[ddir].samples) {
3113                 union io_sample_data data;
3114
3115                 if (log_max)
3116                         data.val = iolog->avg_window[ddir].max_val;
3117                 else
3118                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
3119
3120                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, 0);
3121         }
3122
3123         reset_io_stat(&iolog->avg_window[ddir]);
3124 }
3125
3126 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
3127                              bool log_max)
3128 {
3129         enum fio_ddir ddir;
3130
3131         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
3132                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
3133 }
3134
3135 static unsigned long add_log_sample(struct thread_data *td,
3136                                     struct io_log *iolog,
3137                                     union io_sample_data data,
3138                                     enum fio_ddir ddir, unsigned long long bs,
3139                                     uint64_t offset, unsigned int ioprio)
3140 {
3141         unsigned long elapsed, this_window;
3142
3143         if (!ddir_rw(ddir))
3144                 return 0;
3145
3146         elapsed = mtime_since_now(&td->epoch);
3147
3148         /*
3149          * If no time averaging, just add the log sample.
3150          */
3151         if (!iolog->avg_msec) {
3152                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset,
3153                                  ioprio);
3154                 return 0;
3155         }
3156
3157         /*
3158          * Add the sample. If the time period has passed, then
3159          * add that entry to the log and clear.
3160          */
3161         add_stat_sample(&iolog->avg_window[ddir], data.val);
3162
3163         /*
3164          * If period hasn't passed, adding the above sample is all we
3165          * need to do.
3166          */
3167         this_window = elapsed - iolog->avg_last[ddir];
3168         if (elapsed < iolog->avg_last[ddir])
3169                 return iolog->avg_last[ddir] - elapsed;
3170         else if (this_window < iolog->avg_msec) {
3171                 unsigned long diff = iolog->avg_msec - this_window;
3172
3173                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
3174                         return diff;
3175         }
3176
3177         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
3178
3179         iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
3180
3181         return iolog->avg_msec;
3182 }
3183
3184 void finalize_logs(struct thread_data *td, bool unit_logs)
3185 {
3186         unsigned long elapsed;
3187
3188         elapsed = mtime_since_now(&td->epoch);
3189
3190         if (td->clat_log && unit_logs)
3191                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
3192         if (td->slat_log && unit_logs)
3193                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
3194         if (td->lat_log && unit_logs)
3195                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
3196         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
3197                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
3198         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
3199                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
3200 }
3201
3202 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
3203                     unsigned long long bs)
3204 {
3205         struct io_log *iolog;
3206
3207         if (!ddir_rw(ddir))
3208                 return;
3209
3210         iolog = agg_io_log[ddir];
3211         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, 0);
3212 }
3213
3214 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
3215 {
3216         unsigned int idx = plat_val_to_idx(nsec);
3217         assert(idx < FIO_IO_U_PLAT_NR);
3218
3219         ts->io_u_sync_plat[idx]++;
3220         add_stat_sample(&ts->sync_stat, nsec);
3221 }
3222
3223 static inline void add_lat_percentile_sample(struct thread_stat *ts,
3224                                              unsigned long long nsec,
3225                                              enum fio_ddir ddir,
3226                                              enum fio_lat lat)
3227 {
3228         unsigned int idx = plat_val_to_idx(nsec);
3229         assert(idx < FIO_IO_U_PLAT_NR);
3230
3231         ts->io_u_plat[lat][ddir][idx]++;
3232 }
3233
3234 static inline void
3235 add_lat_percentile_prio_sample(struct thread_stat *ts, unsigned long long nsec,
3236                                enum fio_ddir ddir,
3237                                unsigned short clat_prio_index)
3238 {
3239         unsigned int idx = plat_val_to_idx(nsec);
3240
3241         if (ts->clat_prio[ddir])
3242                 ts->clat_prio[ddir][clat_prio_index].io_u_plat[idx]++;
3243 }
3244
3245 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
3246                      unsigned long long nsec, unsigned long long bs,
3247                      uint64_t offset, unsigned int ioprio,
3248                      unsigned short clat_prio_index)
3249 {
3250         const bool needs_lock = td_async_processing(td);
3251         unsigned long elapsed, this_window;
3252         struct thread_stat *ts = &td->ts;
3253         struct io_log *iolog = td->clat_hist_log;
3254
3255         if (needs_lock)
3256                 __td_io_u_lock(td);
3257
3258         add_stat_sample(&ts->clat_stat[ddir], nsec);
3259
3260         /*
3261          * When lat_percentiles=1 (default 0), the reported per priority
3262          * percentiles and stats are used for describing total latency values,
3263          * even though the variable names themselves start with clat_.
3264          *
3265          * Because of the above definition, add a prio stat sample only when
3266          * lat_percentiles=0. add_lat_sample() will add the prio stat sample
3267          * when lat_percentiles=1.
3268          */
3269         if (!ts->lat_percentiles)
3270                 add_stat_prio_sample(ts->clat_prio[ddir], clat_prio_index,
3271                                      nsec);
3272
3273         if (td->clat_log)
3274                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
3275                                offset, ioprio);
3276
3277         if (ts->clat_percentiles) {
3278                 /*
3279                  * Because of the above definition, add a prio lat percentile
3280                  * sample only when lat_percentiles=0. add_lat_sample() will add
3281                  * the prio lat percentile sample when lat_percentiles=1.
3282                  */
3283                 add_lat_percentile_sample(ts, nsec, ddir, FIO_CLAT);
3284                 if (!ts->lat_percentiles)
3285                         add_lat_percentile_prio_sample(ts, nsec, ddir,
3286                                                        clat_prio_index);
3287         }
3288
3289         if (iolog && iolog->hist_msec) {
3290                 struct io_hist *hw = &iolog->hist_window[ddir];
3291
3292                 hw->samples++;
3293                 elapsed = mtime_since_now(&td->epoch);
3294                 if (!hw->hist_last)
3295                         hw->hist_last = elapsed;
3296                 this_window = elapsed - hw->hist_last;
3297
3298                 if (this_window >= iolog->hist_msec) {
3299                         uint64_t *io_u_plat;
3300                         struct io_u_plat_entry *dst;
3301
3302                         /*
3303                          * Make a byte-for-byte copy of the latency histogram
3304                          * stored in td->ts.io_u_plat[ddir], recording it in a
3305                          * log sample. Note that the matching call to free() is
3306                          * located in iolog.c after printing this sample to the
3307                          * log file.
3308                          */
3309                         io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3310                         dst = malloc(sizeof(struct io_u_plat_entry));
3311                         memcpy(&(dst->io_u_plat), io_u_plat,
3312                                 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3313                         flist_add(&dst->list, &hw->list);
3314                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
3315                                          elapsed, offset, ioprio);
3316
3317                         /*
3318                          * Update the last time we recorded as being now, minus
3319                          * any drift in time we encountered before actually
3320                          * making the record.
3321                          */
3322                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3323                         hw->samples = 0;
3324                 }
3325         }
3326
3327         if (needs_lock)
3328                 __td_io_u_unlock(td);
3329 }
3330
3331 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
3332                      unsigned long long nsec, unsigned long long bs,
3333                      uint64_t offset, unsigned int ioprio)
3334 {
3335         const bool needs_lock = td_async_processing(td);
3336         struct thread_stat *ts = &td->ts;
3337
3338         if (!ddir_rw(ddir))
3339                 return;
3340
3341         if (needs_lock)
3342                 __td_io_u_lock(td);
3343
3344         add_stat_sample(&ts->slat_stat[ddir], nsec);
3345
3346         if (td->slat_log)
3347                 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs,
3348                                offset, ioprio);
3349
3350         if (ts->slat_percentiles)
3351                 add_lat_percentile_sample(ts, nsec, ddir, FIO_SLAT);
3352
3353         if (needs_lock)
3354                 __td_io_u_unlock(td);
3355 }
3356
3357 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3358                     unsigned long long nsec, unsigned long long bs,
3359                     uint64_t offset, unsigned int ioprio,
3360                     unsigned short clat_prio_index)
3361 {
3362         const bool needs_lock = td_async_processing(td);
3363         struct thread_stat *ts = &td->ts;
3364
3365         if (!ddir_rw(ddir))
3366                 return;
3367
3368         if (needs_lock)
3369                 __td_io_u_lock(td);
3370
3371         add_stat_sample(&ts->lat_stat[ddir], nsec);
3372
3373         if (td->lat_log)
3374                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
3375                                offset, ioprio);
3376
3377         /*
3378          * When lat_percentiles=1 (default 0), the reported per priority
3379          * percentiles and stats are used for describing total latency values,
3380          * even though the variable names themselves start with clat_.
3381          *
3382          * Because of the above definition, add a prio stat and prio lat
3383          * percentile sample only when lat_percentiles=1. add_clat_sample() will
3384          * add the prio stat and prio lat percentile sample when
3385          * lat_percentiles=0.
3386          */
3387         if (ts->lat_percentiles) {
3388                 add_lat_percentile_sample(ts, nsec, ddir, FIO_LAT);
3389                 add_lat_percentile_prio_sample(ts, nsec, ddir, clat_prio_index);
3390                 add_stat_prio_sample(ts->clat_prio[ddir], clat_prio_index,
3391                                      nsec);
3392         }
3393         if (needs_lock)
3394                 __td_io_u_unlock(td);
3395 }
3396
3397 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3398                    unsigned int bytes, unsigned long long spent)
3399 {
3400         const bool needs_lock = td_async_processing(td);
3401         struct thread_stat *ts = &td->ts;
3402         unsigned long rate;
3403
3404         if (spent)
3405                 rate = (unsigned long) (bytes * 1000000ULL / spent);
3406         else
3407                 rate = 0;
3408
3409         if (needs_lock)
3410                 __td_io_u_lock(td);
3411
3412         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3413
3414         if (td->bw_log)
3415                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
3416                                bytes, io_u->offset, io_u->ioprio);
3417
3418         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3419
3420         if (needs_lock)
3421                 __td_io_u_unlock(td);
3422 }
3423
3424 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3425                          struct timespec *t, unsigned int avg_time,
3426                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3427                          struct io_stat *stat, struct io_log *log,
3428                          bool is_kb)
3429 {
3430         const bool needs_lock = td_async_processing(td);
3431         unsigned long spent, rate;
3432         enum fio_ddir ddir;
3433         unsigned long next, next_log;
3434
3435         next_log = avg_time;
3436
3437         spent = mtime_since(parent_tv, t);
3438         if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3439                 return avg_time - spent;
3440
3441         if (needs_lock)
3442                 __td_io_u_lock(td);
3443
3444         /*
3445          * Compute both read and write rates for the interval.
3446          */
3447         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3448                 uint64_t delta;
3449
3450                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3451                 if (!delta)
3452                         continue; /* No entries for interval */
3453
3454                 if (spent) {
3455                         if (is_kb)
3456                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
3457                         else
3458                                 rate = (delta * 1000) / spent;
3459                 } else
3460                         rate = 0;
3461
3462                 add_stat_sample(&stat[ddir], rate);
3463
3464                 if (log) {
3465                         unsigned long long bs = 0;
3466
3467                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3468                                 bs = td->o.min_bs[ddir];
3469
3470                         next = add_log_sample(td, log, sample_val(rate), ddir,
3471                                               bs, 0, 0);
3472                         next_log = min(next_log, next);
3473                 }
3474
3475                 stat_io_bytes[ddir] = this_io_bytes[ddir];
3476         }
3477
3478         *parent_tv = *t;
3479
3480         if (needs_lock)
3481                 __td_io_u_unlock(td);
3482
3483         if (spent <= avg_time)
3484                 next = avg_time;
3485         else
3486                 next = avg_time - (1 + spent - avg_time);
3487
3488         return min(next, next_log);
3489 }
3490
3491 static int add_bw_samples(struct thread_data *td, struct timespec *t)
3492 {
3493         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3494                                 td->this_io_bytes, td->stat_io_bytes,
3495                                 td->ts.bw_stat, td->bw_log, true);
3496 }
3497
3498 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3499                      unsigned int bytes)
3500 {
3501         const bool needs_lock = td_async_processing(td);
3502         struct thread_stat *ts = &td->ts;
3503
3504         if (needs_lock)
3505                 __td_io_u_lock(td);
3506
3507         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3508
3509         if (td->iops_log)
3510                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3511                                bytes, io_u->offset, io_u->ioprio);
3512
3513         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3514
3515         if (needs_lock)
3516                 __td_io_u_unlock(td);
3517 }
3518
3519 static int add_iops_samples(struct thread_data *td, struct timespec *t)
3520 {
3521         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3522                                 td->this_io_blocks, td->stat_io_blocks,
3523                                 td->ts.iops_stat, td->iops_log, false);
3524 }
3525
3526 /*
3527  * Returns msecs to next event
3528  */
3529 int calc_log_samples(void)
3530 {
3531         struct thread_data *td;
3532         unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3533         struct timespec now;
3534         int i;
3535         long elapsed_time = 0;
3536
3537         fio_gettime(&now, NULL);
3538
3539         for_each_td(td, i) {
3540                 elapsed_time = mtime_since_now(&td->epoch);
3541
3542                 if (!td->o.stats)
3543                         continue;
3544                 if (in_ramp_time(td) ||
3545                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3546                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3547                         continue;
3548                 }
3549                 if (!td->bw_log ||
3550                         (td->bw_log && !per_unit_log(td->bw_log))) {
3551                         tmp = add_bw_samples(td, &now);
3552
3553                         if (td->bw_log)
3554                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3555                 }
3556                 if (!td->iops_log ||
3557                         (td->iops_log && !per_unit_log(td->iops_log))) {
3558                         tmp = add_iops_samples(td, &now);
3559
3560                         if (td->iops_log)
3561                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3562                 }
3563
3564                 if (tmp < next)
3565                         next = tmp;
3566         }
3567
3568         /* if log_avg_msec_min has not been changed, set it to 0 */
3569         if (log_avg_msec_min == -1U)
3570                 log_avg_msec_min = 0;
3571
3572         if (log_avg_msec_min == 0)
3573                 next_mod = elapsed_time;
3574         else
3575                 next_mod = elapsed_time % log_avg_msec_min;
3576
3577         /* correction to keep the time on the log avg msec boundary */
3578         next = min(next, (log_avg_msec_min - next_mod));
3579
3580         return next == ~0U ? 0 : next;
3581 }
3582
3583 void stat_init(void)
3584 {
3585         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3586 }
3587
3588 void stat_exit(void)
3589 {
3590         /*
3591          * When we have the mutex, we know out-of-band access to it
3592          * have ended.
3593          */
3594         fio_sem_down(stat_sem);
3595         fio_sem_remove(stat_sem);
3596 }
3597
3598 /*
3599  * Called from signal handler. Wake up status thread.
3600  */
3601 void show_running_run_stats(void)
3602 {
3603         helper_do_stat();
3604 }
3605
3606 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3607 {
3608         /* Ignore io_u's which span multiple blocks--they will just get
3609          * inaccurate counts. */
3610         int idx = (io_u->offset - io_u->file->file_offset)
3611                         / td->o.bs[DDIR_TRIM];
3612         uint32_t *info = &td->ts.block_infos[idx];
3613         assert(idx < td->ts.nr_block_infos);
3614         return info;
3615 }
3616