7fc51f829eccac2dde0a147a4c56d51943118c92
[linux-block.git] / sound / firewire / amdtp-stream.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4  * with Common Isochronous Packet (IEC 61883-1) headers
5  *
6  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7  */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
18
19 #define TICKS_PER_CYCLE         3072
20 #define CYCLES_PER_SECOND       8000
21 #define TICKS_PER_SECOND        (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22
23 #define OHCI_SECOND_MODULUS             8
24
25 /* Always support Linux tracing subsystem. */
26 #define CREATE_TRACE_POINTS
27 #include "amdtp-stream-trace.h"
28
29 #define TRANSFER_DELAY_TICKS    0x2e00 /* 479.17 microseconds */
30
31 /* isochronous header parameters */
32 #define ISO_DATA_LENGTH_SHIFT   16
33 #define TAG_NO_CIP_HEADER       0
34 #define TAG_CIP                 1
35
36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
37 #define CIP_HEADER_QUADLETS     2
38 #define CIP_EOH_SHIFT           31
39 #define CIP_EOH                 (1u << CIP_EOH_SHIFT)
40 #define CIP_EOH_MASK            0x80000000
41 #define CIP_SID_SHIFT           24
42 #define CIP_SID_MASK            0x3f000000
43 #define CIP_DBS_MASK            0x00ff0000
44 #define CIP_DBS_SHIFT           16
45 #define CIP_SPH_MASK            0x00000400
46 #define CIP_SPH_SHIFT           10
47 #define CIP_DBC_MASK            0x000000ff
48 #define CIP_FMT_SHIFT           24
49 #define CIP_FMT_MASK            0x3f000000
50 #define CIP_FDF_MASK            0x00ff0000
51 #define CIP_FDF_SHIFT           16
52 #define CIP_FDF_NO_DATA         0xff
53 #define CIP_SYT_MASK            0x0000ffff
54 #define CIP_SYT_NO_INFO         0xffff
55 #define CIP_SYT_CYCLE_MODULUS   16
56 #define CIP_NO_DATA             ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
57
58 #define CIP_HEADER_SIZE         (sizeof(__be32) * CIP_HEADER_QUADLETS)
59
60 /* Audio and Music transfer protocol specific parameters */
61 #define CIP_FMT_AM              0x10
62 #define AMDTP_FDF_NO_DATA       0xff
63
64 // For iso header and tstamp.
65 #define IR_CTX_HEADER_DEFAULT_QUADLETS  2
66 // Add nothing.
67 #define IR_CTX_HEADER_SIZE_NO_CIP       (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
68 // Add two quadlets CIP header.
69 #define IR_CTX_HEADER_SIZE_CIP          (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
70 #define HEADER_TSTAMP_MASK      0x0000ffff
71
72 #define IT_PKT_HEADER_SIZE_CIP          CIP_HEADER_SIZE
73 #define IT_PKT_HEADER_SIZE_NO_CIP       0 // Nothing.
74
75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing
76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
77 // overrun. Actual device can skip more, then this module stops the packet streaming.
78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES        5
79
80 static void pcm_period_work(struct work_struct *work);
81
82 /**
83  * amdtp_stream_init - initialize an AMDTP stream structure
84  * @s: the AMDTP stream to initialize
85  * @unit: the target of the stream
86  * @dir: the direction of stream
87  * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
88  * @fmt: the value of fmt field in CIP header
89  * @process_ctx_payloads: callback handler to process payloads of isoc context
90  * @protocol_size: the size to allocate newly for protocol
91  */
92 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
93                       enum amdtp_stream_direction dir, unsigned int flags,
94                       unsigned int fmt,
95                       amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
96                       unsigned int protocol_size)
97 {
98         if (process_ctx_payloads == NULL)
99                 return -EINVAL;
100
101         s->protocol = kzalloc(protocol_size, GFP_KERNEL);
102         if (!s->protocol)
103                 return -ENOMEM;
104
105         s->unit = unit;
106         s->direction = dir;
107         s->flags = flags;
108         s->context = ERR_PTR(-1);
109         mutex_init(&s->mutex);
110         INIT_WORK(&s->period_work, pcm_period_work);
111         s->packet_index = 0;
112
113         init_waitqueue_head(&s->ready_wait);
114
115         s->fmt = fmt;
116         s->process_ctx_payloads = process_ctx_payloads;
117
118         return 0;
119 }
120 EXPORT_SYMBOL(amdtp_stream_init);
121
122 /**
123  * amdtp_stream_destroy - free stream resources
124  * @s: the AMDTP stream to destroy
125  */
126 void amdtp_stream_destroy(struct amdtp_stream *s)
127 {
128         /* Not initialized. */
129         if (s->protocol == NULL)
130                 return;
131
132         WARN_ON(amdtp_stream_running(s));
133         kfree(s->protocol);
134         mutex_destroy(&s->mutex);
135 }
136 EXPORT_SYMBOL(amdtp_stream_destroy);
137
138 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
139         [CIP_SFC_32000]  =  8,
140         [CIP_SFC_44100]  =  8,
141         [CIP_SFC_48000]  =  8,
142         [CIP_SFC_88200]  = 16,
143         [CIP_SFC_96000]  = 16,
144         [CIP_SFC_176400] = 32,
145         [CIP_SFC_192000] = 32,
146 };
147 EXPORT_SYMBOL(amdtp_syt_intervals);
148
149 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
150         [CIP_SFC_32000]  =  32000,
151         [CIP_SFC_44100]  =  44100,
152         [CIP_SFC_48000]  =  48000,
153         [CIP_SFC_88200]  =  88200,
154         [CIP_SFC_96000]  =  96000,
155         [CIP_SFC_176400] = 176400,
156         [CIP_SFC_192000] = 192000,
157 };
158 EXPORT_SYMBOL(amdtp_rate_table);
159
160 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
161                                     struct snd_pcm_hw_rule *rule)
162 {
163         struct snd_interval *s = hw_param_interval(params, rule->var);
164         const struct snd_interval *r =
165                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
166         struct snd_interval t = {0};
167         unsigned int step = 0;
168         int i;
169
170         for (i = 0; i < CIP_SFC_COUNT; ++i) {
171                 if (snd_interval_test(r, amdtp_rate_table[i]))
172                         step = max(step, amdtp_syt_intervals[i]);
173         }
174
175         if (step == 0)
176                 return -EINVAL;
177
178         t.min = roundup(s->min, step);
179         t.max = rounddown(s->max, step);
180         t.integer = 1;
181
182         return snd_interval_refine(s, &t);
183 }
184
185 /**
186  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
187  * @s:          the AMDTP stream, which must be initialized.
188  * @runtime:    the PCM substream runtime
189  */
190 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
191                                         struct snd_pcm_runtime *runtime)
192 {
193         struct snd_pcm_hardware *hw = &runtime->hw;
194         unsigned int ctx_header_size;
195         unsigned int maximum_usec_per_period;
196         int err;
197
198         hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
199                    SNDRV_PCM_INFO_INTERLEAVED |
200                    SNDRV_PCM_INFO_JOINT_DUPLEX |
201                    SNDRV_PCM_INFO_MMAP |
202                    SNDRV_PCM_INFO_MMAP_VALID |
203                    SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
204
205         hw->periods_min = 2;
206         hw->periods_max = UINT_MAX;
207
208         /* bytes for a frame */
209         hw->period_bytes_min = 4 * hw->channels_max;
210
211         /* Just to prevent from allocating much pages. */
212         hw->period_bytes_max = hw->period_bytes_min * 2048;
213         hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
214
215         // Linux driver for 1394 OHCI controller voluntarily flushes isoc
216         // context when total size of accumulated context header reaches
217         // PAGE_SIZE. This kicks work for the isoc context and brings
218         // callback in the middle of scheduled interrupts.
219         // Although AMDTP streams in the same domain use the same events per
220         // IRQ, use the largest size of context header between IT/IR contexts.
221         // Here, use the value of context header in IR context is for both
222         // contexts.
223         if (!(s->flags & CIP_NO_HEADER))
224                 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
225         else
226                 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
227         maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
228                                   CYCLES_PER_SECOND / ctx_header_size;
229
230         // In IEC 61883-6, one isoc packet can transfer events up to the value
231         // of syt interval. This comes from the interval of isoc cycle. As 1394
232         // OHCI controller can generate hardware IRQ per isoc packet, the
233         // interval is 125 usec.
234         // However, there are two ways of transmission in IEC 61883-6; blocking
235         // and non-blocking modes. In blocking mode, the sequence of isoc packet
236         // includes 'empty' or 'NODATA' packets which include no event. In
237         // non-blocking mode, the number of events per packet is variable up to
238         // the syt interval.
239         // Due to the above protocol design, the minimum PCM frames per
240         // interrupt should be double of the value of syt interval, thus it is
241         // 250 usec.
242         err = snd_pcm_hw_constraint_minmax(runtime,
243                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
244                                            250, maximum_usec_per_period);
245         if (err < 0)
246                 goto end;
247
248         /* Non-Blocking stream has no more constraints */
249         if (!(s->flags & CIP_BLOCKING))
250                 goto end;
251
252         /*
253          * One AMDTP packet can include some frames. In blocking mode, the
254          * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
255          * depending on its sampling rate. For accurate period interrupt, it's
256          * preferrable to align period/buffer sizes to current SYT_INTERVAL.
257          */
258         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
259                                   apply_constraint_to_size, NULL,
260                                   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
261                                   SNDRV_PCM_HW_PARAM_RATE, -1);
262         if (err < 0)
263                 goto end;
264         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
265                                   apply_constraint_to_size, NULL,
266                                   SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
267                                   SNDRV_PCM_HW_PARAM_RATE, -1);
268         if (err < 0)
269                 goto end;
270 end:
271         return err;
272 }
273 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
274
275 /**
276  * amdtp_stream_set_parameters - set stream parameters
277  * @s: the AMDTP stream to configure
278  * @rate: the sample rate
279  * @data_block_quadlets: the size of a data block in quadlet unit
280  * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP
281  *                        events.
282  *
283  * The parameters must be set before the stream is started, and must not be
284  * changed while the stream is running.
285  */
286 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
287                                 unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier)
288 {
289         unsigned int sfc;
290
291         for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
292                 if (amdtp_rate_table[sfc] == rate)
293                         break;
294         }
295         if (sfc == ARRAY_SIZE(amdtp_rate_table))
296                 return -EINVAL;
297
298         s->sfc = sfc;
299         s->data_block_quadlets = data_block_quadlets;
300         s->syt_interval = amdtp_syt_intervals[sfc];
301
302         // default buffering in the device.
303         s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
304
305         // additional buffering needed to adjust for no-data packets.
306         if (s->flags & CIP_BLOCKING)
307                 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
308
309         s->pcm_frame_multiplier = pcm_frame_multiplier;
310
311         return 0;
312 }
313 EXPORT_SYMBOL(amdtp_stream_set_parameters);
314
315 // The CIP header is processed in context header apart from context payload.
316 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
317 {
318         unsigned int multiplier;
319
320         if (s->flags & CIP_JUMBO_PAYLOAD)
321                 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
322         else
323                 multiplier = 1;
324
325         return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
326 }
327
328 /**
329  * amdtp_stream_get_max_payload - get the stream's packet size
330  * @s: the AMDTP stream
331  *
332  * This function must not be called before the stream has been configured
333  * with amdtp_stream_set_parameters().
334  */
335 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
336 {
337         unsigned int cip_header_size;
338
339         if (!(s->flags & CIP_NO_HEADER))
340                 cip_header_size = CIP_HEADER_SIZE;
341         else
342                 cip_header_size = 0;
343
344         return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
345 }
346 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
347
348 /**
349  * amdtp_stream_pcm_prepare - prepare PCM device for running
350  * @s: the AMDTP stream
351  *
352  * This function should be called from the PCM device's .prepare callback.
353  */
354 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
355 {
356         cancel_work_sync(&s->period_work);
357         s->pcm_buffer_pointer = 0;
358         s->pcm_period_pointer = 0;
359 }
360 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
361
362 #define prev_packet_desc(s, desc) \
363         list_prev_entry_circular(desc, &s->packet_descs_list, link)
364
365 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
366                                       unsigned int size, unsigned int pos, unsigned int count)
367 {
368         const unsigned int syt_interval = s->syt_interval;
369         int i;
370
371         for (i = 0; i < count; ++i) {
372                 struct seq_desc *desc = descs + pos;
373
374                 if (desc->syt_offset != CIP_SYT_NO_INFO)
375                         desc->data_blocks = syt_interval;
376                 else
377                         desc->data_blocks = 0;
378
379                 pos = (pos + 1) % size;
380         }
381 }
382
383 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
384                                                unsigned int size, unsigned int pos,
385                                                unsigned int count)
386 {
387         const enum cip_sfc sfc = s->sfc;
388         unsigned int state = s->ctx_data.rx.data_block_state;
389         int i;
390
391         for (i = 0; i < count; ++i) {
392                 struct seq_desc *desc = descs + pos;
393
394                 if (!cip_sfc_is_base_44100(sfc)) {
395                         // Sample_rate / 8000 is an integer, and precomputed.
396                         desc->data_blocks = state;
397                 } else {
398                         unsigned int phase = state;
399
400                 /*
401                  * This calculates the number of data blocks per packet so that
402                  * 1) the overall rate is correct and exactly synchronized to
403                  *    the bus clock, and
404                  * 2) packets with a rounded-up number of blocks occur as early
405                  *    as possible in the sequence (to prevent underruns of the
406                  *    device's buffer).
407                  */
408                         if (sfc == CIP_SFC_44100)
409                                 /* 6 6 5 6 5 6 5 ... */
410                                 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
411                         else
412                                 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
413                                 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
414                         if (++phase >= (80 >> (sfc >> 1)))
415                                 phase = 0;
416                         state = phase;
417                 }
418
419                 pos = (pos + 1) % size;
420         }
421
422         s->ctx_data.rx.data_block_state = state;
423 }
424
425 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
426                         unsigned int *syt_offset_state, enum cip_sfc sfc)
427 {
428         unsigned int syt_offset;
429
430         if (*last_syt_offset < TICKS_PER_CYCLE) {
431                 if (!cip_sfc_is_base_44100(sfc))
432                         syt_offset = *last_syt_offset + *syt_offset_state;
433                 else {
434                 /*
435                  * The time, in ticks, of the n'th SYT_INTERVAL sample is:
436                  *   n * SYT_INTERVAL * 24576000 / sample_rate
437                  * Modulo TICKS_PER_CYCLE, the difference between successive
438                  * elements is about 1386.23.  Rounding the results of this
439                  * formula to the SYT precision results in a sequence of
440                  * differences that begins with:
441                  *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
442                  * This code generates _exactly_ the same sequence.
443                  */
444                         unsigned int phase = *syt_offset_state;
445                         unsigned int index = phase % 13;
446
447                         syt_offset = *last_syt_offset;
448                         syt_offset += 1386 + ((index && !(index & 3)) ||
449                                               phase == 146);
450                         if (++phase >= 147)
451                                 phase = 0;
452                         *syt_offset_state = phase;
453                 }
454         } else
455                 syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
456         *last_syt_offset = syt_offset;
457
458         if (syt_offset >= TICKS_PER_CYCLE)
459                 syt_offset = CIP_SYT_NO_INFO;
460
461         return syt_offset;
462 }
463
464 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
465                                    unsigned int size, unsigned int pos, unsigned int count)
466 {
467         const enum cip_sfc sfc = s->sfc;
468         unsigned int last = s->ctx_data.rx.last_syt_offset;
469         unsigned int state = s->ctx_data.rx.syt_offset_state;
470         int i;
471
472         for (i = 0; i < count; ++i) {
473                 struct seq_desc *desc = descs + pos;
474
475                 desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
476
477                 pos = (pos + 1) % size;
478         }
479
480         s->ctx_data.rx.last_syt_offset = last;
481         s->ctx_data.rx.syt_offset_state = state;
482 }
483
484 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
485                                        unsigned int transfer_delay)
486 {
487         unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
488         unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
489         unsigned int syt_offset;
490
491         // Round up.
492         if (syt_cycle_lo < cycle_lo)
493                 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
494         syt_cycle_lo -= cycle_lo;
495
496         // Subtract transfer delay so that the synchronization offset is not so large
497         // at transmission.
498         syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
499         if (syt_offset < transfer_delay)
500                 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
501
502         return syt_offset - transfer_delay;
503 }
504
505 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
506 // Additionally, the sequence of tx packets is severely checked against any discontinuity
507 // before filling entries in the queue. The calculation is safe even if it looks fragile by
508 // overrun.
509 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
510 {
511         const unsigned int cache_size = s->ctx_data.tx.cache.size;
512         unsigned int cycles = s->ctx_data.tx.cache.pos;
513
514         if (cycles < head)
515                 cycles += cache_size;
516         cycles -= head;
517
518         return cycles;
519 }
520
521 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count)
522 {
523         const unsigned int transfer_delay = s->transfer_delay;
524         const unsigned int cache_size = s->ctx_data.tx.cache.size;
525         struct seq_desc *cache = s->ctx_data.tx.cache.descs;
526         unsigned int cache_pos = s->ctx_data.tx.cache.pos;
527         bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
528         int i;
529
530         for (i = 0; i < desc_count; ++i) {
531                 struct seq_desc *dst = cache + cache_pos;
532
533                 if (aware_syt && src->syt != CIP_SYT_NO_INFO)
534                         dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
535                 else
536                         dst->syt_offset = CIP_SYT_NO_INFO;
537                 dst->data_blocks = src->data_blocks;
538
539                 cache_pos = (cache_pos + 1) % cache_size;
540                 src = amdtp_stream_next_packet_desc(s, src);
541         }
542
543         s->ctx_data.tx.cache.pos = cache_pos;
544 }
545
546 static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
547                                  unsigned int pos, unsigned int count)
548 {
549         pool_ideal_syt_offsets(s, descs, size, pos, count);
550
551         if (s->flags & CIP_BLOCKING)
552                 pool_blocking_data_blocks(s, descs, size, pos, count);
553         else
554                 pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count);
555 }
556
557 static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
558                               unsigned int pos, unsigned int count)
559 {
560         struct amdtp_stream *target = s->ctx_data.rx.replay_target;
561         const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
562         const unsigned int cache_size = target->ctx_data.tx.cache.size;
563         unsigned int cache_pos = s->ctx_data.rx.cache_pos;
564         int i;
565
566         for (i = 0; i < count; ++i) {
567                 descs[pos] = cache[cache_pos];
568                 cache_pos = (cache_pos + 1) % cache_size;
569                 pos = (pos + 1) % size;
570         }
571
572         s->ctx_data.rx.cache_pos = cache_pos;
573 }
574
575 static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
576                            unsigned int pos, unsigned int count)
577 {
578         struct amdtp_domain *d = s->domain;
579         void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
580                                unsigned int pos, unsigned int count);
581
582         if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
583                 pool_seq_descs = pool_ideal_seq_descs;
584         } else {
585                 if (!d->replay.on_the_fly) {
586                         pool_seq_descs = pool_replayed_seq;
587                 } else {
588                         struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
589                         const unsigned int cache_size = tx->ctx_data.tx.cache.size;
590                         const unsigned int cache_pos = s->ctx_data.rx.cache_pos;
591                         unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos);
592
593                         if (cached_cycles > count && cached_cycles > cache_size / 2)
594                                 pool_seq_descs = pool_replayed_seq;
595                         else
596                                 pool_seq_descs = pool_ideal_seq_descs;
597                 }
598         }
599
600         pool_seq_descs(s, descs, size, pos, count);
601 }
602
603 static void update_pcm_pointers(struct amdtp_stream *s,
604                                 struct snd_pcm_substream *pcm,
605                                 unsigned int frames)
606 {
607         unsigned int ptr;
608
609         ptr = s->pcm_buffer_pointer + frames;
610         if (ptr >= pcm->runtime->buffer_size)
611                 ptr -= pcm->runtime->buffer_size;
612         WRITE_ONCE(s->pcm_buffer_pointer, ptr);
613
614         s->pcm_period_pointer += frames;
615         if (s->pcm_period_pointer >= pcm->runtime->period_size) {
616                 s->pcm_period_pointer -= pcm->runtime->period_size;
617
618                 // The program in user process should periodically check the status of intermediate
619                 // buffer associated to PCM substream to process PCM frames in the buffer, instead
620                 // of receiving notification of period elapsed by poll wait.
621                 //
622                 // Use another work item for period elapsed event to prevent the following AB/BA
623                 // deadlock:
624                 //
625                 //             thread 1                            thread 2
626                 // =================================   =================================
627                 //       A.work item (process)                pcm ioctl (process)
628                 //                 v                                   v
629                 //       process_rx_packets()                  B.PCM stream lock
630                 //       process_tx_packets()                          v
631                 //                 v                        callbacks in snd_pcm_ops
632                 //       update_pcm_pointers()                         v
633                 //         snd_pcm_elapsed()           fw_iso_context_flush_completions()
634                 //  snd_pcm_stream_lock_irqsave()             disable_work_sync()
635                 //                 v                                   v
636                 //     wait until release of B                wait until A exits
637                 if (!pcm->runtime->no_period_wakeup)
638                         queue_work(system_highpri_wq, &s->period_work);
639         }
640 }
641
642 static void pcm_period_work(struct work_struct *work)
643 {
644         struct amdtp_stream *s = container_of(work, struct amdtp_stream,
645                                               period_work);
646         struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
647
648         if (pcm)
649                 snd_pcm_period_elapsed(pcm);
650 }
651
652 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
653                         bool sched_irq)
654 {
655         int err;
656
657         params->interrupt = sched_irq;
658         params->tag = s->tag;
659         params->sy = 0;
660
661         err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
662                                    s->buffer.packets[s->packet_index].offset);
663         if (err < 0) {
664                 dev_err(&s->unit->device, "queueing error: %d\n", err);
665                 goto end;
666         }
667
668         if (++s->packet_index >= s->queue_size)
669                 s->packet_index = 0;
670 end:
671         return err;
672 }
673
674 static inline int queue_out_packet(struct amdtp_stream *s,
675                                    struct fw_iso_packet *params, bool sched_irq)
676 {
677         params->skip =
678                 !!(params->header_length == 0 && params->payload_length == 0);
679         return queue_packet(s, params, sched_irq);
680 }
681
682 static inline int queue_in_packet(struct amdtp_stream *s,
683                                   struct fw_iso_packet *params)
684 {
685         // Queue one packet for IR context.
686         params->header_length = s->ctx_data.tx.ctx_header_size;
687         params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
688         params->skip = false;
689         return queue_packet(s, params, false);
690 }
691
692 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
693                         unsigned int data_block_counter, unsigned int syt)
694 {
695         cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
696                                 (s->data_block_quadlets << CIP_DBS_SHIFT) |
697                                 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
698                                 data_block_counter);
699         cip_header[1] = cpu_to_be32(CIP_EOH |
700                         ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
701                         ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
702                         (syt & CIP_SYT_MASK));
703 }
704
705 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
706                                 struct fw_iso_packet *params, unsigned int header_length,
707                                 unsigned int data_blocks,
708                                 unsigned int data_block_counter,
709                                 unsigned int syt, unsigned int index, u32 curr_cycle_time)
710 {
711         unsigned int payload_length;
712         __be32 *cip_header;
713
714         payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
715         params->payload_length = payload_length;
716
717         if (header_length > 0) {
718                 cip_header = (__be32 *)params->header;
719                 generate_cip_header(s, cip_header, data_block_counter, syt);
720                 params->header_length = header_length;
721         } else {
722                 cip_header = NULL;
723         }
724
725         trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
726                            data_block_counter, s->packet_index, index, curr_cycle_time);
727 }
728
729 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
730                             unsigned int payload_length,
731                             unsigned int *data_blocks,
732                             unsigned int *data_block_counter, unsigned int *syt)
733 {
734         u32 cip_header[2];
735         unsigned int sph;
736         unsigned int fmt;
737         unsigned int fdf;
738         unsigned int dbc;
739         bool lost;
740
741         cip_header[0] = be32_to_cpu(buf[0]);
742         cip_header[1] = be32_to_cpu(buf[1]);
743
744         /*
745          * This module supports 'Two-quadlet CIP header with SYT field'.
746          * For convenience, also check FMT field is AM824 or not.
747          */
748         if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
749              ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
750             (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
751                 dev_info_ratelimited(&s->unit->device,
752                                 "Invalid CIP header for AMDTP: %08X:%08X\n",
753                                 cip_header[0], cip_header[1]);
754                 return -EAGAIN;
755         }
756
757         /* Check valid protocol or not. */
758         sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
759         fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
760         if (sph != s->sph || fmt != s->fmt) {
761                 dev_info_ratelimited(&s->unit->device,
762                                      "Detect unexpected protocol: %08x %08x\n",
763                                      cip_header[0], cip_header[1]);
764                 return -EAGAIN;
765         }
766
767         /* Calculate data blocks */
768         fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
769         if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
770                 *data_blocks = 0;
771         } else {
772                 unsigned int data_block_quadlets =
773                                 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
774                 /* avoid division by zero */
775                 if (data_block_quadlets == 0) {
776                         dev_err(&s->unit->device,
777                                 "Detect invalid value in dbs field: %08X\n",
778                                 cip_header[0]);
779                         return -EPROTO;
780                 }
781                 if (s->flags & CIP_WRONG_DBS)
782                         data_block_quadlets = s->data_block_quadlets;
783
784                 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
785         }
786
787         /* Check data block counter continuity */
788         dbc = cip_header[0] & CIP_DBC_MASK;
789         if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
790             *data_block_counter != UINT_MAX)
791                 dbc = *data_block_counter;
792
793         if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
794             *data_block_counter == UINT_MAX) {
795                 lost = false;
796         } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
797                 lost = dbc != *data_block_counter;
798         } else {
799                 unsigned int dbc_interval;
800
801                 if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) {
802                         if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
803                                 dbc_interval = s->ctx_data.tx.dbc_interval;
804                         else
805                                 dbc_interval = *data_blocks;
806                 } else {
807                         dbc_interval = payload_length / sizeof(__be32);
808                 }
809
810                 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
811         }
812
813         if (lost) {
814                 dev_err(&s->unit->device,
815                         "Detect discontinuity of CIP: %02X %02X\n",
816                         *data_block_counter, dbc);
817                 return -EIO;
818         }
819
820         *data_block_counter = dbc;
821
822         if (!(s->flags & CIP_UNAWARE_SYT))
823                 *syt = cip_header[1] & CIP_SYT_MASK;
824
825         return 0;
826 }
827
828 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
829                                const __be32 *ctx_header,
830                                unsigned int *data_blocks,
831                                unsigned int *data_block_counter,
832                                unsigned int *syt, unsigned int packet_index, unsigned int index,
833                                u32 curr_cycle_time)
834 {
835         unsigned int payload_length;
836         const __be32 *cip_header;
837         unsigned int cip_header_size;
838
839         payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
840
841         if (!(s->flags & CIP_NO_HEADER))
842                 cip_header_size = CIP_HEADER_SIZE;
843         else
844                 cip_header_size = 0;
845
846         if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
847                 dev_err(&s->unit->device,
848                         "Detect jumbo payload: %04x %04x\n",
849                         payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
850                 return -EIO;
851         }
852
853         if (cip_header_size > 0) {
854                 if (payload_length >= cip_header_size) {
855                         int err;
856
857                         cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
858                         err = check_cip_header(s, cip_header, payload_length - cip_header_size,
859                                                data_blocks, data_block_counter, syt);
860                         if (err < 0)
861                                 return err;
862                 } else {
863                         // Handle the cycle so that empty packet arrives.
864                         cip_header = NULL;
865                         *data_blocks = 0;
866                         *syt = 0;
867                 }
868         } else {
869                 cip_header = NULL;
870                 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
871                 *syt = 0;
872
873                 if (*data_block_counter == UINT_MAX)
874                         *data_block_counter = 0;
875         }
876
877         trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
878                            *data_block_counter, packet_index, index, curr_cycle_time);
879
880         return 0;
881 }
882
883 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
884 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
885 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
886 static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp)
887 {
888         return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff);
889 }
890
891 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
892 {
893         u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
894         return compute_ohci_iso_ctx_cycle_count(tstamp);
895 }
896
897 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
898 {
899         cycle += addend;
900         if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
901                 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
902         return cycle;
903 }
904
905 static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend)
906 {
907         if (minuend < subtrahend)
908                 minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
909
910         return minuend - subtrahend;
911 }
912
913 static int compare_ohci_cycle_count(u32 lval, u32 rval)
914 {
915         if (lval == rval)
916                 return 0;
917         else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
918                 return -1;
919         else
920                 return 1;
921 }
922
923 // Align to actual cycle count for the packet which is going to be scheduled.
924 // This module queued the same number of isochronous cycle as the size of queue
925 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
926 // the size of queue for scheduled cycle.
927 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
928                                         unsigned int queue_size)
929 {
930         u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
931         return increment_ohci_cycle_count(cycle, queue_size);
932 }
933
934 static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
935                                     const __be32 *ctx_header, unsigned int packet_count,
936                                     unsigned int *desc_count)
937 {
938         unsigned int next_cycle = s->next_cycle;
939         unsigned int dbc = s->data_block_counter;
940         unsigned int packet_index = s->packet_index;
941         unsigned int queue_size = s->queue_size;
942         u32 curr_cycle_time = 0;
943         int i;
944         int err;
945
946         if (trace_amdtp_packet_enabled())
947                 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
948
949         *desc_count = 0;
950         for (i = 0; i < packet_count; ++i) {
951                 unsigned int cycle;
952                 bool lost;
953                 unsigned int data_blocks;
954                 unsigned int syt;
955
956                 cycle = compute_ohci_cycle_count(ctx_header[1]);
957                 lost = (next_cycle != cycle);
958                 if (lost) {
959                         if (s->flags & CIP_NO_HEADER) {
960                                 // Fireface skips transmission just for an isoc cycle corresponding
961                                 // to empty packet.
962                                 unsigned int prev_cycle = next_cycle;
963
964                                 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
965                                 lost = (next_cycle != cycle);
966                                 if (!lost) {
967                                         // Prepare a description for the skipped cycle for
968                                         // sequence replay.
969                                         desc->cycle = prev_cycle;
970                                         desc->syt = 0;
971                                         desc->data_blocks = 0;
972                                         desc->data_block_counter = dbc;
973                                         desc->ctx_payload = NULL;
974                                         desc = amdtp_stream_next_packet_desc(s, desc);
975                                         ++(*desc_count);
976                                 }
977                         } else if (s->flags & CIP_JUMBO_PAYLOAD) {
978                                 // OXFW970 skips transmission for several isoc cycles during
979                                 // asynchronous transaction. The sequence replay is impossible due
980                                 // to the reason.
981                                 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
982                                                                 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
983                                 lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0);
984                         }
985                         if (lost) {
986                                 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
987                                         next_cycle, cycle);
988                                 return -EIO;
989                         }
990                 }
991
992                 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
993                                           packet_index, i, curr_cycle_time);
994                 if (err < 0)
995                         return err;
996
997                 desc->cycle = cycle;
998                 desc->syt = syt;
999                 desc->data_blocks = data_blocks;
1000                 desc->data_block_counter = dbc;
1001                 desc->ctx_payload = s->buffer.packets[packet_index].buffer;
1002
1003                 if (!(s->flags & CIP_DBC_IS_END_EVENT))
1004                         dbc = (dbc + desc->data_blocks) & 0xff;
1005
1006                 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
1007                 desc = amdtp_stream_next_packet_desc(s, desc);
1008                 ++(*desc_count);
1009                 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1010                 packet_index = (packet_index + 1) % queue_size;
1011         }
1012
1013         s->next_cycle = next_cycle;
1014         s->data_block_counter = dbc;
1015
1016         return 0;
1017 }
1018
1019 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
1020                                 unsigned int transfer_delay)
1021 {
1022         unsigned int syt;
1023
1024         syt_offset += transfer_delay;
1025         syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
1026               (syt_offset % TICKS_PER_CYCLE);
1027         return syt & CIP_SYT_MASK;
1028 }
1029
1030 static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
1031                                      const __be32 *ctx_header, unsigned int packet_count)
1032 {
1033         struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
1034         unsigned int seq_size = s->ctx_data.rx.seq.size;
1035         unsigned int seq_pos = s->ctx_data.rx.seq.pos;
1036         unsigned int dbc = s->data_block_counter;
1037         bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
1038         int i;
1039
1040         pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count);
1041
1042         for (i = 0; i < packet_count; ++i) {
1043                 unsigned int index = (s->packet_index + i) % s->queue_size;
1044                 const struct seq_desc *seq = seq_descs + seq_pos;
1045
1046                 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
1047
1048                 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1049                         desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1050                 else
1051                         desc->syt = CIP_SYT_NO_INFO;
1052
1053                 desc->data_blocks = seq->data_blocks;
1054
1055                 if (s->flags & CIP_DBC_IS_END_EVENT)
1056                         dbc = (dbc + desc->data_blocks) & 0xff;
1057
1058                 desc->data_block_counter = dbc;
1059
1060                 if (!(s->flags & CIP_DBC_IS_END_EVENT))
1061                         dbc = (dbc + desc->data_blocks) & 0xff;
1062
1063                 desc->ctx_payload = s->buffer.packets[index].buffer;
1064
1065                 seq_pos = (seq_pos + 1) % seq_size;
1066                 desc = amdtp_stream_next_packet_desc(s, desc);
1067
1068                 ++ctx_header;
1069         }
1070
1071         s->data_block_counter = dbc;
1072         s->ctx_data.rx.seq.pos = seq_pos;
1073 }
1074
1075 static inline void cancel_stream(struct amdtp_stream *s)
1076 {
1077         struct work_struct *work = current_work();
1078
1079         s->packet_index = -1;
1080
1081         // Detect work items for any isochronous context. The work item for pcm_period_work()
1082         // should be avoided since the call of snd_pcm_period_elapsed() can reach via
1083         // snd_pcm_ops.pointer() under acquiring PCM stream(group) lock and causes dead lock at
1084         // snd_pcm_stop_xrun().
1085         if (work && work != &s->period_work)
1086                 amdtp_stream_pcm_abort(s);
1087         WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1088 }
1089
1090 static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s,
1091                                                  const struct pkt_desc *desc, unsigned int count)
1092 {
1093         unsigned int data_block_count = 0;
1094         u32 latest_cycle;
1095         u32 cycle_time;
1096         u32 curr_cycle;
1097         u32 cycle_gap;
1098         int i, err;
1099
1100         if (count == 0)
1101                 goto end;
1102
1103         // Forward to the latest record.
1104         for (i = 0; i < count - 1; ++i)
1105                 desc = amdtp_stream_next_packet_desc(s, desc);
1106         latest_cycle = desc->cycle;
1107
1108         err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time);
1109         if (err < 0)
1110                 goto end;
1111
1112         // Compute cycle count with lower 3 bits of second field and cycle field like timestamp
1113         // format of 1394 OHCI isochronous context.
1114         curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff);
1115
1116         if (s->direction == AMDTP_IN_STREAM) {
1117                 // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since
1118                 // it corresponds to arrived isochronous packet.
1119                 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0)
1120                         goto end;
1121                 cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle);
1122
1123                 // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated
1124                 // value expectedly corresponds to a few packets (0-2) since the packet arrived at
1125                 // the most recent isochronous cycle has been already processed.
1126                 for (i = 0; i < cycle_gap; ++i) {
1127                         desc = amdtp_stream_next_packet_desc(s, desc);
1128                         data_block_count += desc->data_blocks;
1129                 }
1130         } else {
1131                 // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle
1132                 // since it was already scheduled.
1133                 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0)
1134                         goto end;
1135                 cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle);
1136
1137                 // NOTE: use history of scheduled packets.
1138                 for (i = 0; i < cycle_gap; ++i) {
1139                         data_block_count += desc->data_blocks;
1140                         desc = prev_packet_desc(s, desc);
1141                 }
1142         }
1143 end:
1144         return data_block_count * s->pcm_frame_multiplier;
1145 }
1146
1147 static void process_ctx_payloads(struct amdtp_stream *s,
1148                                  const struct pkt_desc *desc,
1149                                  unsigned int count)
1150 {
1151         struct snd_pcm_substream *pcm;
1152         int i;
1153
1154         pcm = READ_ONCE(s->pcm);
1155         s->process_ctx_payloads(s, desc, count, pcm);
1156
1157         if (pcm) {
1158                 unsigned int data_block_count = 0;
1159
1160                 pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count);
1161
1162                 for (i = 0; i < count; ++i) {
1163                         data_block_count += desc->data_blocks;
1164                         desc = amdtp_stream_next_packet_desc(s, desc);
1165                 }
1166
1167                 update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier);
1168         }
1169 }
1170
1171 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1172                                void *header, void *private_data)
1173 {
1174         struct amdtp_stream *s = private_data;
1175         const struct amdtp_domain *d = s->domain;
1176         const __be32 *ctx_header = header;
1177         const unsigned int events_per_period = d->events_per_period;
1178         unsigned int event_count = s->ctx_data.rx.event_count;
1179         struct pkt_desc *desc = s->packet_descs_cursor;
1180         unsigned int pkt_header_length;
1181         unsigned int packets;
1182         u32 curr_cycle_time;
1183         bool need_hw_irq;
1184         int i;
1185
1186         if (s->packet_index < 0)
1187                 return;
1188
1189         // Calculate the number of packets in buffer and check XRUN.
1190         packets = header_length / sizeof(*ctx_header);
1191
1192         generate_rx_packet_descs(s, desc, ctx_header, packets);
1193
1194         process_ctx_payloads(s, desc, packets);
1195
1196         if (!(s->flags & CIP_NO_HEADER))
1197                 pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1198         else
1199                 pkt_header_length = 0;
1200
1201         if (s == d->irq_target) {
1202                 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1203                 // the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1204                 // with some requests, instead of scheduled hardware IRQ of an IT context.
1205                 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1206                 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1207         } else {
1208                 need_hw_irq = false;
1209         }
1210
1211         if (trace_amdtp_packet_enabled())
1212                 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
1213
1214         for (i = 0; i < packets; ++i) {
1215                 DEFINE_RAW_FLEX(struct fw_iso_packet, template, header, CIP_HEADER_QUADLETS);
1216                 bool sched_irq = false;
1217
1218                 build_it_pkt_header(s, desc->cycle, template, pkt_header_length,
1219                                     desc->data_blocks, desc->data_block_counter,
1220                                     desc->syt, i, curr_cycle_time);
1221
1222                 if (s == s->domain->irq_target) {
1223                         event_count += desc->data_blocks;
1224                         if (event_count >= events_per_period) {
1225                                 event_count -= events_per_period;
1226                                 sched_irq = need_hw_irq;
1227                         }
1228                 }
1229
1230                 if (queue_out_packet(s, template, sched_irq) < 0) {
1231                         cancel_stream(s);
1232                         return;
1233                 }
1234
1235                 desc = amdtp_stream_next_packet_desc(s, desc);
1236         }
1237
1238         s->ctx_data.rx.event_count = event_count;
1239         s->packet_descs_cursor = desc;
1240 }
1241
1242 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1243                             void *header, void *private_data)
1244 {
1245         struct amdtp_stream *s = private_data;
1246         struct amdtp_domain *d = s->domain;
1247         const __be32 *ctx_header = header;
1248         unsigned int packets;
1249         unsigned int cycle;
1250         int i;
1251
1252         if (s->packet_index < 0)
1253                 return;
1254
1255         packets = header_length / sizeof(*ctx_header);
1256
1257         cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1258         s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1259
1260         for (i = 0; i < packets; ++i) {
1261                 struct fw_iso_packet params = {
1262                         .header_length = 0,
1263                         .payload_length = 0,
1264                 };
1265                 bool sched_irq = (s == d->irq_target && i == packets - 1);
1266
1267                 if (queue_out_packet(s, &params, sched_irq) < 0) {
1268                         cancel_stream(s);
1269                         return;
1270                 }
1271         }
1272 }
1273
1274 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1275                                 void *header, void *private_data);
1276
1277 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1278                                         size_t header_length, void *header, void *private_data)
1279 {
1280         struct amdtp_stream *s = private_data;
1281         struct amdtp_domain *d = s->domain;
1282         __be32 *ctx_header = header;
1283         const unsigned int queue_size = s->queue_size;
1284         unsigned int packets;
1285         unsigned int offset;
1286
1287         if (s->packet_index < 0)
1288                 return;
1289
1290         packets = header_length / sizeof(*ctx_header);
1291
1292         offset = 0;
1293         while (offset < packets) {
1294                 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1295
1296                 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1297                         break;
1298
1299                 ++offset;
1300         }
1301
1302         if (offset > 0) {
1303                 unsigned int length = sizeof(*ctx_header) * offset;
1304
1305                 skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1306                 if (amdtp_streaming_error(s))
1307                         return;
1308
1309                 ctx_header += offset;
1310                 header_length -= length;
1311         }
1312
1313         if (offset < packets) {
1314                 s->ready_processing = true;
1315                 wake_up(&s->ready_wait);
1316
1317                 if (d->replay.enable)
1318                         s->ctx_data.rx.cache_pos = 0;
1319
1320                 process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1321                 if (amdtp_streaming_error(s))
1322                         return;
1323
1324                 if (s == d->irq_target)
1325                         s->context->callback.sc = irq_target_callback;
1326                 else
1327                         s->context->callback.sc = process_rx_packets;
1328         }
1329 }
1330
1331 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1332                                void *header, void *private_data)
1333 {
1334         struct amdtp_stream *s = private_data;
1335         __be32 *ctx_header = header;
1336         struct pkt_desc *desc = s->packet_descs_cursor;
1337         unsigned int packet_count;
1338         unsigned int desc_count;
1339         int i;
1340         int err;
1341
1342         if (s->packet_index < 0)
1343                 return;
1344
1345         // Calculate the number of packets in buffer and check XRUN.
1346         packet_count = header_length / s->ctx_data.tx.ctx_header_size;
1347
1348         desc_count = 0;
1349         err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count);
1350         if (err < 0) {
1351                 if (err != -EAGAIN) {
1352                         cancel_stream(s);
1353                         return;
1354                 }
1355         } else {
1356                 struct amdtp_domain *d = s->domain;
1357
1358                 process_ctx_payloads(s, desc, desc_count);
1359
1360                 if (d->replay.enable)
1361                         cache_seq(s, desc, desc_count);
1362
1363                 for (i = 0; i < desc_count; ++i)
1364                         desc = amdtp_stream_next_packet_desc(s, desc);
1365                 s->packet_descs_cursor = desc;
1366         }
1367
1368         for (i = 0; i < packet_count; ++i) {
1369                 struct fw_iso_packet params = {0};
1370
1371                 if (queue_in_packet(s, &params) < 0) {
1372                         cancel_stream(s);
1373                         return;
1374                 }
1375         }
1376 }
1377
1378 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1379                             void *header, void *private_data)
1380 {
1381         struct amdtp_stream *s = private_data;
1382         const __be32 *ctx_header = header;
1383         unsigned int packets;
1384         unsigned int cycle;
1385         int i;
1386
1387         if (s->packet_index < 0)
1388                 return;
1389
1390         packets = header_length / s->ctx_data.tx.ctx_header_size;
1391
1392         ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1393         cycle = compute_ohci_cycle_count(ctx_header[1]);
1394         s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1395
1396         for (i = 0; i < packets; ++i) {
1397                 struct fw_iso_packet params = {0};
1398
1399                 if (queue_in_packet(s, &params) < 0) {
1400                         cancel_stream(s);
1401                         return;
1402                 }
1403         }
1404 }
1405
1406 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1407                                         size_t header_length, void *header, void *private_data)
1408 {
1409         struct amdtp_stream *s = private_data;
1410         struct amdtp_domain *d = s->domain;
1411         __be32 *ctx_header;
1412         unsigned int packets;
1413         unsigned int offset;
1414
1415         if (s->packet_index < 0)
1416                 return;
1417
1418         packets = header_length / s->ctx_data.tx.ctx_header_size;
1419
1420         offset = 0;
1421         ctx_header = header;
1422         while (offset < packets) {
1423                 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1424
1425                 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1426                         break;
1427
1428                 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1429                 ++offset;
1430         }
1431
1432         ctx_header = header;
1433
1434         if (offset > 0) {
1435                 size_t length = s->ctx_data.tx.ctx_header_size * offset;
1436
1437                 drop_tx_packets(context, tstamp, length, ctx_header, s);
1438                 if (amdtp_streaming_error(s))
1439                         return;
1440
1441                 ctx_header += length / sizeof(*ctx_header);
1442                 header_length -= length;
1443         }
1444
1445         if (offset < packets) {
1446                 s->ready_processing = true;
1447                 wake_up(&s->ready_wait);
1448
1449                 process_tx_packets(context, tstamp, header_length, ctx_header, s);
1450                 if (amdtp_streaming_error(s))
1451                         return;
1452
1453                 context->callback.sc = process_tx_packets;
1454         }
1455 }
1456
1457 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1458                                       size_t header_length, void *header, void *private_data)
1459 {
1460         struct amdtp_stream *s = private_data;
1461         struct amdtp_domain *d = s->domain;
1462         __be32 *ctx_header;
1463         unsigned int count;
1464         unsigned int events;
1465         int i;
1466
1467         if (s->packet_index < 0)
1468                 return;
1469
1470         count = header_length / s->ctx_data.tx.ctx_header_size;
1471
1472         // Attempt to detect any event in the batch of packets.
1473         events = 0;
1474         ctx_header = header;
1475         for (i = 0; i < count; ++i) {
1476                 unsigned int payload_quads =
1477                         (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1478                 unsigned int data_blocks;
1479
1480                 if (s->flags & CIP_NO_HEADER) {
1481                         data_blocks = payload_quads / s->data_block_quadlets;
1482                 } else {
1483                         __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1484
1485                         if (payload_quads < CIP_HEADER_QUADLETS) {
1486                                 data_blocks = 0;
1487                         } else {
1488                                 payload_quads -= CIP_HEADER_QUADLETS;
1489
1490                                 if (s->flags & CIP_UNAWARE_SYT) {
1491                                         data_blocks = payload_quads / s->data_block_quadlets;
1492                                 } else {
1493                                         u32 cip1 = be32_to_cpu(cip_headers[1]);
1494
1495                                         // NODATA packet can includes any data blocks but they are
1496                                         // not available as event.
1497                                         if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1498                                                 data_blocks = 0;
1499                                         else
1500                                                 data_blocks = payload_quads / s->data_block_quadlets;
1501                                 }
1502                         }
1503                 }
1504
1505                 events += data_blocks;
1506
1507                 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1508         }
1509
1510         drop_tx_packets(context, tstamp, header_length, header, s);
1511
1512         if (events > 0)
1513                 s->ctx_data.tx.event_starts = true;
1514
1515         // Decide the cycle count to begin processing content of packet in IR contexts.
1516         {
1517                 unsigned int stream_count = 0;
1518                 unsigned int event_starts_count = 0;
1519                 unsigned int cycle = UINT_MAX;
1520
1521                 list_for_each_entry(s, &d->streams, list) {
1522                         if (s->direction == AMDTP_IN_STREAM) {
1523                                 ++stream_count;
1524                                 if (s->ctx_data.tx.event_starts)
1525                                         ++event_starts_count;
1526                         }
1527                 }
1528
1529                 if (stream_count == event_starts_count) {
1530                         unsigned int next_cycle;
1531
1532                         list_for_each_entry(s, &d->streams, list) {
1533                                 if (s->direction != AMDTP_IN_STREAM)
1534                                         continue;
1535
1536                                 next_cycle = increment_ohci_cycle_count(s->next_cycle,
1537                                                                 d->processing_cycle.tx_init_skip);
1538                                 if (cycle == UINT_MAX ||
1539                                     compare_ohci_cycle_count(next_cycle, cycle) > 0)
1540                                         cycle = next_cycle;
1541
1542                                 s->context->callback.sc = process_tx_packets_intermediately;
1543                         }
1544
1545                         d->processing_cycle.tx_start = cycle;
1546                 }
1547         }
1548 }
1549
1550 static void process_ctxs_in_domain(struct amdtp_domain *d)
1551 {
1552         struct amdtp_stream *s;
1553
1554         list_for_each_entry(s, &d->streams, list) {
1555                 if (s != d->irq_target && amdtp_stream_running(s))
1556                         fw_iso_context_flush_completions(s->context);
1557
1558                 if (amdtp_streaming_error(s))
1559                         goto error;
1560         }
1561
1562         return;
1563 error:
1564         if (amdtp_stream_running(d->irq_target))
1565                 cancel_stream(d->irq_target);
1566
1567         list_for_each_entry(s, &d->streams, list) {
1568                 if (amdtp_stream_running(s))
1569                         cancel_stream(s);
1570         }
1571 }
1572
1573 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1574                                 void *header, void *private_data)
1575 {
1576         struct amdtp_stream *s = private_data;
1577         struct amdtp_domain *d = s->domain;
1578
1579         process_rx_packets(context, tstamp, header_length, header, private_data);
1580         process_ctxs_in_domain(d);
1581 }
1582
1583 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1584                                         size_t header_length, void *header, void *private_data)
1585 {
1586         struct amdtp_stream *s = private_data;
1587         struct amdtp_domain *d = s->domain;
1588
1589         process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1590         process_ctxs_in_domain(d);
1591 }
1592
1593 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1594                                      size_t header_length, void *header, void *private_data)
1595 {
1596         struct amdtp_stream *s = private_data;
1597         struct amdtp_domain *d = s->domain;
1598         bool ready_to_start;
1599
1600         skip_rx_packets(context, tstamp, header_length, header, private_data);
1601         process_ctxs_in_domain(d);
1602
1603         if (d->replay.enable && !d->replay.on_the_fly) {
1604                 unsigned int rx_count = 0;
1605                 unsigned int rx_ready_count = 0;
1606                 struct amdtp_stream *rx;
1607
1608                 list_for_each_entry(rx, &d->streams, list) {
1609                         struct amdtp_stream *tx;
1610                         unsigned int cached_cycles;
1611
1612                         if (rx->direction != AMDTP_OUT_STREAM)
1613                                 continue;
1614                         ++rx_count;
1615
1616                         tx = rx->ctx_data.rx.replay_target;
1617                         cached_cycles = calculate_cached_cycle_count(tx, 0);
1618                         if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1619                                 ++rx_ready_count;
1620                 }
1621
1622                 ready_to_start = (rx_count == rx_ready_count);
1623         } else {
1624                 ready_to_start = true;
1625         }
1626
1627         // Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1628         // contexts are expected to start and get callback when reaching here.
1629         if (ready_to_start) {
1630                 unsigned int cycle = s->next_cycle;
1631                 list_for_each_entry(s, &d->streams, list) {
1632                         if (s->direction != AMDTP_OUT_STREAM)
1633                                 continue;
1634
1635                         if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1636                                 cycle = s->next_cycle;
1637
1638                         if (s == d->irq_target)
1639                                 s->context->callback.sc = irq_target_callback_intermediately;
1640                         else
1641                                 s->context->callback.sc = process_rx_packets_intermediately;
1642                 }
1643
1644                 d->processing_cycle.rx_start = cycle;
1645         }
1646 }
1647
1648 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1649 // transmit first packet.
1650 static void amdtp_stream_first_callback(struct fw_iso_context *context,
1651                                         u32 tstamp, size_t header_length,
1652                                         void *header, void *private_data)
1653 {
1654         struct amdtp_stream *s = private_data;
1655         struct amdtp_domain *d = s->domain;
1656
1657         if (s->direction == AMDTP_IN_STREAM) {
1658                 context->callback.sc = drop_tx_packets_initially;
1659         } else {
1660                 if (s == d->irq_target)
1661                         context->callback.sc = irq_target_callback_skip;
1662                 else
1663                         context->callback.sc = skip_rx_packets;
1664         }
1665
1666         context->callback.sc(context, tstamp, header_length, header, s);
1667 }
1668
1669 /**
1670  * amdtp_stream_start - start transferring packets
1671  * @s: the AMDTP stream to start
1672  * @channel: the isochronous channel on the bus
1673  * @speed: firewire speed code
1674  * @queue_size: The number of packets in the queue.
1675  * @idle_irq_interval: the interval to queue packet during initial state.
1676  *
1677  * The stream cannot be started until it has been configured with
1678  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1679  * device can be started.
1680  */
1681 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1682                               unsigned int queue_size, unsigned int idle_irq_interval)
1683 {
1684         bool is_irq_target = (s == s->domain->irq_target);
1685         unsigned int ctx_header_size;
1686         unsigned int max_ctx_payload_size;
1687         enum dma_data_direction dir;
1688         struct pkt_desc *descs;
1689         int i, type, tag, err;
1690
1691         mutex_lock(&s->mutex);
1692
1693         if (WARN_ON(amdtp_stream_running(s) ||
1694                     (s->data_block_quadlets < 1))) {
1695                 err = -EBADFD;
1696                 goto err_unlock;
1697         }
1698
1699         if (s->direction == AMDTP_IN_STREAM) {
1700                 // NOTE: IT context should be used for constant IRQ.
1701                 if (is_irq_target) {
1702                         err = -EINVAL;
1703                         goto err_unlock;
1704                 }
1705
1706                 s->data_block_counter = UINT_MAX;
1707         } else {
1708                 s->data_block_counter = 0;
1709         }
1710
1711         // initialize packet buffer.
1712         if (s->direction == AMDTP_IN_STREAM) {
1713                 dir = DMA_FROM_DEVICE;
1714                 type = FW_ISO_CONTEXT_RECEIVE;
1715                 if (!(s->flags & CIP_NO_HEADER))
1716                         ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1717                 else
1718                         ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1719         } else {
1720                 dir = DMA_TO_DEVICE;
1721                 type = FW_ISO_CONTEXT_TRANSMIT;
1722                 ctx_header_size = 0;    // No effect for IT context.
1723         }
1724         max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1725
1726         err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1727         if (err < 0)
1728                 goto err_unlock;
1729         s->queue_size = queue_size;
1730
1731         s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1732                                           type, channel, speed, ctx_header_size,
1733                                           amdtp_stream_first_callback, s);
1734         if (IS_ERR(s->context)) {
1735                 err = PTR_ERR(s->context);
1736                 if (err == -EBUSY)
1737                         dev_err(&s->unit->device,
1738                                 "no free stream on this controller\n");
1739                 goto err_buffer;
1740         }
1741
1742         amdtp_stream_update(s);
1743
1744         if (s->direction == AMDTP_IN_STREAM) {
1745                 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1746                 s->ctx_data.tx.ctx_header_size = ctx_header_size;
1747                 s->ctx_data.tx.event_starts = false;
1748
1749                 if (s->domain->replay.enable) {
1750                         // struct fw_iso_context.drop_overflow_headers is false therefore it's
1751                         // possible to cache much unexpectedly.
1752                         s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1753                                                           queue_size * 3 / 2);
1754                         s->ctx_data.tx.cache.pos = 0;
1755                         s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1756                                                 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1757                         if (!s->ctx_data.tx.cache.descs) {
1758                                 err = -ENOMEM;
1759                                 goto err_context;
1760                         }
1761                 }
1762         } else {
1763                 static const struct {
1764                         unsigned int data_block;
1765                         unsigned int syt_offset;
1766                 } *entry, initial_state[] = {
1767                         [CIP_SFC_32000]  = {  4, 3072 },
1768                         [CIP_SFC_48000]  = {  6, 1024 },
1769                         [CIP_SFC_96000]  = { 12, 1024 },
1770                         [CIP_SFC_192000] = { 24, 1024 },
1771                         [CIP_SFC_44100]  = {  0,   67 },
1772                         [CIP_SFC_88200]  = {  0,   67 },
1773                         [CIP_SFC_176400] = {  0,   67 },
1774                 };
1775
1776                 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1777                 if (!s->ctx_data.rx.seq.descs) {
1778                         err = -ENOMEM;
1779                         goto err_context;
1780                 }
1781                 s->ctx_data.rx.seq.size = queue_size;
1782                 s->ctx_data.rx.seq.pos = 0;
1783
1784                 entry = &initial_state[s->sfc];
1785                 s->ctx_data.rx.data_block_state = entry->data_block;
1786                 s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1787                 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1788
1789                 s->ctx_data.rx.event_count = 0;
1790         }
1791
1792         if (s->flags & CIP_NO_HEADER)
1793                 s->tag = TAG_NO_CIP_HEADER;
1794         else
1795                 s->tag = TAG_CIP;
1796
1797         // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request
1798         // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It
1799         // could take a round over queue of AMDTP packet descriptors and small loss of history. For
1800         // safe, keep more 8 elements for the queue, equivalent to 1 ms.
1801         descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL);
1802         if (!descs) {
1803                 err = -ENOMEM;
1804                 goto err_context;
1805         }
1806         s->packet_descs = descs;
1807
1808         INIT_LIST_HEAD(&s->packet_descs_list);
1809         for (i = 0; i < s->queue_size; ++i) {
1810                 INIT_LIST_HEAD(&descs->link);
1811                 list_add_tail(&descs->link, &s->packet_descs_list);
1812                 ++descs;
1813         }
1814         s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link);
1815
1816         s->packet_index = 0;
1817         do {
1818                 struct fw_iso_packet params;
1819
1820                 if (s->direction == AMDTP_IN_STREAM) {
1821                         err = queue_in_packet(s, &params);
1822                 } else {
1823                         bool sched_irq = false;
1824
1825                         params.header_length = 0;
1826                         params.payload_length = 0;
1827
1828                         if (is_irq_target) {
1829                                 sched_irq = !((s->packet_index + 1) %
1830                                               idle_irq_interval);
1831                         }
1832
1833                         err = queue_out_packet(s, &params, sched_irq);
1834                 }
1835                 if (err < 0)
1836                         goto err_pkt_descs;
1837         } while (s->packet_index > 0);
1838
1839         /* NOTE: TAG1 matches CIP. This just affects in stream. */
1840         tag = FW_ISO_CONTEXT_MATCH_TAG1;
1841         if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1842                 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1843
1844         s->ready_processing = false;
1845         err = fw_iso_context_start(s->context, -1, 0, tag);
1846         if (err < 0)
1847                 goto err_pkt_descs;
1848
1849         mutex_unlock(&s->mutex);
1850
1851         return 0;
1852 err_pkt_descs:
1853         kfree(s->packet_descs);
1854         s->packet_descs = NULL;
1855 err_context:
1856         if (s->direction == AMDTP_OUT_STREAM) {
1857                 kfree(s->ctx_data.rx.seq.descs);
1858         } else {
1859                 if (s->domain->replay.enable)
1860                         kfree(s->ctx_data.tx.cache.descs);
1861         }
1862         fw_iso_context_destroy(s->context);
1863         s->context = ERR_PTR(-1);
1864 err_buffer:
1865         iso_packets_buffer_destroy(&s->buffer, s->unit);
1866 err_unlock:
1867         mutex_unlock(&s->mutex);
1868
1869         return err;
1870 }
1871
1872 /**
1873  * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1874  * @d: the AMDTP domain.
1875  * @s: the AMDTP stream that transports the PCM data
1876  *
1877  * Returns the current buffer position, in frames.
1878  */
1879 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1880                                               struct amdtp_stream *s)
1881 {
1882         struct amdtp_stream *irq_target = d->irq_target;
1883
1884         if (irq_target && amdtp_stream_running(irq_target)) {
1885                 // The work item to call snd_pcm_period_elapsed() can reach here by the call of
1886                 // snd_pcm_ops.pointer(), however less packets would be available then. Therefore
1887                 // the following call is just for user process contexts.
1888                 if (current_work() != &s->period_work)
1889                         fw_iso_context_flush_completions(irq_target->context);
1890         }
1891
1892         return READ_ONCE(s->pcm_buffer_pointer);
1893 }
1894 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1895
1896 /**
1897  * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1898  * @d: the AMDTP domain.
1899  * @s: the AMDTP stream that transfers the PCM frames
1900  *
1901  * Returns zero always.
1902  */
1903 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1904 {
1905         struct amdtp_stream *irq_target = d->irq_target;
1906
1907         // Process isochronous packets for recent isochronous cycle to handle
1908         // queued PCM frames.
1909         if (irq_target && amdtp_stream_running(irq_target))
1910                 fw_iso_context_flush_completions(irq_target->context);
1911
1912         return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1915
1916 /**
1917  * amdtp_stream_update - update the stream after a bus reset
1918  * @s: the AMDTP stream
1919  */
1920 void amdtp_stream_update(struct amdtp_stream *s)
1921 {
1922         /* Precomputing. */
1923         WRITE_ONCE(s->source_node_id_field,
1924                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1925 }
1926 EXPORT_SYMBOL(amdtp_stream_update);
1927
1928 /**
1929  * amdtp_stream_stop - stop sending packets
1930  * @s: the AMDTP stream to stop
1931  *
1932  * All PCM and MIDI devices of the stream must be stopped before the stream
1933  * itself can be stopped.
1934  */
1935 static void amdtp_stream_stop(struct amdtp_stream *s)
1936 {
1937         mutex_lock(&s->mutex);
1938
1939         if (!amdtp_stream_running(s)) {
1940                 mutex_unlock(&s->mutex);
1941                 return;
1942         }
1943
1944         cancel_work_sync(&s->period_work);
1945         fw_iso_context_stop(s->context);
1946         fw_iso_context_destroy(s->context);
1947         s->context = ERR_PTR(-1);
1948         iso_packets_buffer_destroy(&s->buffer, s->unit);
1949         kfree(s->packet_descs);
1950         s->packet_descs = NULL;
1951
1952         if (s->direction == AMDTP_OUT_STREAM) {
1953                 kfree(s->ctx_data.rx.seq.descs);
1954         } else {
1955                 if (s->domain->replay.enable)
1956                         kfree(s->ctx_data.tx.cache.descs);
1957         }
1958
1959         mutex_unlock(&s->mutex);
1960 }
1961
1962 /**
1963  * amdtp_stream_pcm_abort - abort the running PCM device
1964  * @s: the AMDTP stream about to be stopped
1965  *
1966  * If the isochronous stream needs to be stopped asynchronously, call this
1967  * function first to stop the PCM device.
1968  */
1969 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1970 {
1971         struct snd_pcm_substream *pcm;
1972
1973         pcm = READ_ONCE(s->pcm);
1974         if (pcm)
1975                 snd_pcm_stop_xrun(pcm);
1976 }
1977 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1978
1979 /**
1980  * amdtp_domain_init - initialize an AMDTP domain structure
1981  * @d: the AMDTP domain to initialize.
1982  */
1983 int amdtp_domain_init(struct amdtp_domain *d)
1984 {
1985         INIT_LIST_HEAD(&d->streams);
1986
1987         d->events_per_period = 0;
1988
1989         return 0;
1990 }
1991 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1992
1993 /**
1994  * amdtp_domain_destroy - destroy an AMDTP domain structure
1995  * @d: the AMDTP domain to destroy.
1996  */
1997 void amdtp_domain_destroy(struct amdtp_domain *d)
1998 {
1999         // At present nothing to do.
2000         return;
2001 }
2002 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
2003
2004 /**
2005  * amdtp_domain_add_stream - register isoc context into the domain.
2006  * @d: the AMDTP domain.
2007  * @s: the AMDTP stream.
2008  * @channel: the isochronous channel on the bus.
2009  * @speed: firewire speed code.
2010  */
2011 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
2012                             int channel, int speed)
2013 {
2014         struct amdtp_stream *tmp;
2015
2016         list_for_each_entry(tmp, &d->streams, list) {
2017                 if (s == tmp)
2018                         return -EBUSY;
2019         }
2020
2021         list_add(&s->list, &d->streams);
2022
2023         s->channel = channel;
2024         s->speed = speed;
2025         s->domain = d;
2026
2027         return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
2030
2031 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
2032 // is less than the number of rx streams, the first tx stream is selected.
2033 static int make_association(struct amdtp_domain *d)
2034 {
2035         unsigned int dst_index = 0;
2036         struct amdtp_stream *rx;
2037
2038         // Make association to replay target.
2039         list_for_each_entry(rx, &d->streams, list) {
2040                 if (rx->direction == AMDTP_OUT_STREAM) {
2041                         unsigned int src_index = 0;
2042                         struct amdtp_stream *tx = NULL;
2043                         struct amdtp_stream *s;
2044
2045                         list_for_each_entry(s, &d->streams, list) {
2046                                 if (s->direction == AMDTP_IN_STREAM) {
2047                                         if (dst_index == src_index) {
2048                                                 tx = s;
2049                                                 break;
2050                                         }
2051
2052                                         ++src_index;
2053                                 }
2054                         }
2055                         if (!tx) {
2056                                 // Select the first entry.
2057                                 list_for_each_entry(s, &d->streams, list) {
2058                                         if (s->direction == AMDTP_IN_STREAM) {
2059                                                 tx = s;
2060                                                 break;
2061                                         }
2062                                 }
2063                                 // No target is available to replay sequence.
2064                                 if (!tx)
2065                                         return -EINVAL;
2066                         }
2067
2068                         rx->ctx_data.rx.replay_target = tx;
2069
2070                         ++dst_index;
2071                 }
2072         }
2073
2074         return 0;
2075 }
2076
2077 /**
2078  * amdtp_domain_start - start sending packets for isoc context in the domain.
2079  * @d: the AMDTP domain.
2080  * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
2081  *                       contexts.
2082  * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
2083  *              IT context.
2084  * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
2085  *                     according to arrival of events in tx packets.
2086  */
2087 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
2088                        bool replay_on_the_fly)
2089 {
2090         unsigned int events_per_buffer = d->events_per_buffer;
2091         unsigned int events_per_period = d->events_per_period;
2092         unsigned int queue_size;
2093         struct amdtp_stream *s;
2094         bool found = false;
2095         int err;
2096
2097         if (replay_seq) {
2098                 err = make_association(d);
2099                 if (err < 0)
2100                         return err;
2101         }
2102         d->replay.enable = replay_seq;
2103         d->replay.on_the_fly = replay_on_the_fly;
2104
2105         // Select an IT context as IRQ target.
2106         list_for_each_entry(s, &d->streams, list) {
2107                 if (s->direction == AMDTP_OUT_STREAM) {
2108                         found = true;
2109                         break;
2110                 }
2111         }
2112         if (!found)
2113                 return -ENXIO;
2114         d->irq_target = s;
2115
2116         d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
2117
2118         // This is a case that AMDTP streams in domain run just for MIDI
2119         // substream. Use the number of events equivalent to 10 msec as
2120         // interval of hardware IRQ.
2121         if (events_per_period == 0)
2122                 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
2123         if (events_per_buffer == 0)
2124                 events_per_buffer = events_per_period * 3;
2125
2126         queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
2127                                   amdtp_rate_table[d->irq_target->sfc]);
2128
2129         list_for_each_entry(s, &d->streams, list) {
2130                 unsigned int idle_irq_interval = 0;
2131
2132                 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
2133                         idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
2134                                                          amdtp_rate_table[d->irq_target->sfc]);
2135                 }
2136
2137                 // Starts immediately but actually DMA context starts several hundred cycles later.
2138                 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
2139                 if (err < 0)
2140                         goto error;
2141         }
2142
2143         return 0;
2144 error:
2145         list_for_each_entry(s, &d->streams, list)
2146                 amdtp_stream_stop(s);
2147         return err;
2148 }
2149 EXPORT_SYMBOL_GPL(amdtp_domain_start);
2150
2151 /**
2152  * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2153  * @d: the AMDTP domain to which the isoc contexts belong.
2154  */
2155 void amdtp_domain_stop(struct amdtp_domain *d)
2156 {
2157         struct amdtp_stream *s, *next;
2158
2159         if (d->irq_target)
2160                 amdtp_stream_stop(d->irq_target);
2161
2162         list_for_each_entry_safe(s, next, &d->streams, list) {
2163                 list_del(&s->list);
2164
2165                 if (s != d->irq_target)
2166                         amdtp_stream_stop(s);
2167         }
2168
2169         d->events_per_period = 0;
2170         d->irq_target = NULL;
2171 }
2172 EXPORT_SYMBOL_GPL(amdtp_domain_stop);