Merge tag 's390-6.10-7' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-block.git] / sound / soc / stm / stm32_sai_sub.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7  */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17
18 #include <sound/asoundef.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22
23 #include "stm32_sai.h"
24
25 #define SAI_FREE_PROTOCOL       0x0
26 #define SAI_SPDIF_PROTOCOL      0x1
27
28 #define SAI_SLOT_SIZE_AUTO      0x0
29 #define SAI_SLOT_SIZE_16        0x1
30 #define SAI_SLOT_SIZE_32        0x2
31
32 #define SAI_DATASIZE_8          0x2
33 #define SAI_DATASIZE_10         0x3
34 #define SAI_DATASIZE_16         0x4
35 #define SAI_DATASIZE_20         0x5
36 #define SAI_DATASIZE_24         0x6
37 #define SAI_DATASIZE_32         0x7
38
39 #define STM_SAI_DAI_NAME_SIZE   15
40
41 #define STM_SAI_IS_PLAYBACK(ip) ((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
42 #define STM_SAI_IS_CAPTURE(ip)  ((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
43
44 #define STM_SAI_A_ID            0x0
45 #define STM_SAI_B_ID            0x1
46
47 #define STM_SAI_IS_SUB_A(x)     ((x)->id == STM_SAI_A_ID)
48
49 #define SAI_SYNC_NONE           0x0
50 #define SAI_SYNC_INTERNAL       0x1
51 #define SAI_SYNC_EXTERNAL       0x2
52
53 #define STM_SAI_PROTOCOL_IS_SPDIF(ip)   ((ip)->spdif)
54 #define STM_SAI_HAS_SPDIF(x)    ((x)->pdata->conf.has_spdif_pdm)
55 #define STM_SAI_HAS_PDM(x)      ((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
57
58 #define SAI_IEC60958_BLOCK_FRAMES       192
59 #define SAI_IEC60958_STATUS_BYTES       24
60
61 #define SAI_MCLK_NAME_LEN               32
62 #define SAI_RATE_11K                    11025
63
64 /**
65  * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
66  * @pdev: device data pointer
67  * @regmap: SAI register map pointer
68  * @regmap_config: SAI sub block register map configuration pointer
69  * @dma_params: dma configuration data for rx or tx channel
70  * @cpu_dai_drv: DAI driver data pointer
71  * @cpu_dai: DAI runtime data pointer
72  * @substream: PCM substream data pointer
73  * @pdata: SAI block parent data pointer
74  * @np_sync_provider: synchronization provider node
75  * @sai_ck: kernel clock feeding the SAI clock generator
76  * @sai_mclk: master clock from SAI mclk provider
77  * @phys_addr: SAI registers physical base address
78  * @mclk_rate: SAI block master clock frequency (Hz). set at init
79  * @id: SAI sub block id corresponding to sub-block A or B
80  * @dir: SAI block direction (playback or capture). set at init
81  * @master: SAI block mode flag. (true=master, false=slave) set at init
82  * @spdif: SAI S/PDIF iec60958 mode flag. set at init
83  * @fmt: SAI block format. relevant only for custom protocols. set at init
84  * @sync: SAI block synchronization mode. (none, internal or external)
85  * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
86  * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
87  * @fs_length: frame synchronization length. depends on protocol settings
88  * @slots: rx or tx slot number
89  * @slot_width: rx or tx slot width in bits
90  * @slot_mask: rx or tx active slots mask. set at init or at runtime
91  * @data_size: PCM data width. corresponds to PCM substream width.
92  * @spdif_frm_cnt: S/PDIF playback frame counter
93  * @iec958: iec958 data
94  * @ctrl_lock: control lock
95  * @irq_lock: prevent race condition with IRQ
96  */
97 struct stm32_sai_sub_data {
98         struct platform_device *pdev;
99         struct regmap *regmap;
100         const struct regmap_config *regmap_config;
101         struct snd_dmaengine_dai_dma_data dma_params;
102         struct snd_soc_dai_driver cpu_dai_drv;
103         struct snd_soc_dai *cpu_dai;
104         struct snd_pcm_substream *substream;
105         struct stm32_sai_data *pdata;
106         struct device_node *np_sync_provider;
107         struct clk *sai_ck;
108         struct clk *sai_mclk;
109         dma_addr_t phys_addr;
110         unsigned int mclk_rate;
111         unsigned int id;
112         int dir;
113         bool master;
114         bool spdif;
115         int fmt;
116         int sync;
117         int synco;
118         int synci;
119         int fs_length;
120         int slots;
121         int slot_width;
122         int slot_mask;
123         int data_size;
124         unsigned int spdif_frm_cnt;
125         struct snd_aes_iec958 iec958;
126         struct mutex ctrl_lock; /* protect resources accessed by controls */
127         spinlock_t irq_lock; /* used to prevent race condition with IRQ */
128 };
129
130 enum stm32_sai_fifo_th {
131         STM_SAI_FIFO_TH_EMPTY,
132         STM_SAI_FIFO_TH_QUARTER,
133         STM_SAI_FIFO_TH_HALF,
134         STM_SAI_FIFO_TH_3_QUARTER,
135         STM_SAI_FIFO_TH_FULL,
136 };
137
138 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
139 {
140         switch (reg) {
141         case STM_SAI_CR1_REGX:
142         case STM_SAI_CR2_REGX:
143         case STM_SAI_FRCR_REGX:
144         case STM_SAI_SLOTR_REGX:
145         case STM_SAI_IMR_REGX:
146         case STM_SAI_SR_REGX:
147         case STM_SAI_CLRFR_REGX:
148         case STM_SAI_DR_REGX:
149         case STM_SAI_PDMCR_REGX:
150         case STM_SAI_PDMLY_REGX:
151                 return true;
152         default:
153                 return false;
154         }
155 }
156
157 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
158 {
159         switch (reg) {
160         case STM_SAI_DR_REGX:
161         case STM_SAI_SR_REGX:
162                 return true;
163         default:
164                 return false;
165         }
166 }
167
168 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
169 {
170         switch (reg) {
171         case STM_SAI_CR1_REGX:
172         case STM_SAI_CR2_REGX:
173         case STM_SAI_FRCR_REGX:
174         case STM_SAI_SLOTR_REGX:
175         case STM_SAI_IMR_REGX:
176         case STM_SAI_CLRFR_REGX:
177         case STM_SAI_DR_REGX:
178         case STM_SAI_PDMCR_REGX:
179         case STM_SAI_PDMLY_REGX:
180                 return true;
181         default:
182                 return false;
183         }
184 }
185
186 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
187                                 unsigned int reg, unsigned int mask,
188                                 unsigned int val)
189 {
190         int ret;
191
192         ret = clk_enable(sai->pdata->pclk);
193         if (ret < 0)
194                 return ret;
195
196         ret = regmap_update_bits(sai->regmap, reg, mask, val);
197
198         clk_disable(sai->pdata->pclk);
199
200         return ret;
201 }
202
203 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
204                                 unsigned int reg, unsigned int mask,
205                                 unsigned int val)
206 {
207         int ret;
208
209         ret = clk_enable(sai->pdata->pclk);
210         if (ret < 0)
211                 return ret;
212
213         ret = regmap_write_bits(sai->regmap, reg, mask, val);
214
215         clk_disable(sai->pdata->pclk);
216
217         return ret;
218 }
219
220 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
221                                 unsigned int reg, unsigned int *val)
222 {
223         int ret;
224
225         ret = clk_enable(sai->pdata->pclk);
226         if (ret < 0)
227                 return ret;
228
229         ret = regmap_read(sai->regmap, reg, val);
230
231         clk_disable(sai->pdata->pclk);
232
233         return ret;
234 }
235
236 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
237         .reg_bits = 32,
238         .reg_stride = 4,
239         .val_bits = 32,
240         .max_register = STM_SAI_DR_REGX,
241         .readable_reg = stm32_sai_sub_readable_reg,
242         .volatile_reg = stm32_sai_sub_volatile_reg,
243         .writeable_reg = stm32_sai_sub_writeable_reg,
244         .fast_io = true,
245         .cache_type = REGCACHE_FLAT,
246 };
247
248 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
249         .reg_bits = 32,
250         .reg_stride = 4,
251         .val_bits = 32,
252         .max_register = STM_SAI_PDMLY_REGX,
253         .readable_reg = stm32_sai_sub_readable_reg,
254         .volatile_reg = stm32_sai_sub_volatile_reg,
255         .writeable_reg = stm32_sai_sub_writeable_reg,
256         .fast_io = true,
257         .cache_type = REGCACHE_FLAT,
258 };
259
260 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
261                                struct snd_ctl_elem_info *uinfo)
262 {
263         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
264         uinfo->count = 1;
265
266         return 0;
267 }
268
269 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
270                               struct snd_ctl_elem_value *uctl)
271 {
272         struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
273
274         mutex_lock(&sai->ctrl_lock);
275         memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
276         mutex_unlock(&sai->ctrl_lock);
277
278         return 0;
279 }
280
281 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
282                               struct snd_ctl_elem_value *uctl)
283 {
284         struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
285
286         mutex_lock(&sai->ctrl_lock);
287         memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
288         mutex_unlock(&sai->ctrl_lock);
289
290         return 0;
291 }
292
293 static const struct snd_kcontrol_new iec958_ctls = {
294         .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
295                         SNDRV_CTL_ELEM_ACCESS_VOLATILE),
296         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
297         .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
298         .info = snd_pcm_iec958_info,
299         .get = snd_pcm_iec958_get,
300         .put = snd_pcm_iec958_put,
301 };
302
303 struct stm32_sai_mclk_data {
304         struct clk_hw hw;
305         unsigned long freq;
306         struct stm32_sai_sub_data *sai_data;
307 };
308
309 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
310 #define STM32_SAI_MAX_CLKS 1
311
312 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
313                                  unsigned long input_rate,
314                                  unsigned long output_rate)
315 {
316         int version = sai->pdata->conf.version;
317         int div;
318
319         div = DIV_ROUND_CLOSEST(input_rate, output_rate);
320         if (div > SAI_XCR1_MCKDIV_MAX(version)) {
321                 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
322                 return -EINVAL;
323         }
324         dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
325
326         if (input_rate % div)
327                 dev_dbg(&sai->pdev->dev,
328                         "Rate not accurate. requested (%ld), actual (%ld)\n",
329                         output_rate, input_rate / div);
330
331         return div;
332 }
333
334 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
335                                  unsigned int div)
336 {
337         int version = sai->pdata->conf.version;
338         int ret, cr1, mask;
339
340         if (div > SAI_XCR1_MCKDIV_MAX(version)) {
341                 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
342                 return -EINVAL;
343         }
344
345         mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
346         cr1 = SAI_XCR1_MCKDIV_SET(div);
347         ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
348         if (ret < 0)
349                 dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
350
351         return ret;
352 }
353
354 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
355                                       unsigned int rate)
356 {
357         struct platform_device *pdev = sai->pdev;
358         struct clk *parent_clk = sai->pdata->clk_x8k;
359         int ret;
360
361         if (!(rate % SAI_RATE_11K))
362                 parent_clk = sai->pdata->clk_x11k;
363
364         ret = clk_set_parent(sai->sai_ck, parent_clk);
365         if (ret)
366                 dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
367                         ret, ret == -EBUSY ?
368                         "Active stream rates conflict\n" : "\n");
369
370         return ret;
371 }
372
373 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
374                                       unsigned long *prate)
375 {
376         struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
377         struct stm32_sai_sub_data *sai = mclk->sai_data;
378         int div;
379
380         div = stm32_sai_get_clk_div(sai, *prate, rate);
381         if (div < 0)
382                 return div;
383
384         mclk->freq = *prate / div;
385
386         return mclk->freq;
387 }
388
389 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
390                                                 unsigned long parent_rate)
391 {
392         struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
393
394         return mclk->freq;
395 }
396
397 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
398                                    unsigned long parent_rate)
399 {
400         struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
401         struct stm32_sai_sub_data *sai = mclk->sai_data;
402         int div, ret;
403
404         div = stm32_sai_get_clk_div(sai, parent_rate, rate);
405         if (div < 0)
406                 return div;
407
408         ret = stm32_sai_set_clk_div(sai, div);
409         if (ret)
410                 return ret;
411
412         mclk->freq = rate;
413
414         return 0;
415 }
416
417 static int stm32_sai_mclk_enable(struct clk_hw *hw)
418 {
419         struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
420         struct stm32_sai_sub_data *sai = mclk->sai_data;
421
422         dev_dbg(&sai->pdev->dev, "Enable master clock\n");
423
424         return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
425                                     SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
426 }
427
428 static void stm32_sai_mclk_disable(struct clk_hw *hw)
429 {
430         struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
431         struct stm32_sai_sub_data *sai = mclk->sai_data;
432
433         dev_dbg(&sai->pdev->dev, "Disable master clock\n");
434
435         stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
436 }
437
438 static const struct clk_ops mclk_ops = {
439         .enable = stm32_sai_mclk_enable,
440         .disable = stm32_sai_mclk_disable,
441         .recalc_rate = stm32_sai_mclk_recalc_rate,
442         .round_rate = stm32_sai_mclk_round_rate,
443         .set_rate = stm32_sai_mclk_set_rate,
444 };
445
446 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
447 {
448         struct clk_hw *hw;
449         struct stm32_sai_mclk_data *mclk;
450         struct device *dev = &sai->pdev->dev;
451         const char *pname = __clk_get_name(sai->sai_ck);
452         char *mclk_name, *p, *s = (char *)pname;
453         int ret, i = 0;
454
455         mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
456         if (!mclk)
457                 return -ENOMEM;
458
459         mclk_name = devm_kcalloc(dev, sizeof(char),
460                                  SAI_MCLK_NAME_LEN, GFP_KERNEL);
461         if (!mclk_name)
462                 return -ENOMEM;
463
464         /*
465          * Forge mclk clock name from parent clock name and suffix.
466          * String after "_" char is stripped in parent name.
467          */
468         p = mclk_name;
469         while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
470                 *p++ = *s++;
471                 i++;
472         }
473         STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
474
475         mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
476         mclk->sai_data = sai;
477         hw = &mclk->hw;
478
479         dev_dbg(dev, "Register master clock %s\n", mclk_name);
480         ret = devm_clk_hw_register(&sai->pdev->dev, hw);
481         if (ret) {
482                 dev_err(dev, "mclk register returned %d\n", ret);
483                 return ret;
484         }
485         sai->sai_mclk = hw->clk;
486
487         /* register mclk provider */
488         return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
489 }
490
491 static irqreturn_t stm32_sai_isr(int irq, void *devid)
492 {
493         struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
494         struct platform_device *pdev = sai->pdev;
495         unsigned int sr, imr, flags;
496         snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
497
498         stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
499         stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
500
501         flags = sr & imr;
502         if (!flags)
503                 return IRQ_NONE;
504
505         stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
506                              SAI_XCLRFR_MASK);
507
508         if (!sai->substream) {
509                 dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
510                 return IRQ_NONE;
511         }
512
513         if (flags & SAI_XIMR_OVRUDRIE) {
514                 dev_err(&pdev->dev, "IRQ %s\n",
515                         STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
516                 status = SNDRV_PCM_STATE_XRUN;
517         }
518
519         if (flags & SAI_XIMR_MUTEDETIE)
520                 dev_dbg(&pdev->dev, "IRQ mute detected\n");
521
522         if (flags & SAI_XIMR_WCKCFGIE) {
523                 dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
524                 status = SNDRV_PCM_STATE_DISCONNECTED;
525         }
526
527         if (flags & SAI_XIMR_CNRDYIE)
528                 dev_err(&pdev->dev, "IRQ Codec not ready\n");
529
530         if (flags & SAI_XIMR_AFSDETIE) {
531                 dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
532                 status = SNDRV_PCM_STATE_XRUN;
533         }
534
535         if (flags & SAI_XIMR_LFSDETIE) {
536                 dev_err(&pdev->dev, "IRQ Late frame synchro\n");
537                 status = SNDRV_PCM_STATE_XRUN;
538         }
539
540         spin_lock(&sai->irq_lock);
541         if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
542                 snd_pcm_stop_xrun(sai->substream);
543         spin_unlock(&sai->irq_lock);
544
545         return IRQ_HANDLED;
546 }
547
548 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
549                                 int clk_id, unsigned int freq, int dir)
550 {
551         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
552         int ret;
553
554         if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
555                 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
556                                            SAI_XCR1_NODIV,
557                                          freq ? 0 : SAI_XCR1_NODIV);
558                 if (ret < 0)
559                         return ret;
560
561                 /* Assume shutdown if requested frequency is 0Hz */
562                 if (!freq) {
563                         /* Release mclk rate only if rate was actually set */
564                         if (sai->mclk_rate) {
565                                 clk_rate_exclusive_put(sai->sai_mclk);
566                                 sai->mclk_rate = 0;
567                         }
568                         return 0;
569                 }
570
571                 /* If master clock is used, set parent clock now */
572                 ret = stm32_sai_set_parent_clock(sai, freq);
573                 if (ret)
574                         return ret;
575
576                 ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
577                 if (ret) {
578                         dev_err(cpu_dai->dev,
579                                 ret == -EBUSY ?
580                                 "Active streams have incompatible rates" :
581                                 "Could not set mclk rate\n");
582                         return ret;
583                 }
584
585                 dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
586                 sai->mclk_rate = freq;
587         }
588
589         return 0;
590 }
591
592 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
593                                       u32 rx_mask, int slots, int slot_width)
594 {
595         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
596         int slotr, slotr_mask, slot_size;
597
598         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
599                 dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
600                 return 0;
601         }
602
603         dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
604                 tx_mask, rx_mask, slots, slot_width);
605
606         switch (slot_width) {
607         case 16:
608                 slot_size = SAI_SLOT_SIZE_16;
609                 break;
610         case 32:
611                 slot_size = SAI_SLOT_SIZE_32;
612                 break;
613         default:
614                 slot_size = SAI_SLOT_SIZE_AUTO;
615                 break;
616         }
617
618         slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
619                 SAI_XSLOTR_NBSLOT_SET(slots - 1);
620         slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
621
622         /* tx/rx mask set in machine init, if slot number defined in DT */
623         if (STM_SAI_IS_PLAYBACK(sai)) {
624                 sai->slot_mask = tx_mask;
625                 slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
626         }
627
628         if (STM_SAI_IS_CAPTURE(sai)) {
629                 sai->slot_mask = rx_mask;
630                 slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
631         }
632
633         slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
634
635         stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
636
637         sai->slot_width = slot_width;
638         sai->slots = slots;
639
640         return 0;
641 }
642
643 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
644 {
645         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
646         int cr1, frcr = 0;
647         int cr1_mask, frcr_mask = 0;
648         int ret;
649
650         dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
651
652         /* Do not generate master by default */
653         cr1 = SAI_XCR1_NODIV;
654         cr1_mask = SAI_XCR1_NODIV;
655
656         cr1_mask |= SAI_XCR1_PRTCFG_MASK;
657         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
658                 cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
659                 goto conf_update;
660         }
661
662         cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
663
664         switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
665         /* SCK active high for all protocols */
666         case SND_SOC_DAIFMT_I2S:
667                 cr1 |= SAI_XCR1_CKSTR;
668                 frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
669                 break;
670         /* Left justified */
671         case SND_SOC_DAIFMT_MSB:
672                 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
673                 break;
674         /* Right justified */
675         case SND_SOC_DAIFMT_LSB:
676                 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
677                 break;
678         case SND_SOC_DAIFMT_DSP_A:
679                 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
680                 break;
681         case SND_SOC_DAIFMT_DSP_B:
682                 frcr |= SAI_XFRCR_FSPOL;
683                 break;
684         default:
685                 dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
686                         fmt & SND_SOC_DAIFMT_FORMAT_MASK);
687                 return -EINVAL;
688         }
689
690         cr1_mask |= SAI_XCR1_CKSTR;
691         frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
692                      SAI_XFRCR_FSDEF;
693
694         /* DAI clock strobing. Invert setting previously set */
695         switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
696         case SND_SOC_DAIFMT_NB_NF:
697                 break;
698         case SND_SOC_DAIFMT_IB_NF:
699                 cr1 ^= SAI_XCR1_CKSTR;
700                 break;
701         case SND_SOC_DAIFMT_NB_IF:
702                 frcr ^= SAI_XFRCR_FSPOL;
703                 break;
704         case SND_SOC_DAIFMT_IB_IF:
705                 /* Invert fs & sck */
706                 cr1 ^= SAI_XCR1_CKSTR;
707                 frcr ^= SAI_XFRCR_FSPOL;
708                 break;
709         default:
710                 dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
711                         fmt & SND_SOC_DAIFMT_INV_MASK);
712                 return -EINVAL;
713         }
714         cr1_mask |= SAI_XCR1_CKSTR;
715         frcr_mask |= SAI_XFRCR_FSPOL;
716
717         stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
718
719         /* DAI clock master masks */
720         switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
721         case SND_SOC_DAIFMT_BC_FC:
722                 /* codec is master */
723                 cr1 |= SAI_XCR1_SLAVE;
724                 sai->master = false;
725                 break;
726         case SND_SOC_DAIFMT_BP_FP:
727                 sai->master = true;
728                 break;
729         default:
730                 dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
731                         fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
732                 return -EINVAL;
733         }
734
735         /* Set slave mode if sub-block is synchronized with another SAI */
736         if (sai->sync) {
737                 dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
738                 cr1 |= SAI_XCR1_SLAVE;
739                 sai->master = false;
740         }
741
742         cr1_mask |= SAI_XCR1_SLAVE;
743
744 conf_update:
745         ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
746         if (ret < 0) {
747                 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
748                 return ret;
749         }
750
751         sai->fmt = fmt;
752
753         return 0;
754 }
755
756 static int stm32_sai_startup(struct snd_pcm_substream *substream,
757                              struct snd_soc_dai *cpu_dai)
758 {
759         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
760         int imr, cr2, ret;
761         unsigned long flags;
762
763         spin_lock_irqsave(&sai->irq_lock, flags);
764         sai->substream = substream;
765         spin_unlock_irqrestore(&sai->irq_lock, flags);
766
767         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
768                 snd_pcm_hw_constraint_mask64(substream->runtime,
769                                              SNDRV_PCM_HW_PARAM_FORMAT,
770                                              SNDRV_PCM_FMTBIT_S32_LE);
771                 snd_pcm_hw_constraint_single(substream->runtime,
772                                              SNDRV_PCM_HW_PARAM_CHANNELS, 2);
773         }
774
775         ret = clk_prepare_enable(sai->sai_ck);
776         if (ret < 0) {
777                 dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
778                 return ret;
779         }
780
781         /* Enable ITs */
782         stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
783                              SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
784
785         imr = SAI_XIMR_OVRUDRIE;
786         if (STM_SAI_IS_CAPTURE(sai)) {
787                 stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
788                 if (cr2 & SAI_XCR2_MUTECNT_MASK)
789                         imr |= SAI_XIMR_MUTEDETIE;
790         }
791
792         if (sai->master)
793                 imr |= SAI_XIMR_WCKCFGIE;
794         else
795                 imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
796
797         stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
798                              SAI_XIMR_MASK, imr);
799
800         return 0;
801 }
802
803 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
804                                 struct snd_pcm_substream *substream,
805                                 struct snd_pcm_hw_params *params)
806 {
807         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
808         int cr1, cr1_mask, ret;
809
810         /*
811          * DMA bursts increment is set to 4 words.
812          * SAI fifo threshold is set to half fifo, to keep enough space
813          * for DMA incoming bursts.
814          */
815         stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
816                              SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
817                              SAI_XCR2_FFLUSH |
818                              SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
819
820         /* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
821         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
822                 sai->spdif_frm_cnt = 0;
823                 return 0;
824         }
825
826         /* Mode, data format and channel config */
827         cr1_mask = SAI_XCR1_DS_MASK;
828         switch (params_format(params)) {
829         case SNDRV_PCM_FORMAT_S8:
830                 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
831                 break;
832         case SNDRV_PCM_FORMAT_S16_LE:
833                 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
834                 break;
835         case SNDRV_PCM_FORMAT_S32_LE:
836                 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
837                 break;
838         default:
839                 dev_err(cpu_dai->dev, "Data format not supported\n");
840                 return -EINVAL;
841         }
842
843         cr1_mask |= SAI_XCR1_MONO;
844         if ((sai->slots == 2) && (params_channels(params) == 1))
845                 cr1 |= SAI_XCR1_MONO;
846
847         ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
848         if (ret < 0) {
849                 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
850                 return ret;
851         }
852
853         return 0;
854 }
855
856 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
857 {
858         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
859         int slotr, slot_sz;
860
861         stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
862
863         /*
864          * If SLOTSZ is set to auto in SLOTR, align slot width on data size
865          * By default slot width = data size, if not forced from DT
866          */
867         slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
868         if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
869                 sai->slot_width = sai->data_size;
870
871         if (sai->slot_width < sai->data_size) {
872                 dev_err(cpu_dai->dev,
873                         "Data size %d larger than slot width\n",
874                         sai->data_size);
875                 return -EINVAL;
876         }
877
878         /* Slot number is set to 2, if not specified in DT */
879         if (!sai->slots)
880                 sai->slots = 2;
881
882         /* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
883         stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
884                              SAI_XSLOTR_NBSLOT_MASK,
885                              SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
886
887         /* Set default slots mask if not already set from DT */
888         if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
889                 sai->slot_mask = (1 << sai->slots) - 1;
890                 stm32_sai_sub_reg_up(sai,
891                                      STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
892                                      SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
893         }
894
895         dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
896                 sai->slots, sai->slot_width);
897
898         return 0;
899 }
900
901 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
902 {
903         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
904         int fs_active, offset, format;
905         int frcr, frcr_mask;
906
907         format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
908         sai->fs_length = sai->slot_width * sai->slots;
909
910         fs_active = sai->fs_length / 2;
911         if ((format == SND_SOC_DAIFMT_DSP_A) ||
912             (format == SND_SOC_DAIFMT_DSP_B))
913                 fs_active = 1;
914
915         frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
916         frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
917         frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
918
919         dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
920                 sai->fs_length, fs_active);
921
922         stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
923
924         if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
925                 offset = sai->slot_width - sai->data_size;
926
927                 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
928                                      SAI_XSLOTR_FBOFF_MASK,
929                                      SAI_XSLOTR_FBOFF_SET(offset));
930         }
931 }
932
933 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
934 {
935         unsigned char *cs = sai->iec958.status;
936
937         cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
938         cs[1] = IEC958_AES1_CON_GENERAL;
939         cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
940         cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
941 }
942
943 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
944                                         struct snd_pcm_runtime *runtime)
945 {
946         if (!runtime)
947                 return;
948
949         /* Force the sample rate according to runtime rate */
950         mutex_lock(&sai->ctrl_lock);
951         switch (runtime->rate) {
952         case 22050:
953                 sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
954                 break;
955         case 44100:
956                 sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
957                 break;
958         case 88200:
959                 sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
960                 break;
961         case 176400:
962                 sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
963                 break;
964         case 24000:
965                 sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
966                 break;
967         case 48000:
968                 sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
969                 break;
970         case 96000:
971                 sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
972                 break;
973         case 192000:
974                 sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
975                 break;
976         case 32000:
977                 sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
978                 break;
979         default:
980                 sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
981                 break;
982         }
983         mutex_unlock(&sai->ctrl_lock);
984 }
985
986 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
987                                      struct snd_pcm_hw_params *params)
988 {
989         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
990         int div = 0, cr1 = 0;
991         int sai_clk_rate, mclk_ratio, den;
992         unsigned int rate = params_rate(params);
993         int ret;
994
995         if (!sai->sai_mclk) {
996                 ret = stm32_sai_set_parent_clock(sai, rate);
997                 if (ret)
998                         return ret;
999         }
1000         sai_clk_rate = clk_get_rate(sai->sai_ck);
1001
1002         if (STM_SAI_IS_F4(sai->pdata)) {
1003                 /* mclk on (NODIV=0)
1004                  *   mclk_rate = 256 * fs
1005                  *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1006                  *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1007                  * mclk off (NODIV=1)
1008                  *   MCKDIV ignored. sck = sai_ck
1009                  */
1010                 if (!sai->mclk_rate)
1011                         return 0;
1012
1013                 if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1014                         div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1015                                                     2 * sai->mclk_rate);
1016                         if (div < 0)
1017                                 return div;
1018                 }
1019         } else {
1020                 /*
1021                  * TDM mode :
1022                  *   mclk on
1023                  *      MCKDIV = sai_ck / (ws x 256)    (NOMCK=0. OSR=0)
1024                  *      MCKDIV = sai_ck / (ws x 512)    (NOMCK=0. OSR=1)
1025                  *   mclk off
1026                  *      MCKDIV = sai_ck / (frl x ws)    (NOMCK=1)
1027                  * Note: NOMCK/NODIV correspond to same bit.
1028                  */
1029                 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1030                         div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1031                                                     rate * 128);
1032                         if (div < 0)
1033                                 return div;
1034                 } else {
1035                         if (sai->mclk_rate) {
1036                                 mclk_ratio = sai->mclk_rate / rate;
1037                                 if (mclk_ratio == 512) {
1038                                         cr1 = SAI_XCR1_OSR;
1039                                 } else if (mclk_ratio != 256) {
1040                                         dev_err(cpu_dai->dev,
1041                                                 "Wrong mclk ratio %d\n",
1042                                                 mclk_ratio);
1043                                         return -EINVAL;
1044                                 }
1045
1046                                 stm32_sai_sub_reg_up(sai,
1047                                                      STM_SAI_CR1_REGX,
1048                                                      SAI_XCR1_OSR, cr1);
1049
1050                                 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1051                                                             sai->mclk_rate);
1052                                 if (div < 0)
1053                                         return div;
1054                         } else {
1055                                 /* mclk-fs not set, master clock not active */
1056                                 den = sai->fs_length * params_rate(params);
1057                                 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1058                                                             den);
1059                                 if (div < 0)
1060                                         return div;
1061                         }
1062                 }
1063         }
1064
1065         return stm32_sai_set_clk_div(sai, div);
1066 }
1067
1068 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1069                                struct snd_pcm_hw_params *params,
1070                                struct snd_soc_dai *cpu_dai)
1071 {
1072         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1073         int ret;
1074
1075         sai->data_size = params_width(params);
1076
1077         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1078                 /* Rate not already set in runtime structure */
1079                 substream->runtime->rate = params_rate(params);
1080                 stm32_sai_set_iec958_status(sai, substream->runtime);
1081         } else {
1082                 ret = stm32_sai_set_slots(cpu_dai);
1083                 if (ret < 0)
1084                         return ret;
1085                 stm32_sai_set_frame(cpu_dai);
1086         }
1087
1088         ret = stm32_sai_set_config(cpu_dai, substream, params);
1089         if (ret)
1090                 return ret;
1091
1092         if (sai->master)
1093                 ret = stm32_sai_configure_clock(cpu_dai, params);
1094
1095         return ret;
1096 }
1097
1098 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1099                              struct snd_soc_dai *cpu_dai)
1100 {
1101         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1102         int ret;
1103
1104         switch (cmd) {
1105         case SNDRV_PCM_TRIGGER_START:
1106         case SNDRV_PCM_TRIGGER_RESUME:
1107         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1108                 dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1109
1110                 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1111                                      SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1112
1113                 /* Enable SAI */
1114                 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1115                                            SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1116                 if (ret < 0)
1117                         dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1118                 break;
1119         case SNDRV_PCM_TRIGGER_SUSPEND:
1120         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1121         case SNDRV_PCM_TRIGGER_STOP:
1122                 dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1123
1124                 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1125                                      SAI_XIMR_MASK, 0);
1126
1127                 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1128                                      SAI_XCR1_SAIEN,
1129                                      (unsigned int)~SAI_XCR1_SAIEN);
1130
1131                 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1132                                            SAI_XCR1_DMAEN,
1133                                            (unsigned int)~SAI_XCR1_DMAEN);
1134                 if (ret < 0)
1135                         dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1136
1137                 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1138                         sai->spdif_frm_cnt = 0;
1139                 break;
1140         default:
1141                 return -EINVAL;
1142         }
1143
1144         return ret;
1145 }
1146
1147 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1148                                struct snd_soc_dai *cpu_dai)
1149 {
1150         struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1151         unsigned long flags;
1152
1153         stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1154
1155         clk_disable_unprepare(sai->sai_ck);
1156
1157         spin_lock_irqsave(&sai->irq_lock, flags);
1158         sai->substream = NULL;
1159         spin_unlock_irqrestore(&sai->irq_lock, flags);
1160 }
1161
1162 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1163                              struct snd_soc_dai *cpu_dai)
1164 {
1165         struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1166         struct snd_kcontrol_new knew = iec958_ctls;
1167
1168         if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1169                 dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1170                 knew.device = rtd->pcm->device;
1171                 return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1172         }
1173
1174         return 0;
1175 }
1176
1177 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1178 {
1179         struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1180         int cr1 = 0, cr1_mask, ret;
1181
1182         sai->cpu_dai = cpu_dai;
1183
1184         sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1185         /*
1186          * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1187          * as it allows bytes, half-word and words transfers. (See DMA fifos
1188          * constraints).
1189          */
1190         sai->dma_params.maxburst = 4;
1191         if (sai->pdata->conf.fifo_size < 8)
1192                 sai->dma_params.maxburst = 1;
1193         /* Buswidth will be set by framework at runtime */
1194         sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1195
1196         if (STM_SAI_IS_PLAYBACK(sai))
1197                 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1198         else
1199                 snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1200
1201         /* Next settings are not relevant for spdif mode */
1202         if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1203                 return 0;
1204
1205         cr1_mask = SAI_XCR1_RX_TX;
1206         if (STM_SAI_IS_CAPTURE(sai))
1207                 cr1 |= SAI_XCR1_RX_TX;
1208
1209         /* Configure synchronization */
1210         if (sai->sync == SAI_SYNC_EXTERNAL) {
1211                 /* Configure synchro client and provider */
1212                 ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1213                                            sai->synco, sai->synci);
1214                 if (ret)
1215                         return ret;
1216         }
1217
1218         cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1219         cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1220
1221         return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1222 }
1223
1224 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1225         .probe          = stm32_sai_dai_probe,
1226         .set_sysclk     = stm32_sai_set_sysclk,
1227         .set_fmt        = stm32_sai_set_dai_fmt,
1228         .set_tdm_slot   = stm32_sai_set_dai_tdm_slot,
1229         .startup        = stm32_sai_startup,
1230         .hw_params      = stm32_sai_hw_params,
1231         .trigger        = stm32_sai_trigger,
1232         .shutdown       = stm32_sai_shutdown,
1233         .pcm_new        = stm32_sai_pcm_new,
1234 };
1235
1236 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops2 = {
1237         .probe          = stm32_sai_dai_probe,
1238         .set_sysclk     = stm32_sai_set_sysclk,
1239         .set_fmt        = stm32_sai_set_dai_fmt,
1240         .set_tdm_slot   = stm32_sai_set_dai_tdm_slot,
1241         .startup        = stm32_sai_startup,
1242         .hw_params      = stm32_sai_hw_params,
1243         .trigger        = stm32_sai_trigger,
1244         .shutdown       = stm32_sai_shutdown,
1245 };
1246
1247 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1248                                        int channel, unsigned long hwoff,
1249                                        unsigned long bytes)
1250 {
1251         struct snd_pcm_runtime *runtime = substream->runtime;
1252         struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
1253         struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
1254         struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1255         int *ptr = (int *)(runtime->dma_area + hwoff +
1256                            channel * (runtime->dma_bytes / runtime->channels));
1257         ssize_t cnt = bytes_to_samples(runtime, bytes);
1258         unsigned int frm_cnt = sai->spdif_frm_cnt;
1259         unsigned int byte;
1260         unsigned int mask;
1261
1262         do {
1263                 *ptr = ((*ptr >> 8) & 0x00ffffff);
1264
1265                 /* Set channel status bit */
1266                 byte = frm_cnt >> 3;
1267                 mask = 1 << (frm_cnt - (byte << 3));
1268                 if (sai->iec958.status[byte] & mask)
1269                         *ptr |= 0x04000000;
1270                 ptr++;
1271
1272                 if (!(cnt % 2))
1273                         frm_cnt++;
1274
1275                 if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1276                         frm_cnt = 0;
1277         } while (--cnt);
1278         sai->spdif_frm_cnt = frm_cnt;
1279
1280         return 0;
1281 }
1282
1283 /* No support of mmap in S/PDIF mode */
1284 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1285         .info = SNDRV_PCM_INFO_INTERLEAVED,
1286         .buffer_bytes_max = 8 * PAGE_SIZE,
1287         .period_bytes_min = 1024,
1288         .period_bytes_max = PAGE_SIZE,
1289         .periods_min = 2,
1290         .periods_max = 8,
1291 };
1292
1293 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1294         .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1295         .buffer_bytes_max = 8 * PAGE_SIZE,
1296         .period_bytes_min = 1024, /* 5ms at 48kHz */
1297         .period_bytes_max = PAGE_SIZE,
1298         .periods_min = 2,
1299         .periods_max = 8,
1300 };
1301
1302 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1303                 .id = 1, /* avoid call to fmt_single_name() */
1304                 .playback = {
1305                         .channels_min = 1,
1306                         .channels_max = 16,
1307                         .rate_min = 8000,
1308                         .rate_max = 192000,
1309                         .rates = SNDRV_PCM_RATE_CONTINUOUS,
1310                         /* DMA does not support 24 bits transfers */
1311                         .formats =
1312                                 SNDRV_PCM_FMTBIT_S8 |
1313                                 SNDRV_PCM_FMTBIT_S16_LE |
1314                                 SNDRV_PCM_FMTBIT_S32_LE,
1315                 },
1316                 .ops = &stm32_sai_pcm_dai_ops,
1317 };
1318
1319 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1320                 .id = 1, /* avoid call to fmt_single_name() */
1321                 .capture = {
1322                         .channels_min = 1,
1323                         .channels_max = 16,
1324                         .rate_min = 8000,
1325                         .rate_max = 192000,
1326                         .rates = SNDRV_PCM_RATE_CONTINUOUS,
1327                         /* DMA does not support 24 bits transfers */
1328                         .formats =
1329                                 SNDRV_PCM_FMTBIT_S8 |
1330                                 SNDRV_PCM_FMTBIT_S16_LE |
1331                                 SNDRV_PCM_FMTBIT_S32_LE,
1332                 },
1333                 .ops = &stm32_sai_pcm_dai_ops2,
1334 };
1335
1336 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1337         .pcm_hardware = &stm32_sai_pcm_hw,
1338         .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1339 };
1340
1341 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1342         .pcm_hardware = &stm32_sai_pcm_hw_spdif,
1343         .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1344         .process = stm32_sai_pcm_process_spdif,
1345 };
1346
1347 static const struct snd_soc_component_driver stm32_component = {
1348         .name = "stm32-sai",
1349         .legacy_dai_naming = 1,
1350 };
1351
1352 static const struct of_device_id stm32_sai_sub_ids[] = {
1353         { .compatible = "st,stm32-sai-sub-a",
1354           .data = (void *)STM_SAI_A_ID},
1355         { .compatible = "st,stm32-sai-sub-b",
1356           .data = (void *)STM_SAI_B_ID},
1357         {}
1358 };
1359 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1360
1361 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1362                                   struct stm32_sai_sub_data *sai)
1363 {
1364         struct device_node *np = pdev->dev.of_node;
1365         struct resource *res;
1366         void __iomem *base;
1367         struct of_phandle_args args;
1368         int ret;
1369
1370         if (!np)
1371                 return -ENODEV;
1372
1373         base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1374         if (IS_ERR(base))
1375                 return PTR_ERR(base);
1376
1377         sai->phys_addr = res->start;
1378
1379         sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1380         /* Note: PDM registers not available for sub-block B */
1381         if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1382                 sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1383
1384         /*
1385          * Do not manage peripheral clock through regmap framework as this
1386          * can lead to circular locking issue with sai master clock provider.
1387          * Manage peripheral clock directly in driver instead.
1388          */
1389         sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1390                                             sai->regmap_config);
1391         if (IS_ERR(sai->regmap))
1392                 return dev_err_probe(&pdev->dev, PTR_ERR(sai->regmap),
1393                                      "Regmap init error\n");
1394
1395         /* Get direction property */
1396         if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1397                 sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1398         } else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1399                 sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1400         } else {
1401                 dev_err(&pdev->dev, "Unsupported direction\n");
1402                 return -EINVAL;
1403         }
1404
1405         /* Get spdif iec60958 property */
1406         sai->spdif = false;
1407         if (of_property_present(np, "st,iec60958")) {
1408                 if (!STM_SAI_HAS_SPDIF(sai) ||
1409                     sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1410                         dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1411                         return -EINVAL;
1412                 }
1413                 stm32_sai_init_iec958_status(sai);
1414                 sai->spdif = true;
1415                 sai->master = true;
1416         }
1417
1418         /* Get synchronization property */
1419         args.np = NULL;
1420         ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1421         if (ret < 0  && ret != -ENOENT) {
1422                 dev_err(&pdev->dev, "Failed to get st,sync property\n");
1423                 return ret;
1424         }
1425
1426         sai->sync = SAI_SYNC_NONE;
1427         if (args.np) {
1428                 if (args.np == np) {
1429                         dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1430                         of_node_put(args.np);
1431                         return -EINVAL;
1432                 }
1433
1434                 sai->np_sync_provider  = of_get_parent(args.np);
1435                 if (!sai->np_sync_provider) {
1436                         dev_err(&pdev->dev, "%pOFn parent node not found\n",
1437                                 np);
1438                         of_node_put(args.np);
1439                         return -ENODEV;
1440                 }
1441
1442                 sai->sync = SAI_SYNC_INTERNAL;
1443                 if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1444                         if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1445                                 dev_err(&pdev->dev,
1446                                         "External synchro not supported\n");
1447                                 of_node_put(args.np);
1448                                 return -EINVAL;
1449                         }
1450                         sai->sync = SAI_SYNC_EXTERNAL;
1451
1452                         sai->synci = args.args[0];
1453                         if (sai->synci < 1 ||
1454                             (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1455                                 dev_err(&pdev->dev, "Wrong SAI index\n");
1456                                 of_node_put(args.np);
1457                                 return -EINVAL;
1458                         }
1459
1460                         if (of_property_match_string(args.np, "compatible",
1461                                                      "st,stm32-sai-sub-a") >= 0)
1462                                 sai->synco = STM_SAI_SYNC_OUT_A;
1463
1464                         if (of_property_match_string(args.np, "compatible",
1465                                                      "st,stm32-sai-sub-b") >= 0)
1466                                 sai->synco = STM_SAI_SYNC_OUT_B;
1467
1468                         if (!sai->synco) {
1469                                 dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1470                                 of_node_put(args.np);
1471                                 return -EINVAL;
1472                         }
1473                 }
1474
1475                 dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1476                         pdev->name, args.np->full_name);
1477         }
1478
1479         of_node_put(args.np);
1480         sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1481         if (IS_ERR(sai->sai_ck))
1482                 return dev_err_probe(&pdev->dev, PTR_ERR(sai->sai_ck),
1483                                      "Missing kernel clock sai_ck\n");
1484
1485         ret = clk_prepare(sai->pdata->pclk);
1486         if (ret < 0)
1487                 return ret;
1488
1489         if (STM_SAI_IS_F4(sai->pdata))
1490                 return 0;
1491
1492         /* Register mclk provider if requested */
1493         if (of_property_present(np, "#clock-cells")) {
1494                 ret = stm32_sai_add_mclk_provider(sai);
1495                 if (ret < 0)
1496                         return ret;
1497         } else {
1498                 sai->sai_mclk = devm_clk_get_optional(&pdev->dev, "MCLK");
1499                 if (IS_ERR(sai->sai_mclk))
1500                         return PTR_ERR(sai->sai_mclk);
1501         }
1502
1503         return 0;
1504 }
1505
1506 static int stm32_sai_sub_probe(struct platform_device *pdev)
1507 {
1508         struct stm32_sai_sub_data *sai;
1509         const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1510         int ret;
1511
1512         sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1513         if (!sai)
1514                 return -ENOMEM;
1515
1516         sai->id = (uintptr_t)device_get_match_data(&pdev->dev);
1517
1518         sai->pdev = pdev;
1519         mutex_init(&sai->ctrl_lock);
1520         spin_lock_init(&sai->irq_lock);
1521         platform_set_drvdata(pdev, sai);
1522
1523         sai->pdata = dev_get_drvdata(pdev->dev.parent);
1524         if (!sai->pdata) {
1525                 dev_err(&pdev->dev, "Parent device data not available\n");
1526                 return -EINVAL;
1527         }
1528
1529         ret = stm32_sai_sub_parse_of(pdev, sai);
1530         if (ret)
1531                 return ret;
1532
1533         if (STM_SAI_IS_PLAYBACK(sai))
1534                 sai->cpu_dai_drv = stm32_sai_playback_dai;
1535         else
1536                 sai->cpu_dai_drv = stm32_sai_capture_dai;
1537         sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1538
1539         ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1540                                IRQF_SHARED, dev_name(&pdev->dev), sai);
1541         if (ret) {
1542                 dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1543                 return ret;
1544         }
1545
1546         if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1547                 conf = &stm32_sai_pcm_config_spdif;
1548
1549         ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1550         if (ret)
1551                 return dev_err_probe(&pdev->dev, ret, "Could not register pcm dma\n");
1552
1553         ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1554                                          &sai->cpu_dai_drv, 1);
1555         if (ret) {
1556                 snd_dmaengine_pcm_unregister(&pdev->dev);
1557                 return ret;
1558         }
1559
1560         pm_runtime_enable(&pdev->dev);
1561
1562         return 0;
1563 }
1564
1565 static void stm32_sai_sub_remove(struct platform_device *pdev)
1566 {
1567         struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1568
1569         clk_unprepare(sai->pdata->pclk);
1570         snd_dmaengine_pcm_unregister(&pdev->dev);
1571         snd_soc_unregister_component(&pdev->dev);
1572         pm_runtime_disable(&pdev->dev);
1573 }
1574
1575 #ifdef CONFIG_PM_SLEEP
1576 static int stm32_sai_sub_suspend(struct device *dev)
1577 {
1578         struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1579         int ret;
1580
1581         ret = clk_enable(sai->pdata->pclk);
1582         if (ret < 0)
1583                 return ret;
1584
1585         regcache_cache_only(sai->regmap, true);
1586         regcache_mark_dirty(sai->regmap);
1587
1588         clk_disable(sai->pdata->pclk);
1589
1590         return 0;
1591 }
1592
1593 static int stm32_sai_sub_resume(struct device *dev)
1594 {
1595         struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1596         int ret;
1597
1598         ret = clk_enable(sai->pdata->pclk);
1599         if (ret < 0)
1600                 return ret;
1601
1602         regcache_cache_only(sai->regmap, false);
1603         ret = regcache_sync(sai->regmap);
1604
1605         clk_disable(sai->pdata->pclk);
1606
1607         return ret;
1608 }
1609 #endif /* CONFIG_PM_SLEEP */
1610
1611 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1612         SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1613 };
1614
1615 static struct platform_driver stm32_sai_sub_driver = {
1616         .driver = {
1617                 .name = "st,stm32-sai-sub",
1618                 .of_match_table = stm32_sai_sub_ids,
1619                 .pm = &stm32_sai_sub_pm_ops,
1620         },
1621         .probe = stm32_sai_sub_probe,
1622         .remove_new = stm32_sai_sub_remove,
1623 };
1624
1625 module_platform_driver(stm32_sai_sub_driver);
1626
1627 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1628 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1629 MODULE_ALIAS("platform:st,stm32-sai-sub");
1630 MODULE_LICENSE("GPL v2");