ef7dd290ae05cf815f68c68d7b8d50deeada8d64
[linux-2.6-block.git] / sound / pci / sis7019.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Driver for SiS7019 Audio Accelerator
4  *
5  *  Copyright (C) 2004-2007, David Dillow
6  *  Written by David Dillow <dave@thedillows.org>
7  *  Inspired by the Trident 4D-WaveDX/NX driver.
8  *
9  *  All rights reserved.
10  */
11
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/time.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <sound/core.h>
20 #include <sound/ac97_codec.h>
21 #include <sound/initval.h>
22 #include "sis7019.h"
23
24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25 MODULE_DESCRIPTION("SiS7019");
26 MODULE_LICENSE("GPL");
27 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
28
29 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
30 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
31 static bool enable = 1;
32 static int codecs = 1;
33
34 module_param(index, int, 0444);
35 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
36 module_param(id, charp, 0444);
37 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
38 module_param(enable, bool, 0444);
39 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
40 module_param(codecs, int, 0444);
41 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
42
43 static const struct pci_device_id snd_sis7019_ids[] = {
44         { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
45         { 0, }
46 };
47
48 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
49
50 /* There are three timing modes for the voices.
51  *
52  * For both playback and capture, when the buffer is one or two periods long,
53  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
54  * to let us know when the periods have ended.
55  *
56  * When performing playback with more than two periods per buffer, we set
57  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
58  * reach it. We then update the offset and continue on until we are
59  * interrupted for the next period.
60  *
61  * Capture channels do not have a SSO, so we allocate a playback channel to
62  * use as a timer for the capture periods. We use the SSO on the playback
63  * channel to clock out virtual periods, and adjust the virtual period length
64  * to maintain synchronization. This algorithm came from the Trident driver.
65  *
66  * FIXME: It'd be nice to make use of some of the synth features in the
67  * hardware, but a woeful lack of documentation is a significant roadblock.
68  */
69 struct voice {
70         u16 flags;
71 #define         VOICE_IN_USE            1
72 #define         VOICE_CAPTURE           2
73 #define         VOICE_SSO_TIMING        4
74 #define         VOICE_SYNC_TIMING       8
75         u16 sync_cso;
76         u16 period_size;
77         u16 buffer_size;
78         u16 sync_period_size;
79         u16 sync_buffer_size;
80         u32 sso;
81         u32 vperiod;
82         struct snd_pcm_substream *substream;
83         struct voice *timing;
84         void __iomem *ctrl_base;
85         void __iomem *wave_base;
86         void __iomem *sync_base;
87         int num;
88 };
89
90 /* We need four pages to store our wave parameters during a suspend. If
91  * we're not doing power management, we still need to allocate a page
92  * for the silence buffer.
93  */
94 #ifdef CONFIG_PM_SLEEP
95 #define SIS_SUSPEND_PAGES       4
96 #else
97 #define SIS_SUSPEND_PAGES       1
98 #endif
99
100 struct sis7019 {
101         unsigned long ioport;
102         void __iomem *ioaddr;
103         int irq;
104         int codecs_present;
105
106         struct pci_dev *pci;
107         struct snd_pcm *pcm;
108         struct snd_card *card;
109         struct snd_ac97 *ac97[3];
110
111         /* Protect against more than one thread hitting the AC97
112          * registers (in a more polite manner than pounding the hardware
113          * semaphore)
114          */
115         struct mutex ac97_mutex;
116
117         /* voice_lock protects allocation/freeing of the voice descriptions
118          */
119         spinlock_t voice_lock;
120
121         struct voice voices[64];
122         struct voice capture_voice;
123
124         /* Allocate pages to store the internal wave state during
125          * suspends. When we're operating, this can be used as a silence
126          * buffer for a timing channel.
127          */
128         void *suspend_state[SIS_SUSPEND_PAGES];
129
130         int silence_users;
131         dma_addr_t silence_dma_addr;
132 };
133
134 /* These values are also used by the module param 'codecs' to indicate
135  * which codecs should be present.
136  */
137 #define SIS_PRIMARY_CODEC_PRESENT       0x0001
138 #define SIS_SECONDARY_CODEC_PRESENT     0x0002
139 #define SIS_TERTIARY_CODEC_PRESENT      0x0004
140
141 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
142  * documented range of 8-0xfff8 samples. Given that they are 0-based,
143  * that places our period/buffer range at 9-0xfff9 samples. That makes the
144  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
145  * max samples / min samples gives us the max periods in a buffer.
146  *
147  * We'll add a constraint upon open that limits the period and buffer sample
148  * size to values that are legal for the hardware.
149  */
150 static const struct snd_pcm_hardware sis_playback_hw_info = {
151         .info = (SNDRV_PCM_INFO_MMAP |
152                  SNDRV_PCM_INFO_MMAP_VALID |
153                  SNDRV_PCM_INFO_INTERLEAVED |
154                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
155                  SNDRV_PCM_INFO_SYNC_START |
156                  SNDRV_PCM_INFO_RESUME),
157         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
158                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
159         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
160         .rate_min = 4000,
161         .rate_max = 48000,
162         .channels_min = 1,
163         .channels_max = 2,
164         .buffer_bytes_max = (0xfff9 * 4),
165         .period_bytes_min = 9,
166         .period_bytes_max = (0xfff9 * 4),
167         .periods_min = 1,
168         .periods_max = (0xfff9 / 9),
169 };
170
171 static const struct snd_pcm_hardware sis_capture_hw_info = {
172         .info = (SNDRV_PCM_INFO_MMAP |
173                  SNDRV_PCM_INFO_MMAP_VALID |
174                  SNDRV_PCM_INFO_INTERLEAVED |
175                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
176                  SNDRV_PCM_INFO_SYNC_START |
177                  SNDRV_PCM_INFO_RESUME),
178         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
179                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
180         .rates = SNDRV_PCM_RATE_48000,
181         .rate_min = 4000,
182         .rate_max = 48000,
183         .channels_min = 1,
184         .channels_max = 2,
185         .buffer_bytes_max = (0xfff9 * 4),
186         .period_bytes_min = 9,
187         .period_bytes_max = (0xfff9 * 4),
188         .periods_min = 1,
189         .periods_max = (0xfff9 / 9),
190 };
191
192 static void sis_update_sso(struct voice *voice, u16 period)
193 {
194         void __iomem *base = voice->ctrl_base;
195
196         voice->sso += period;
197         if (voice->sso >= voice->buffer_size)
198                 voice->sso -= voice->buffer_size;
199
200         /* Enforce the documented hardware minimum offset */
201         if (voice->sso < 8)
202                 voice->sso = 8;
203
204         /* The SSO is in the upper 16 bits of the register. */
205         writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
206 }
207
208 static void sis_update_voice(struct voice *voice)
209 {
210         if (voice->flags & VOICE_SSO_TIMING) {
211                 sis_update_sso(voice, voice->period_size);
212         } else if (voice->flags & VOICE_SYNC_TIMING) {
213                 int sync;
214
215                 /* If we've not hit the end of the virtual period, update
216                  * our records and keep going.
217                  */
218                 if (voice->vperiod > voice->period_size) {
219                         voice->vperiod -= voice->period_size;
220                         if (voice->vperiod < voice->period_size)
221                                 sis_update_sso(voice, voice->vperiod);
222                         else
223                                 sis_update_sso(voice, voice->period_size);
224                         return;
225                 }
226
227                 /* Calculate our relative offset between the target and
228                  * the actual CSO value. Since we're operating in a loop,
229                  * if the value is more than half way around, we can
230                  * consider ourselves wrapped.
231                  */
232                 sync = voice->sync_cso;
233                 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
234                 if (sync > (voice->sync_buffer_size / 2))
235                         sync -= voice->sync_buffer_size;
236
237                 /* If sync is positive, then we interrupted too early, and
238                  * we'll need to come back in a few samples and try again.
239                  * There's a minimum wait, as it takes some time for the DMA
240                  * engine to startup, etc...
241                  */
242                 if (sync > 0) {
243                         if (sync < 16)
244                                 sync = 16;
245                         sis_update_sso(voice, sync);
246                         return;
247                 }
248
249                 /* Ok, we interrupted right on time, or (hopefully) just
250                  * a bit late. We'll adjst our next waiting period based
251                  * on how close we got.
252                  *
253                  * We need to stay just behind the actual channel to ensure
254                  * it really is past a period when we get our interrupt --
255                  * otherwise we'll fall into the early code above and have
256                  * a minimum wait time, which makes us quite late here,
257                  * eating into the user's time to refresh the buffer, esp.
258                  * if using small periods.
259                  *
260                  * If we're less than 9 samples behind, we're on target.
261                  * Otherwise, shorten the next vperiod by the amount we've
262                  * been delayed.
263                  */
264                 if (sync > -9)
265                         voice->vperiod = voice->sync_period_size + 1;
266                 else
267                         voice->vperiod = voice->sync_period_size + sync + 10;
268
269                 if (voice->vperiod < voice->buffer_size) {
270                         sis_update_sso(voice, voice->vperiod);
271                         voice->vperiod = 0;
272                 } else
273                         sis_update_sso(voice, voice->period_size);
274
275                 sync = voice->sync_cso + voice->sync_period_size;
276                 if (sync >= voice->sync_buffer_size)
277                         sync -= voice->sync_buffer_size;
278                 voice->sync_cso = sync;
279         }
280
281         snd_pcm_period_elapsed(voice->substream);
282 }
283
284 static void sis_voice_irq(u32 status, struct voice *voice)
285 {
286         int bit;
287
288         while (status) {
289                 bit = __ffs(status);
290                 status >>= bit + 1;
291                 voice += bit;
292                 sis_update_voice(voice);
293                 voice++;
294         }
295 }
296
297 static irqreturn_t sis_interrupt(int irq, void *dev)
298 {
299         struct sis7019 *sis = dev;
300         unsigned long io = sis->ioport;
301         struct voice *voice;
302         u32 intr, status;
303
304         /* We only use the DMA interrupts, and we don't enable any other
305          * source of interrupts. But, it is possible to see an interrupt
306          * status that didn't actually interrupt us, so eliminate anything
307          * we're not expecting to avoid falsely claiming an IRQ, and an
308          * ensuing endless loop.
309          */
310         intr = inl(io + SIS_GISR);
311         intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
312                 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
313         if (!intr)
314                 return IRQ_NONE;
315
316         do {
317                 status = inl(io + SIS_PISR_A);
318                 if (status) {
319                         sis_voice_irq(status, sis->voices);
320                         outl(status, io + SIS_PISR_A);
321                 }
322
323                 status = inl(io + SIS_PISR_B);
324                 if (status) {
325                         sis_voice_irq(status, &sis->voices[32]);
326                         outl(status, io + SIS_PISR_B);
327                 }
328
329                 status = inl(io + SIS_RISR);
330                 if (status) {
331                         voice = &sis->capture_voice;
332                         if (!voice->timing)
333                                 snd_pcm_period_elapsed(voice->substream);
334
335                         outl(status, io + SIS_RISR);
336                 }
337
338                 outl(intr, io + SIS_GISR);
339                 intr = inl(io + SIS_GISR);
340                 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
341                         SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
342         } while (intr);
343
344         return IRQ_HANDLED;
345 }
346
347 static u32 sis_rate_to_delta(unsigned int rate)
348 {
349         u32 delta;
350
351         /* This was copied from the trident driver, but it seems its gotten
352          * around a bit... nevertheless, it works well.
353          *
354          * We special case 44100 and 8000 since rounding with the equation
355          * does not give us an accurate enough value. For 11025 and 22050
356          * the equation gives us the best answer. All other frequencies will
357          * also use the equation. JDW
358          */
359         if (rate == 44100)
360                 delta = 0xeb3;
361         else if (rate == 8000)
362                 delta = 0x2ab;
363         else if (rate == 48000)
364                 delta = 0x1000;
365         else
366                 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
367         return delta;
368 }
369
370 static void __sis_map_silence(struct sis7019 *sis)
371 {
372         /* Helper function: must hold sis->voice_lock on entry */
373         if (!sis->silence_users)
374                 sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
375                                                 sis->suspend_state[0],
376                                                 4096, DMA_TO_DEVICE);
377         sis->silence_users++;
378 }
379
380 static void __sis_unmap_silence(struct sis7019 *sis)
381 {
382         /* Helper function: must hold sis->voice_lock on entry */
383         sis->silence_users--;
384         if (!sis->silence_users)
385                 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
386                                         DMA_TO_DEVICE);
387 }
388
389 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
390 {
391         unsigned long flags;
392
393         spin_lock_irqsave(&sis->voice_lock, flags);
394         if (voice->timing) {
395                 __sis_unmap_silence(sis);
396                 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
397                                                 VOICE_SYNC_TIMING);
398                 voice->timing = NULL;
399         }
400         voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
401         spin_unlock_irqrestore(&sis->voice_lock, flags);
402 }
403
404 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
405 {
406         /* Must hold the voice_lock on entry */
407         struct voice *voice;
408         int i;
409
410         for (i = 0; i < 64; i++) {
411                 voice = &sis->voices[i];
412                 if (voice->flags & VOICE_IN_USE)
413                         continue;
414                 voice->flags |= VOICE_IN_USE;
415                 goto found_one;
416         }
417         voice = NULL;
418
419 found_one:
420         return voice;
421 }
422
423 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
424 {
425         struct voice *voice;
426         unsigned long flags;
427
428         spin_lock_irqsave(&sis->voice_lock, flags);
429         voice = __sis_alloc_playback_voice(sis);
430         spin_unlock_irqrestore(&sis->voice_lock, flags);
431
432         return voice;
433 }
434
435 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
436                                         struct snd_pcm_hw_params *hw_params)
437 {
438         struct sis7019 *sis = snd_pcm_substream_chip(substream);
439         struct snd_pcm_runtime *runtime = substream->runtime;
440         struct voice *voice = runtime->private_data;
441         unsigned int period_size, buffer_size;
442         unsigned long flags;
443         int needed;
444
445         /* If there are one or two periods per buffer, we don't need a
446          * timing voice, as we can use the capture channel's interrupts
447          * to clock out the periods.
448          */
449         period_size = params_period_size(hw_params);
450         buffer_size = params_buffer_size(hw_params);
451         needed = (period_size != buffer_size &&
452                         period_size != (buffer_size / 2));
453
454         if (needed && !voice->timing) {
455                 spin_lock_irqsave(&sis->voice_lock, flags);
456                 voice->timing = __sis_alloc_playback_voice(sis);
457                 if (voice->timing)
458                         __sis_map_silence(sis);
459                 spin_unlock_irqrestore(&sis->voice_lock, flags);
460                 if (!voice->timing)
461                         return -ENOMEM;
462                 voice->timing->substream = substream;
463         } else if (!needed && voice->timing) {
464                 sis_free_voice(sis, voice);
465                 voice->timing = NULL;
466         }
467
468         return 0;
469 }
470
471 static int sis_playback_open(struct snd_pcm_substream *substream)
472 {
473         struct sis7019 *sis = snd_pcm_substream_chip(substream);
474         struct snd_pcm_runtime *runtime = substream->runtime;
475         struct voice *voice;
476
477         voice = sis_alloc_playback_voice(sis);
478         if (!voice)
479                 return -EAGAIN;
480
481         voice->substream = substream;
482         runtime->private_data = voice;
483         runtime->hw = sis_playback_hw_info;
484         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
485                                                 9, 0xfff9);
486         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
487                                                 9, 0xfff9);
488         snd_pcm_set_sync(substream);
489         return 0;
490 }
491
492 static int sis_substream_close(struct snd_pcm_substream *substream)
493 {
494         struct sis7019 *sis = snd_pcm_substream_chip(substream);
495         struct snd_pcm_runtime *runtime = substream->runtime;
496         struct voice *voice = runtime->private_data;
497
498         sis_free_voice(sis, voice);
499         return 0;
500 }
501
502 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
503                                         struct snd_pcm_hw_params *hw_params)
504 {
505         return snd_pcm_lib_malloc_pages(substream,
506                                         params_buffer_bytes(hw_params));
507 }
508
509 static int sis_hw_free(struct snd_pcm_substream *substream)
510 {
511         return snd_pcm_lib_free_pages(substream);
512 }
513
514 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
515 {
516         struct snd_pcm_runtime *runtime = substream->runtime;
517         struct voice *voice = runtime->private_data;
518         void __iomem *ctrl_base = voice->ctrl_base;
519         void __iomem *wave_base = voice->wave_base;
520         u32 format, dma_addr, control, sso_eso, delta, reg;
521         u16 leo;
522
523         /* We rely on the PCM core to ensure that the parameters for this
524          * substream do not change on us while we're programming the HW.
525          */
526         format = 0;
527         if (snd_pcm_format_width(runtime->format) == 8)
528                 format |= SIS_PLAY_DMA_FORMAT_8BIT;
529         if (!snd_pcm_format_signed(runtime->format))
530                 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
531         if (runtime->channels == 1)
532                 format |= SIS_PLAY_DMA_FORMAT_MONO;
533
534         /* The baseline setup is for a single period per buffer, and
535          * we add bells and whistles as needed from there.
536          */
537         dma_addr = runtime->dma_addr;
538         leo = runtime->buffer_size - 1;
539         control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
540         sso_eso = leo;
541
542         if (runtime->period_size == (runtime->buffer_size / 2)) {
543                 control |= SIS_PLAY_DMA_INTR_AT_MLP;
544         } else if (runtime->period_size != runtime->buffer_size) {
545                 voice->flags |= VOICE_SSO_TIMING;
546                 voice->sso = runtime->period_size - 1;
547                 voice->period_size = runtime->period_size;
548                 voice->buffer_size = runtime->buffer_size;
549
550                 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
551                 control |= SIS_PLAY_DMA_INTR_AT_SSO;
552                 sso_eso |= (runtime->period_size - 1) << 16;
553         }
554
555         delta = sis_rate_to_delta(runtime->rate);
556
557         /* Ok, we're ready to go, set up the channel.
558          */
559         writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
560         writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
561         writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
562         writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
563
564         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
565                 writel(0, wave_base + reg);
566
567         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
568         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
569         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
570                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
571                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
572                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
573
574         /* Force PCI writes to post. */
575         readl(ctrl_base);
576
577         return 0;
578 }
579
580 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
581 {
582         struct sis7019 *sis = snd_pcm_substream_chip(substream);
583         unsigned long io = sis->ioport;
584         struct snd_pcm_substream *s;
585         struct voice *voice;
586         void *chip;
587         int starting;
588         u32 record = 0;
589         u32 play[2] = { 0, 0 };
590
591         /* No locks needed, as the PCM core will hold the locks on the
592          * substreams, and the HW will only start/stop the indicated voices
593          * without changing the state of the others.
594          */
595         switch (cmd) {
596         case SNDRV_PCM_TRIGGER_START:
597         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
598         case SNDRV_PCM_TRIGGER_RESUME:
599                 starting = 1;
600                 break;
601         case SNDRV_PCM_TRIGGER_STOP:
602         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
603         case SNDRV_PCM_TRIGGER_SUSPEND:
604                 starting = 0;
605                 break;
606         default:
607                 return -EINVAL;
608         }
609
610         snd_pcm_group_for_each_entry(s, substream) {
611                 /* Make sure it is for us... */
612                 chip = snd_pcm_substream_chip(s);
613                 if (chip != sis)
614                         continue;
615
616                 voice = s->runtime->private_data;
617                 if (voice->flags & VOICE_CAPTURE) {
618                         record |= 1 << voice->num;
619                         voice = voice->timing;
620                 }
621
622                 /* voice could be NULL if this a recording stream, and it
623                  * doesn't have an external timing channel.
624                  */
625                 if (voice)
626                         play[voice->num / 32] |= 1 << (voice->num & 0x1f);
627
628                 snd_pcm_trigger_done(s, substream);
629         }
630
631         if (starting) {
632                 if (record)
633                         outl(record, io + SIS_RECORD_START_REG);
634                 if (play[0])
635                         outl(play[0], io + SIS_PLAY_START_A_REG);
636                 if (play[1])
637                         outl(play[1], io + SIS_PLAY_START_B_REG);
638         } else {
639                 if (record)
640                         outl(record, io + SIS_RECORD_STOP_REG);
641                 if (play[0])
642                         outl(play[0], io + SIS_PLAY_STOP_A_REG);
643                 if (play[1])
644                         outl(play[1], io + SIS_PLAY_STOP_B_REG);
645         }
646         return 0;
647 }
648
649 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
650 {
651         struct snd_pcm_runtime *runtime = substream->runtime;
652         struct voice *voice = runtime->private_data;
653         u32 cso;
654
655         cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
656         cso &= 0xffff;
657         return cso;
658 }
659
660 static int sis_capture_open(struct snd_pcm_substream *substream)
661 {
662         struct sis7019 *sis = snd_pcm_substream_chip(substream);
663         struct snd_pcm_runtime *runtime = substream->runtime;
664         struct voice *voice = &sis->capture_voice;
665         unsigned long flags;
666
667         /* FIXME: The driver only supports recording from one channel
668          * at the moment, but it could support more.
669          */
670         spin_lock_irqsave(&sis->voice_lock, flags);
671         if (voice->flags & VOICE_IN_USE)
672                 voice = NULL;
673         else
674                 voice->flags |= VOICE_IN_USE;
675         spin_unlock_irqrestore(&sis->voice_lock, flags);
676
677         if (!voice)
678                 return -EAGAIN;
679
680         voice->substream = substream;
681         runtime->private_data = voice;
682         runtime->hw = sis_capture_hw_info;
683         runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
684         snd_pcm_limit_hw_rates(runtime);
685         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
686                                                 9, 0xfff9);
687         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
688                                                 9, 0xfff9);
689         snd_pcm_set_sync(substream);
690         return 0;
691 }
692
693 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
694                                         struct snd_pcm_hw_params *hw_params)
695 {
696         struct sis7019 *sis = snd_pcm_substream_chip(substream);
697         int rc;
698
699         rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
700                                                 params_rate(hw_params));
701         if (rc)
702                 goto out;
703
704         rc = snd_pcm_lib_malloc_pages(substream,
705                                         params_buffer_bytes(hw_params));
706         if (rc < 0)
707                 goto out;
708
709         rc = sis_alloc_timing_voice(substream, hw_params);
710
711 out:
712         return rc;
713 }
714
715 static void sis_prepare_timing_voice(struct voice *voice,
716                                         struct snd_pcm_substream *substream)
717 {
718         struct sis7019 *sis = snd_pcm_substream_chip(substream);
719         struct snd_pcm_runtime *runtime = substream->runtime;
720         struct voice *timing = voice->timing;
721         void __iomem *play_base = timing->ctrl_base;
722         void __iomem *wave_base = timing->wave_base;
723         u16 buffer_size, period_size;
724         u32 format, control, sso_eso, delta;
725         u32 vperiod, sso, reg;
726
727         /* Set our initial buffer and period as large as we can given a
728          * single page of silence.
729          */
730         buffer_size = 4096 / runtime->channels;
731         buffer_size /= snd_pcm_format_size(runtime->format, 1);
732         period_size = buffer_size;
733
734         /* Initially, we want to interrupt just a bit behind the end of
735          * the period we're clocking out. 12 samples seems to give a good
736          * delay.
737          *
738          * We want to spread our interrupts throughout the virtual period,
739          * so that we don't end up with two interrupts back to back at the
740          * end -- this helps minimize the effects of any jitter. Adjust our
741          * clocking period size so that the last period is at least a fourth
742          * of a full period.
743          *
744          * This is all moot if we don't need to use virtual periods.
745          */
746         vperiod = runtime->period_size + 12;
747         if (vperiod > period_size) {
748                 u16 tail = vperiod % period_size;
749                 u16 quarter_period = period_size / 4;
750
751                 if (tail && tail < quarter_period) {
752                         u16 loops = vperiod / period_size;
753
754                         tail = quarter_period - tail;
755                         tail += loops - 1;
756                         tail /= loops;
757                         period_size -= tail;
758                 }
759
760                 sso = period_size - 1;
761         } else {
762                 /* The initial period will fit inside the buffer, so we
763                  * don't need to use virtual periods -- disable them.
764                  */
765                 period_size = runtime->period_size;
766                 sso = vperiod - 1;
767                 vperiod = 0;
768         }
769
770         /* The interrupt handler implements the timing synchronization, so
771          * setup its state.
772          */
773         timing->flags |= VOICE_SYNC_TIMING;
774         timing->sync_base = voice->ctrl_base;
775         timing->sync_cso = runtime->period_size;
776         timing->sync_period_size = runtime->period_size;
777         timing->sync_buffer_size = runtime->buffer_size;
778         timing->period_size = period_size;
779         timing->buffer_size = buffer_size;
780         timing->sso = sso;
781         timing->vperiod = vperiod;
782
783         /* Using unsigned samples with the all-zero silence buffer
784          * forces the output to the lower rail, killing playback.
785          * So ignore unsigned vs signed -- it doesn't change the timing.
786          */
787         format = 0;
788         if (snd_pcm_format_width(runtime->format) == 8)
789                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
790         if (runtime->channels == 1)
791                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
792
793         control = timing->buffer_size - 1;
794         control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
795         sso_eso = timing->buffer_size - 1;
796         sso_eso |= timing->sso << 16;
797
798         delta = sis_rate_to_delta(runtime->rate);
799
800         /* We've done the math, now configure the channel.
801          */
802         writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
803         writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
804         writel(control, play_base + SIS_PLAY_DMA_CONTROL);
805         writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
806
807         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
808                 writel(0, wave_base + reg);
809
810         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
811         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
812         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
813                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
814                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
815                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
816 }
817
818 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
819 {
820         struct snd_pcm_runtime *runtime = substream->runtime;
821         struct voice *voice = runtime->private_data;
822         void __iomem *rec_base = voice->ctrl_base;
823         u32 format, dma_addr, control;
824         u16 leo;
825
826         /* We rely on the PCM core to ensure that the parameters for this
827          * substream do not change on us while we're programming the HW.
828          */
829         format = 0;
830         if (snd_pcm_format_width(runtime->format) == 8)
831                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
832         if (!snd_pcm_format_signed(runtime->format))
833                 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
834         if (runtime->channels == 1)
835                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
836
837         dma_addr = runtime->dma_addr;
838         leo = runtime->buffer_size - 1;
839         control = leo | SIS_CAPTURE_DMA_LOOP;
840
841         /* If we've got more than two periods per buffer, then we have
842          * use a timing voice to clock out the periods. Otherwise, we can
843          * use the capture channel's interrupts.
844          */
845         if (voice->timing) {
846                 sis_prepare_timing_voice(voice, substream);
847         } else {
848                 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
849                 if (runtime->period_size != runtime->buffer_size)
850                         control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
851         }
852
853         writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
854         writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
855         writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
856
857         /* Force the writes to post. */
858         readl(rec_base);
859
860         return 0;
861 }
862
863 static const struct snd_pcm_ops sis_playback_ops = {
864         .open = sis_playback_open,
865         .close = sis_substream_close,
866         .ioctl = snd_pcm_lib_ioctl,
867         .hw_params = sis_playback_hw_params,
868         .hw_free = sis_hw_free,
869         .prepare = sis_pcm_playback_prepare,
870         .trigger = sis_pcm_trigger,
871         .pointer = sis_pcm_pointer,
872 };
873
874 static const struct snd_pcm_ops sis_capture_ops = {
875         .open = sis_capture_open,
876         .close = sis_substream_close,
877         .ioctl = snd_pcm_lib_ioctl,
878         .hw_params = sis_capture_hw_params,
879         .hw_free = sis_hw_free,
880         .prepare = sis_pcm_capture_prepare,
881         .trigger = sis_pcm_trigger,
882         .pointer = sis_pcm_pointer,
883 };
884
885 static int sis_pcm_create(struct sis7019 *sis)
886 {
887         struct snd_pcm *pcm;
888         int rc;
889
890         /* We have 64 voices, and the driver currently records from
891          * only one channel, though that could change in the future.
892          */
893         rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
894         if (rc)
895                 return rc;
896
897         pcm->private_data = sis;
898         strcpy(pcm->name, "SiS7019");
899         sis->pcm = pcm;
900
901         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
902         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
903
904         /* Try to preallocate some memory, but it's not the end of the
905          * world if this fails.
906          */
907         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
908                                               &sis->pci->dev,
909                                               64*1024, 128*1024);
910
911         return 0;
912 }
913
914 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
915 {
916         unsigned long io = sis->ioport;
917         unsigned short val = 0xffff;
918         u16 status;
919         u16 rdy;
920         int count;
921         static const u16 codec_ready[3] = {
922                 SIS_AC97_STATUS_CODEC_READY,
923                 SIS_AC97_STATUS_CODEC2_READY,
924                 SIS_AC97_STATUS_CODEC3_READY,
925         };
926
927         rdy = codec_ready[codec];
928
929
930         /* Get the AC97 semaphore -- software first, so we don't spin
931          * pounding out IO reads on the hardware semaphore...
932          */
933         mutex_lock(&sis->ac97_mutex);
934
935         count = 0xffff;
936         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
937                 udelay(1);
938
939         if (!count)
940                 goto timeout;
941
942         /* ... and wait for any outstanding commands to complete ...
943          */
944         count = 0xffff;
945         do {
946                 status = inw(io + SIS_AC97_STATUS);
947                 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
948                         break;
949
950                 udelay(1);
951         } while (--count);
952
953         if (!count)
954                 goto timeout_sema;
955
956         /* ... before sending our command and waiting for it to finish ...
957          */
958         outl(cmd, io + SIS_AC97_CMD);
959         udelay(10);
960
961         count = 0xffff;
962         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
963                 udelay(1);
964
965         /* ... and reading the results (if any).
966          */
967         val = inl(io + SIS_AC97_CMD) >> 16;
968
969 timeout_sema:
970         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
971 timeout:
972         mutex_unlock(&sis->ac97_mutex);
973
974         if (!count) {
975                 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
976                                         codec, cmd);
977         }
978
979         return val;
980 }
981
982 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
983                                 unsigned short val)
984 {
985         static const u32 cmd[3] = {
986                 SIS_AC97_CMD_CODEC_WRITE,
987                 SIS_AC97_CMD_CODEC2_WRITE,
988                 SIS_AC97_CMD_CODEC3_WRITE,
989         };
990         sis_ac97_rw(ac97->private_data, ac97->num,
991                         (val << 16) | (reg << 8) | cmd[ac97->num]);
992 }
993
994 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
995 {
996         static const u32 cmd[3] = {
997                 SIS_AC97_CMD_CODEC_READ,
998                 SIS_AC97_CMD_CODEC2_READ,
999                 SIS_AC97_CMD_CODEC3_READ,
1000         };
1001         return sis_ac97_rw(ac97->private_data, ac97->num,
1002                                         (reg << 8) | cmd[ac97->num]);
1003 }
1004
1005 static int sis_mixer_create(struct sis7019 *sis)
1006 {
1007         struct snd_ac97_bus *bus;
1008         struct snd_ac97_template ac97;
1009         static struct snd_ac97_bus_ops ops = {
1010                 .write = sis_ac97_write,
1011                 .read = sis_ac97_read,
1012         };
1013         int rc;
1014
1015         memset(&ac97, 0, sizeof(ac97));
1016         ac97.private_data = sis;
1017
1018         rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1019         if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1020                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1021         ac97.num = 1;
1022         if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1023                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1024         ac97.num = 2;
1025         if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1026                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1027
1028         /* If we return an error here, then snd_card_free() should
1029          * free up any ac97 codecs that got created, as well as the bus.
1030          */
1031         return rc;
1032 }
1033
1034 static void sis_free_suspend(struct sis7019 *sis)
1035 {
1036         int i;
1037
1038         for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1039                 kfree(sis->suspend_state[i]);
1040 }
1041
1042 static int sis_chip_free(struct sis7019 *sis)
1043 {
1044         /* Reset the chip, and disable all interrputs.
1045          */
1046         outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1047         udelay(25);
1048         outl(0, sis->ioport + SIS_GCR);
1049         outl(0, sis->ioport + SIS_GIER);
1050
1051         /* Now, free everything we allocated.
1052          */
1053         if (sis->irq >= 0)
1054                 free_irq(sis->irq, sis);
1055
1056         iounmap(sis->ioaddr);
1057         pci_release_regions(sis->pci);
1058         pci_disable_device(sis->pci);
1059         sis_free_suspend(sis);
1060         return 0;
1061 }
1062
1063 static int sis_dev_free(struct snd_device *dev)
1064 {
1065         struct sis7019 *sis = dev->device_data;
1066         return sis_chip_free(sis);
1067 }
1068
1069 static int sis_chip_init(struct sis7019 *sis)
1070 {
1071         unsigned long io = sis->ioport;
1072         void __iomem *ioaddr = sis->ioaddr;
1073         unsigned long timeout;
1074         u16 status;
1075         int count;
1076         int i;
1077
1078         /* Reset the audio controller
1079          */
1080         outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1081         udelay(25);
1082         outl(0, io + SIS_GCR);
1083
1084         /* Get the AC-link semaphore, and reset the codecs
1085          */
1086         count = 0xffff;
1087         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1088                 udelay(1);
1089
1090         if (!count)
1091                 return -EIO;
1092
1093         outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1094         udelay(250);
1095
1096         count = 0xffff;
1097         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1098                 udelay(1);
1099
1100         /* Command complete, we can let go of the semaphore now.
1101          */
1102         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1103         if (!count)
1104                 return -EIO;
1105
1106         /* Now that we've finished the reset, find out what's attached.
1107          * There are some codec/board combinations that take an extremely
1108          * long time to come up. 350+ ms has been observed in the field,
1109          * so we'll give them up to 500ms.
1110          */
1111         sis->codecs_present = 0;
1112         timeout = msecs_to_jiffies(500) + jiffies;
1113         while (time_before_eq(jiffies, timeout)) {
1114                 status = inl(io + SIS_AC97_STATUS);
1115                 if (status & SIS_AC97_STATUS_CODEC_READY)
1116                         sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1117                 if (status & SIS_AC97_STATUS_CODEC2_READY)
1118                         sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1119                 if (status & SIS_AC97_STATUS_CODEC3_READY)
1120                         sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1121
1122                 if (sis->codecs_present == codecs)
1123                         break;
1124
1125                 msleep(1);
1126         }
1127
1128         /* All done, check for errors.
1129          */
1130         if (!sis->codecs_present) {
1131                 dev_err(&sis->pci->dev, "could not find any codecs\n");
1132                 return -EIO;
1133         }
1134
1135         if (sis->codecs_present != codecs) {
1136                 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1137                                          sis->codecs_present, codecs);
1138         }
1139
1140         /* Let the hardware know that the audio driver is alive,
1141          * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1142          * record channels. We're going to want to use Variable Rate Audio
1143          * for recording, to avoid needlessly resampling from 48kHZ.
1144          */
1145         outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1146         outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1147                 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1148                 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1149                 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1150
1151         /* All AC97 PCM slots should be sourced from sub-mixer 0.
1152          */
1153         outl(0, io + SIS_AC97_PSR);
1154
1155         /* There is only one valid DMA setup for a PCI environment.
1156          */
1157         outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1158
1159         /* Reset the synchronization groups for all of the channels
1160          * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1161          * we'll need to change how we handle these. Until then, we just
1162          * assign sub-mixer 0 to all playback channels, and avoid any
1163          * attenuation on the audio.
1164          */
1165         outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1166         outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1167         outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1168         outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1169         outl(0, io + SIS_MIXER_SYNC_GROUP);
1170
1171         for (i = 0; i < 64; i++) {
1172                 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1173                 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1174                                 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1175         }
1176
1177         /* Don't attenuate any audio set for the wave amplifier.
1178          *
1179          * FIXME: Maximum attenuation is set for the music amp, which will
1180          * need to change if we start using the synth engine.
1181          */
1182         outl(0xffff0000, io + SIS_WEVCR);
1183
1184         /* Ensure that the wave engine is in normal operating mode.
1185          */
1186         outl(0, io + SIS_WECCR);
1187
1188         /* Go ahead and enable the DMA interrupts. They won't go live
1189          * until we start a channel.
1190          */
1191         outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1192                 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1193
1194         return 0;
1195 }
1196
1197 #ifdef CONFIG_PM_SLEEP
1198 static int sis_suspend(struct device *dev)
1199 {
1200         struct snd_card *card = dev_get_drvdata(dev);
1201         struct sis7019 *sis = card->private_data;
1202         void __iomem *ioaddr = sis->ioaddr;
1203         int i;
1204
1205         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1206         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1207                 snd_ac97_suspend(sis->ac97[0]);
1208         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1209                 snd_ac97_suspend(sis->ac97[1]);
1210         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1211                 snd_ac97_suspend(sis->ac97[2]);
1212
1213         /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1214          */
1215         if (sis->irq >= 0) {
1216                 free_irq(sis->irq, sis);
1217                 sis->irq = -1;
1218         }
1219
1220         /* Save the internal state away
1221          */
1222         for (i = 0; i < 4; i++) {
1223                 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1224                 ioaddr += 4096;
1225         }
1226
1227         return 0;
1228 }
1229
1230 static int sis_resume(struct device *dev)
1231 {
1232         struct pci_dev *pci = to_pci_dev(dev);
1233         struct snd_card *card = dev_get_drvdata(dev);
1234         struct sis7019 *sis = card->private_data;
1235         void __iomem *ioaddr = sis->ioaddr;
1236         int i;
1237
1238         if (sis_chip_init(sis)) {
1239                 dev_err(&pci->dev, "unable to re-init controller\n");
1240                 goto error;
1241         }
1242
1243         if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1244                         KBUILD_MODNAME, sis)) {
1245                 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1246                 goto error;
1247         }
1248
1249         /* Restore saved state, then clear out the page we use for the
1250          * silence buffer.
1251          */
1252         for (i = 0; i < 4; i++) {
1253                 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1254                 ioaddr += 4096;
1255         }
1256
1257         memset(sis->suspend_state[0], 0, 4096);
1258
1259         sis->irq = pci->irq;
1260
1261         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1262                 snd_ac97_resume(sis->ac97[0]);
1263         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1264                 snd_ac97_resume(sis->ac97[1]);
1265         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1266                 snd_ac97_resume(sis->ac97[2]);
1267
1268         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1269         return 0;
1270
1271 error:
1272         snd_card_disconnect(card);
1273         return -EIO;
1274 }
1275
1276 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1277 #define SIS_PM_OPS      &sis_pm
1278 #else
1279 #define SIS_PM_OPS      NULL
1280 #endif /* CONFIG_PM_SLEEP */
1281
1282 static int sis_alloc_suspend(struct sis7019 *sis)
1283 {
1284         int i;
1285
1286         /* We need 16K to store the internal wave engine state during a
1287          * suspend, but we don't need it to be contiguous, so play nice
1288          * with the memory system. We'll also use this area for a silence
1289          * buffer.
1290          */
1291         for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1292                 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1293                 if (!sis->suspend_state[i])
1294                         return -ENOMEM;
1295         }
1296         memset(sis->suspend_state[0], 0, 4096);
1297
1298         return 0;
1299 }
1300
1301 static int sis_chip_create(struct snd_card *card,
1302                            struct pci_dev *pci)
1303 {
1304         struct sis7019 *sis = card->private_data;
1305         struct voice *voice;
1306         static struct snd_device_ops ops = {
1307                 .dev_free = sis_dev_free,
1308         };
1309         int rc;
1310         int i;
1311
1312         rc = pci_enable_device(pci);
1313         if (rc)
1314                 goto error_out;
1315
1316         rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1317         if (rc < 0) {
1318                 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1319                 goto error_out_enabled;
1320         }
1321
1322         memset(sis, 0, sizeof(*sis));
1323         mutex_init(&sis->ac97_mutex);
1324         spin_lock_init(&sis->voice_lock);
1325         sis->card = card;
1326         sis->pci = pci;
1327         sis->irq = -1;
1328         sis->ioport = pci_resource_start(pci, 0);
1329
1330         rc = pci_request_regions(pci, "SiS7019");
1331         if (rc) {
1332                 dev_err(&pci->dev, "unable request regions\n");
1333                 goto error_out_enabled;
1334         }
1335
1336         rc = -EIO;
1337         sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1338         if (!sis->ioaddr) {
1339                 dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1340                 goto error_out_cleanup;
1341         }
1342
1343         rc = sis_alloc_suspend(sis);
1344         if (rc < 0) {
1345                 dev_err(&pci->dev, "unable to allocate state storage\n");
1346                 goto error_out_cleanup;
1347         }
1348
1349         rc = sis_chip_init(sis);
1350         if (rc)
1351                 goto error_out_cleanup;
1352
1353         rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1354                          sis);
1355         if (rc) {
1356                 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1357                 goto error_out_cleanup;
1358         }
1359
1360         sis->irq = pci->irq;
1361         pci_set_master(pci);
1362
1363         for (i = 0; i < 64; i++) {
1364                 voice = &sis->voices[i];
1365                 voice->num = i;
1366                 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1367                 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1368         }
1369
1370         voice = &sis->capture_voice;
1371         voice->flags = VOICE_CAPTURE;
1372         voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1373         voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1374
1375         rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1376         if (rc)
1377                 goto error_out_cleanup;
1378
1379         return 0;
1380
1381 error_out_cleanup:
1382         sis_chip_free(sis);
1383
1384 error_out_enabled:
1385         pci_disable_device(pci);
1386
1387 error_out:
1388         return rc;
1389 }
1390
1391 static int snd_sis7019_probe(struct pci_dev *pci,
1392                              const struct pci_device_id *pci_id)
1393 {
1394         struct snd_card *card;
1395         struct sis7019 *sis;
1396         int rc;
1397
1398         rc = -ENOENT;
1399         if (!enable)
1400                 goto error_out;
1401
1402         /* The user can specify which codecs should be present so that we
1403          * can wait for them to show up if they are slow to recover from
1404          * the AC97 cold reset. We default to a single codec, the primary.
1405          *
1406          * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1407          */
1408         codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1409                   SIS_TERTIARY_CODEC_PRESENT;
1410         if (!codecs)
1411                 codecs = SIS_PRIMARY_CODEC_PRESENT;
1412
1413         rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1414                           sizeof(*sis), &card);
1415         if (rc < 0)
1416                 goto error_out;
1417
1418         strcpy(card->driver, "SiS7019");
1419         strcpy(card->shortname, "SiS7019");
1420         rc = sis_chip_create(card, pci);
1421         if (rc)
1422                 goto card_error_out;
1423
1424         sis = card->private_data;
1425
1426         rc = sis_mixer_create(sis);
1427         if (rc)
1428                 goto card_error_out;
1429
1430         rc = sis_pcm_create(sis);
1431         if (rc)
1432                 goto card_error_out;
1433
1434         snprintf(card->longname, sizeof(card->longname),
1435                         "%s Audio Accelerator with %s at 0x%lx, irq %d",
1436                         card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1437                         sis->ioport, sis->irq);
1438
1439         rc = snd_card_register(card);
1440         if (rc)
1441                 goto card_error_out;
1442
1443         pci_set_drvdata(pci, card);
1444         return 0;
1445
1446 card_error_out:
1447         snd_card_free(card);
1448
1449 error_out:
1450         return rc;
1451 }
1452
1453 static void snd_sis7019_remove(struct pci_dev *pci)
1454 {
1455         snd_card_free(pci_get_drvdata(pci));
1456 }
1457
1458 static struct pci_driver sis7019_driver = {
1459         .name = KBUILD_MODNAME,
1460         .id_table = snd_sis7019_ids,
1461         .probe = snd_sis7019_probe,
1462         .remove = snd_sis7019_remove,
1463         .driver = {
1464                 .pm = SIS_PM_OPS,
1465         },
1466 };
1467
1468 module_pci_driver(sis7019_driver);