Merge tag 'stable/vduse-virtio-net' into vhost
[linux-2.6-block.git] / sound / core / pcm_lib.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Digital Audio (PCM) abstract layer
4  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5  *                   Abramo Bagnara <abramo@alsa-project.org>
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 #include <linux/time.h>
11 #include <linux/math64.h>
12 #include <linux/export.h>
13 #include <sound/core.h>
14 #include <sound/control.h>
15 #include <sound/tlv.h>
16 #include <sound/info.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/timer.h>
20
21 #include "pcm_local.h"
22
23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
24 #define CREATE_TRACE_POINTS
25 #include "pcm_trace.h"
26 #else
27 #define trace_hwptr(substream, pos, in_interrupt)
28 #define trace_xrun(substream)
29 #define trace_hw_ptr_error(substream, reason)
30 #define trace_applptr(substream, prev, curr)
31 #endif
32
33 static int fill_silence_frames(struct snd_pcm_substream *substream,
34                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36
37 static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
38                                        snd_pcm_uframes_t ptr,
39                                        snd_pcm_uframes_t new_ptr)
40 {
41         snd_pcm_sframes_t delta;
42
43         delta = new_ptr - ptr;
44         if (delta == 0)
45                 return;
46         if (delta < 0)
47                 delta += runtime->boundary;
48         if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
49                 runtime->silence_filled -= delta;
50         else
51                 runtime->silence_filled = 0;
52         runtime->silence_start = new_ptr;
53 }
54
55 /*
56  * fill ring buffer with silence
57  * runtime->silence_start: starting pointer to silence area
58  * runtime->silence_filled: size filled with silence
59  * runtime->silence_threshold: threshold from application
60  * runtime->silence_size: maximal size from application
61  *
62  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
63  */
64 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
65 {
66         struct snd_pcm_runtime *runtime = substream->runtime;
67         snd_pcm_uframes_t frames, ofs, transfer;
68         int err;
69
70         if (runtime->silence_size < runtime->boundary) {
71                 snd_pcm_sframes_t noise_dist;
72                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
73                 update_silence_vars(runtime, runtime->silence_start, appl_ptr);
74                 /* initialization outside pointer updates */
75                 if (new_hw_ptr == ULONG_MAX)
76                         new_hw_ptr = runtime->status->hw_ptr;
77                 /* get hw_avail with the boundary crossing */
78                 noise_dist = appl_ptr - new_hw_ptr;
79                 if (noise_dist < 0)
80                         noise_dist += runtime->boundary;
81                 /* total noise distance */
82                 noise_dist += runtime->silence_filled;
83                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
84                         return;
85                 frames = runtime->silence_threshold - noise_dist;
86                 if (frames > runtime->silence_size)
87                         frames = runtime->silence_size;
88         } else {
89                 /*
90                  * This filling mode aims at free-running mode (used for example by dmix),
91                  * which doesn't update the application pointer.
92                  */
93                 snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
94                 if (new_hw_ptr == ULONG_MAX) {
95                         /*
96                          * Initialization, fill the whole unused buffer with silence.
97                          *
98                          * Usually, this is entered while stopped, before data is queued,
99                          * so both pointers are expected to be zero.
100                          */
101                         snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
102                         if (avail < 0)
103                                 avail += runtime->boundary;
104                         /*
105                          * In free-running mode, appl_ptr will be zero even while running,
106                          * so we end up with a huge number. There is no useful way to
107                          * handle this, so we just clear the whole buffer.
108                          */
109                         runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
110                         runtime->silence_start = hw_ptr;
111                 } else {
112                         /* Silence the just played area immediately */
113                         update_silence_vars(runtime, hw_ptr, new_hw_ptr);
114                 }
115                 /*
116                  * In this mode, silence_filled actually includes the valid
117                  * sample data from the user.
118                  */
119                 frames = runtime->buffer_size - runtime->silence_filled;
120         }
121         if (snd_BUG_ON(frames > runtime->buffer_size))
122                 return;
123         if (frames == 0)
124                 return;
125         ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
126         do {
127                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
128                 err = fill_silence_frames(substream, ofs, transfer);
129                 snd_BUG_ON(err < 0);
130                 runtime->silence_filled += transfer;
131                 frames -= transfer;
132                 ofs = 0;
133         } while (frames > 0);
134         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
135 }
136
137 #ifdef CONFIG_SND_DEBUG
138 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
139                            char *name, size_t len)
140 {
141         snprintf(name, len, "pcmC%dD%d%c:%d",
142                  substream->pcm->card->number,
143                  substream->pcm->device,
144                  substream->stream ? 'c' : 'p',
145                  substream->number);
146 }
147 EXPORT_SYMBOL(snd_pcm_debug_name);
148 #endif
149
150 #define XRUN_DEBUG_BASIC        (1<<0)
151 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
152 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157                         ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)     0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do {                      \
163                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
164                         dump_stack();                           \
165         } while (0)
166
167 /* call with stream lock held */
168 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
169 {
170         struct snd_pcm_runtime *runtime = substream->runtime;
171
172         trace_xrun(substream);
173         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
174                 struct timespec64 tstamp;
175
176                 snd_pcm_gettime(runtime, &tstamp);
177                 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
178                 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
179         }
180         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182                 char name[16];
183                 snd_pcm_debug_name(substream, name, sizeof(name));
184                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
185                 dump_stack_on_xrun(substream);
186         }
187 }
188
189 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
190 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
191         do {                                                            \
192                 trace_hw_ptr_error(substream, reason);  \
193                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
194                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
195                                            (in_interrupt) ? 'Q' : 'P', ##args); \
196                         dump_stack_on_xrun(substream);                  \
197                 }                                                       \
198         } while (0)
199
200 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201
202 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
203
204 #endif
205
206 int snd_pcm_update_state(struct snd_pcm_substream *substream,
207                          struct snd_pcm_runtime *runtime)
208 {
209         snd_pcm_uframes_t avail;
210
211         avail = snd_pcm_avail(substream);
212         if (avail > runtime->avail_max)
213                 runtime->avail_max = avail;
214         if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
215                 if (avail >= runtime->buffer_size) {
216                         snd_pcm_drain_done(substream);
217                         return -EPIPE;
218                 }
219         } else {
220                 if (avail >= runtime->stop_threshold) {
221                         __snd_pcm_xrun(substream);
222                         return -EPIPE;
223                 }
224         }
225         if (runtime->twake) {
226                 if (avail >= runtime->twake)
227                         wake_up(&runtime->tsleep);
228         } else if (avail >= runtime->control->avail_min)
229                 wake_up(&runtime->sleep);
230         return 0;
231 }
232
233 static void update_audio_tstamp(struct snd_pcm_substream *substream,
234                                 struct timespec64 *curr_tstamp,
235                                 struct timespec64 *audio_tstamp)
236 {
237         struct snd_pcm_runtime *runtime = substream->runtime;
238         u64 audio_frames, audio_nsecs;
239         struct timespec64 driver_tstamp;
240
241         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
242                 return;
243
244         if (!(substream->ops->get_time_info) ||
245                 (runtime->audio_tstamp_report.actual_type ==
246                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
247
248                 /*
249                  * provide audio timestamp derived from pointer position
250                  * add delay only if requested
251                  */
252
253                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
254
255                 if (runtime->audio_tstamp_config.report_delay) {
256                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
257                                 audio_frames -=  runtime->delay;
258                         else
259                                 audio_frames +=  runtime->delay;
260                 }
261                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
262                                 runtime->rate);
263                 *audio_tstamp = ns_to_timespec64(audio_nsecs);
264         }
265
266         if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
267             runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
268                 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
269                 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
270                 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
271                 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
272         }
273
274
275         /*
276          * re-take a driver timestamp to let apps detect if the reference tstamp
277          * read by low-level hardware was provided with a delay
278          */
279         snd_pcm_gettime(substream->runtime, &driver_tstamp);
280         runtime->driver_tstamp = driver_tstamp;
281 }
282
283 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
284                                   unsigned int in_interrupt)
285 {
286         struct snd_pcm_runtime *runtime = substream->runtime;
287         snd_pcm_uframes_t pos;
288         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
289         snd_pcm_sframes_t hdelta, delta;
290         unsigned long jdelta;
291         unsigned long curr_jiffies;
292         struct timespec64 curr_tstamp;
293         struct timespec64 audio_tstamp;
294         int crossed_boundary = 0;
295
296         old_hw_ptr = runtime->status->hw_ptr;
297
298         /*
299          * group pointer, time and jiffies reads to allow for more
300          * accurate correlations/corrections.
301          * The values are stored at the end of this routine after
302          * corrections for hw_ptr position
303          */
304         pos = substream->ops->pointer(substream);
305         curr_jiffies = jiffies;
306         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
307                 if ((substream->ops->get_time_info) &&
308                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
309                         substream->ops->get_time_info(substream, &curr_tstamp,
310                                                 &audio_tstamp,
311                                                 &runtime->audio_tstamp_config,
312                                                 &runtime->audio_tstamp_report);
313
314                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
315                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
316                                 snd_pcm_gettime(runtime, &curr_tstamp);
317                 } else
318                         snd_pcm_gettime(runtime, &curr_tstamp);
319         }
320
321         if (pos == SNDRV_PCM_POS_XRUN) {
322                 __snd_pcm_xrun(substream);
323                 return -EPIPE;
324         }
325         if (pos >= runtime->buffer_size) {
326                 if (printk_ratelimit()) {
327                         char name[16];
328                         snd_pcm_debug_name(substream, name, sizeof(name));
329                         pcm_err(substream->pcm,
330                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
331                                 name, pos, runtime->buffer_size,
332                                 runtime->period_size);
333                 }
334                 pos = 0;
335         }
336         pos -= pos % runtime->min_align;
337         trace_hwptr(substream, pos, in_interrupt);
338         hw_base = runtime->hw_ptr_base;
339         new_hw_ptr = hw_base + pos;
340         if (in_interrupt) {
341                 /* we know that one period was processed */
342                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344                 if (delta > new_hw_ptr) {
345                         /* check for double acknowledged interrupts */
346                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
347                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
348                                 hw_base += runtime->buffer_size;
349                                 if (hw_base >= runtime->boundary) {
350                                         hw_base = 0;
351                                         crossed_boundary++;
352                                 }
353                                 new_hw_ptr = hw_base + pos;
354                                 goto __delta;
355                         }
356                 }
357         }
358         /* new_hw_ptr might be lower than old_hw_ptr in case when */
359         /* pointer crosses the end of the ring buffer */
360         if (new_hw_ptr < old_hw_ptr) {
361                 hw_base += runtime->buffer_size;
362                 if (hw_base >= runtime->boundary) {
363                         hw_base = 0;
364                         crossed_boundary++;
365                 }
366                 new_hw_ptr = hw_base + pos;
367         }
368       __delta:
369         delta = new_hw_ptr - old_hw_ptr;
370         if (delta < 0)
371                 delta += runtime->boundary;
372
373         if (runtime->no_period_wakeup) {
374                 snd_pcm_sframes_t xrun_threshold;
375                 /*
376                  * Without regular period interrupts, we have to check
377                  * the elapsed time to detect xruns.
378                  */
379                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
380                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
381                         goto no_delta_check;
382                 hdelta = jdelta - delta * HZ / runtime->rate;
383                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
384                 while (hdelta > xrun_threshold) {
385                         delta += runtime->buffer_size;
386                         hw_base += runtime->buffer_size;
387                         if (hw_base >= runtime->boundary) {
388                                 hw_base = 0;
389                                 crossed_boundary++;
390                         }
391                         new_hw_ptr = hw_base + pos;
392                         hdelta -= runtime->hw_ptr_buffer_jiffies;
393                 }
394                 goto no_delta_check;
395         }
396
397         /* something must be really wrong */
398         if (delta >= runtime->buffer_size + runtime->period_size) {
399                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
400                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
401                              substream->stream, (long)pos,
402                              (long)new_hw_ptr, (long)old_hw_ptr);
403                 return 0;
404         }
405
406         /* Do jiffies check only in xrun_debug mode */
407         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
408                 goto no_jiffies_check;
409
410         /* Skip the jiffies check for hardwares with BATCH flag.
411          * Such hardware usually just increases the position at each IRQ,
412          * thus it can't give any strange position.
413          */
414         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
415                 goto no_jiffies_check;
416         hdelta = delta;
417         if (hdelta < runtime->delay)
418                 goto no_jiffies_check;
419         hdelta -= runtime->delay;
420         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
421         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
422                 delta = jdelta /
423                         (((runtime->period_size * HZ) / runtime->rate)
424                                                                 + HZ/100);
425                 /* move new_hw_ptr according jiffies not pos variable */
426                 new_hw_ptr = old_hw_ptr;
427                 hw_base = delta;
428                 /* use loop to avoid checks for delta overflows */
429                 /* the delta value is small or zero in most cases */
430                 while (delta > 0) {
431                         new_hw_ptr += runtime->period_size;
432                         if (new_hw_ptr >= runtime->boundary) {
433                                 new_hw_ptr -= runtime->boundary;
434                                 crossed_boundary--;
435                         }
436                         delta--;
437                 }
438                 /* align hw_base to buffer_size */
439                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
440                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
441                              (long)pos, (long)hdelta,
442                              (long)runtime->period_size, jdelta,
443                              ((hdelta * HZ) / runtime->rate), hw_base,
444                              (unsigned long)old_hw_ptr,
445                              (unsigned long)new_hw_ptr);
446                 /* reset values to proper state */
447                 delta = 0;
448                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
449         }
450  no_jiffies_check:
451         if (delta > runtime->period_size + runtime->period_size / 2) {
452                 hw_ptr_error(substream, in_interrupt,
453                              "Lost interrupts?",
454                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
455                              substream->stream, (long)delta,
456                              (long)new_hw_ptr,
457                              (long)old_hw_ptr);
458         }
459
460  no_delta_check:
461         if (runtime->status->hw_ptr == new_hw_ptr) {
462                 runtime->hw_ptr_jiffies = curr_jiffies;
463                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464                 return 0;
465         }
466
467         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
468             runtime->silence_size > 0)
469                 snd_pcm_playback_silence(substream, new_hw_ptr);
470
471         if (in_interrupt) {
472                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
473                 if (delta < 0)
474                         delta += runtime->boundary;
475                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
476                 runtime->hw_ptr_interrupt += delta;
477                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
478                         runtime->hw_ptr_interrupt -= runtime->boundary;
479         }
480         runtime->hw_ptr_base = hw_base;
481         runtime->status->hw_ptr = new_hw_ptr;
482         runtime->hw_ptr_jiffies = curr_jiffies;
483         if (crossed_boundary) {
484                 snd_BUG_ON(crossed_boundary != 1);
485                 runtime->hw_ptr_wrap += runtime->boundary;
486         }
487
488         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
489
490         return snd_pcm_update_state(substream, runtime);
491 }
492
493 /* CAUTION: call it with irq disabled */
494 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
495 {
496         return snd_pcm_update_hw_ptr0(substream, 0);
497 }
498
499 /**
500  * snd_pcm_set_ops - set the PCM operators
501  * @pcm: the pcm instance
502  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
503  * @ops: the operator table
504  *
505  * Sets the given PCM operators to the pcm instance.
506  */
507 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
508                      const struct snd_pcm_ops *ops)
509 {
510         struct snd_pcm_str *stream = &pcm->streams[direction];
511         struct snd_pcm_substream *substream;
512         
513         for (substream = stream->substream; substream != NULL; substream = substream->next)
514                 substream->ops = ops;
515 }
516 EXPORT_SYMBOL(snd_pcm_set_ops);
517
518 /**
519  * snd_pcm_set_sync - set the PCM sync id
520  * @substream: the pcm substream
521  *
522  * Sets the PCM sync identifier for the card.
523  */
524 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
525 {
526         struct snd_pcm_runtime *runtime = substream->runtime;
527         
528         runtime->sync.id32[0] = substream->pcm->card->number;
529         runtime->sync.id32[1] = -1;
530         runtime->sync.id32[2] = -1;
531         runtime->sync.id32[3] = -1;
532 }
533 EXPORT_SYMBOL(snd_pcm_set_sync);
534
535 /*
536  *  Standard ioctl routine
537  */
538
539 static inline unsigned int div32(unsigned int a, unsigned int b, 
540                                  unsigned int *r)
541 {
542         if (b == 0) {
543                 *r = 0;
544                 return UINT_MAX;
545         }
546         *r = a % b;
547         return a / b;
548 }
549
550 static inline unsigned int div_down(unsigned int a, unsigned int b)
551 {
552         if (b == 0)
553                 return UINT_MAX;
554         return a / b;
555 }
556
557 static inline unsigned int div_up(unsigned int a, unsigned int b)
558 {
559         unsigned int r;
560         unsigned int q;
561         if (b == 0)
562                 return UINT_MAX;
563         q = div32(a, b, &r);
564         if (r)
565                 ++q;
566         return q;
567 }
568
569 static inline unsigned int mul(unsigned int a, unsigned int b)
570 {
571         if (a == 0)
572                 return 0;
573         if (div_down(UINT_MAX, a) < b)
574                 return UINT_MAX;
575         return a * b;
576 }
577
578 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
579                                     unsigned int c, unsigned int *r)
580 {
581         u_int64_t n = (u_int64_t) a * b;
582         if (c == 0) {
583                 *r = 0;
584                 return UINT_MAX;
585         }
586         n = div_u64_rem(n, c, r);
587         if (n >= UINT_MAX) {
588                 *r = 0;
589                 return UINT_MAX;
590         }
591         return n;
592 }
593
594 /**
595  * snd_interval_refine - refine the interval value of configurator
596  * @i: the interval value to refine
597  * @v: the interval value to refer to
598  *
599  * Refines the interval value with the reference value.
600  * The interval is changed to the range satisfying both intervals.
601  * The interval status (min, max, integer, etc.) are evaluated.
602  *
603  * Return: Positive if the value is changed, zero if it's not changed, or a
604  * negative error code.
605  */
606 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
607 {
608         int changed = 0;
609         if (snd_BUG_ON(snd_interval_empty(i)))
610                 return -EINVAL;
611         if (i->min < v->min) {
612                 i->min = v->min;
613                 i->openmin = v->openmin;
614                 changed = 1;
615         } else if (i->min == v->min && !i->openmin && v->openmin) {
616                 i->openmin = 1;
617                 changed = 1;
618         }
619         if (i->max > v->max) {
620                 i->max = v->max;
621                 i->openmax = v->openmax;
622                 changed = 1;
623         } else if (i->max == v->max && !i->openmax && v->openmax) {
624                 i->openmax = 1;
625                 changed = 1;
626         }
627         if (!i->integer && v->integer) {
628                 i->integer = 1;
629                 changed = 1;
630         }
631         if (i->integer) {
632                 if (i->openmin) {
633                         i->min++;
634                         i->openmin = 0;
635                 }
636                 if (i->openmax) {
637                         i->max--;
638                         i->openmax = 0;
639                 }
640         } else if (!i->openmin && !i->openmax && i->min == i->max)
641                 i->integer = 1;
642         if (snd_interval_checkempty(i)) {
643                 snd_interval_none(i);
644                 return -EINVAL;
645         }
646         return changed;
647 }
648 EXPORT_SYMBOL(snd_interval_refine);
649
650 static int snd_interval_refine_first(struct snd_interval *i)
651 {
652         const unsigned int last_max = i->max;
653
654         if (snd_BUG_ON(snd_interval_empty(i)))
655                 return -EINVAL;
656         if (snd_interval_single(i))
657                 return 0;
658         i->max = i->min;
659         if (i->openmin)
660                 i->max++;
661         /* only exclude max value if also excluded before refine */
662         i->openmax = (i->openmax && i->max >= last_max);
663         return 1;
664 }
665
666 static int snd_interval_refine_last(struct snd_interval *i)
667 {
668         const unsigned int last_min = i->min;
669
670         if (snd_BUG_ON(snd_interval_empty(i)))
671                 return -EINVAL;
672         if (snd_interval_single(i))
673                 return 0;
674         i->min = i->max;
675         if (i->openmax)
676                 i->min--;
677         /* only exclude min value if also excluded before refine */
678         i->openmin = (i->openmin && i->min <= last_min);
679         return 1;
680 }
681
682 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
683 {
684         if (a->empty || b->empty) {
685                 snd_interval_none(c);
686                 return;
687         }
688         c->empty = 0;
689         c->min = mul(a->min, b->min);
690         c->openmin = (a->openmin || b->openmin);
691         c->max = mul(a->max,  b->max);
692         c->openmax = (a->openmax || b->openmax);
693         c->integer = (a->integer && b->integer);
694 }
695
696 /**
697  * snd_interval_div - refine the interval value with division
698  * @a: dividend
699  * @b: divisor
700  * @c: quotient
701  *
702  * c = a / b
703  *
704  * Returns non-zero if the value is changed, zero if not changed.
705  */
706 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
707 {
708         unsigned int r;
709         if (a->empty || b->empty) {
710                 snd_interval_none(c);
711                 return;
712         }
713         c->empty = 0;
714         c->min = div32(a->min, b->max, &r);
715         c->openmin = (r || a->openmin || b->openmax);
716         if (b->min > 0) {
717                 c->max = div32(a->max, b->min, &r);
718                 if (r) {
719                         c->max++;
720                         c->openmax = 1;
721                 } else
722                         c->openmax = (a->openmax || b->openmin);
723         } else {
724                 c->max = UINT_MAX;
725                 c->openmax = 0;
726         }
727         c->integer = 0;
728 }
729
730 /**
731  * snd_interval_muldivk - refine the interval value
732  * @a: dividend 1
733  * @b: dividend 2
734  * @k: divisor (as integer)
735  * @c: result
736   *
737  * c = a * b / k
738  *
739  * Returns non-zero if the value is changed, zero if not changed.
740  */
741 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
742                       unsigned int k, struct snd_interval *c)
743 {
744         unsigned int r;
745         if (a->empty || b->empty) {
746                 snd_interval_none(c);
747                 return;
748         }
749         c->empty = 0;
750         c->min = muldiv32(a->min, b->min, k, &r);
751         c->openmin = (r || a->openmin || b->openmin);
752         c->max = muldiv32(a->max, b->max, k, &r);
753         if (r) {
754                 c->max++;
755                 c->openmax = 1;
756         } else
757                 c->openmax = (a->openmax || b->openmax);
758         c->integer = 0;
759 }
760
761 /**
762  * snd_interval_mulkdiv - refine the interval value
763  * @a: dividend 1
764  * @k: dividend 2 (as integer)
765  * @b: divisor
766  * @c: result
767  *
768  * c = a * k / b
769  *
770  * Returns non-zero if the value is changed, zero if not changed.
771  */
772 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
773                       const struct snd_interval *b, struct snd_interval *c)
774 {
775         unsigned int r;
776         if (a->empty || b->empty) {
777                 snd_interval_none(c);
778                 return;
779         }
780         c->empty = 0;
781         c->min = muldiv32(a->min, k, b->max, &r);
782         c->openmin = (r || a->openmin || b->openmax);
783         if (b->min > 0) {
784                 c->max = muldiv32(a->max, k, b->min, &r);
785                 if (r) {
786                         c->max++;
787                         c->openmax = 1;
788                 } else
789                         c->openmax = (a->openmax || b->openmin);
790         } else {
791                 c->max = UINT_MAX;
792                 c->openmax = 0;
793         }
794         c->integer = 0;
795 }
796
797 /* ---- */
798
799
800 /**
801  * snd_interval_ratnum - refine the interval value
802  * @i: interval to refine
803  * @rats_count: number of ratnum_t 
804  * @rats: ratnum_t array
805  * @nump: pointer to store the resultant numerator
806  * @denp: pointer to store the resultant denominator
807  *
808  * Return: Positive if the value is changed, zero if it's not changed, or a
809  * negative error code.
810  */
811 int snd_interval_ratnum(struct snd_interval *i,
812                         unsigned int rats_count, const struct snd_ratnum *rats,
813                         unsigned int *nump, unsigned int *denp)
814 {
815         unsigned int best_num, best_den;
816         int best_diff;
817         unsigned int k;
818         struct snd_interval t;
819         int err;
820         unsigned int result_num, result_den;
821         int result_diff;
822
823         best_num = best_den = best_diff = 0;
824         for (k = 0; k < rats_count; ++k) {
825                 unsigned int num = rats[k].num;
826                 unsigned int den;
827                 unsigned int q = i->min;
828                 int diff;
829                 if (q == 0)
830                         q = 1;
831                 den = div_up(num, q);
832                 if (den < rats[k].den_min)
833                         continue;
834                 if (den > rats[k].den_max)
835                         den = rats[k].den_max;
836                 else {
837                         unsigned int r;
838                         r = (den - rats[k].den_min) % rats[k].den_step;
839                         if (r != 0)
840                                 den -= r;
841                 }
842                 diff = num - q * den;
843                 if (diff < 0)
844                         diff = -diff;
845                 if (best_num == 0 ||
846                     diff * best_den < best_diff * den) {
847                         best_diff = diff;
848                         best_den = den;
849                         best_num = num;
850                 }
851         }
852         if (best_den == 0) {
853                 i->empty = 1;
854                 return -EINVAL;
855         }
856         t.min = div_down(best_num, best_den);
857         t.openmin = !!(best_num % best_den);
858         
859         result_num = best_num;
860         result_diff = best_diff;
861         result_den = best_den;
862         best_num = best_den = best_diff = 0;
863         for (k = 0; k < rats_count; ++k) {
864                 unsigned int num = rats[k].num;
865                 unsigned int den;
866                 unsigned int q = i->max;
867                 int diff;
868                 if (q == 0) {
869                         i->empty = 1;
870                         return -EINVAL;
871                 }
872                 den = div_down(num, q);
873                 if (den > rats[k].den_max)
874                         continue;
875                 if (den < rats[k].den_min)
876                         den = rats[k].den_min;
877                 else {
878                         unsigned int r;
879                         r = (den - rats[k].den_min) % rats[k].den_step;
880                         if (r != 0)
881                                 den += rats[k].den_step - r;
882                 }
883                 diff = q * den - num;
884                 if (diff < 0)
885                         diff = -diff;
886                 if (best_num == 0 ||
887                     diff * best_den < best_diff * den) {
888                         best_diff = diff;
889                         best_den = den;
890                         best_num = num;
891                 }
892         }
893         if (best_den == 0) {
894                 i->empty = 1;
895                 return -EINVAL;
896         }
897         t.max = div_up(best_num, best_den);
898         t.openmax = !!(best_num % best_den);
899         t.integer = 0;
900         err = snd_interval_refine(i, &t);
901         if (err < 0)
902                 return err;
903
904         if (snd_interval_single(i)) {
905                 if (best_diff * result_den < result_diff * best_den) {
906                         result_num = best_num;
907                         result_den = best_den;
908                 }
909                 if (nump)
910                         *nump = result_num;
911                 if (denp)
912                         *denp = result_den;
913         }
914         return err;
915 }
916 EXPORT_SYMBOL(snd_interval_ratnum);
917
918 /**
919  * snd_interval_ratden - refine the interval value
920  * @i: interval to refine
921  * @rats_count: number of struct ratden
922  * @rats: struct ratden array
923  * @nump: pointer to store the resultant numerator
924  * @denp: pointer to store the resultant denominator
925  *
926  * Return: Positive if the value is changed, zero if it's not changed, or a
927  * negative error code.
928  */
929 static int snd_interval_ratden(struct snd_interval *i,
930                                unsigned int rats_count,
931                                const struct snd_ratden *rats,
932                                unsigned int *nump, unsigned int *denp)
933 {
934         unsigned int best_num, best_diff, best_den;
935         unsigned int k;
936         struct snd_interval t;
937         int err;
938
939         best_num = best_den = best_diff = 0;
940         for (k = 0; k < rats_count; ++k) {
941                 unsigned int num;
942                 unsigned int den = rats[k].den;
943                 unsigned int q = i->min;
944                 int diff;
945                 num = mul(q, den);
946                 if (num > rats[k].num_max)
947                         continue;
948                 if (num < rats[k].num_min)
949                         num = rats[k].num_max;
950                 else {
951                         unsigned int r;
952                         r = (num - rats[k].num_min) % rats[k].num_step;
953                         if (r != 0)
954                                 num += rats[k].num_step - r;
955                 }
956                 diff = num - q * den;
957                 if (best_num == 0 ||
958                     diff * best_den < best_diff * den) {
959                         best_diff = diff;
960                         best_den = den;
961                         best_num = num;
962                 }
963         }
964         if (best_den == 0) {
965                 i->empty = 1;
966                 return -EINVAL;
967         }
968         t.min = div_down(best_num, best_den);
969         t.openmin = !!(best_num % best_den);
970         
971         best_num = best_den = best_diff = 0;
972         for (k = 0; k < rats_count; ++k) {
973                 unsigned int num;
974                 unsigned int den = rats[k].den;
975                 unsigned int q = i->max;
976                 int diff;
977                 num = mul(q, den);
978                 if (num < rats[k].num_min)
979                         continue;
980                 if (num > rats[k].num_max)
981                         num = rats[k].num_max;
982                 else {
983                         unsigned int r;
984                         r = (num - rats[k].num_min) % rats[k].num_step;
985                         if (r != 0)
986                                 num -= r;
987                 }
988                 diff = q * den - num;
989                 if (best_num == 0 ||
990                     diff * best_den < best_diff * den) {
991                         best_diff = diff;
992                         best_den = den;
993                         best_num = num;
994                 }
995         }
996         if (best_den == 0) {
997                 i->empty = 1;
998                 return -EINVAL;
999         }
1000         t.max = div_up(best_num, best_den);
1001         t.openmax = !!(best_num % best_den);
1002         t.integer = 0;
1003         err = snd_interval_refine(i, &t);
1004         if (err < 0)
1005                 return err;
1006
1007         if (snd_interval_single(i)) {
1008                 if (nump)
1009                         *nump = best_num;
1010                 if (denp)
1011                         *denp = best_den;
1012         }
1013         return err;
1014 }
1015
1016 /**
1017  * snd_interval_list - refine the interval value from the list
1018  * @i: the interval value to refine
1019  * @count: the number of elements in the list
1020  * @list: the value list
1021  * @mask: the bit-mask to evaluate
1022  *
1023  * Refines the interval value from the list.
1024  * When mask is non-zero, only the elements corresponding to bit 1 are
1025  * evaluated.
1026  *
1027  * Return: Positive if the value is changed, zero if it's not changed, or a
1028  * negative error code.
1029  */
1030 int snd_interval_list(struct snd_interval *i, unsigned int count,
1031                       const unsigned int *list, unsigned int mask)
1032 {
1033         unsigned int k;
1034         struct snd_interval list_range;
1035
1036         if (!count) {
1037                 i->empty = 1;
1038                 return -EINVAL;
1039         }
1040         snd_interval_any(&list_range);
1041         list_range.min = UINT_MAX;
1042         list_range.max = 0;
1043         for (k = 0; k < count; k++) {
1044                 if (mask && !(mask & (1 << k)))
1045                         continue;
1046                 if (!snd_interval_test(i, list[k]))
1047                         continue;
1048                 list_range.min = min(list_range.min, list[k]);
1049                 list_range.max = max(list_range.max, list[k]);
1050         }
1051         return snd_interval_refine(i, &list_range);
1052 }
1053 EXPORT_SYMBOL(snd_interval_list);
1054
1055 /**
1056  * snd_interval_ranges - refine the interval value from the list of ranges
1057  * @i: the interval value to refine
1058  * @count: the number of elements in the list of ranges
1059  * @ranges: the ranges list
1060  * @mask: the bit-mask to evaluate
1061  *
1062  * Refines the interval value from the list of ranges.
1063  * When mask is non-zero, only the elements corresponding to bit 1 are
1064  * evaluated.
1065  *
1066  * Return: Positive if the value is changed, zero if it's not changed, or a
1067  * negative error code.
1068  */
1069 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1070                         const struct snd_interval *ranges, unsigned int mask)
1071 {
1072         unsigned int k;
1073         struct snd_interval range_union;
1074         struct snd_interval range;
1075
1076         if (!count) {
1077                 snd_interval_none(i);
1078                 return -EINVAL;
1079         }
1080         snd_interval_any(&range_union);
1081         range_union.min = UINT_MAX;
1082         range_union.max = 0;
1083         for (k = 0; k < count; k++) {
1084                 if (mask && !(mask & (1 << k)))
1085                         continue;
1086                 snd_interval_copy(&range, &ranges[k]);
1087                 if (snd_interval_refine(&range, i) < 0)
1088                         continue;
1089                 if (snd_interval_empty(&range))
1090                         continue;
1091
1092                 if (range.min < range_union.min) {
1093                         range_union.min = range.min;
1094                         range_union.openmin = 1;
1095                 }
1096                 if (range.min == range_union.min && !range.openmin)
1097                         range_union.openmin = 0;
1098                 if (range.max > range_union.max) {
1099                         range_union.max = range.max;
1100                         range_union.openmax = 1;
1101                 }
1102                 if (range.max == range_union.max && !range.openmax)
1103                         range_union.openmax = 0;
1104         }
1105         return snd_interval_refine(i, &range_union);
1106 }
1107 EXPORT_SYMBOL(snd_interval_ranges);
1108
1109 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1110 {
1111         unsigned int n;
1112         int changed = 0;
1113         n = i->min % step;
1114         if (n != 0 || i->openmin) {
1115                 i->min += step - n;
1116                 i->openmin = 0;
1117                 changed = 1;
1118         }
1119         n = i->max % step;
1120         if (n != 0 || i->openmax) {
1121                 i->max -= n;
1122                 i->openmax = 0;
1123                 changed = 1;
1124         }
1125         if (snd_interval_checkempty(i)) {
1126                 i->empty = 1;
1127                 return -EINVAL;
1128         }
1129         return changed;
1130 }
1131
1132 /* Info constraints helpers */
1133
1134 /**
1135  * snd_pcm_hw_rule_add - add the hw-constraint rule
1136  * @runtime: the pcm runtime instance
1137  * @cond: condition bits
1138  * @var: the variable to evaluate
1139  * @func: the evaluation function
1140  * @private: the private data pointer passed to function
1141  * @dep: the dependent variables
1142  *
1143  * Return: Zero if successful, or a negative error code on failure.
1144  */
1145 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1146                         int var,
1147                         snd_pcm_hw_rule_func_t func, void *private,
1148                         int dep, ...)
1149 {
1150         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151         struct snd_pcm_hw_rule *c;
1152         unsigned int k;
1153         va_list args;
1154         va_start(args, dep);
1155         if (constrs->rules_num >= constrs->rules_all) {
1156                 struct snd_pcm_hw_rule *new;
1157                 unsigned int new_rules = constrs->rules_all + 16;
1158                 new = krealloc_array(constrs->rules, new_rules,
1159                                      sizeof(*c), GFP_KERNEL);
1160                 if (!new) {
1161                         va_end(args);
1162                         return -ENOMEM;
1163                 }
1164                 constrs->rules = new;
1165                 constrs->rules_all = new_rules;
1166         }
1167         c = &constrs->rules[constrs->rules_num];
1168         c->cond = cond;
1169         c->func = func;
1170         c->var = var;
1171         c->private = private;
1172         k = 0;
1173         while (1) {
1174                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1175                         va_end(args);
1176                         return -EINVAL;
1177                 }
1178                 c->deps[k++] = dep;
1179                 if (dep < 0)
1180                         break;
1181                 dep = va_arg(args, int);
1182         }
1183         constrs->rules_num++;
1184         va_end(args);
1185         return 0;
1186 }
1187 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189 /**
1190  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191  * @runtime: PCM runtime instance
1192  * @var: hw_params variable to apply the mask
1193  * @mask: the bitmap mask
1194  *
1195  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196  *
1197  * Return: Zero if successful, or a negative error code on failure.
1198  */
1199 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200                                u_int32_t mask)
1201 {
1202         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203         struct snd_mask *maskp = constrs_mask(constrs, var);
1204         *maskp->bits &= mask;
1205         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206         if (*maskp->bits == 0)
1207                 return -EINVAL;
1208         return 0;
1209 }
1210
1211 /**
1212  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213  * @runtime: PCM runtime instance
1214  * @var: hw_params variable to apply the mask
1215  * @mask: the 64bit bitmap mask
1216  *
1217  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218  *
1219  * Return: Zero if successful, or a negative error code on failure.
1220  */
1221 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222                                  u_int64_t mask)
1223 {
1224         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225         struct snd_mask *maskp = constrs_mask(constrs, var);
1226         maskp->bits[0] &= (u_int32_t)mask;
1227         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229         if (! maskp->bits[0] && ! maskp->bits[1])
1230                 return -EINVAL;
1231         return 0;
1232 }
1233 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235 /**
1236  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237  * @runtime: PCM runtime instance
1238  * @var: hw_params variable to apply the integer constraint
1239  *
1240  * Apply the constraint of integer to an interval parameter.
1241  *
1242  * Return: Positive if the value is changed, zero if it's not changed, or a
1243  * negative error code.
1244  */
1245 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246 {
1247         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248         return snd_interval_setinteger(constrs_interval(constrs, var));
1249 }
1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252 /**
1253  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254  * @runtime: PCM runtime instance
1255  * @var: hw_params variable to apply the range
1256  * @min: the minimal value
1257  * @max: the maximal value
1258  * 
1259  * Apply the min/max range constraint to an interval parameter.
1260  *
1261  * Return: Positive if the value is changed, zero if it's not changed, or a
1262  * negative error code.
1263  */
1264 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265                                  unsigned int min, unsigned int max)
1266 {
1267         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268         struct snd_interval t;
1269         t.min = min;
1270         t.max = max;
1271         t.openmin = t.openmax = 0;
1272         t.integer = 0;
1273         return snd_interval_refine(constrs_interval(constrs, var), &t);
1274 }
1275 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1276
1277 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1278                                 struct snd_pcm_hw_rule *rule)
1279 {
1280         struct snd_pcm_hw_constraint_list *list = rule->private;
1281         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1282 }               
1283
1284
1285 /**
1286  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287  * @runtime: PCM runtime instance
1288  * @cond: condition bits
1289  * @var: hw_params variable to apply the list constraint
1290  * @l: list
1291  * 
1292  * Apply the list of constraints to an interval parameter.
1293  *
1294  * Return: Zero if successful, or a negative error code on failure.
1295  */
1296 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1297                                unsigned int cond,
1298                                snd_pcm_hw_param_t var,
1299                                const struct snd_pcm_hw_constraint_list *l)
1300 {
1301         return snd_pcm_hw_rule_add(runtime, cond, var,
1302                                    snd_pcm_hw_rule_list, (void *)l,
1303                                    var, -1);
1304 }
1305 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1306
1307 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1308                                   struct snd_pcm_hw_rule *rule)
1309 {
1310         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1311         return snd_interval_ranges(hw_param_interval(params, rule->var),
1312                                    r->count, r->ranges, r->mask);
1313 }
1314
1315
1316 /**
1317  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1318  * @runtime: PCM runtime instance
1319  * @cond: condition bits
1320  * @var: hw_params variable to apply the list of range constraints
1321  * @r: ranges
1322  *
1323  * Apply the list of range constraints to an interval parameter.
1324  *
1325  * Return: Zero if successful, or a negative error code on failure.
1326  */
1327 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1328                                  unsigned int cond,
1329                                  snd_pcm_hw_param_t var,
1330                                  const struct snd_pcm_hw_constraint_ranges *r)
1331 {
1332         return snd_pcm_hw_rule_add(runtime, cond, var,
1333                                    snd_pcm_hw_rule_ranges, (void *)r,
1334                                    var, -1);
1335 }
1336 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1337
1338 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1339                                    struct snd_pcm_hw_rule *rule)
1340 {
1341         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1342         unsigned int num = 0, den = 0;
1343         int err;
1344         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1345                                   r->nrats, r->rats, &num, &den);
1346         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1347                 params->rate_num = num;
1348                 params->rate_den = den;
1349         }
1350         return err;
1351 }
1352
1353 /**
1354  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1355  * @runtime: PCM runtime instance
1356  * @cond: condition bits
1357  * @var: hw_params variable to apply the ratnums constraint
1358  * @r: struct snd_ratnums constriants
1359  *
1360  * Return: Zero if successful, or a negative error code on failure.
1361  */
1362 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1363                                   unsigned int cond,
1364                                   snd_pcm_hw_param_t var,
1365                                   const struct snd_pcm_hw_constraint_ratnums *r)
1366 {
1367         return snd_pcm_hw_rule_add(runtime, cond, var,
1368                                    snd_pcm_hw_rule_ratnums, (void *)r,
1369                                    var, -1);
1370 }
1371 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1372
1373 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1374                                    struct snd_pcm_hw_rule *rule)
1375 {
1376         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1377         unsigned int num = 0, den = 0;
1378         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1379                                   r->nrats, r->rats, &num, &den);
1380         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1381                 params->rate_num = num;
1382                 params->rate_den = den;
1383         }
1384         return err;
1385 }
1386
1387 /**
1388  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1389  * @runtime: PCM runtime instance
1390  * @cond: condition bits
1391  * @var: hw_params variable to apply the ratdens constraint
1392  * @r: struct snd_ratdens constriants
1393  *
1394  * Return: Zero if successful, or a negative error code on failure.
1395  */
1396 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1397                                   unsigned int cond,
1398                                   snd_pcm_hw_param_t var,
1399                                   const struct snd_pcm_hw_constraint_ratdens *r)
1400 {
1401         return snd_pcm_hw_rule_add(runtime, cond, var,
1402                                    snd_pcm_hw_rule_ratdens, (void *)r,
1403                                    var, -1);
1404 }
1405 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1406
1407 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1408                                   struct snd_pcm_hw_rule *rule)
1409 {
1410         unsigned int l = (unsigned long) rule->private;
1411         int width = l & 0xffff;
1412         unsigned int msbits = l >> 16;
1413         const struct snd_interval *i =
1414                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1415
1416         if (!snd_interval_single(i))
1417                 return 0;
1418
1419         if ((snd_interval_value(i) == width) ||
1420             (width == 0 && snd_interval_value(i) > msbits))
1421                 params->msbits = min_not_zero(params->msbits, msbits);
1422
1423         return 0;
1424 }
1425
1426 /**
1427  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1428  * @runtime: PCM runtime instance
1429  * @cond: condition bits
1430  * @width: sample bits width
1431  * @msbits: msbits width
1432  *
1433  * This constraint will set the number of most significant bits (msbits) if a
1434  * sample format with the specified width has been select. If width is set to 0
1435  * the msbits will be set for any sample format with a width larger than the
1436  * specified msbits.
1437  *
1438  * Return: Zero if successful, or a negative error code on failure.
1439  */
1440 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1441                                  unsigned int cond,
1442                                  unsigned int width,
1443                                  unsigned int msbits)
1444 {
1445         unsigned long l = (msbits << 16) | width;
1446         return snd_pcm_hw_rule_add(runtime, cond, -1,
1447                                     snd_pcm_hw_rule_msbits,
1448                                     (void*) l,
1449                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1450 }
1451 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1452
1453 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1454                                 struct snd_pcm_hw_rule *rule)
1455 {
1456         unsigned long step = (unsigned long) rule->private;
1457         return snd_interval_step(hw_param_interval(params, rule->var), step);
1458 }
1459
1460 /**
1461  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1462  * @runtime: PCM runtime instance
1463  * @cond: condition bits
1464  * @var: hw_params variable to apply the step constraint
1465  * @step: step size
1466  *
1467  * Return: Zero if successful, or a negative error code on failure.
1468  */
1469 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1470                                unsigned int cond,
1471                                snd_pcm_hw_param_t var,
1472                                unsigned long step)
1473 {
1474         return snd_pcm_hw_rule_add(runtime, cond, var, 
1475                                    snd_pcm_hw_rule_step, (void *) step,
1476                                    var, -1);
1477 }
1478 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1479
1480 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1481 {
1482         static const unsigned int pow2_sizes[] = {
1483                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1484                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1485                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1486                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1487         };
1488         return snd_interval_list(hw_param_interval(params, rule->var),
1489                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1490 }               
1491
1492 /**
1493  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1494  * @runtime: PCM runtime instance
1495  * @cond: condition bits
1496  * @var: hw_params variable to apply the power-of-2 constraint
1497  *
1498  * Return: Zero if successful, or a negative error code on failure.
1499  */
1500 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1501                                unsigned int cond,
1502                                snd_pcm_hw_param_t var)
1503 {
1504         return snd_pcm_hw_rule_add(runtime, cond, var, 
1505                                    snd_pcm_hw_rule_pow2, NULL,
1506                                    var, -1);
1507 }
1508 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1509
1510 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1511                                            struct snd_pcm_hw_rule *rule)
1512 {
1513         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1514         struct snd_interval *rate;
1515
1516         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1517         return snd_interval_list(rate, 1, &base_rate, 0);
1518 }
1519
1520 /**
1521  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1522  * @runtime: PCM runtime instance
1523  * @base_rate: the rate at which the hardware does not resample
1524  *
1525  * Return: Zero if successful, or a negative error code on failure.
1526  */
1527 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1528                                unsigned int base_rate)
1529 {
1530         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1531                                    SNDRV_PCM_HW_PARAM_RATE,
1532                                    snd_pcm_hw_rule_noresample_func,
1533                                    (void *)(uintptr_t)base_rate,
1534                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1535 }
1536 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1537
1538 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1539                                   snd_pcm_hw_param_t var)
1540 {
1541         if (hw_is_mask(var)) {
1542                 snd_mask_any(hw_param_mask(params, var));
1543                 params->cmask |= 1 << var;
1544                 params->rmask |= 1 << var;
1545                 return;
1546         }
1547         if (hw_is_interval(var)) {
1548                 snd_interval_any(hw_param_interval(params, var));
1549                 params->cmask |= 1 << var;
1550                 params->rmask |= 1 << var;
1551                 return;
1552         }
1553         snd_BUG();
1554 }
1555
1556 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1557 {
1558         unsigned int k;
1559         memset(params, 0, sizeof(*params));
1560         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1561                 _snd_pcm_hw_param_any(params, k);
1562         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1563                 _snd_pcm_hw_param_any(params, k);
1564         params->info = ~0U;
1565 }
1566 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1567
1568 /**
1569  * snd_pcm_hw_param_value - return @params field @var value
1570  * @params: the hw_params instance
1571  * @var: parameter to retrieve
1572  * @dir: pointer to the direction (-1,0,1) or %NULL
1573  *
1574  * Return: The value for field @var if it's fixed in configuration space
1575  * defined by @params. -%EINVAL otherwise.
1576  */
1577 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1578                            snd_pcm_hw_param_t var, int *dir)
1579 {
1580         if (hw_is_mask(var)) {
1581                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1582                 if (!snd_mask_single(mask))
1583                         return -EINVAL;
1584                 if (dir)
1585                         *dir = 0;
1586                 return snd_mask_value(mask);
1587         }
1588         if (hw_is_interval(var)) {
1589                 const struct snd_interval *i = hw_param_interval_c(params, var);
1590                 if (!snd_interval_single(i))
1591                         return -EINVAL;
1592                 if (dir)
1593                         *dir = i->openmin;
1594                 return snd_interval_value(i);
1595         }
1596         return -EINVAL;
1597 }
1598 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1599
1600 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1601                                 snd_pcm_hw_param_t var)
1602 {
1603         if (hw_is_mask(var)) {
1604                 snd_mask_none(hw_param_mask(params, var));
1605                 params->cmask |= 1 << var;
1606                 params->rmask |= 1 << var;
1607         } else if (hw_is_interval(var)) {
1608                 snd_interval_none(hw_param_interval(params, var));
1609                 params->cmask |= 1 << var;
1610                 params->rmask |= 1 << var;
1611         } else {
1612                 snd_BUG();
1613         }
1614 }
1615 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1616
1617 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1618                                    snd_pcm_hw_param_t var)
1619 {
1620         int changed;
1621         if (hw_is_mask(var))
1622                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1623         else if (hw_is_interval(var))
1624                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1625         else
1626                 return -EINVAL;
1627         if (changed > 0) {
1628                 params->cmask |= 1 << var;
1629                 params->rmask |= 1 << var;
1630         }
1631         return changed;
1632 }
1633
1634
1635 /**
1636  * snd_pcm_hw_param_first - refine config space and return minimum value
1637  * @pcm: PCM instance
1638  * @params: the hw_params instance
1639  * @var: parameter to retrieve
1640  * @dir: pointer to the direction (-1,0,1) or %NULL
1641  *
1642  * Inside configuration space defined by @params remove from @var all
1643  * values > minimum. Reduce configuration space accordingly.
1644  *
1645  * Return: The minimum, or a negative error code on failure.
1646  */
1647 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1648                            struct snd_pcm_hw_params *params, 
1649                            snd_pcm_hw_param_t var, int *dir)
1650 {
1651         int changed = _snd_pcm_hw_param_first(params, var);
1652         if (changed < 0)
1653                 return changed;
1654         if (params->rmask) {
1655                 int err = snd_pcm_hw_refine(pcm, params);
1656                 if (err < 0)
1657                         return err;
1658         }
1659         return snd_pcm_hw_param_value(params, var, dir);
1660 }
1661 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1662
1663 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1664                                   snd_pcm_hw_param_t var)
1665 {
1666         int changed;
1667         if (hw_is_mask(var))
1668                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1669         else if (hw_is_interval(var))
1670                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1671         else
1672                 return -EINVAL;
1673         if (changed > 0) {
1674                 params->cmask |= 1 << var;
1675                 params->rmask |= 1 << var;
1676         }
1677         return changed;
1678 }
1679
1680
1681 /**
1682  * snd_pcm_hw_param_last - refine config space and return maximum value
1683  * @pcm: PCM instance
1684  * @params: the hw_params instance
1685  * @var: parameter to retrieve
1686  * @dir: pointer to the direction (-1,0,1) or %NULL
1687  *
1688  * Inside configuration space defined by @params remove from @var all
1689  * values < maximum. Reduce configuration space accordingly.
1690  *
1691  * Return: The maximum, or a negative error code on failure.
1692  */
1693 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1694                           struct snd_pcm_hw_params *params,
1695                           snd_pcm_hw_param_t var, int *dir)
1696 {
1697         int changed = _snd_pcm_hw_param_last(params, var);
1698         if (changed < 0)
1699                 return changed;
1700         if (params->rmask) {
1701                 int err = snd_pcm_hw_refine(pcm, params);
1702                 if (err < 0)
1703                         return err;
1704         }
1705         return snd_pcm_hw_param_value(params, var, dir);
1706 }
1707 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1708
1709 /**
1710  * snd_pcm_hw_params_bits - Get the number of bits per the sample.
1711  * @p: hardware parameters
1712  *
1713  * Return: The number of bits per sample based on the format,
1714  * subformat and msbits the specified hw params has.
1715  */
1716 int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p)
1717 {
1718         snd_pcm_subformat_t subformat = params_subformat(p);
1719         snd_pcm_format_t format = params_format(p);
1720
1721         switch (format) {
1722         case SNDRV_PCM_FORMAT_S32_LE:
1723         case SNDRV_PCM_FORMAT_U32_LE:
1724         case SNDRV_PCM_FORMAT_S32_BE:
1725         case SNDRV_PCM_FORMAT_U32_BE:
1726                 switch (subformat) {
1727                 case SNDRV_PCM_SUBFORMAT_MSBITS_20:
1728                         return 20;
1729                 case SNDRV_PCM_SUBFORMAT_MSBITS_24:
1730                         return 24;
1731                 case SNDRV_PCM_SUBFORMAT_MSBITS_MAX:
1732                 case SNDRV_PCM_SUBFORMAT_STD:
1733                 default:
1734                         break;
1735                 }
1736                 fallthrough;
1737         default:
1738                 return snd_pcm_format_width(format);
1739         }
1740 }
1741 EXPORT_SYMBOL(snd_pcm_hw_params_bits);
1742
1743 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1744                                    void *arg)
1745 {
1746         struct snd_pcm_runtime *runtime = substream->runtime;
1747
1748         guard(pcm_stream_lock_irqsave)(substream);
1749         if (snd_pcm_running(substream) &&
1750             snd_pcm_update_hw_ptr(substream) >= 0)
1751                 runtime->status->hw_ptr %= runtime->buffer_size;
1752         else {
1753                 runtime->status->hw_ptr = 0;
1754                 runtime->hw_ptr_wrap = 0;
1755         }
1756         return 0;
1757 }
1758
1759 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1760                                           void *arg)
1761 {
1762         struct snd_pcm_channel_info *info = arg;
1763         struct snd_pcm_runtime *runtime = substream->runtime;
1764         int width;
1765         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1766                 info->offset = -1;
1767                 return 0;
1768         }
1769         width = snd_pcm_format_physical_width(runtime->format);
1770         if (width < 0)
1771                 return width;
1772         info->offset = 0;
1773         switch (runtime->access) {
1774         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1775         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1776                 info->first = info->channel * width;
1777                 info->step = runtime->channels * width;
1778                 break;
1779         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1780         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1781         {
1782                 size_t size = runtime->dma_bytes / runtime->channels;
1783                 info->first = info->channel * size * 8;
1784                 info->step = width;
1785                 break;
1786         }
1787         default:
1788                 snd_BUG();
1789                 break;
1790         }
1791         return 0;
1792 }
1793
1794 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1795                                        void *arg)
1796 {
1797         struct snd_pcm_hw_params *params = arg;
1798         snd_pcm_format_t format;
1799         int channels;
1800         ssize_t frame_size;
1801
1802         params->fifo_size = substream->runtime->hw.fifo_size;
1803         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1804                 format = params_format(params);
1805                 channels = params_channels(params);
1806                 frame_size = snd_pcm_format_size(format, channels);
1807                 if (frame_size > 0)
1808                         params->fifo_size /= frame_size;
1809         }
1810         return 0;
1811 }
1812
1813 /**
1814  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1815  * @substream: the pcm substream instance
1816  * @cmd: ioctl command
1817  * @arg: ioctl argument
1818  *
1819  * Processes the generic ioctl commands for PCM.
1820  * Can be passed as the ioctl callback for PCM ops.
1821  *
1822  * Return: Zero if successful, or a negative error code on failure.
1823  */
1824 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1825                       unsigned int cmd, void *arg)
1826 {
1827         switch (cmd) {
1828         case SNDRV_PCM_IOCTL1_RESET:
1829                 return snd_pcm_lib_ioctl_reset(substream, arg);
1830         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1831                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1832         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1833                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1834         }
1835         return -ENXIO;
1836 }
1837 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1838
1839 /**
1840  * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1841  *                                              under acquired lock of PCM substream.
1842  * @substream: the instance of pcm substream.
1843  *
1844  * This function is called when the batch of audio data frames as the same size as the period of
1845  * buffer is already processed in audio data transmission.
1846  *
1847  * The call of function updates the status of runtime with the latest position of audio data
1848  * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1849  * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1850  * substream according to configured threshold.
1851  *
1852  * The function is intended to use for the case that PCM driver operates audio data frames under
1853  * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1854  * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1855  * since lock of PCM substream should be acquired in advance.
1856  *
1857  * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1858  * function:
1859  *
1860  * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1861  * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1862  * - .get_time_info - to retrieve audio time stamp if needed.
1863  *
1864  * Even if more than one periods have elapsed since the last call, you have to call this only once.
1865  */
1866 void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1867 {
1868         struct snd_pcm_runtime *runtime;
1869
1870         if (PCM_RUNTIME_CHECK(substream))
1871                 return;
1872         runtime = substream->runtime;
1873
1874         if (!snd_pcm_running(substream) ||
1875             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1876                 goto _end;
1877
1878 #ifdef CONFIG_SND_PCM_TIMER
1879         if (substream->timer_running)
1880                 snd_timer_interrupt(substream->timer, 1);
1881 #endif
1882  _end:
1883         snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1884 }
1885 EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1886
1887 /**
1888  * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1889  *                            PCM substream.
1890  * @substream: the instance of PCM substream.
1891  *
1892  * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1893  * acquiring lock of PCM substream voluntarily.
1894  *
1895  * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1896  * the batch of audio data frames as the same size as the period of buffer is already processed in
1897  * audio data transmission.
1898  */
1899 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1900 {
1901         if (snd_BUG_ON(!substream))
1902                 return;
1903
1904         guard(pcm_stream_lock_irqsave)(substream);
1905         snd_pcm_period_elapsed_under_stream_lock(substream);
1906 }
1907 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1908
1909 /*
1910  * Wait until avail_min data becomes available
1911  * Returns a negative error code if any error occurs during operation.
1912  * The available space is stored on availp.  When err = 0 and avail = 0
1913  * on the capture stream, it indicates the stream is in DRAINING state.
1914  */
1915 static int wait_for_avail(struct snd_pcm_substream *substream,
1916                               snd_pcm_uframes_t *availp)
1917 {
1918         struct snd_pcm_runtime *runtime = substream->runtime;
1919         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1920         wait_queue_entry_t wait;
1921         int err = 0;
1922         snd_pcm_uframes_t avail = 0;
1923         long wait_time, tout;
1924
1925         init_waitqueue_entry(&wait, current);
1926         set_current_state(TASK_INTERRUPTIBLE);
1927         add_wait_queue(&runtime->tsleep, &wait);
1928
1929         if (runtime->no_period_wakeup)
1930                 wait_time = MAX_SCHEDULE_TIMEOUT;
1931         else {
1932                 /* use wait time from substream if available */
1933                 if (substream->wait_time) {
1934                         wait_time = substream->wait_time;
1935                 } else {
1936                         wait_time = 100;
1937
1938                         if (runtime->rate) {
1939                                 long t = runtime->buffer_size * 1100 / runtime->rate;
1940                                 wait_time = max(t, wait_time);
1941                         }
1942                 }
1943                 wait_time = msecs_to_jiffies(wait_time);
1944         }
1945
1946         for (;;) {
1947                 if (signal_pending(current)) {
1948                         err = -ERESTARTSYS;
1949                         break;
1950                 }
1951
1952                 /*
1953                  * We need to check if space became available already
1954                  * (and thus the wakeup happened already) first to close
1955                  * the race of space already having become available.
1956                  * This check must happen after been added to the waitqueue
1957                  * and having current state be INTERRUPTIBLE.
1958                  */
1959                 avail = snd_pcm_avail(substream);
1960                 if (avail >= runtime->twake)
1961                         break;
1962                 snd_pcm_stream_unlock_irq(substream);
1963
1964                 tout = schedule_timeout(wait_time);
1965
1966                 snd_pcm_stream_lock_irq(substream);
1967                 set_current_state(TASK_INTERRUPTIBLE);
1968                 switch (runtime->state) {
1969                 case SNDRV_PCM_STATE_SUSPENDED:
1970                         err = -ESTRPIPE;
1971                         goto _endloop;
1972                 case SNDRV_PCM_STATE_XRUN:
1973                         err = -EPIPE;
1974                         goto _endloop;
1975                 case SNDRV_PCM_STATE_DRAINING:
1976                         if (is_playback)
1977                                 err = -EPIPE;
1978                         else 
1979                                 avail = 0; /* indicate draining */
1980                         goto _endloop;
1981                 case SNDRV_PCM_STATE_OPEN:
1982                 case SNDRV_PCM_STATE_SETUP:
1983                 case SNDRV_PCM_STATE_DISCONNECTED:
1984                         err = -EBADFD;
1985                         goto _endloop;
1986                 case SNDRV_PCM_STATE_PAUSED:
1987                         continue;
1988                 }
1989                 if (!tout) {
1990                         pcm_dbg(substream->pcm,
1991                                 "%s timeout (DMA or IRQ trouble?)\n",
1992                                 is_playback ? "playback write" : "capture read");
1993                         err = -EIO;
1994                         break;
1995                 }
1996         }
1997  _endloop:
1998         set_current_state(TASK_RUNNING);
1999         remove_wait_queue(&runtime->tsleep, &wait);
2000         *availp = avail;
2001         return err;
2002 }
2003         
2004 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
2005                               int channel, unsigned long hwoff,
2006                               struct iov_iter *iter, unsigned long bytes);
2007
2008 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
2009                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
2010                           bool);
2011
2012 /* calculate the target DMA-buffer position to be written/read */
2013 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
2014                            int channel, unsigned long hwoff)
2015 {
2016         return runtime->dma_area + hwoff +
2017                 channel * (runtime->dma_bytes / runtime->channels);
2018 }
2019
2020 /* default copy ops for write; used for both interleaved and non- modes */
2021 static int default_write_copy(struct snd_pcm_substream *substream,
2022                               int channel, unsigned long hwoff,
2023                               struct iov_iter *iter, unsigned long bytes)
2024 {
2025         if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2026                            bytes, iter) != bytes)
2027                 return -EFAULT;
2028         return 0;
2029 }
2030
2031 /* fill silence instead of copy data; called as a transfer helper
2032  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2033  * a NULL buffer is passed
2034  */
2035 static int fill_silence(struct snd_pcm_substream *substream, int channel,
2036                         unsigned long hwoff, struct iov_iter *iter,
2037                         unsigned long bytes)
2038 {
2039         struct snd_pcm_runtime *runtime = substream->runtime;
2040
2041         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2042                 return 0;
2043         if (substream->ops->fill_silence)
2044                 return substream->ops->fill_silence(substream, channel,
2045                                                     hwoff, bytes);
2046
2047         snd_pcm_format_set_silence(runtime->format,
2048                                    get_dma_ptr(runtime, channel, hwoff),
2049                                    bytes_to_samples(runtime, bytes));
2050         return 0;
2051 }
2052
2053 /* default copy ops for read; used for both interleaved and non- modes */
2054 static int default_read_copy(struct snd_pcm_substream *substream,
2055                              int channel, unsigned long hwoff,
2056                              struct iov_iter *iter, unsigned long bytes)
2057 {
2058         if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2059                          bytes, iter) != bytes)
2060                 return -EFAULT;
2061         return 0;
2062 }
2063
2064 /* call transfer with the filled iov_iter */
2065 static int do_transfer(struct snd_pcm_substream *substream, int c,
2066                        unsigned long hwoff, void *data, unsigned long bytes,
2067                        pcm_transfer_f transfer, bool in_kernel)
2068 {
2069         struct iov_iter iter;
2070         int err, type;
2071
2072         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2073                 type = ITER_SOURCE;
2074         else
2075                 type = ITER_DEST;
2076
2077         if (in_kernel) {
2078                 struct kvec kvec = { data, bytes };
2079
2080                 iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2081                 return transfer(substream, c, hwoff, &iter, bytes);
2082         }
2083
2084         err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2085         if (err)
2086                 return err;
2087         return transfer(substream, c, hwoff, &iter, bytes);
2088 }
2089
2090 /* call transfer function with the converted pointers and sizes;
2091  * for interleaved mode, it's one shot for all samples
2092  */
2093 static int interleaved_copy(struct snd_pcm_substream *substream,
2094                             snd_pcm_uframes_t hwoff, void *data,
2095                             snd_pcm_uframes_t off,
2096                             snd_pcm_uframes_t frames,
2097                             pcm_transfer_f transfer,
2098                             bool in_kernel)
2099 {
2100         struct snd_pcm_runtime *runtime = substream->runtime;
2101
2102         /* convert to bytes */
2103         hwoff = frames_to_bytes(runtime, hwoff);
2104         off = frames_to_bytes(runtime, off);
2105         frames = frames_to_bytes(runtime, frames);
2106
2107         return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2108                            in_kernel);
2109 }
2110
2111 /* call transfer function with the converted pointers and sizes for each
2112  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2113  */
2114 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2115                                snd_pcm_uframes_t hwoff, void *data,
2116                                snd_pcm_uframes_t off,
2117                                snd_pcm_uframes_t frames,
2118                                pcm_transfer_f transfer,
2119                                bool in_kernel)
2120 {
2121         struct snd_pcm_runtime *runtime = substream->runtime;
2122         int channels = runtime->channels;
2123         void **bufs = data;
2124         int c, err;
2125
2126         /* convert to bytes; note that it's not frames_to_bytes() here.
2127          * in non-interleaved mode, we copy for each channel, thus
2128          * each copy is n_samples bytes x channels = whole frames.
2129          */
2130         off = samples_to_bytes(runtime, off);
2131         frames = samples_to_bytes(runtime, frames);
2132         hwoff = samples_to_bytes(runtime, hwoff);
2133         for (c = 0; c < channels; ++c, ++bufs) {
2134                 if (!data || !*bufs)
2135                         err = fill_silence(substream, c, hwoff, NULL, frames);
2136                 else
2137                         err = do_transfer(substream, c, hwoff, *bufs + off,
2138                                           frames, transfer, in_kernel);
2139                 if (err < 0)
2140                         return err;
2141         }
2142         return 0;
2143 }
2144
2145 /* fill silence on the given buffer position;
2146  * called from snd_pcm_playback_silence()
2147  */
2148 static int fill_silence_frames(struct snd_pcm_substream *substream,
2149                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2150 {
2151         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2152             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2153                 return interleaved_copy(substream, off, NULL, 0, frames,
2154                                         fill_silence, true);
2155         else
2156                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2157                                            fill_silence, true);
2158 }
2159
2160 /* sanity-check for read/write methods */
2161 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2162 {
2163         struct snd_pcm_runtime *runtime;
2164         if (PCM_RUNTIME_CHECK(substream))
2165                 return -ENXIO;
2166         runtime = substream->runtime;
2167         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2168                 return -EINVAL;
2169         if (runtime->state == SNDRV_PCM_STATE_OPEN)
2170                 return -EBADFD;
2171         return 0;
2172 }
2173
2174 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2175 {
2176         switch (runtime->state) {
2177         case SNDRV_PCM_STATE_PREPARED:
2178         case SNDRV_PCM_STATE_RUNNING:
2179         case SNDRV_PCM_STATE_PAUSED:
2180                 return 0;
2181         case SNDRV_PCM_STATE_XRUN:
2182                 return -EPIPE;
2183         case SNDRV_PCM_STATE_SUSPENDED:
2184                 return -ESTRPIPE;
2185         default:
2186                 return -EBADFD;
2187         }
2188 }
2189
2190 /* update to the given appl_ptr and call ack callback if needed;
2191  * when an error is returned, take back to the original value
2192  */
2193 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2194                            snd_pcm_uframes_t appl_ptr)
2195 {
2196         struct snd_pcm_runtime *runtime = substream->runtime;
2197         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2198         snd_pcm_sframes_t diff;
2199         int ret;
2200
2201         if (old_appl_ptr == appl_ptr)
2202                 return 0;
2203
2204         if (appl_ptr >= runtime->boundary)
2205                 return -EINVAL;
2206         /*
2207          * check if a rewind is requested by the application
2208          */
2209         if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2210                 diff = appl_ptr - old_appl_ptr;
2211                 if (diff >= 0) {
2212                         if (diff > runtime->buffer_size)
2213                                 return -EINVAL;
2214                 } else {
2215                         if (runtime->boundary + diff > runtime->buffer_size)
2216                                 return -EINVAL;
2217                 }
2218         }
2219
2220         runtime->control->appl_ptr = appl_ptr;
2221         if (substream->ops->ack) {
2222                 ret = substream->ops->ack(substream);
2223                 if (ret < 0) {
2224                         runtime->control->appl_ptr = old_appl_ptr;
2225                         if (ret == -EPIPE)
2226                                 __snd_pcm_xrun(substream);
2227                         return ret;
2228                 }
2229         }
2230
2231         trace_applptr(substream, old_appl_ptr, appl_ptr);
2232
2233         return 0;
2234 }
2235
2236 /* the common loop for read/write data */
2237 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2238                                      void *data, bool interleaved,
2239                                      snd_pcm_uframes_t size, bool in_kernel)
2240 {
2241         struct snd_pcm_runtime *runtime = substream->runtime;
2242         snd_pcm_uframes_t xfer = 0;
2243         snd_pcm_uframes_t offset = 0;
2244         snd_pcm_uframes_t avail;
2245         pcm_copy_f writer;
2246         pcm_transfer_f transfer;
2247         bool nonblock;
2248         bool is_playback;
2249         int err;
2250
2251         err = pcm_sanity_check(substream);
2252         if (err < 0)
2253                 return err;
2254
2255         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2256         if (interleaved) {
2257                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2258                     runtime->channels > 1)
2259                         return -EINVAL;
2260                 writer = interleaved_copy;
2261         } else {
2262                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2263                         return -EINVAL;
2264                 writer = noninterleaved_copy;
2265         }
2266
2267         if (!data) {
2268                 if (is_playback)
2269                         transfer = fill_silence;
2270                 else
2271                         return -EINVAL;
2272         } else {
2273                 if (substream->ops->copy)
2274                         transfer = substream->ops->copy;
2275                 else
2276                         transfer = is_playback ?
2277                                 default_write_copy : default_read_copy;
2278         }
2279
2280         if (size == 0)
2281                 return 0;
2282
2283         nonblock = !!(substream->f_flags & O_NONBLOCK);
2284
2285         snd_pcm_stream_lock_irq(substream);
2286         err = pcm_accessible_state(runtime);
2287         if (err < 0)
2288                 goto _end_unlock;
2289
2290         runtime->twake = runtime->control->avail_min ? : 1;
2291         if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2292                 snd_pcm_update_hw_ptr(substream);
2293
2294         /*
2295          * If size < start_threshold, wait indefinitely. Another
2296          * thread may start capture
2297          */
2298         if (!is_playback &&
2299             runtime->state == SNDRV_PCM_STATE_PREPARED &&
2300             size >= runtime->start_threshold) {
2301                 err = snd_pcm_start(substream);
2302                 if (err < 0)
2303                         goto _end_unlock;
2304         }
2305
2306         avail = snd_pcm_avail(substream);
2307
2308         while (size > 0) {
2309                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2310                 snd_pcm_uframes_t cont;
2311                 if (!avail) {
2312                         if (!is_playback &&
2313                             runtime->state == SNDRV_PCM_STATE_DRAINING) {
2314                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2315                                 goto _end_unlock;
2316                         }
2317                         if (nonblock) {
2318                                 err = -EAGAIN;
2319                                 goto _end_unlock;
2320                         }
2321                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2322                                         runtime->control->avail_min ? : 1);
2323                         err = wait_for_avail(substream, &avail);
2324                         if (err < 0)
2325                                 goto _end_unlock;
2326                         if (!avail)
2327                                 continue; /* draining */
2328                 }
2329                 frames = size > avail ? avail : size;
2330                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2331                 appl_ofs = appl_ptr % runtime->buffer_size;
2332                 cont = runtime->buffer_size - appl_ofs;
2333                 if (frames > cont)
2334                         frames = cont;
2335                 if (snd_BUG_ON(!frames)) {
2336                         err = -EINVAL;
2337                         goto _end_unlock;
2338                 }
2339                 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2340                         err = -EBUSY;
2341                         goto _end_unlock;
2342                 }
2343                 snd_pcm_stream_unlock_irq(substream);
2344                 if (!is_playback)
2345                         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2346                 err = writer(substream, appl_ofs, data, offset, frames,
2347                              transfer, in_kernel);
2348                 if (is_playback)
2349                         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2350                 snd_pcm_stream_lock_irq(substream);
2351                 atomic_dec(&runtime->buffer_accessing);
2352                 if (err < 0)
2353                         goto _end_unlock;
2354                 err = pcm_accessible_state(runtime);
2355                 if (err < 0)
2356                         goto _end_unlock;
2357                 appl_ptr += frames;
2358                 if (appl_ptr >= runtime->boundary)
2359                         appl_ptr -= runtime->boundary;
2360                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2361                 if (err < 0)
2362                         goto _end_unlock;
2363
2364                 offset += frames;
2365                 size -= frames;
2366                 xfer += frames;
2367                 avail -= frames;
2368                 if (is_playback &&
2369                     runtime->state == SNDRV_PCM_STATE_PREPARED &&
2370                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2371                         err = snd_pcm_start(substream);
2372                         if (err < 0)
2373                                 goto _end_unlock;
2374                 }
2375         }
2376  _end_unlock:
2377         runtime->twake = 0;
2378         if (xfer > 0 && err >= 0)
2379                 snd_pcm_update_state(substream, runtime);
2380         snd_pcm_stream_unlock_irq(substream);
2381         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2382 }
2383 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2384
2385 /*
2386  * standard channel mapping helpers
2387  */
2388
2389 /* default channel maps for multi-channel playbacks, up to 8 channels */
2390 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2391         { .channels = 1,
2392           .map = { SNDRV_CHMAP_MONO } },
2393         { .channels = 2,
2394           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2395         { .channels = 4,
2396           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2398         { .channels = 6,
2399           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2401                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2402         { .channels = 8,
2403           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2406                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2407         { }
2408 };
2409 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2410
2411 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2412 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2413         { .channels = 1,
2414           .map = { SNDRV_CHMAP_MONO } },
2415         { .channels = 2,
2416           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2417         { .channels = 4,
2418           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2420         { .channels = 6,
2421           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2423                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424         { .channels = 8,
2425           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2428                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2429         { }
2430 };
2431 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2432
2433 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2434 {
2435         if (ch > info->max_channels)
2436                 return false;
2437         return !info->channel_mask || (info->channel_mask & (1U << ch));
2438 }
2439
2440 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2441                               struct snd_ctl_elem_info *uinfo)
2442 {
2443         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2444
2445         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2446         uinfo->count = info->max_channels;
2447         uinfo->value.integer.min = 0;
2448         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2449         return 0;
2450 }
2451
2452 /* get callback for channel map ctl element
2453  * stores the channel position firstly matching with the current channels
2454  */
2455 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2456                              struct snd_ctl_elem_value *ucontrol)
2457 {
2458         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2459         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2460         struct snd_pcm_substream *substream;
2461         const struct snd_pcm_chmap_elem *map;
2462
2463         if (!info->chmap)
2464                 return -EINVAL;
2465         substream = snd_pcm_chmap_substream(info, idx);
2466         if (!substream)
2467                 return -ENODEV;
2468         memset(ucontrol->value.integer.value, 0,
2469                sizeof(long) * info->max_channels);
2470         if (!substream->runtime)
2471                 return 0; /* no channels set */
2472         for (map = info->chmap; map->channels; map++) {
2473                 int i;
2474                 if (map->channels == substream->runtime->channels &&
2475                     valid_chmap_channels(info, map->channels)) {
2476                         for (i = 0; i < map->channels; i++)
2477                                 ucontrol->value.integer.value[i] = map->map[i];
2478                         return 0;
2479                 }
2480         }
2481         return -EINVAL;
2482 }
2483
2484 /* tlv callback for channel map ctl element
2485  * expands the pre-defined channel maps in a form of TLV
2486  */
2487 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2488                              unsigned int size, unsigned int __user *tlv)
2489 {
2490         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2491         const struct snd_pcm_chmap_elem *map;
2492         unsigned int __user *dst;
2493         int c, count = 0;
2494
2495         if (!info->chmap)
2496                 return -EINVAL;
2497         if (size < 8)
2498                 return -ENOMEM;
2499         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2500                 return -EFAULT;
2501         size -= 8;
2502         dst = tlv + 2;
2503         for (map = info->chmap; map->channels; map++) {
2504                 int chs_bytes = map->channels * 4;
2505                 if (!valid_chmap_channels(info, map->channels))
2506                         continue;
2507                 if (size < 8)
2508                         return -ENOMEM;
2509                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2510                     put_user(chs_bytes, dst + 1))
2511                         return -EFAULT;
2512                 dst += 2;
2513                 size -= 8;
2514                 count += 8;
2515                 if (size < chs_bytes)
2516                         return -ENOMEM;
2517                 size -= chs_bytes;
2518                 count += chs_bytes;
2519                 for (c = 0; c < map->channels; c++) {
2520                         if (put_user(map->map[c], dst))
2521                                 return -EFAULT;
2522                         dst++;
2523                 }
2524         }
2525         if (put_user(count, tlv + 1))
2526                 return -EFAULT;
2527         return 0;
2528 }
2529
2530 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2531 {
2532         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2533         info->pcm->streams[info->stream].chmap_kctl = NULL;
2534         kfree(info);
2535 }
2536
2537 /**
2538  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2539  * @pcm: the assigned PCM instance
2540  * @stream: stream direction
2541  * @chmap: channel map elements (for query)
2542  * @max_channels: the max number of channels for the stream
2543  * @private_value: the value passed to each kcontrol's private_value field
2544  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2545  *
2546  * Create channel-mapping control elements assigned to the given PCM stream(s).
2547  * Return: Zero if successful, or a negative error value.
2548  */
2549 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2550                            const struct snd_pcm_chmap_elem *chmap,
2551                            int max_channels,
2552                            unsigned long private_value,
2553                            struct snd_pcm_chmap **info_ret)
2554 {
2555         struct snd_pcm_chmap *info;
2556         struct snd_kcontrol_new knew = {
2557                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2558                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2559                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2560                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2561                 .info = pcm_chmap_ctl_info,
2562                 .get = pcm_chmap_ctl_get,
2563                 .tlv.c = pcm_chmap_ctl_tlv,
2564         };
2565         int err;
2566
2567         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2568                 return -EBUSY;
2569         info = kzalloc(sizeof(*info), GFP_KERNEL);
2570         if (!info)
2571                 return -ENOMEM;
2572         info->pcm = pcm;
2573         info->stream = stream;
2574         info->chmap = chmap;
2575         info->max_channels = max_channels;
2576         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2577                 knew.name = "Playback Channel Map";
2578         else
2579                 knew.name = "Capture Channel Map";
2580         knew.device = pcm->device;
2581         knew.count = pcm->streams[stream].substream_count;
2582         knew.private_value = private_value;
2583         info->kctl = snd_ctl_new1(&knew, info);
2584         if (!info->kctl) {
2585                 kfree(info);
2586                 return -ENOMEM;
2587         }
2588         info->kctl->private_free = pcm_chmap_ctl_private_free;
2589         err = snd_ctl_add(pcm->card, info->kctl);
2590         if (err < 0)
2591                 return err;
2592         pcm->streams[stream].chmap_kctl = info->kctl;
2593         if (info_ret)
2594                 *info_ret = info;
2595         return 0;
2596 }
2597 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);