Merge tag 'asoc-v5.3' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-block.git] / sound / pci / hda / hda_controller.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Implementation of primary alsa driver code base for Intel HD Audio.
5  *
6  *  Copyright(c) 2004 Intel Corporation. All rights reserved.
7  *
8  *  Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
9  *                     PeiSen Hou <pshou@realtek.com.tw>
10  */
11
12 #include <linux/clocksource.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/slab.h>
19
20 #ifdef CONFIG_X86
21 /* for art-tsc conversion */
22 #include <asm/tsc.h>
23 #endif
24
25 #include <sound/core.h>
26 #include <sound/initval.h>
27 #include "hda_controller.h"
28
29 #define CREATE_TRACE_POINTS
30 #include "hda_controller_trace.h"
31
32 /* DSP lock helpers */
33 #define dsp_lock(dev)           snd_hdac_dsp_lock(azx_stream(dev))
34 #define dsp_unlock(dev)         snd_hdac_dsp_unlock(azx_stream(dev))
35 #define dsp_is_locked(dev)      snd_hdac_stream_is_locked(azx_stream(dev))
36
37 /* assign a stream for the PCM */
38 static inline struct azx_dev *
39 azx_assign_device(struct azx *chip, struct snd_pcm_substream *substream)
40 {
41         struct hdac_stream *s;
42
43         s = snd_hdac_stream_assign(azx_bus(chip), substream);
44         if (!s)
45                 return NULL;
46         return stream_to_azx_dev(s);
47 }
48
49 /* release the assigned stream */
50 static inline void azx_release_device(struct azx_dev *azx_dev)
51 {
52         snd_hdac_stream_release(azx_stream(azx_dev));
53 }
54
55 static inline struct hda_pcm_stream *
56 to_hda_pcm_stream(struct snd_pcm_substream *substream)
57 {
58         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
59         return &apcm->info->stream[substream->stream];
60 }
61
62 static u64 azx_adjust_codec_delay(struct snd_pcm_substream *substream,
63                                 u64 nsec)
64 {
65         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
66         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
67         u64 codec_frames, codec_nsecs;
68
69         if (!hinfo->ops.get_delay)
70                 return nsec;
71
72         codec_frames = hinfo->ops.get_delay(hinfo, apcm->codec, substream);
73         codec_nsecs = div_u64(codec_frames * 1000000000LL,
74                               substream->runtime->rate);
75
76         if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
77                 return nsec + codec_nsecs;
78
79         return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0;
80 }
81
82 /*
83  * PCM ops
84  */
85
86 static int azx_pcm_close(struct snd_pcm_substream *substream)
87 {
88         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
89         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
90         struct azx *chip = apcm->chip;
91         struct azx_dev *azx_dev = get_azx_dev(substream);
92
93         trace_azx_pcm_close(chip, azx_dev);
94         mutex_lock(&chip->open_mutex);
95         azx_release_device(azx_dev);
96         if (hinfo->ops.close)
97                 hinfo->ops.close(hinfo, apcm->codec, substream);
98         snd_hda_power_down(apcm->codec);
99         mutex_unlock(&chip->open_mutex);
100         snd_hda_codec_pcm_put(apcm->info);
101         return 0;
102 }
103
104 static int azx_pcm_hw_params(struct snd_pcm_substream *substream,
105                              struct snd_pcm_hw_params *hw_params)
106 {
107         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
108         struct azx *chip = apcm->chip;
109         struct azx_dev *azx_dev = get_azx_dev(substream);
110         int ret;
111
112         trace_azx_pcm_hw_params(chip, azx_dev);
113         dsp_lock(azx_dev);
114         if (dsp_is_locked(azx_dev)) {
115                 ret = -EBUSY;
116                 goto unlock;
117         }
118
119         azx_dev->core.bufsize = 0;
120         azx_dev->core.period_bytes = 0;
121         azx_dev->core.format_val = 0;
122         ret = snd_pcm_lib_malloc_pages(substream,
123                                        params_buffer_bytes(hw_params));
124
125 unlock:
126         dsp_unlock(azx_dev);
127         return ret;
128 }
129
130 static int azx_pcm_hw_free(struct snd_pcm_substream *substream)
131 {
132         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
133         struct azx_dev *azx_dev = get_azx_dev(substream);
134         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
135         int err;
136
137         /* reset BDL address */
138         dsp_lock(azx_dev);
139         if (!dsp_is_locked(azx_dev))
140                 snd_hdac_stream_cleanup(azx_stream(azx_dev));
141
142         snd_hda_codec_cleanup(apcm->codec, hinfo, substream);
143
144         err = snd_pcm_lib_free_pages(substream);
145         azx_stream(azx_dev)->prepared = 0;
146         dsp_unlock(azx_dev);
147         return err;
148 }
149
150 static int azx_pcm_prepare(struct snd_pcm_substream *substream)
151 {
152         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
153         struct azx *chip = apcm->chip;
154         struct azx_dev *azx_dev = get_azx_dev(substream);
155         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
156         struct snd_pcm_runtime *runtime = substream->runtime;
157         unsigned int format_val, stream_tag;
158         int err;
159         struct hda_spdif_out *spdif =
160                 snd_hda_spdif_out_of_nid(apcm->codec, hinfo->nid);
161         unsigned short ctls = spdif ? spdif->ctls : 0;
162
163         trace_azx_pcm_prepare(chip, azx_dev);
164         dsp_lock(azx_dev);
165         if (dsp_is_locked(azx_dev)) {
166                 err = -EBUSY;
167                 goto unlock;
168         }
169
170         snd_hdac_stream_reset(azx_stream(azx_dev));
171         format_val = snd_hdac_calc_stream_format(runtime->rate,
172                                                 runtime->channels,
173                                                 runtime->format,
174                                                 hinfo->maxbps,
175                                                 ctls);
176         if (!format_val) {
177                 dev_err(chip->card->dev,
178                         "invalid format_val, rate=%d, ch=%d, format=%d\n",
179                         runtime->rate, runtime->channels, runtime->format);
180                 err = -EINVAL;
181                 goto unlock;
182         }
183
184         err = snd_hdac_stream_set_params(azx_stream(azx_dev), format_val);
185         if (err < 0)
186                 goto unlock;
187
188         snd_hdac_stream_setup(azx_stream(azx_dev));
189
190         stream_tag = azx_dev->core.stream_tag;
191         /* CA-IBG chips need the playback stream starting from 1 */
192         if ((chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND) &&
193             stream_tag > chip->capture_streams)
194                 stream_tag -= chip->capture_streams;
195         err = snd_hda_codec_prepare(apcm->codec, hinfo, stream_tag,
196                                      azx_dev->core.format_val, substream);
197
198  unlock:
199         if (!err)
200                 azx_stream(azx_dev)->prepared = 1;
201         dsp_unlock(azx_dev);
202         return err;
203 }
204
205 static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
206 {
207         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
208         struct azx *chip = apcm->chip;
209         struct hdac_bus *bus = azx_bus(chip);
210         struct azx_dev *azx_dev;
211         struct snd_pcm_substream *s;
212         struct hdac_stream *hstr;
213         bool start;
214         int sbits = 0;
215         int sync_reg;
216
217         azx_dev = get_azx_dev(substream);
218         trace_azx_pcm_trigger(chip, azx_dev, cmd);
219
220         hstr = azx_stream(azx_dev);
221         if (chip->driver_caps & AZX_DCAPS_OLD_SSYNC)
222                 sync_reg = AZX_REG_OLD_SSYNC;
223         else
224                 sync_reg = AZX_REG_SSYNC;
225
226         if (dsp_is_locked(azx_dev) || !hstr->prepared)
227                 return -EPIPE;
228
229         switch (cmd) {
230         case SNDRV_PCM_TRIGGER_START:
231         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
232         case SNDRV_PCM_TRIGGER_RESUME:
233                 start = true;
234                 break;
235         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
236         case SNDRV_PCM_TRIGGER_SUSPEND:
237         case SNDRV_PCM_TRIGGER_STOP:
238                 start = false;
239                 break;
240         default:
241                 return -EINVAL;
242         }
243
244         snd_pcm_group_for_each_entry(s, substream) {
245                 if (s->pcm->card != substream->pcm->card)
246                         continue;
247                 azx_dev = get_azx_dev(s);
248                 sbits |= 1 << azx_dev->core.index;
249                 snd_pcm_trigger_done(s, substream);
250         }
251
252         spin_lock(&bus->reg_lock);
253
254         /* first, set SYNC bits of corresponding streams */
255         snd_hdac_stream_sync_trigger(hstr, true, sbits, sync_reg);
256
257         snd_pcm_group_for_each_entry(s, substream) {
258                 if (s->pcm->card != substream->pcm->card)
259                         continue;
260                 azx_dev = get_azx_dev(s);
261                 if (start) {
262                         azx_dev->insufficient = 1;
263                         snd_hdac_stream_start(azx_stream(azx_dev), true);
264                 } else {
265                         snd_hdac_stream_stop(azx_stream(azx_dev));
266                 }
267         }
268         spin_unlock(&bus->reg_lock);
269
270         snd_hdac_stream_sync(hstr, start, sbits);
271
272         spin_lock(&bus->reg_lock);
273         /* reset SYNC bits */
274         snd_hdac_stream_sync_trigger(hstr, false, sbits, sync_reg);
275         if (start)
276                 snd_hdac_stream_timecounter_init(hstr, sbits);
277         spin_unlock(&bus->reg_lock);
278         return 0;
279 }
280
281 unsigned int azx_get_pos_lpib(struct azx *chip, struct azx_dev *azx_dev)
282 {
283         return snd_hdac_stream_get_pos_lpib(azx_stream(azx_dev));
284 }
285 EXPORT_SYMBOL_GPL(azx_get_pos_lpib);
286
287 unsigned int azx_get_pos_posbuf(struct azx *chip, struct azx_dev *azx_dev)
288 {
289         return snd_hdac_stream_get_pos_posbuf(azx_stream(azx_dev));
290 }
291 EXPORT_SYMBOL_GPL(azx_get_pos_posbuf);
292
293 unsigned int azx_get_position(struct azx *chip,
294                               struct azx_dev *azx_dev)
295 {
296         struct snd_pcm_substream *substream = azx_dev->core.substream;
297         unsigned int pos;
298         int stream = substream->stream;
299         int delay = 0;
300
301         if (chip->get_position[stream])
302                 pos = chip->get_position[stream](chip, azx_dev);
303         else /* use the position buffer as default */
304                 pos = azx_get_pos_posbuf(chip, azx_dev);
305
306         if (pos >= azx_dev->core.bufsize)
307                 pos = 0;
308
309         if (substream->runtime) {
310                 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
311                 struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
312
313                 if (chip->get_delay[stream])
314                         delay += chip->get_delay[stream](chip, azx_dev, pos);
315                 if (hinfo->ops.get_delay)
316                         delay += hinfo->ops.get_delay(hinfo, apcm->codec,
317                                                       substream);
318                 substream->runtime->delay = delay;
319         }
320
321         trace_azx_get_position(chip, azx_dev, pos, delay);
322         return pos;
323 }
324 EXPORT_SYMBOL_GPL(azx_get_position);
325
326 static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream)
327 {
328         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
329         struct azx *chip = apcm->chip;
330         struct azx_dev *azx_dev = get_azx_dev(substream);
331         return bytes_to_frames(substream->runtime,
332                                azx_get_position(chip, azx_dev));
333 }
334
335 /*
336  * azx_scale64: Scale base by mult/div while not overflowing sanely
337  *
338  * Derived from scale64_check_overflow in kernel/time/timekeeping.c
339  *
340  * The tmestamps for a 48Khz stream can overflow after (2^64/10^9)/48K which
341  * is about 384307 ie ~4.5 days.
342  *
343  * This scales the calculation so that overflow will happen but after 2^64 /
344  * 48000 secs, which is pretty large!
345  *
346  * In caln below:
347  *      base may overflow, but since there isn’t any additional division
348  *      performed on base it’s OK
349  *      rem can’t overflow because both are 32-bit values
350  */
351
352 #ifdef CONFIG_X86
353 static u64 azx_scale64(u64 base, u32 num, u32 den)
354 {
355         u64 rem;
356
357         rem = do_div(base, den);
358
359         base *= num;
360         rem *= num;
361
362         do_div(rem, den);
363
364         return base + rem;
365 }
366
367 static int azx_get_sync_time(ktime_t *device,
368                 struct system_counterval_t *system, void *ctx)
369 {
370         struct snd_pcm_substream *substream = ctx;
371         struct azx_dev *azx_dev = get_azx_dev(substream);
372         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
373         struct azx *chip = apcm->chip;
374         struct snd_pcm_runtime *runtime;
375         u64 ll_counter, ll_counter_l, ll_counter_h;
376         u64 tsc_counter, tsc_counter_l, tsc_counter_h;
377         u32 wallclk_ctr, wallclk_cycles;
378         bool direction;
379         u32 dma_select;
380         u32 timeout = 200;
381         u32 retry_count = 0;
382
383         runtime = substream->runtime;
384
385         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
386                 direction = 1;
387         else
388                 direction = 0;
389
390         /* 0th stream tag is not used, so DMA ch 0 is for 1st stream tag */
391         do {
392                 timeout = 100;
393                 dma_select = (direction << GTSCC_CDMAS_DMA_DIR_SHIFT) |
394                                         (azx_dev->core.stream_tag - 1);
395                 snd_hdac_chip_writel(azx_bus(chip), GTSCC, dma_select);
396
397                 /* Enable the capture */
398                 snd_hdac_chip_updatel(azx_bus(chip), GTSCC, 0, GTSCC_TSCCI_MASK);
399
400                 while (timeout) {
401                         if (snd_hdac_chip_readl(azx_bus(chip), GTSCC) &
402                                                 GTSCC_TSCCD_MASK)
403                                 break;
404
405                         timeout--;
406                 }
407
408                 if (!timeout) {
409                         dev_err(chip->card->dev, "GTSCC capture Timedout!\n");
410                         return -EIO;
411                 }
412
413                 /* Read wall clock counter */
414                 wallclk_ctr = snd_hdac_chip_readl(azx_bus(chip), WALFCC);
415
416                 /* Read TSC counter */
417                 tsc_counter_l = snd_hdac_chip_readl(azx_bus(chip), TSCCL);
418                 tsc_counter_h = snd_hdac_chip_readl(azx_bus(chip), TSCCU);
419
420                 /* Read Link counter */
421                 ll_counter_l = snd_hdac_chip_readl(azx_bus(chip), LLPCL);
422                 ll_counter_h = snd_hdac_chip_readl(azx_bus(chip), LLPCU);
423
424                 /* Ack: registers read done */
425                 snd_hdac_chip_writel(azx_bus(chip), GTSCC, GTSCC_TSCCD_SHIFT);
426
427                 tsc_counter = (tsc_counter_h << TSCCU_CCU_SHIFT) |
428                                                 tsc_counter_l;
429
430                 ll_counter = (ll_counter_h << LLPC_CCU_SHIFT) | ll_counter_l;
431                 wallclk_cycles = wallclk_ctr & WALFCC_CIF_MASK;
432
433                 /*
434                  * An error occurs near frame "rollover". The clocks in
435                  * frame value indicates whether this error may have
436                  * occurred. Here we use the value of 10 i.e.,
437                  * HDA_MAX_CYCLE_OFFSET
438                  */
439                 if (wallclk_cycles < HDA_MAX_CYCLE_VALUE - HDA_MAX_CYCLE_OFFSET
440                                         && wallclk_cycles > HDA_MAX_CYCLE_OFFSET)
441                         break;
442
443                 /*
444                  * Sleep before we read again, else we may again get
445                  * value near to MAX_CYCLE. Try to sleep for different
446                  * amount of time so we dont hit the same number again
447                  */
448                 udelay(retry_count++);
449
450         } while (retry_count != HDA_MAX_CYCLE_READ_RETRY);
451
452         if (retry_count == HDA_MAX_CYCLE_READ_RETRY) {
453                 dev_err_ratelimited(chip->card->dev,
454                         "Error in WALFCC cycle count\n");
455                 return -EIO;
456         }
457
458         *device = ns_to_ktime(azx_scale64(ll_counter,
459                                 NSEC_PER_SEC, runtime->rate));
460         *device = ktime_add_ns(*device, (wallclk_cycles * NSEC_PER_SEC) /
461                                ((HDA_MAX_CYCLE_VALUE + 1) * runtime->rate));
462
463         *system = convert_art_to_tsc(tsc_counter);
464
465         return 0;
466 }
467
468 #else
469 static int azx_get_sync_time(ktime_t *device,
470                 struct system_counterval_t *system, void *ctx)
471 {
472         return -ENXIO;
473 }
474 #endif
475
476 static int azx_get_crosststamp(struct snd_pcm_substream *substream,
477                               struct system_device_crosststamp *xtstamp)
478 {
479         return get_device_system_crosststamp(azx_get_sync_time,
480                                         substream, NULL, xtstamp);
481 }
482
483 static inline bool is_link_time_supported(struct snd_pcm_runtime *runtime,
484                                 struct snd_pcm_audio_tstamp_config *ts)
485 {
486         if (runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME)
487                 if (ts->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED)
488                         return true;
489
490         return false;
491 }
492
493 static int azx_get_time_info(struct snd_pcm_substream *substream,
494                         struct timespec *system_ts, struct timespec *audio_ts,
495                         struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
496                         struct snd_pcm_audio_tstamp_report *audio_tstamp_report)
497 {
498         struct azx_dev *azx_dev = get_azx_dev(substream);
499         struct snd_pcm_runtime *runtime = substream->runtime;
500         struct system_device_crosststamp xtstamp;
501         int ret;
502         u64 nsec;
503
504         if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) &&
505                 (audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) {
506
507                 snd_pcm_gettime(substream->runtime, system_ts);
508
509                 nsec = timecounter_read(&azx_dev->core.tc);
510                 nsec = div_u64(nsec, 3); /* can be optimized */
511                 if (audio_tstamp_config->report_delay)
512                         nsec = azx_adjust_codec_delay(substream, nsec);
513
514                 *audio_ts = ns_to_timespec(nsec);
515
516                 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK;
517                 audio_tstamp_report->accuracy_report = 1; /* rest of structure is valid */
518                 audio_tstamp_report->accuracy = 42; /* 24 MHz WallClock == 42ns resolution */
519
520         } else if (is_link_time_supported(runtime, audio_tstamp_config)) {
521
522                 ret = azx_get_crosststamp(substream, &xtstamp);
523                 if (ret)
524                         return ret;
525
526                 switch (runtime->tstamp_type) {
527                 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
528                         return -EINVAL;
529
530                 case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
531                         *system_ts = ktime_to_timespec(xtstamp.sys_monoraw);
532                         break;
533
534                 default:
535                         *system_ts = ktime_to_timespec(xtstamp.sys_realtime);
536                         break;
537
538                 }
539
540                 *audio_ts = ktime_to_timespec(xtstamp.device);
541
542                 audio_tstamp_report->actual_type =
543                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK_SYNCHRONIZED;
544                 audio_tstamp_report->accuracy_report = 1;
545                 /* 24 MHz WallClock == 42ns resolution */
546                 audio_tstamp_report->accuracy = 42;
547
548         } else {
549                 audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT;
550         }
551
552         return 0;
553 }
554
555 static struct snd_pcm_hardware azx_pcm_hw = {
556         .info =                 (SNDRV_PCM_INFO_MMAP |
557                                  SNDRV_PCM_INFO_INTERLEAVED |
558                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
559                                  SNDRV_PCM_INFO_MMAP_VALID |
560                                  /* No full-resume yet implemented */
561                                  /* SNDRV_PCM_INFO_RESUME |*/
562                                  SNDRV_PCM_INFO_PAUSE |
563                                  SNDRV_PCM_INFO_SYNC_START |
564                                  SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */
565                                  SNDRV_PCM_INFO_HAS_LINK_ATIME |
566                                  SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
567         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
568         .rates =                SNDRV_PCM_RATE_48000,
569         .rate_min =             48000,
570         .rate_max =             48000,
571         .channels_min =         2,
572         .channels_max =         2,
573         .buffer_bytes_max =     AZX_MAX_BUF_SIZE,
574         .period_bytes_min =     128,
575         .period_bytes_max =     AZX_MAX_BUF_SIZE / 2,
576         .periods_min =          2,
577         .periods_max =          AZX_MAX_FRAG,
578         .fifo_size =            0,
579 };
580
581 static int azx_pcm_open(struct snd_pcm_substream *substream)
582 {
583         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
584         struct hda_pcm_stream *hinfo = to_hda_pcm_stream(substream);
585         struct azx *chip = apcm->chip;
586         struct azx_dev *azx_dev;
587         struct snd_pcm_runtime *runtime = substream->runtime;
588         int err;
589         int buff_step;
590
591         snd_hda_codec_pcm_get(apcm->info);
592         mutex_lock(&chip->open_mutex);
593         azx_dev = azx_assign_device(chip, substream);
594         trace_azx_pcm_open(chip, azx_dev);
595         if (azx_dev == NULL) {
596                 err = -EBUSY;
597                 goto unlock;
598         }
599         runtime->private_data = azx_dev;
600
601         if (chip->gts_present)
602                 azx_pcm_hw.info = azx_pcm_hw.info |
603                         SNDRV_PCM_INFO_HAS_LINK_SYNCHRONIZED_ATIME;
604
605         runtime->hw = azx_pcm_hw;
606         runtime->hw.channels_min = hinfo->channels_min;
607         runtime->hw.channels_max = hinfo->channels_max;
608         runtime->hw.formats = hinfo->formats;
609         runtime->hw.rates = hinfo->rates;
610         snd_pcm_limit_hw_rates(runtime);
611         snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
612
613         /* avoid wrap-around with wall-clock */
614         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME,
615                                      20,
616                                      178000000);
617
618         if (chip->align_buffer_size)
619                 /* constrain buffer sizes to be multiple of 128
620                    bytes. This is more efficient in terms of memory
621                    access but isn't required by the HDA spec and
622                    prevents users from specifying exact period/buffer
623                    sizes. For example for 44.1kHz, a period size set
624                    to 20ms will be rounded to 19.59ms. */
625                 buff_step = 128;
626         else
627                 /* Don't enforce steps on buffer sizes, still need to
628                    be multiple of 4 bytes (HDA spec). Tested on Intel
629                    HDA controllers, may not work on all devices where
630                    option needs to be disabled */
631                 buff_step = 4;
632
633         snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
634                                    buff_step);
635         snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
636                                    buff_step);
637         snd_hda_power_up(apcm->codec);
638         if (hinfo->ops.open)
639                 err = hinfo->ops.open(hinfo, apcm->codec, substream);
640         else
641                 err = -ENODEV;
642         if (err < 0) {
643                 azx_release_device(azx_dev);
644                 goto powerdown;
645         }
646         snd_pcm_limit_hw_rates(runtime);
647         /* sanity check */
648         if (snd_BUG_ON(!runtime->hw.channels_min) ||
649             snd_BUG_ON(!runtime->hw.channels_max) ||
650             snd_BUG_ON(!runtime->hw.formats) ||
651             snd_BUG_ON(!runtime->hw.rates)) {
652                 azx_release_device(azx_dev);
653                 if (hinfo->ops.close)
654                         hinfo->ops.close(hinfo, apcm->codec, substream);
655                 err = -EINVAL;
656                 goto powerdown;
657         }
658
659         /* disable LINK_ATIME timestamps for capture streams
660            until we figure out how to handle digital inputs */
661         if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
662                 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */
663                 runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME;
664         }
665
666         snd_pcm_set_sync(substream);
667         mutex_unlock(&chip->open_mutex);
668         return 0;
669
670  powerdown:
671         snd_hda_power_down(apcm->codec);
672  unlock:
673         mutex_unlock(&chip->open_mutex);
674         snd_hda_codec_pcm_put(apcm->info);
675         return err;
676 }
677
678 static int azx_pcm_mmap(struct snd_pcm_substream *substream,
679                         struct vm_area_struct *area)
680 {
681         struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
682         struct azx *chip = apcm->chip;
683         if (chip->ops->pcm_mmap_prepare)
684                 chip->ops->pcm_mmap_prepare(substream, area);
685         return snd_pcm_lib_default_mmap(substream, area);
686 }
687
688 static const struct snd_pcm_ops azx_pcm_ops = {
689         .open = azx_pcm_open,
690         .close = azx_pcm_close,
691         .ioctl = snd_pcm_lib_ioctl,
692         .hw_params = azx_pcm_hw_params,
693         .hw_free = azx_pcm_hw_free,
694         .prepare = azx_pcm_prepare,
695         .trigger = azx_pcm_trigger,
696         .pointer = azx_pcm_pointer,
697         .get_time_info =  azx_get_time_info,
698         .mmap = azx_pcm_mmap,
699         .page = snd_pcm_sgbuf_ops_page,
700 };
701
702 static void azx_pcm_free(struct snd_pcm *pcm)
703 {
704         struct azx_pcm *apcm = pcm->private_data;
705         if (apcm) {
706                 list_del(&apcm->list);
707                 apcm->info->pcm = NULL;
708                 kfree(apcm);
709         }
710 }
711
712 #define MAX_PREALLOC_SIZE       (32 * 1024 * 1024)
713
714 int snd_hda_attach_pcm_stream(struct hda_bus *_bus, struct hda_codec *codec,
715                               struct hda_pcm *cpcm)
716 {
717         struct hdac_bus *bus = &_bus->core;
718         struct azx *chip = bus_to_azx(bus);
719         struct snd_pcm *pcm;
720         struct azx_pcm *apcm;
721         int pcm_dev = cpcm->device;
722         unsigned int size;
723         int s, err;
724         int type = SNDRV_DMA_TYPE_DEV_SG;
725
726         list_for_each_entry(apcm, &chip->pcm_list, list) {
727                 if (apcm->pcm->device == pcm_dev) {
728                         dev_err(chip->card->dev, "PCM %d already exists\n",
729                                 pcm_dev);
730                         return -EBUSY;
731                 }
732         }
733         err = snd_pcm_new(chip->card, cpcm->name, pcm_dev,
734                           cpcm->stream[SNDRV_PCM_STREAM_PLAYBACK].substreams,
735                           cpcm->stream[SNDRV_PCM_STREAM_CAPTURE].substreams,
736                           &pcm);
737         if (err < 0)
738                 return err;
739         strlcpy(pcm->name, cpcm->name, sizeof(pcm->name));
740         apcm = kzalloc(sizeof(*apcm), GFP_KERNEL);
741         if (apcm == NULL) {
742                 snd_device_free(chip->card, pcm);
743                 return -ENOMEM;
744         }
745         apcm->chip = chip;
746         apcm->pcm = pcm;
747         apcm->codec = codec;
748         apcm->info = cpcm;
749         pcm->private_data = apcm;
750         pcm->private_free = azx_pcm_free;
751         if (cpcm->pcm_type == HDA_PCM_TYPE_MODEM)
752                 pcm->dev_class = SNDRV_PCM_CLASS_MODEM;
753         list_add_tail(&apcm->list, &chip->pcm_list);
754         cpcm->pcm = pcm;
755         for (s = 0; s < 2; s++) {
756                 if (cpcm->stream[s].substreams)
757                         snd_pcm_set_ops(pcm, s, &azx_pcm_ops);
758         }
759         /* buffer pre-allocation */
760         size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024;
761         if (size > MAX_PREALLOC_SIZE)
762                 size = MAX_PREALLOC_SIZE;
763         if (chip->uc_buffer)
764                 type = SNDRV_DMA_TYPE_DEV_UC_SG;
765         snd_pcm_lib_preallocate_pages_for_all(pcm, type,
766                                               chip->card->dev,
767                                               size, MAX_PREALLOC_SIZE);
768         return 0;
769 }
770
771 static unsigned int azx_command_addr(u32 cmd)
772 {
773         unsigned int addr = cmd >> 28;
774
775         if (addr >= AZX_MAX_CODECS) {
776                 snd_BUG();
777                 addr = 0;
778         }
779
780         return addr;
781 }
782
783 /* receive a response */
784 static int azx_rirb_get_response(struct hdac_bus *bus, unsigned int addr,
785                                  unsigned int *res)
786 {
787         struct azx *chip = bus_to_azx(bus);
788         struct hda_bus *hbus = &chip->bus;
789         unsigned long timeout;
790         unsigned long loopcounter;
791         int do_poll = 0;
792
793  again:
794         timeout = jiffies + msecs_to_jiffies(1000);
795
796         for (loopcounter = 0;; loopcounter++) {
797                 spin_lock_irq(&bus->reg_lock);
798                 if (bus->polling_mode || do_poll)
799                         snd_hdac_bus_update_rirb(bus);
800                 if (!bus->rirb.cmds[addr]) {
801                         if (!do_poll)
802                                 bus->poll_count = 0;
803                         if (res)
804                                 *res = bus->rirb.res[addr]; /* the last value */
805                         spin_unlock_irq(&bus->reg_lock);
806                         return 0;
807                 }
808                 spin_unlock_irq(&bus->reg_lock);
809                 if (time_after(jiffies, timeout))
810                         break;
811                 if (hbus->needs_damn_long_delay || loopcounter > 3000)
812                         msleep(2); /* temporary workaround */
813                 else {
814                         udelay(10);
815                         cond_resched();
816                 }
817         }
818
819         if (hbus->no_response_fallback)
820                 return -EIO;
821
822         if (!bus->polling_mode && bus->poll_count < 2) {
823                 dev_dbg(chip->card->dev,
824                         "azx_get_response timeout, polling the codec once: last cmd=0x%08x\n",
825                         bus->last_cmd[addr]);
826                 do_poll = 1;
827                 bus->poll_count++;
828                 goto again;
829         }
830
831
832         if (!bus->polling_mode) {
833                 dev_warn(chip->card->dev,
834                          "azx_get_response timeout, switching to polling mode: last cmd=0x%08x\n",
835                          bus->last_cmd[addr]);
836                 bus->polling_mode = 1;
837                 goto again;
838         }
839
840         if (chip->msi) {
841                 dev_warn(chip->card->dev,
842                          "No response from codec, disabling MSI: last cmd=0x%08x\n",
843                          bus->last_cmd[addr]);
844                 if (chip->ops->disable_msi_reset_irq &&
845                     chip->ops->disable_msi_reset_irq(chip) < 0)
846                         return -EIO;
847                 goto again;
848         }
849
850         if (chip->probing) {
851                 /* If this critical timeout happens during the codec probing
852                  * phase, this is likely an access to a non-existing codec
853                  * slot.  Better to return an error and reset the system.
854                  */
855                 return -EIO;
856         }
857
858         /* no fallback mechanism? */
859         if (!chip->fallback_to_single_cmd)
860                 return -EIO;
861
862         /* a fatal communication error; need either to reset or to fallback
863          * to the single_cmd mode
864          */
865         if (hbus->allow_bus_reset && !hbus->response_reset && !hbus->in_reset) {
866                 hbus->response_reset = 1;
867                 return -EAGAIN; /* give a chance to retry */
868         }
869
870         dev_err(chip->card->dev,
871                 "azx_get_response timeout, switching to single_cmd mode: last cmd=0x%08x\n",
872                 bus->last_cmd[addr]);
873         chip->single_cmd = 1;
874         hbus->response_reset = 0;
875         snd_hdac_bus_stop_cmd_io(bus);
876         return -EIO;
877 }
878
879 /*
880  * Use the single immediate command instead of CORB/RIRB for simplicity
881  *
882  * Note: according to Intel, this is not preferred use.  The command was
883  *       intended for the BIOS only, and may get confused with unsolicited
884  *       responses.  So, we shouldn't use it for normal operation from the
885  *       driver.
886  *       I left the codes, however, for debugging/testing purposes.
887  */
888
889 /* receive a response */
890 static int azx_single_wait_for_response(struct azx *chip, unsigned int addr)
891 {
892         int timeout = 50;
893
894         while (timeout--) {
895                 /* check IRV busy bit */
896                 if (azx_readw(chip, IRS) & AZX_IRS_VALID) {
897                         /* reuse rirb.res as the response return value */
898                         azx_bus(chip)->rirb.res[addr] = azx_readl(chip, IR);
899                         return 0;
900                 }
901                 udelay(1);
902         }
903         if (printk_ratelimit())
904                 dev_dbg(chip->card->dev, "get_response timeout: IRS=0x%x\n",
905                         azx_readw(chip, IRS));
906         azx_bus(chip)->rirb.res[addr] = -1;
907         return -EIO;
908 }
909
910 /* send a command */
911 static int azx_single_send_cmd(struct hdac_bus *bus, u32 val)
912 {
913         struct azx *chip = bus_to_azx(bus);
914         unsigned int addr = azx_command_addr(val);
915         int timeout = 50;
916
917         bus->last_cmd[azx_command_addr(val)] = val;
918         while (timeout--) {
919                 /* check ICB busy bit */
920                 if (!((azx_readw(chip, IRS) & AZX_IRS_BUSY))) {
921                         /* Clear IRV valid bit */
922                         azx_writew(chip, IRS, azx_readw(chip, IRS) |
923                                    AZX_IRS_VALID);
924                         azx_writel(chip, IC, val);
925                         azx_writew(chip, IRS, azx_readw(chip, IRS) |
926                                    AZX_IRS_BUSY);
927                         return azx_single_wait_for_response(chip, addr);
928                 }
929                 udelay(1);
930         }
931         if (printk_ratelimit())
932                 dev_dbg(chip->card->dev,
933                         "send_cmd timeout: IRS=0x%x, val=0x%x\n",
934                         azx_readw(chip, IRS), val);
935         return -EIO;
936 }
937
938 /* receive a response */
939 static int azx_single_get_response(struct hdac_bus *bus, unsigned int addr,
940                                    unsigned int *res)
941 {
942         if (res)
943                 *res = bus->rirb.res[addr];
944         return 0;
945 }
946
947 /*
948  * The below are the main callbacks from hda_codec.
949  *
950  * They are just the skeleton to call sub-callbacks according to the
951  * current setting of chip->single_cmd.
952  */
953
954 /* send a command */
955 static int azx_send_cmd(struct hdac_bus *bus, unsigned int val)
956 {
957         struct azx *chip = bus_to_azx(bus);
958
959         if (chip->disabled)
960                 return 0;
961         if (chip->single_cmd)
962                 return azx_single_send_cmd(bus, val);
963         else
964                 return snd_hdac_bus_send_cmd(bus, val);
965 }
966
967 /* get a response */
968 static int azx_get_response(struct hdac_bus *bus, unsigned int addr,
969                             unsigned int *res)
970 {
971         struct azx *chip = bus_to_azx(bus);
972
973         if (chip->disabled)
974                 return 0;
975         if (chip->single_cmd)
976                 return azx_single_get_response(bus, addr, res);
977         else
978                 return azx_rirb_get_response(bus, addr, res);
979 }
980
981 static const struct hdac_bus_ops bus_core_ops = {
982         .command = azx_send_cmd,
983         .get_response = azx_get_response,
984 };
985
986 #ifdef CONFIG_SND_HDA_DSP_LOADER
987 /*
988  * DSP loading code (e.g. for CA0132)
989  */
990
991 /* use the first stream for loading DSP */
992 static struct azx_dev *
993 azx_get_dsp_loader_dev(struct azx *chip)
994 {
995         struct hdac_bus *bus = azx_bus(chip);
996         struct hdac_stream *s;
997
998         list_for_each_entry(s, &bus->stream_list, list)
999                 if (s->index == chip->playback_index_offset)
1000                         return stream_to_azx_dev(s);
1001
1002         return NULL;
1003 }
1004
1005 int snd_hda_codec_load_dsp_prepare(struct hda_codec *codec, unsigned int format,
1006                                    unsigned int byte_size,
1007                                    struct snd_dma_buffer *bufp)
1008 {
1009         struct hdac_bus *bus = &codec->bus->core;
1010         struct azx *chip = bus_to_azx(bus);
1011         struct azx_dev *azx_dev;
1012         struct hdac_stream *hstr;
1013         bool saved = false;
1014         int err;
1015
1016         azx_dev = azx_get_dsp_loader_dev(chip);
1017         hstr = azx_stream(azx_dev);
1018         spin_lock_irq(&bus->reg_lock);
1019         if (hstr->opened) {
1020                 chip->saved_azx_dev = *azx_dev;
1021                 saved = true;
1022         }
1023         spin_unlock_irq(&bus->reg_lock);
1024
1025         err = snd_hdac_dsp_prepare(hstr, format, byte_size, bufp);
1026         if (err < 0) {
1027                 spin_lock_irq(&bus->reg_lock);
1028                 if (saved)
1029                         *azx_dev = chip->saved_azx_dev;
1030                 spin_unlock_irq(&bus->reg_lock);
1031                 return err;
1032         }
1033
1034         hstr->prepared = 0;
1035         return err;
1036 }
1037 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_prepare);
1038
1039 void snd_hda_codec_load_dsp_trigger(struct hda_codec *codec, bool start)
1040 {
1041         struct hdac_bus *bus = &codec->bus->core;
1042         struct azx *chip = bus_to_azx(bus);
1043         struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1044
1045         snd_hdac_dsp_trigger(azx_stream(azx_dev), start);
1046 }
1047 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_trigger);
1048
1049 void snd_hda_codec_load_dsp_cleanup(struct hda_codec *codec,
1050                                     struct snd_dma_buffer *dmab)
1051 {
1052         struct hdac_bus *bus = &codec->bus->core;
1053         struct azx *chip = bus_to_azx(bus);
1054         struct azx_dev *azx_dev = azx_get_dsp_loader_dev(chip);
1055         struct hdac_stream *hstr = azx_stream(azx_dev);
1056
1057         if (!dmab->area || !hstr->locked)
1058                 return;
1059
1060         snd_hdac_dsp_cleanup(hstr, dmab);
1061         spin_lock_irq(&bus->reg_lock);
1062         if (hstr->opened)
1063                 *azx_dev = chip->saved_azx_dev;
1064         hstr->locked = false;
1065         spin_unlock_irq(&bus->reg_lock);
1066 }
1067 EXPORT_SYMBOL_GPL(snd_hda_codec_load_dsp_cleanup);
1068 #endif /* CONFIG_SND_HDA_DSP_LOADER */
1069
1070 /*
1071  * reset and start the controller registers
1072  */
1073 void azx_init_chip(struct azx *chip, bool full_reset)
1074 {
1075         if (snd_hdac_bus_init_chip(azx_bus(chip), full_reset)) {
1076                 /* correct RINTCNT for CXT */
1077                 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1078                         azx_writew(chip, RINTCNT, 0xc0);
1079         }
1080 }
1081 EXPORT_SYMBOL_GPL(azx_init_chip);
1082
1083 void azx_stop_all_streams(struct azx *chip)
1084 {
1085         struct hdac_bus *bus = azx_bus(chip);
1086         struct hdac_stream *s;
1087
1088         list_for_each_entry(s, &bus->stream_list, list)
1089                 snd_hdac_stream_stop(s);
1090 }
1091 EXPORT_SYMBOL_GPL(azx_stop_all_streams);
1092
1093 void azx_stop_chip(struct azx *chip)
1094 {
1095         snd_hdac_bus_stop_chip(azx_bus(chip));
1096 }
1097 EXPORT_SYMBOL_GPL(azx_stop_chip);
1098
1099 /*
1100  * interrupt handler
1101  */
1102 static void stream_update(struct hdac_bus *bus, struct hdac_stream *s)
1103 {
1104         struct azx *chip = bus_to_azx(bus);
1105         struct azx_dev *azx_dev = stream_to_azx_dev(s);
1106
1107         /* check whether this IRQ is really acceptable */
1108         if (!chip->ops->position_check ||
1109             chip->ops->position_check(chip, azx_dev)) {
1110                 spin_unlock(&bus->reg_lock);
1111                 snd_pcm_period_elapsed(azx_stream(azx_dev)->substream);
1112                 spin_lock(&bus->reg_lock);
1113         }
1114 }
1115
1116 irqreturn_t azx_interrupt(int irq, void *dev_id)
1117 {
1118         struct azx *chip = dev_id;
1119         struct hdac_bus *bus = azx_bus(chip);
1120         u32 status;
1121         bool active, handled = false;
1122         int repeat = 0; /* count for avoiding endless loop */
1123
1124 #ifdef CONFIG_PM
1125         if (azx_has_pm_runtime(chip))
1126                 if (!pm_runtime_active(chip->card->dev))
1127                         return IRQ_NONE;
1128 #endif
1129
1130         spin_lock(&bus->reg_lock);
1131
1132         if (chip->disabled)
1133                 goto unlock;
1134
1135         do {
1136                 status = azx_readl(chip, INTSTS);
1137                 if (status == 0 || status == 0xffffffff)
1138                         break;
1139
1140                 handled = true;
1141                 active = false;
1142                 if (snd_hdac_bus_handle_stream_irq(bus, status, stream_update))
1143                         active = true;
1144
1145                 /* clear rirb int */
1146                 status = azx_readb(chip, RIRBSTS);
1147                 if (status & RIRB_INT_MASK) {
1148                         active = true;
1149                         if (status & RIRB_INT_RESPONSE) {
1150                                 if (chip->driver_caps & AZX_DCAPS_CTX_WORKAROUND)
1151                                         udelay(80);
1152                                 snd_hdac_bus_update_rirb(bus);
1153                         }
1154                         azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
1155                 }
1156         } while (active && ++repeat < 10);
1157
1158  unlock:
1159         spin_unlock(&bus->reg_lock);
1160
1161         return IRQ_RETVAL(handled);
1162 }
1163 EXPORT_SYMBOL_GPL(azx_interrupt);
1164
1165 /*
1166  * Codec initerface
1167  */
1168
1169 /*
1170  * Probe the given codec address
1171  */
1172 static int probe_codec(struct azx *chip, int addr)
1173 {
1174         unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) |
1175                 (AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID;
1176         struct hdac_bus *bus = azx_bus(chip);
1177         int err;
1178         unsigned int res = -1;
1179
1180         mutex_lock(&bus->cmd_mutex);
1181         chip->probing = 1;
1182         azx_send_cmd(bus, cmd);
1183         err = azx_get_response(bus, addr, &res);
1184         chip->probing = 0;
1185         mutex_unlock(&bus->cmd_mutex);
1186         if (err < 0 || res == -1)
1187                 return -EIO;
1188         dev_dbg(chip->card->dev, "codec #%d probed OK\n", addr);
1189         return 0;
1190 }
1191
1192 void snd_hda_bus_reset(struct hda_bus *bus)
1193 {
1194         struct azx *chip = bus_to_azx(&bus->core);
1195
1196         bus->in_reset = 1;
1197         azx_stop_chip(chip);
1198         azx_init_chip(chip, true);
1199         if (bus->core.chip_init)
1200                 snd_hda_bus_reset_codecs(bus);
1201         bus->in_reset = 0;
1202 }
1203
1204 /* HD-audio bus initialization */
1205 int azx_bus_init(struct azx *chip, const char *model,
1206                  const struct hdac_io_ops *io_ops)
1207 {
1208         struct hda_bus *bus = &chip->bus;
1209         int err;
1210
1211         err = snd_hdac_bus_init(&bus->core, chip->card->dev, &bus_core_ops,
1212                                 io_ops);
1213         if (err < 0)
1214                 return err;
1215
1216         bus->card = chip->card;
1217         mutex_init(&bus->prepare_mutex);
1218         bus->pci = chip->pci;
1219         bus->modelname = model;
1220         bus->mixer_assigned = -1;
1221         bus->core.snoop = azx_snoop(chip);
1222         if (chip->get_position[0] != azx_get_pos_lpib ||
1223             chip->get_position[1] != azx_get_pos_lpib)
1224                 bus->core.use_posbuf = true;
1225         bus->core.bdl_pos_adj = chip->bdl_pos_adj;
1226         if (chip->driver_caps & AZX_DCAPS_CORBRP_SELF_CLEAR)
1227                 bus->core.corbrp_self_clear = true;
1228
1229         if (chip->driver_caps & AZX_DCAPS_4K_BDLE_BOUNDARY)
1230                 bus->core.align_bdle_4k = true;
1231
1232         /* AMD chipsets often cause the communication stalls upon certain
1233          * sequence like the pin-detection.  It seems that forcing the synced
1234          * access works around the stall.  Grrr...
1235          */
1236         if (chip->driver_caps & AZX_DCAPS_SYNC_WRITE) {
1237                 dev_dbg(chip->card->dev, "Enable sync_write for stable communication\n");
1238                 bus->core.sync_write = 1;
1239                 bus->allow_bus_reset = 1;
1240         }
1241
1242         return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(azx_bus_init);
1245
1246 /* Probe codecs */
1247 int azx_probe_codecs(struct azx *chip, unsigned int max_slots)
1248 {
1249         struct hdac_bus *bus = azx_bus(chip);
1250         int c, codecs, err;
1251
1252         codecs = 0;
1253         if (!max_slots)
1254                 max_slots = AZX_DEFAULT_CODECS;
1255
1256         /* First try to probe all given codec slots */
1257         for (c = 0; c < max_slots; c++) {
1258                 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1259                         if (probe_codec(chip, c) < 0) {
1260                                 /* Some BIOSen give you wrong codec addresses
1261                                  * that don't exist
1262                                  */
1263                                 dev_warn(chip->card->dev,
1264                                          "Codec #%d probe error; disabling it...\n", c);
1265                                 bus->codec_mask &= ~(1 << c);
1266                                 /* More badly, accessing to a non-existing
1267                                  * codec often screws up the controller chip,
1268                                  * and disturbs the further communications.
1269                                  * Thus if an error occurs during probing,
1270                                  * better to reset the controller chip to
1271                                  * get back to the sanity state.
1272                                  */
1273                                 azx_stop_chip(chip);
1274                                 azx_init_chip(chip, true);
1275                         }
1276                 }
1277         }
1278
1279         /* Then create codec instances */
1280         for (c = 0; c < max_slots; c++) {
1281                 if ((bus->codec_mask & (1 << c)) & chip->codec_probe_mask) {
1282                         struct hda_codec *codec;
1283                         err = snd_hda_codec_new(&chip->bus, chip->card, c, &codec);
1284                         if (err < 0)
1285                                 continue;
1286                         codec->jackpoll_interval = chip->jackpoll_interval;
1287                         codec->beep_mode = chip->beep_mode;
1288                         codecs++;
1289                 }
1290         }
1291         if (!codecs) {
1292                 dev_err(chip->card->dev, "no codecs initialized\n");
1293                 return -ENXIO;
1294         }
1295         return 0;
1296 }
1297 EXPORT_SYMBOL_GPL(azx_probe_codecs);
1298
1299 /* configure each codec instance */
1300 int azx_codec_configure(struct azx *chip)
1301 {
1302         struct hda_codec *codec, *next;
1303
1304         /* use _safe version here since snd_hda_codec_configure() deregisters
1305          * the device upon error and deletes itself from the bus list.
1306          */
1307         list_for_each_codec_safe(codec, next, &chip->bus) {
1308                 snd_hda_codec_configure(codec);
1309         }
1310
1311         if (!azx_bus(chip)->num_codecs)
1312                 return -ENODEV;
1313         return 0;
1314 }
1315 EXPORT_SYMBOL_GPL(azx_codec_configure);
1316
1317 static int stream_direction(struct azx *chip, unsigned char index)
1318 {
1319         if (index >= chip->capture_index_offset &&
1320             index < chip->capture_index_offset + chip->capture_streams)
1321                 return SNDRV_PCM_STREAM_CAPTURE;
1322         return SNDRV_PCM_STREAM_PLAYBACK;
1323 }
1324
1325 /* initialize SD streams */
1326 int azx_init_streams(struct azx *chip)
1327 {
1328         int i;
1329         int stream_tags[2] = { 0, 0 };
1330
1331         /* initialize each stream (aka device)
1332          * assign the starting bdl address to each stream (device)
1333          * and initialize
1334          */
1335         for (i = 0; i < chip->num_streams; i++) {
1336                 struct azx_dev *azx_dev = kzalloc(sizeof(*azx_dev), GFP_KERNEL);
1337                 int dir, tag;
1338
1339                 if (!azx_dev)
1340                         return -ENOMEM;
1341
1342                 dir = stream_direction(chip, i);
1343                 /* stream tag must be unique throughout
1344                  * the stream direction group,
1345                  * valid values 1...15
1346                  * use separate stream tag if the flag
1347                  * AZX_DCAPS_SEPARATE_STREAM_TAG is used
1348                  */
1349                 if (chip->driver_caps & AZX_DCAPS_SEPARATE_STREAM_TAG)
1350                         tag = ++stream_tags[dir];
1351                 else
1352                         tag = i + 1;
1353                 snd_hdac_stream_init(azx_bus(chip), azx_stream(azx_dev),
1354                                      i, dir, tag);
1355         }
1356
1357         return 0;
1358 }
1359 EXPORT_SYMBOL_GPL(azx_init_streams);
1360
1361 void azx_free_streams(struct azx *chip)
1362 {
1363         struct hdac_bus *bus = azx_bus(chip);
1364         struct hdac_stream *s;
1365
1366         while (!list_empty(&bus->stream_list)) {
1367                 s = list_first_entry(&bus->stream_list, struct hdac_stream, list);
1368                 list_del(&s->list);
1369                 kfree(stream_to_azx_dev(s));
1370         }
1371 }
1372 EXPORT_SYMBOL_GPL(azx_free_streams);