47e5849d7557e18ec82049edbdbabad08e837a19
[linux-2.6-block.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *      This program is free software; you can redistribute it and/or modify
10  *      it under the terms of the GNU General Public License as published by
11  *      the Free Software Foundation; either version 2 of the License, or
12  *      (at your option) any later version.
13  */
14
15 #define pr_fmt(fmt) "LSM: " fmt
16
17 #include <linux/bpf.h>
18 #include <linux/capability.h>
19 #include <linux/dcache.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/lsm_hooks.h>
24 #include <linux/integrity.h>
25 #include <linux/ima.h>
26 #include <linux/evm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/mman.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/backing-dev.h>
32 #include <linux/string.h>
33 #include <linux/msg.h>
34 #include <net/flow.h>
35
36 #define MAX_LSM_EVM_XATTR       2
37
38 /* How many LSMs were built into the kernel? */
39 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
40
41 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
42 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
43
44 static struct kmem_cache *lsm_file_cache;
45 static struct kmem_cache *lsm_inode_cache;
46
47 char *lsm_names;
48 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
49
50 /* Boot-time LSM user choice */
51 static __initdata const char *chosen_lsm_order;
52 static __initdata const char *chosen_major_lsm;
53
54 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
55
56 /* Ordered list of LSMs to initialize. */
57 static __initdata struct lsm_info **ordered_lsms;
58 static __initdata struct lsm_info *exclusive;
59
60 static __initdata bool debug;
61 #define init_debug(...)                                         \
62         do {                                                    \
63                 if (debug)                                      \
64                         pr_info(__VA_ARGS__);                   \
65         } while (0)
66
67 static bool __init is_enabled(struct lsm_info *lsm)
68 {
69         if (!lsm->enabled)
70                 return false;
71
72         return *lsm->enabled;
73 }
74
75 /* Mark an LSM's enabled flag. */
76 static int lsm_enabled_true __initdata = 1;
77 static int lsm_enabled_false __initdata = 0;
78 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
79 {
80         /*
81          * When an LSM hasn't configured an enable variable, we can use
82          * a hard-coded location for storing the default enabled state.
83          */
84         if (!lsm->enabled) {
85                 if (enabled)
86                         lsm->enabled = &lsm_enabled_true;
87                 else
88                         lsm->enabled = &lsm_enabled_false;
89         } else if (lsm->enabled == &lsm_enabled_true) {
90                 if (!enabled)
91                         lsm->enabled = &lsm_enabled_false;
92         } else if (lsm->enabled == &lsm_enabled_false) {
93                 if (enabled)
94                         lsm->enabled = &lsm_enabled_true;
95         } else {
96                 *lsm->enabled = enabled;
97         }
98 }
99
100 /* Is an LSM already listed in the ordered LSMs list? */
101 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
102 {
103         struct lsm_info **check;
104
105         for (check = ordered_lsms; *check; check++)
106                 if (*check == lsm)
107                         return true;
108
109         return false;
110 }
111
112 /* Append an LSM to the list of ordered LSMs to initialize. */
113 static int last_lsm __initdata;
114 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
115 {
116         /* Ignore duplicate selections. */
117         if (exists_ordered_lsm(lsm))
118                 return;
119
120         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
121                 return;
122
123         /* Enable this LSM, if it is not already set. */
124         if (!lsm->enabled)
125                 lsm->enabled = &lsm_enabled_true;
126         ordered_lsms[last_lsm++] = lsm;
127
128         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
129                    is_enabled(lsm) ? "en" : "dis");
130 }
131
132 /* Is an LSM allowed to be initialized? */
133 static bool __init lsm_allowed(struct lsm_info *lsm)
134 {
135         /* Skip if the LSM is disabled. */
136         if (!is_enabled(lsm))
137                 return false;
138
139         /* Not allowed if another exclusive LSM already initialized. */
140         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
141                 init_debug("exclusive disabled: %s\n", lsm->name);
142                 return false;
143         }
144
145         return true;
146 }
147
148 static void __init lsm_set_blob_size(int *need, int *lbs)
149 {
150         int offset;
151
152         if (*need > 0) {
153                 offset = *lbs;
154                 *lbs += *need;
155                 *need = offset;
156         }
157 }
158
159 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
160 {
161         if (!needed)
162                 return;
163
164         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
165         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
166         /*
167          * The inode blob gets an rcu_head in addition to
168          * what the modules might need.
169          */
170         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
171                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
172         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
173         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
174         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
175         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
176 }
177
178 /* Prepare LSM for initialization. */
179 static void __init prepare_lsm(struct lsm_info *lsm)
180 {
181         int enabled = lsm_allowed(lsm);
182
183         /* Record enablement (to handle any following exclusive LSMs). */
184         set_enabled(lsm, enabled);
185
186         /* If enabled, do pre-initialization work. */
187         if (enabled) {
188                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
189                         exclusive = lsm;
190                         init_debug("exclusive chosen: %s\n", lsm->name);
191                 }
192
193                 lsm_set_blob_sizes(lsm->blobs);
194         }
195 }
196
197 /* Initialize a given LSM, if it is enabled. */
198 static void __init initialize_lsm(struct lsm_info *lsm)
199 {
200         if (is_enabled(lsm)) {
201                 int ret;
202
203                 init_debug("initializing %s\n", lsm->name);
204                 ret = lsm->init();
205                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
206         }
207 }
208
209 /* Populate ordered LSMs list from comma-separated LSM name list. */
210 static void __init ordered_lsm_parse(const char *order, const char *origin)
211 {
212         struct lsm_info *lsm;
213         char *sep, *name, *next;
214
215         /* LSM_ORDER_FIRST is always first. */
216         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
217                 if (lsm->order == LSM_ORDER_FIRST)
218                         append_ordered_lsm(lsm, "first");
219         }
220
221         /* Process "security=", if given. */
222         if (chosen_major_lsm) {
223                 struct lsm_info *major;
224
225                 /*
226                  * To match the original "security=" behavior, this
227                  * explicitly does NOT fallback to another Legacy Major
228                  * if the selected one was separately disabled: disable
229                  * all non-matching Legacy Major LSMs.
230                  */
231                 for (major = __start_lsm_info; major < __end_lsm_info;
232                      major++) {
233                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
234                             strcmp(major->name, chosen_major_lsm) != 0) {
235                                 set_enabled(major, false);
236                                 init_debug("security=%s disabled: %s\n",
237                                            chosen_major_lsm, major->name);
238                         }
239                 }
240         }
241
242         sep = kstrdup(order, GFP_KERNEL);
243         next = sep;
244         /* Walk the list, looking for matching LSMs. */
245         while ((name = strsep(&next, ",")) != NULL) {
246                 bool found = false;
247
248                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
249                         if (lsm->order == LSM_ORDER_MUTABLE &&
250                             strcmp(lsm->name, name) == 0) {
251                                 append_ordered_lsm(lsm, origin);
252                                 found = true;
253                         }
254                 }
255
256                 if (!found)
257                         init_debug("%s ignored: %s\n", origin, name);
258         }
259
260         /* Process "security=", if given. */
261         if (chosen_major_lsm) {
262                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
263                         if (exists_ordered_lsm(lsm))
264                                 continue;
265                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
266                                 append_ordered_lsm(lsm, "security=");
267                 }
268         }
269
270         /* Disable all LSMs not in the ordered list. */
271         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
272                 if (exists_ordered_lsm(lsm))
273                         continue;
274                 set_enabled(lsm, false);
275                 init_debug("%s disabled: %s\n", origin, lsm->name);
276         }
277
278         kfree(sep);
279 }
280
281 static void __init lsm_early_cred(struct cred *cred);
282 static void __init lsm_early_task(struct task_struct *task);
283
284 static void __init ordered_lsm_init(void)
285 {
286         struct lsm_info **lsm;
287
288         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
289                                 GFP_KERNEL);
290
291         if (chosen_lsm_order) {
292                 if (chosen_major_lsm) {
293                         pr_info("security= is ignored because it is superseded by lsm=\n");
294                         chosen_major_lsm = NULL;
295                 }
296                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
297         } else
298                 ordered_lsm_parse(builtin_lsm_order, "builtin");
299
300         for (lsm = ordered_lsms; *lsm; lsm++)
301                 prepare_lsm(*lsm);
302
303         init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
304         init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
305         init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
306         init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
307         init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
308         init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
309
310         /*
311          * Create any kmem_caches needed for blobs
312          */
313         if (blob_sizes.lbs_file)
314                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
315                                                    blob_sizes.lbs_file, 0,
316                                                    SLAB_PANIC, NULL);
317         if (blob_sizes.lbs_inode)
318                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
319                                                     blob_sizes.lbs_inode, 0,
320                                                     SLAB_PANIC, NULL);
321
322         lsm_early_cred((struct cred *) current->cred);
323         lsm_early_task(current);
324         for (lsm = ordered_lsms; *lsm; lsm++)
325                 initialize_lsm(*lsm);
326
327         kfree(ordered_lsms);
328 }
329
330 /**
331  * security_init - initializes the security framework
332  *
333  * This should be called early in the kernel initialization sequence.
334  */
335 int __init security_init(void)
336 {
337         int i;
338         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
339
340         pr_info("Security Framework initializing\n");
341
342         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
343              i++)
344                 INIT_HLIST_HEAD(&list[i]);
345
346         /* Load LSMs in specified order. */
347         ordered_lsm_init();
348
349         return 0;
350 }
351
352 /* Save user chosen LSM */
353 static int __init choose_major_lsm(char *str)
354 {
355         chosen_major_lsm = str;
356         return 1;
357 }
358 __setup("security=", choose_major_lsm);
359
360 /* Explicitly choose LSM initialization order. */
361 static int __init choose_lsm_order(char *str)
362 {
363         chosen_lsm_order = str;
364         return 1;
365 }
366 __setup("lsm=", choose_lsm_order);
367
368 /* Enable LSM order debugging. */
369 static int __init enable_debug(char *str)
370 {
371         debug = true;
372         return 1;
373 }
374 __setup("lsm.debug", enable_debug);
375
376 static bool match_last_lsm(const char *list, const char *lsm)
377 {
378         const char *last;
379
380         if (WARN_ON(!list || !lsm))
381                 return false;
382         last = strrchr(list, ',');
383         if (last)
384                 /* Pass the comma, strcmp() will check for '\0' */
385                 last++;
386         else
387                 last = list;
388         return !strcmp(last, lsm);
389 }
390
391 static int lsm_append(char *new, char **result)
392 {
393         char *cp;
394
395         if (*result == NULL) {
396                 *result = kstrdup(new, GFP_KERNEL);
397                 if (*result == NULL)
398                         return -ENOMEM;
399         } else {
400                 /* Check if it is the last registered name */
401                 if (match_last_lsm(*result, new))
402                         return 0;
403                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
404                 if (cp == NULL)
405                         return -ENOMEM;
406                 kfree(*result);
407                 *result = cp;
408         }
409         return 0;
410 }
411
412 /**
413  * security_add_hooks - Add a modules hooks to the hook lists.
414  * @hooks: the hooks to add
415  * @count: the number of hooks to add
416  * @lsm: the name of the security module
417  *
418  * Each LSM has to register its hooks with the infrastructure.
419  */
420 void __init security_add_hooks(struct security_hook_list *hooks, int count,
421                                 char *lsm)
422 {
423         int i;
424
425         for (i = 0; i < count; i++) {
426                 hooks[i].lsm = lsm;
427                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
428         }
429         if (lsm_append(lsm, &lsm_names) < 0)
430                 panic("%s - Cannot get early memory.\n", __func__);
431 }
432
433 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
434 {
435         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
436                                             event, data);
437 }
438 EXPORT_SYMBOL(call_blocking_lsm_notifier);
439
440 int register_blocking_lsm_notifier(struct notifier_block *nb)
441 {
442         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
443                                                 nb);
444 }
445 EXPORT_SYMBOL(register_blocking_lsm_notifier);
446
447 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
448 {
449         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
450                                                   nb);
451 }
452 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
453
454 /**
455  * lsm_cred_alloc - allocate a composite cred blob
456  * @cred: the cred that needs a blob
457  * @gfp: allocation type
458  *
459  * Allocate the cred blob for all the modules
460  *
461  * Returns 0, or -ENOMEM if memory can't be allocated.
462  */
463 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
464 {
465         if (blob_sizes.lbs_cred == 0) {
466                 cred->security = NULL;
467                 return 0;
468         }
469
470         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
471         if (cred->security == NULL)
472                 return -ENOMEM;
473         return 0;
474 }
475
476 /**
477  * lsm_early_cred - during initialization allocate a composite cred blob
478  * @cred: the cred that needs a blob
479  *
480  * Allocate the cred blob for all the modules
481  */
482 static void __init lsm_early_cred(struct cred *cred)
483 {
484         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
485
486         if (rc)
487                 panic("%s: Early cred alloc failed.\n", __func__);
488 }
489
490 /**
491  * lsm_file_alloc - allocate a composite file blob
492  * @file: the file that needs a blob
493  *
494  * Allocate the file blob for all the modules
495  *
496  * Returns 0, or -ENOMEM if memory can't be allocated.
497  */
498 static int lsm_file_alloc(struct file *file)
499 {
500         if (!lsm_file_cache) {
501                 file->f_security = NULL;
502                 return 0;
503         }
504
505         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
506         if (file->f_security == NULL)
507                 return -ENOMEM;
508         return 0;
509 }
510
511 /**
512  * lsm_inode_alloc - allocate a composite inode blob
513  * @inode: the inode that needs a blob
514  *
515  * Allocate the inode blob for all the modules
516  *
517  * Returns 0, or -ENOMEM if memory can't be allocated.
518  */
519 int lsm_inode_alloc(struct inode *inode)
520 {
521         if (!lsm_inode_cache) {
522                 inode->i_security = NULL;
523                 return 0;
524         }
525
526         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
527         if (inode->i_security == NULL)
528                 return -ENOMEM;
529         return 0;
530 }
531
532 /**
533  * lsm_task_alloc - allocate a composite task blob
534  * @task: the task that needs a blob
535  *
536  * Allocate the task blob for all the modules
537  *
538  * Returns 0, or -ENOMEM if memory can't be allocated.
539  */
540 static int lsm_task_alloc(struct task_struct *task)
541 {
542         if (blob_sizes.lbs_task == 0) {
543                 task->security = NULL;
544                 return 0;
545         }
546
547         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
548         if (task->security == NULL)
549                 return -ENOMEM;
550         return 0;
551 }
552
553 /**
554  * lsm_ipc_alloc - allocate a composite ipc blob
555  * @kip: the ipc that needs a blob
556  *
557  * Allocate the ipc blob for all the modules
558  *
559  * Returns 0, or -ENOMEM if memory can't be allocated.
560  */
561 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
562 {
563         if (blob_sizes.lbs_ipc == 0) {
564                 kip->security = NULL;
565                 return 0;
566         }
567
568         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
569         if (kip->security == NULL)
570                 return -ENOMEM;
571         return 0;
572 }
573
574 /**
575  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
576  * @mp: the msg_msg that needs a blob
577  *
578  * Allocate the ipc blob for all the modules
579  *
580  * Returns 0, or -ENOMEM if memory can't be allocated.
581  */
582 static int lsm_msg_msg_alloc(struct msg_msg *mp)
583 {
584         if (blob_sizes.lbs_msg_msg == 0) {
585                 mp->security = NULL;
586                 return 0;
587         }
588
589         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
590         if (mp->security == NULL)
591                 return -ENOMEM;
592         return 0;
593 }
594
595 /**
596  * lsm_early_task - during initialization allocate a composite task blob
597  * @task: the task that needs a blob
598  *
599  * Allocate the task blob for all the modules
600  */
601 static void __init lsm_early_task(struct task_struct *task)
602 {
603         int rc = lsm_task_alloc(task);
604
605         if (rc)
606                 panic("%s: Early task alloc failed.\n", __func__);
607 }
608
609 /*
610  * Hook list operation macros.
611  *
612  * call_void_hook:
613  *      This is a hook that does not return a value.
614  *
615  * call_int_hook:
616  *      This is a hook that returns a value.
617  */
618
619 #define call_void_hook(FUNC, ...)                               \
620         do {                                                    \
621                 struct security_hook_list *P;                   \
622                                                                 \
623                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
624                         P->hook.FUNC(__VA_ARGS__);              \
625         } while (0)
626
627 #define call_int_hook(FUNC, IRC, ...) ({                        \
628         int RC = IRC;                                           \
629         do {                                                    \
630                 struct security_hook_list *P;                   \
631                                                                 \
632                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
633                         RC = P->hook.FUNC(__VA_ARGS__);         \
634                         if (RC != 0)                            \
635                                 break;                          \
636                 }                                               \
637         } while (0);                                            \
638         RC;                                                     \
639 })
640
641 /* Security operations */
642
643 int security_binder_set_context_mgr(struct task_struct *mgr)
644 {
645         return call_int_hook(binder_set_context_mgr, 0, mgr);
646 }
647
648 int security_binder_transaction(struct task_struct *from,
649                                 struct task_struct *to)
650 {
651         return call_int_hook(binder_transaction, 0, from, to);
652 }
653
654 int security_binder_transfer_binder(struct task_struct *from,
655                                     struct task_struct *to)
656 {
657         return call_int_hook(binder_transfer_binder, 0, from, to);
658 }
659
660 int security_binder_transfer_file(struct task_struct *from,
661                                   struct task_struct *to, struct file *file)
662 {
663         return call_int_hook(binder_transfer_file, 0, from, to, file);
664 }
665
666 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
667 {
668         return call_int_hook(ptrace_access_check, 0, child, mode);
669 }
670
671 int security_ptrace_traceme(struct task_struct *parent)
672 {
673         return call_int_hook(ptrace_traceme, 0, parent);
674 }
675
676 int security_capget(struct task_struct *target,
677                      kernel_cap_t *effective,
678                      kernel_cap_t *inheritable,
679                      kernel_cap_t *permitted)
680 {
681         return call_int_hook(capget, 0, target,
682                                 effective, inheritable, permitted);
683 }
684
685 int security_capset(struct cred *new, const struct cred *old,
686                     const kernel_cap_t *effective,
687                     const kernel_cap_t *inheritable,
688                     const kernel_cap_t *permitted)
689 {
690         return call_int_hook(capset, 0, new, old,
691                                 effective, inheritable, permitted);
692 }
693
694 int security_capable(const struct cred *cred,
695                      struct user_namespace *ns,
696                      int cap,
697                      unsigned int opts)
698 {
699         return call_int_hook(capable, 0, cred, ns, cap, opts);
700 }
701
702 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
703 {
704         return call_int_hook(quotactl, 0, cmds, type, id, sb);
705 }
706
707 int security_quota_on(struct dentry *dentry)
708 {
709         return call_int_hook(quota_on, 0, dentry);
710 }
711
712 int security_syslog(int type)
713 {
714         return call_int_hook(syslog, 0, type);
715 }
716
717 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
718 {
719         return call_int_hook(settime, 0, ts, tz);
720 }
721
722 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
723 {
724         struct security_hook_list *hp;
725         int cap_sys_admin = 1;
726         int rc;
727
728         /*
729          * The module will respond with a positive value if
730          * it thinks the __vm_enough_memory() call should be
731          * made with the cap_sys_admin set. If all of the modules
732          * agree that it should be set it will. If any module
733          * thinks it should not be set it won't.
734          */
735         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
736                 rc = hp->hook.vm_enough_memory(mm, pages);
737                 if (rc <= 0) {
738                         cap_sys_admin = 0;
739                         break;
740                 }
741         }
742         return __vm_enough_memory(mm, pages, cap_sys_admin);
743 }
744
745 int security_bprm_set_creds(struct linux_binprm *bprm)
746 {
747         return call_int_hook(bprm_set_creds, 0, bprm);
748 }
749
750 int security_bprm_check(struct linux_binprm *bprm)
751 {
752         int ret;
753
754         ret = call_int_hook(bprm_check_security, 0, bprm);
755         if (ret)
756                 return ret;
757         return ima_bprm_check(bprm);
758 }
759
760 void security_bprm_committing_creds(struct linux_binprm *bprm)
761 {
762         call_void_hook(bprm_committing_creds, bprm);
763 }
764
765 void security_bprm_committed_creds(struct linux_binprm *bprm)
766 {
767         call_void_hook(bprm_committed_creds, bprm);
768 }
769
770 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
771 {
772         return call_int_hook(fs_context_dup, 0, fc, src_fc);
773 }
774
775 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
776 {
777         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
778 }
779
780 int security_sb_alloc(struct super_block *sb)
781 {
782         return call_int_hook(sb_alloc_security, 0, sb);
783 }
784
785 void security_sb_free(struct super_block *sb)
786 {
787         call_void_hook(sb_free_security, sb);
788 }
789
790 void security_free_mnt_opts(void **mnt_opts)
791 {
792         if (!*mnt_opts)
793                 return;
794         call_void_hook(sb_free_mnt_opts, *mnt_opts);
795         *mnt_opts = NULL;
796 }
797 EXPORT_SYMBOL(security_free_mnt_opts);
798
799 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
800 {
801         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
802 }
803 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
804
805 int security_sb_remount(struct super_block *sb,
806                         void *mnt_opts)
807 {
808         return call_int_hook(sb_remount, 0, sb, mnt_opts);
809 }
810 EXPORT_SYMBOL(security_sb_remount);
811
812 int security_sb_kern_mount(struct super_block *sb)
813 {
814         return call_int_hook(sb_kern_mount, 0, sb);
815 }
816
817 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
818 {
819         return call_int_hook(sb_show_options, 0, m, sb);
820 }
821
822 int security_sb_statfs(struct dentry *dentry)
823 {
824         return call_int_hook(sb_statfs, 0, dentry);
825 }
826
827 int security_sb_mount(const char *dev_name, const struct path *path,
828                        const char *type, unsigned long flags, void *data)
829 {
830         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
831 }
832
833 int security_sb_umount(struct vfsmount *mnt, int flags)
834 {
835         return call_int_hook(sb_umount, 0, mnt, flags);
836 }
837
838 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
839 {
840         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
841 }
842
843 int security_sb_set_mnt_opts(struct super_block *sb,
844                                 void *mnt_opts,
845                                 unsigned long kern_flags,
846                                 unsigned long *set_kern_flags)
847 {
848         return call_int_hook(sb_set_mnt_opts,
849                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
850                                 mnt_opts, kern_flags, set_kern_flags);
851 }
852 EXPORT_SYMBOL(security_sb_set_mnt_opts);
853
854 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
855                                 struct super_block *newsb,
856                                 unsigned long kern_flags,
857                                 unsigned long *set_kern_flags)
858 {
859         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
860                                 kern_flags, set_kern_flags);
861 }
862 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
863
864 int security_add_mnt_opt(const char *option, const char *val, int len,
865                          void **mnt_opts)
866 {
867         return call_int_hook(sb_add_mnt_opt, -EINVAL,
868                                         option, val, len, mnt_opts);
869 }
870 EXPORT_SYMBOL(security_add_mnt_opt);
871
872 int security_move_mount(const struct path *from_path, const struct path *to_path)
873 {
874         return call_int_hook(move_mount, 0, from_path, to_path);
875 }
876
877 int security_inode_alloc(struct inode *inode)
878 {
879         int rc = lsm_inode_alloc(inode);
880
881         if (unlikely(rc))
882                 return rc;
883         rc = call_int_hook(inode_alloc_security, 0, inode);
884         if (unlikely(rc))
885                 security_inode_free(inode);
886         return rc;
887 }
888
889 static void inode_free_by_rcu(struct rcu_head *head)
890 {
891         /*
892          * The rcu head is at the start of the inode blob
893          */
894         kmem_cache_free(lsm_inode_cache, head);
895 }
896
897 void security_inode_free(struct inode *inode)
898 {
899         integrity_inode_free(inode);
900         call_void_hook(inode_free_security, inode);
901         /*
902          * The inode may still be referenced in a path walk and
903          * a call to security_inode_permission() can be made
904          * after inode_free_security() is called. Ideally, the VFS
905          * wouldn't do this, but fixing that is a much harder
906          * job. For now, simply free the i_security via RCU, and
907          * leave the current inode->i_security pointer intact.
908          * The inode will be freed after the RCU grace period too.
909          */
910         if (inode->i_security)
911                 call_rcu((struct rcu_head *)inode->i_security,
912                                 inode_free_by_rcu);
913 }
914
915 int security_dentry_init_security(struct dentry *dentry, int mode,
916                                         const struct qstr *name, void **ctx,
917                                         u32 *ctxlen)
918 {
919         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
920                                 name, ctx, ctxlen);
921 }
922 EXPORT_SYMBOL(security_dentry_init_security);
923
924 int security_dentry_create_files_as(struct dentry *dentry, int mode,
925                                     struct qstr *name,
926                                     const struct cred *old, struct cred *new)
927 {
928         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
929                                 name, old, new);
930 }
931 EXPORT_SYMBOL(security_dentry_create_files_as);
932
933 int security_inode_init_security(struct inode *inode, struct inode *dir,
934                                  const struct qstr *qstr,
935                                  const initxattrs initxattrs, void *fs_data)
936 {
937         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
938         struct xattr *lsm_xattr, *evm_xattr, *xattr;
939         int ret;
940
941         if (unlikely(IS_PRIVATE(inode)))
942                 return 0;
943
944         if (!initxattrs)
945                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
946                                      dir, qstr, NULL, NULL, NULL);
947         memset(new_xattrs, 0, sizeof(new_xattrs));
948         lsm_xattr = new_xattrs;
949         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
950                                                 &lsm_xattr->name,
951                                                 &lsm_xattr->value,
952                                                 &lsm_xattr->value_len);
953         if (ret)
954                 goto out;
955
956         evm_xattr = lsm_xattr + 1;
957         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
958         if (ret)
959                 goto out;
960         ret = initxattrs(inode, new_xattrs, fs_data);
961 out:
962         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
963                 kfree(xattr->value);
964         return (ret == -EOPNOTSUPP) ? 0 : ret;
965 }
966 EXPORT_SYMBOL(security_inode_init_security);
967
968 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
969                                      const struct qstr *qstr, const char **name,
970                                      void **value, size_t *len)
971 {
972         if (unlikely(IS_PRIVATE(inode)))
973                 return -EOPNOTSUPP;
974         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
975                              qstr, name, value, len);
976 }
977 EXPORT_SYMBOL(security_old_inode_init_security);
978
979 #ifdef CONFIG_SECURITY_PATH
980 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
981                         unsigned int dev)
982 {
983         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
984                 return 0;
985         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
986 }
987 EXPORT_SYMBOL(security_path_mknod);
988
989 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
990 {
991         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
992                 return 0;
993         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
994 }
995 EXPORT_SYMBOL(security_path_mkdir);
996
997 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
998 {
999         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1000                 return 0;
1001         return call_int_hook(path_rmdir, 0, dir, dentry);
1002 }
1003
1004 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1005 {
1006         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1007                 return 0;
1008         return call_int_hook(path_unlink, 0, dir, dentry);
1009 }
1010 EXPORT_SYMBOL(security_path_unlink);
1011
1012 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1013                           const char *old_name)
1014 {
1015         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1016                 return 0;
1017         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1018 }
1019
1020 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1021                        struct dentry *new_dentry)
1022 {
1023         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1024                 return 0;
1025         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1026 }
1027
1028 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1029                          const struct path *new_dir, struct dentry *new_dentry,
1030                          unsigned int flags)
1031 {
1032         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1033                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1034                 return 0;
1035
1036         if (flags & RENAME_EXCHANGE) {
1037                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1038                                         old_dir, old_dentry);
1039                 if (err)
1040                         return err;
1041         }
1042
1043         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1044                                 new_dentry);
1045 }
1046 EXPORT_SYMBOL(security_path_rename);
1047
1048 int security_path_truncate(const struct path *path)
1049 {
1050         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1051                 return 0;
1052         return call_int_hook(path_truncate, 0, path);
1053 }
1054
1055 int security_path_chmod(const struct path *path, umode_t mode)
1056 {
1057         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1058                 return 0;
1059         return call_int_hook(path_chmod, 0, path, mode);
1060 }
1061
1062 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1063 {
1064         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1065                 return 0;
1066         return call_int_hook(path_chown, 0, path, uid, gid);
1067 }
1068
1069 int security_path_chroot(const struct path *path)
1070 {
1071         return call_int_hook(path_chroot, 0, path);
1072 }
1073 #endif
1074
1075 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1076 {
1077         if (unlikely(IS_PRIVATE(dir)))
1078                 return 0;
1079         return call_int_hook(inode_create, 0, dir, dentry, mode);
1080 }
1081 EXPORT_SYMBOL_GPL(security_inode_create);
1082
1083 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1084                          struct dentry *new_dentry)
1085 {
1086         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1087                 return 0;
1088         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1089 }
1090
1091 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1092 {
1093         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1094                 return 0;
1095         return call_int_hook(inode_unlink, 0, dir, dentry);
1096 }
1097
1098 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1099                             const char *old_name)
1100 {
1101         if (unlikely(IS_PRIVATE(dir)))
1102                 return 0;
1103         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1104 }
1105
1106 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1107 {
1108         if (unlikely(IS_PRIVATE(dir)))
1109                 return 0;
1110         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1111 }
1112 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1113
1114 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1115 {
1116         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1117                 return 0;
1118         return call_int_hook(inode_rmdir, 0, dir, dentry);
1119 }
1120
1121 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1122 {
1123         if (unlikely(IS_PRIVATE(dir)))
1124                 return 0;
1125         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1126 }
1127
1128 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1129                            struct inode *new_dir, struct dentry *new_dentry,
1130                            unsigned int flags)
1131 {
1132         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1133             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1134                 return 0;
1135
1136         if (flags & RENAME_EXCHANGE) {
1137                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1138                                                      old_dir, old_dentry);
1139                 if (err)
1140                         return err;
1141         }
1142
1143         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1144                                            new_dir, new_dentry);
1145 }
1146
1147 int security_inode_readlink(struct dentry *dentry)
1148 {
1149         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1150                 return 0;
1151         return call_int_hook(inode_readlink, 0, dentry);
1152 }
1153
1154 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1155                                bool rcu)
1156 {
1157         if (unlikely(IS_PRIVATE(inode)))
1158                 return 0;
1159         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1160 }
1161
1162 int security_inode_permission(struct inode *inode, int mask)
1163 {
1164         if (unlikely(IS_PRIVATE(inode)))
1165                 return 0;
1166         return call_int_hook(inode_permission, 0, inode, mask);
1167 }
1168
1169 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1170 {
1171         int ret;
1172
1173         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1174                 return 0;
1175         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1176         if (ret)
1177                 return ret;
1178         return evm_inode_setattr(dentry, attr);
1179 }
1180 EXPORT_SYMBOL_GPL(security_inode_setattr);
1181
1182 int security_inode_getattr(const struct path *path)
1183 {
1184         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1185                 return 0;
1186         return call_int_hook(inode_getattr, 0, path);
1187 }
1188
1189 int security_inode_setxattr(struct dentry *dentry, const char *name,
1190                             const void *value, size_t size, int flags)
1191 {
1192         int ret;
1193
1194         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1195                 return 0;
1196         /*
1197          * SELinux and Smack integrate the cap call,
1198          * so assume that all LSMs supplying this call do so.
1199          */
1200         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1201                                 flags);
1202
1203         if (ret == 1)
1204                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1205         if (ret)
1206                 return ret;
1207         ret = ima_inode_setxattr(dentry, name, value, size);
1208         if (ret)
1209                 return ret;
1210         return evm_inode_setxattr(dentry, name, value, size);
1211 }
1212
1213 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1214                                   const void *value, size_t size, int flags)
1215 {
1216         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1217                 return;
1218         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1219         evm_inode_post_setxattr(dentry, name, value, size);
1220 }
1221
1222 int security_inode_getxattr(struct dentry *dentry, const char *name)
1223 {
1224         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1225                 return 0;
1226         return call_int_hook(inode_getxattr, 0, dentry, name);
1227 }
1228
1229 int security_inode_listxattr(struct dentry *dentry)
1230 {
1231         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1232                 return 0;
1233         return call_int_hook(inode_listxattr, 0, dentry);
1234 }
1235
1236 int security_inode_removexattr(struct dentry *dentry, const char *name)
1237 {
1238         int ret;
1239
1240         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1241                 return 0;
1242         /*
1243          * SELinux and Smack integrate the cap call,
1244          * so assume that all LSMs supplying this call do so.
1245          */
1246         ret = call_int_hook(inode_removexattr, 1, dentry, name);
1247         if (ret == 1)
1248                 ret = cap_inode_removexattr(dentry, name);
1249         if (ret)
1250                 return ret;
1251         ret = ima_inode_removexattr(dentry, name);
1252         if (ret)
1253                 return ret;
1254         return evm_inode_removexattr(dentry, name);
1255 }
1256
1257 int security_inode_need_killpriv(struct dentry *dentry)
1258 {
1259         return call_int_hook(inode_need_killpriv, 0, dentry);
1260 }
1261
1262 int security_inode_killpriv(struct dentry *dentry)
1263 {
1264         return call_int_hook(inode_killpriv, 0, dentry);
1265 }
1266
1267 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1268 {
1269         struct security_hook_list *hp;
1270         int rc;
1271
1272         if (unlikely(IS_PRIVATE(inode)))
1273                 return -EOPNOTSUPP;
1274         /*
1275          * Only one module will provide an attribute with a given name.
1276          */
1277         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1278                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1279                 if (rc != -EOPNOTSUPP)
1280                         return rc;
1281         }
1282         return -EOPNOTSUPP;
1283 }
1284
1285 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1286 {
1287         struct security_hook_list *hp;
1288         int rc;
1289
1290         if (unlikely(IS_PRIVATE(inode)))
1291                 return -EOPNOTSUPP;
1292         /*
1293          * Only one module will provide an attribute with a given name.
1294          */
1295         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1296                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1297                                                                 flags);
1298                 if (rc != -EOPNOTSUPP)
1299                         return rc;
1300         }
1301         return -EOPNOTSUPP;
1302 }
1303
1304 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1305 {
1306         if (unlikely(IS_PRIVATE(inode)))
1307                 return 0;
1308         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1309 }
1310 EXPORT_SYMBOL(security_inode_listsecurity);
1311
1312 void security_inode_getsecid(struct inode *inode, u32 *secid)
1313 {
1314         call_void_hook(inode_getsecid, inode, secid);
1315 }
1316
1317 int security_inode_copy_up(struct dentry *src, struct cred **new)
1318 {
1319         return call_int_hook(inode_copy_up, 0, src, new);
1320 }
1321 EXPORT_SYMBOL(security_inode_copy_up);
1322
1323 int security_inode_copy_up_xattr(const char *name)
1324 {
1325         return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1326 }
1327 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1328
1329 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1330                                   struct kernfs_node *kn)
1331 {
1332         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1333 }
1334
1335 int security_file_permission(struct file *file, int mask)
1336 {
1337         int ret;
1338
1339         ret = call_int_hook(file_permission, 0, file, mask);
1340         if (ret)
1341                 return ret;
1342
1343         return fsnotify_perm(file, mask);
1344 }
1345
1346 int security_file_alloc(struct file *file)
1347 {
1348         int rc = lsm_file_alloc(file);
1349
1350         if (rc)
1351                 return rc;
1352         rc = call_int_hook(file_alloc_security, 0, file);
1353         if (unlikely(rc))
1354                 security_file_free(file);
1355         return rc;
1356 }
1357
1358 void security_file_free(struct file *file)
1359 {
1360         void *blob;
1361
1362         call_void_hook(file_free_security, file);
1363
1364         blob = file->f_security;
1365         if (blob) {
1366                 file->f_security = NULL;
1367                 kmem_cache_free(lsm_file_cache, blob);
1368         }
1369 }
1370
1371 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1372 {
1373         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1374 }
1375
1376 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1377 {
1378         /*
1379          * Does we have PROT_READ and does the application expect
1380          * it to imply PROT_EXEC?  If not, nothing to talk about...
1381          */
1382         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1383                 return prot;
1384         if (!(current->personality & READ_IMPLIES_EXEC))
1385                 return prot;
1386         /*
1387          * if that's an anonymous mapping, let it.
1388          */
1389         if (!file)
1390                 return prot | PROT_EXEC;
1391         /*
1392          * ditto if it's not on noexec mount, except that on !MMU we need
1393          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1394          */
1395         if (!path_noexec(&file->f_path)) {
1396 #ifndef CONFIG_MMU
1397                 if (file->f_op->mmap_capabilities) {
1398                         unsigned caps = file->f_op->mmap_capabilities(file);
1399                         if (!(caps & NOMMU_MAP_EXEC))
1400                                 return prot;
1401                 }
1402 #endif
1403                 return prot | PROT_EXEC;
1404         }
1405         /* anything on noexec mount won't get PROT_EXEC */
1406         return prot;
1407 }
1408
1409 int security_mmap_file(struct file *file, unsigned long prot,
1410                         unsigned long flags)
1411 {
1412         int ret;
1413         ret = call_int_hook(mmap_file, 0, file, prot,
1414                                         mmap_prot(file, prot), flags);
1415         if (ret)
1416                 return ret;
1417         return ima_file_mmap(file, prot);
1418 }
1419
1420 int security_mmap_addr(unsigned long addr)
1421 {
1422         return call_int_hook(mmap_addr, 0, addr);
1423 }
1424
1425 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1426                             unsigned long prot)
1427 {
1428         return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1429 }
1430
1431 int security_file_lock(struct file *file, unsigned int cmd)
1432 {
1433         return call_int_hook(file_lock, 0, file, cmd);
1434 }
1435
1436 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1437 {
1438         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1439 }
1440
1441 void security_file_set_fowner(struct file *file)
1442 {
1443         call_void_hook(file_set_fowner, file);
1444 }
1445
1446 int security_file_send_sigiotask(struct task_struct *tsk,
1447                                   struct fown_struct *fown, int sig)
1448 {
1449         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1450 }
1451
1452 int security_file_receive(struct file *file)
1453 {
1454         return call_int_hook(file_receive, 0, file);
1455 }
1456
1457 int security_file_open(struct file *file)
1458 {
1459         int ret;
1460
1461         ret = call_int_hook(file_open, 0, file);
1462         if (ret)
1463                 return ret;
1464
1465         return fsnotify_perm(file, MAY_OPEN);
1466 }
1467
1468 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1469 {
1470         int rc = lsm_task_alloc(task);
1471
1472         if (rc)
1473                 return rc;
1474         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1475         if (unlikely(rc))
1476                 security_task_free(task);
1477         return rc;
1478 }
1479
1480 void security_task_free(struct task_struct *task)
1481 {
1482         call_void_hook(task_free, task);
1483
1484         kfree(task->security);
1485         task->security = NULL;
1486 }
1487
1488 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1489 {
1490         int rc = lsm_cred_alloc(cred, gfp);
1491
1492         if (rc)
1493                 return rc;
1494
1495         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1496         if (unlikely(rc))
1497                 security_cred_free(cred);
1498         return rc;
1499 }
1500
1501 void security_cred_free(struct cred *cred)
1502 {
1503         /*
1504          * There is a failure case in prepare_creds() that
1505          * may result in a call here with ->security being NULL.
1506          */
1507         if (unlikely(cred->security == NULL))
1508                 return;
1509
1510         call_void_hook(cred_free, cred);
1511
1512         kfree(cred->security);
1513         cred->security = NULL;
1514 }
1515
1516 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1517 {
1518         int rc = lsm_cred_alloc(new, gfp);
1519
1520         if (rc)
1521                 return rc;
1522
1523         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1524         if (unlikely(rc))
1525                 security_cred_free(new);
1526         return rc;
1527 }
1528
1529 void security_transfer_creds(struct cred *new, const struct cred *old)
1530 {
1531         call_void_hook(cred_transfer, new, old);
1532 }
1533
1534 void security_cred_getsecid(const struct cred *c, u32 *secid)
1535 {
1536         *secid = 0;
1537         call_void_hook(cred_getsecid, c, secid);
1538 }
1539 EXPORT_SYMBOL(security_cred_getsecid);
1540
1541 int security_kernel_act_as(struct cred *new, u32 secid)
1542 {
1543         return call_int_hook(kernel_act_as, 0, new, secid);
1544 }
1545
1546 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1547 {
1548         return call_int_hook(kernel_create_files_as, 0, new, inode);
1549 }
1550
1551 int security_kernel_module_request(char *kmod_name)
1552 {
1553         int ret;
1554
1555         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1556         if (ret)
1557                 return ret;
1558         return integrity_kernel_module_request(kmod_name);
1559 }
1560
1561 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1562 {
1563         int ret;
1564
1565         ret = call_int_hook(kernel_read_file, 0, file, id);
1566         if (ret)
1567                 return ret;
1568         return ima_read_file(file, id);
1569 }
1570 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1571
1572 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1573                                    enum kernel_read_file_id id)
1574 {
1575         int ret;
1576
1577         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1578         if (ret)
1579                 return ret;
1580         return ima_post_read_file(file, buf, size, id);
1581 }
1582 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1583
1584 int security_kernel_load_data(enum kernel_load_data_id id)
1585 {
1586         int ret;
1587
1588         ret = call_int_hook(kernel_load_data, 0, id);
1589         if (ret)
1590                 return ret;
1591         return ima_load_data(id);
1592 }
1593 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1594
1595 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1596                              int flags)
1597 {
1598         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1599 }
1600
1601 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1602 {
1603         return call_int_hook(task_setpgid, 0, p, pgid);
1604 }
1605
1606 int security_task_getpgid(struct task_struct *p)
1607 {
1608         return call_int_hook(task_getpgid, 0, p);
1609 }
1610
1611 int security_task_getsid(struct task_struct *p)
1612 {
1613         return call_int_hook(task_getsid, 0, p);
1614 }
1615
1616 void security_task_getsecid(struct task_struct *p, u32 *secid)
1617 {
1618         *secid = 0;
1619         call_void_hook(task_getsecid, p, secid);
1620 }
1621 EXPORT_SYMBOL(security_task_getsecid);
1622
1623 int security_task_setnice(struct task_struct *p, int nice)
1624 {
1625         return call_int_hook(task_setnice, 0, p, nice);
1626 }
1627
1628 int security_task_setioprio(struct task_struct *p, int ioprio)
1629 {
1630         return call_int_hook(task_setioprio, 0, p, ioprio);
1631 }
1632
1633 int security_task_getioprio(struct task_struct *p)
1634 {
1635         return call_int_hook(task_getioprio, 0, p);
1636 }
1637
1638 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1639                           unsigned int flags)
1640 {
1641         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1642 }
1643
1644 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1645                 struct rlimit *new_rlim)
1646 {
1647         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1648 }
1649
1650 int security_task_setscheduler(struct task_struct *p)
1651 {
1652         return call_int_hook(task_setscheduler, 0, p);
1653 }
1654
1655 int security_task_getscheduler(struct task_struct *p)
1656 {
1657         return call_int_hook(task_getscheduler, 0, p);
1658 }
1659
1660 int security_task_movememory(struct task_struct *p)
1661 {
1662         return call_int_hook(task_movememory, 0, p);
1663 }
1664
1665 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1666                         int sig, const struct cred *cred)
1667 {
1668         return call_int_hook(task_kill, 0, p, info, sig, cred);
1669 }
1670
1671 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1672                          unsigned long arg4, unsigned long arg5)
1673 {
1674         int thisrc;
1675         int rc = -ENOSYS;
1676         struct security_hook_list *hp;
1677
1678         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1679                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1680                 if (thisrc != -ENOSYS) {
1681                         rc = thisrc;
1682                         if (thisrc != 0)
1683                                 break;
1684                 }
1685         }
1686         return rc;
1687 }
1688
1689 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1690 {
1691         call_void_hook(task_to_inode, p, inode);
1692 }
1693
1694 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1695 {
1696         return call_int_hook(ipc_permission, 0, ipcp, flag);
1697 }
1698
1699 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1700 {
1701         *secid = 0;
1702         call_void_hook(ipc_getsecid, ipcp, secid);
1703 }
1704
1705 int security_msg_msg_alloc(struct msg_msg *msg)
1706 {
1707         int rc = lsm_msg_msg_alloc(msg);
1708
1709         if (unlikely(rc))
1710                 return rc;
1711         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1712         if (unlikely(rc))
1713                 security_msg_msg_free(msg);
1714         return rc;
1715 }
1716
1717 void security_msg_msg_free(struct msg_msg *msg)
1718 {
1719         call_void_hook(msg_msg_free_security, msg);
1720         kfree(msg->security);
1721         msg->security = NULL;
1722 }
1723
1724 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1725 {
1726         int rc = lsm_ipc_alloc(msq);
1727
1728         if (unlikely(rc))
1729                 return rc;
1730         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1731         if (unlikely(rc))
1732                 security_msg_queue_free(msq);
1733         return rc;
1734 }
1735
1736 void security_msg_queue_free(struct kern_ipc_perm *msq)
1737 {
1738         call_void_hook(msg_queue_free_security, msq);
1739         kfree(msq->security);
1740         msq->security = NULL;
1741 }
1742
1743 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1744 {
1745         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1746 }
1747
1748 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1749 {
1750         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1751 }
1752
1753 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1754                                struct msg_msg *msg, int msqflg)
1755 {
1756         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1757 }
1758
1759 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1760                                struct task_struct *target, long type, int mode)
1761 {
1762         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1763 }
1764
1765 int security_shm_alloc(struct kern_ipc_perm *shp)
1766 {
1767         int rc = lsm_ipc_alloc(shp);
1768
1769         if (unlikely(rc))
1770                 return rc;
1771         rc = call_int_hook(shm_alloc_security, 0, shp);
1772         if (unlikely(rc))
1773                 security_shm_free(shp);
1774         return rc;
1775 }
1776
1777 void security_shm_free(struct kern_ipc_perm *shp)
1778 {
1779         call_void_hook(shm_free_security, shp);
1780         kfree(shp->security);
1781         shp->security = NULL;
1782 }
1783
1784 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1785 {
1786         return call_int_hook(shm_associate, 0, shp, shmflg);
1787 }
1788
1789 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1790 {
1791         return call_int_hook(shm_shmctl, 0, shp, cmd);
1792 }
1793
1794 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1795 {
1796         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1797 }
1798
1799 int security_sem_alloc(struct kern_ipc_perm *sma)
1800 {
1801         int rc = lsm_ipc_alloc(sma);
1802
1803         if (unlikely(rc))
1804                 return rc;
1805         rc = call_int_hook(sem_alloc_security, 0, sma);
1806         if (unlikely(rc))
1807                 security_sem_free(sma);
1808         return rc;
1809 }
1810
1811 void security_sem_free(struct kern_ipc_perm *sma)
1812 {
1813         call_void_hook(sem_free_security, sma);
1814         kfree(sma->security);
1815         sma->security = NULL;
1816 }
1817
1818 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1819 {
1820         return call_int_hook(sem_associate, 0, sma, semflg);
1821 }
1822
1823 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1824 {
1825         return call_int_hook(sem_semctl, 0, sma, cmd);
1826 }
1827
1828 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1829                         unsigned nsops, int alter)
1830 {
1831         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1832 }
1833
1834 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1835 {
1836         if (unlikely(inode && IS_PRIVATE(inode)))
1837                 return;
1838         call_void_hook(d_instantiate, dentry, inode);
1839 }
1840 EXPORT_SYMBOL(security_d_instantiate);
1841
1842 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1843                                 char **value)
1844 {
1845         struct security_hook_list *hp;
1846
1847         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1848                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1849                         continue;
1850                 return hp->hook.getprocattr(p, name, value);
1851         }
1852         return -EINVAL;
1853 }
1854
1855 int security_setprocattr(const char *lsm, const char *name, void *value,
1856                          size_t size)
1857 {
1858         struct security_hook_list *hp;
1859
1860         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1861                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1862                         continue;
1863                 return hp->hook.setprocattr(name, value, size);
1864         }
1865         return -EINVAL;
1866 }
1867
1868 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1869 {
1870         return call_int_hook(netlink_send, 0, sk, skb);
1871 }
1872
1873 int security_ismaclabel(const char *name)
1874 {
1875         return call_int_hook(ismaclabel, 0, name);
1876 }
1877 EXPORT_SYMBOL(security_ismaclabel);
1878
1879 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1880 {
1881         return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1882                                 seclen);
1883 }
1884 EXPORT_SYMBOL(security_secid_to_secctx);
1885
1886 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1887 {
1888         *secid = 0;
1889         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1890 }
1891 EXPORT_SYMBOL(security_secctx_to_secid);
1892
1893 void security_release_secctx(char *secdata, u32 seclen)
1894 {
1895         call_void_hook(release_secctx, secdata, seclen);
1896 }
1897 EXPORT_SYMBOL(security_release_secctx);
1898
1899 void security_inode_invalidate_secctx(struct inode *inode)
1900 {
1901         call_void_hook(inode_invalidate_secctx, inode);
1902 }
1903 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1904
1905 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1906 {
1907         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1908 }
1909 EXPORT_SYMBOL(security_inode_notifysecctx);
1910
1911 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1912 {
1913         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1914 }
1915 EXPORT_SYMBOL(security_inode_setsecctx);
1916
1917 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1918 {
1919         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1920 }
1921 EXPORT_SYMBOL(security_inode_getsecctx);
1922
1923 #ifdef CONFIG_SECURITY_NETWORK
1924
1925 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1926 {
1927         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1928 }
1929 EXPORT_SYMBOL(security_unix_stream_connect);
1930
1931 int security_unix_may_send(struct socket *sock,  struct socket *other)
1932 {
1933         return call_int_hook(unix_may_send, 0, sock, other);
1934 }
1935 EXPORT_SYMBOL(security_unix_may_send);
1936
1937 int security_socket_create(int family, int type, int protocol, int kern)
1938 {
1939         return call_int_hook(socket_create, 0, family, type, protocol, kern);
1940 }
1941
1942 int security_socket_post_create(struct socket *sock, int family,
1943                                 int type, int protocol, int kern)
1944 {
1945         return call_int_hook(socket_post_create, 0, sock, family, type,
1946                                                 protocol, kern);
1947 }
1948
1949 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1950 {
1951         return call_int_hook(socket_socketpair, 0, socka, sockb);
1952 }
1953 EXPORT_SYMBOL(security_socket_socketpair);
1954
1955 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1956 {
1957         return call_int_hook(socket_bind, 0, sock, address, addrlen);
1958 }
1959
1960 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1961 {
1962         return call_int_hook(socket_connect, 0, sock, address, addrlen);
1963 }
1964
1965 int security_socket_listen(struct socket *sock, int backlog)
1966 {
1967         return call_int_hook(socket_listen, 0, sock, backlog);
1968 }
1969
1970 int security_socket_accept(struct socket *sock, struct socket *newsock)
1971 {
1972         return call_int_hook(socket_accept, 0, sock, newsock);
1973 }
1974
1975 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1976 {
1977         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1978 }
1979
1980 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1981                             int size, int flags)
1982 {
1983         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1984 }
1985
1986 int security_socket_getsockname(struct socket *sock)
1987 {
1988         return call_int_hook(socket_getsockname, 0, sock);
1989 }
1990
1991 int security_socket_getpeername(struct socket *sock)
1992 {
1993         return call_int_hook(socket_getpeername, 0, sock);
1994 }
1995
1996 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1997 {
1998         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1999 }
2000
2001 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2002 {
2003         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2004 }
2005
2006 int security_socket_shutdown(struct socket *sock, int how)
2007 {
2008         return call_int_hook(socket_shutdown, 0, sock, how);
2009 }
2010
2011 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2012 {
2013         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2014 }
2015 EXPORT_SYMBOL(security_sock_rcv_skb);
2016
2017 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2018                                       int __user *optlen, unsigned len)
2019 {
2020         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2021                                 optval, optlen, len);
2022 }
2023
2024 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2025 {
2026         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2027                              skb, secid);
2028 }
2029 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2030
2031 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2032 {
2033         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2034 }
2035
2036 void security_sk_free(struct sock *sk)
2037 {
2038         call_void_hook(sk_free_security, sk);
2039 }
2040
2041 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2042 {
2043         call_void_hook(sk_clone_security, sk, newsk);
2044 }
2045 EXPORT_SYMBOL(security_sk_clone);
2046
2047 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2048 {
2049         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2050 }
2051 EXPORT_SYMBOL(security_sk_classify_flow);
2052
2053 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2054 {
2055         call_void_hook(req_classify_flow, req, fl);
2056 }
2057 EXPORT_SYMBOL(security_req_classify_flow);
2058
2059 void security_sock_graft(struct sock *sk, struct socket *parent)
2060 {
2061         call_void_hook(sock_graft, sk, parent);
2062 }
2063 EXPORT_SYMBOL(security_sock_graft);
2064
2065 int security_inet_conn_request(struct sock *sk,
2066                         struct sk_buff *skb, struct request_sock *req)
2067 {
2068         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2069 }
2070 EXPORT_SYMBOL(security_inet_conn_request);
2071
2072 void security_inet_csk_clone(struct sock *newsk,
2073                         const struct request_sock *req)
2074 {
2075         call_void_hook(inet_csk_clone, newsk, req);
2076 }
2077
2078 void security_inet_conn_established(struct sock *sk,
2079                         struct sk_buff *skb)
2080 {
2081         call_void_hook(inet_conn_established, sk, skb);
2082 }
2083 EXPORT_SYMBOL(security_inet_conn_established);
2084
2085 int security_secmark_relabel_packet(u32 secid)
2086 {
2087         return call_int_hook(secmark_relabel_packet, 0, secid);
2088 }
2089 EXPORT_SYMBOL(security_secmark_relabel_packet);
2090
2091 void security_secmark_refcount_inc(void)
2092 {
2093         call_void_hook(secmark_refcount_inc);
2094 }
2095 EXPORT_SYMBOL(security_secmark_refcount_inc);
2096
2097 void security_secmark_refcount_dec(void)
2098 {
2099         call_void_hook(secmark_refcount_dec);
2100 }
2101 EXPORT_SYMBOL(security_secmark_refcount_dec);
2102
2103 int security_tun_dev_alloc_security(void **security)
2104 {
2105         return call_int_hook(tun_dev_alloc_security, 0, security);
2106 }
2107 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2108
2109 void security_tun_dev_free_security(void *security)
2110 {
2111         call_void_hook(tun_dev_free_security, security);
2112 }
2113 EXPORT_SYMBOL(security_tun_dev_free_security);
2114
2115 int security_tun_dev_create(void)
2116 {
2117         return call_int_hook(tun_dev_create, 0);
2118 }
2119 EXPORT_SYMBOL(security_tun_dev_create);
2120
2121 int security_tun_dev_attach_queue(void *security)
2122 {
2123         return call_int_hook(tun_dev_attach_queue, 0, security);
2124 }
2125 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2126
2127 int security_tun_dev_attach(struct sock *sk, void *security)
2128 {
2129         return call_int_hook(tun_dev_attach, 0, sk, security);
2130 }
2131 EXPORT_SYMBOL(security_tun_dev_attach);
2132
2133 int security_tun_dev_open(void *security)
2134 {
2135         return call_int_hook(tun_dev_open, 0, security);
2136 }
2137 EXPORT_SYMBOL(security_tun_dev_open);
2138
2139 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2140 {
2141         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2142 }
2143 EXPORT_SYMBOL(security_sctp_assoc_request);
2144
2145 int security_sctp_bind_connect(struct sock *sk, int optname,
2146                                struct sockaddr *address, int addrlen)
2147 {
2148         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2149                              address, addrlen);
2150 }
2151 EXPORT_SYMBOL(security_sctp_bind_connect);
2152
2153 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2154                             struct sock *newsk)
2155 {
2156         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2157 }
2158 EXPORT_SYMBOL(security_sctp_sk_clone);
2159
2160 #endif  /* CONFIG_SECURITY_NETWORK */
2161
2162 #ifdef CONFIG_SECURITY_INFINIBAND
2163
2164 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2165 {
2166         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2167 }
2168 EXPORT_SYMBOL(security_ib_pkey_access);
2169
2170 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2171 {
2172         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2173 }
2174 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2175
2176 int security_ib_alloc_security(void **sec)
2177 {
2178         return call_int_hook(ib_alloc_security, 0, sec);
2179 }
2180 EXPORT_SYMBOL(security_ib_alloc_security);
2181
2182 void security_ib_free_security(void *sec)
2183 {
2184         call_void_hook(ib_free_security, sec);
2185 }
2186 EXPORT_SYMBOL(security_ib_free_security);
2187 #endif  /* CONFIG_SECURITY_INFINIBAND */
2188
2189 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2190
2191 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2192                                struct xfrm_user_sec_ctx *sec_ctx,
2193                                gfp_t gfp)
2194 {
2195         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2196 }
2197 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2198
2199 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2200                               struct xfrm_sec_ctx **new_ctxp)
2201 {
2202         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2203 }
2204
2205 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2206 {
2207         call_void_hook(xfrm_policy_free_security, ctx);
2208 }
2209 EXPORT_SYMBOL(security_xfrm_policy_free);
2210
2211 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2212 {
2213         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2214 }
2215
2216 int security_xfrm_state_alloc(struct xfrm_state *x,
2217                               struct xfrm_user_sec_ctx *sec_ctx)
2218 {
2219         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2220 }
2221 EXPORT_SYMBOL(security_xfrm_state_alloc);
2222
2223 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2224                                       struct xfrm_sec_ctx *polsec, u32 secid)
2225 {
2226         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2227 }
2228
2229 int security_xfrm_state_delete(struct xfrm_state *x)
2230 {
2231         return call_int_hook(xfrm_state_delete_security, 0, x);
2232 }
2233 EXPORT_SYMBOL(security_xfrm_state_delete);
2234
2235 void security_xfrm_state_free(struct xfrm_state *x)
2236 {
2237         call_void_hook(xfrm_state_free_security, x);
2238 }
2239
2240 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2241 {
2242         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2243 }
2244
2245 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2246                                        struct xfrm_policy *xp,
2247                                        const struct flowi *fl)
2248 {
2249         struct security_hook_list *hp;
2250         int rc = 1;
2251
2252         /*
2253          * Since this function is expected to return 0 or 1, the judgment
2254          * becomes difficult if multiple LSMs supply this call. Fortunately,
2255          * we can use the first LSM's judgment because currently only SELinux
2256          * supplies this call.
2257          *
2258          * For speed optimization, we explicitly break the loop rather than
2259          * using the macro
2260          */
2261         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2262                                 list) {
2263                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2264                 break;
2265         }
2266         return rc;
2267 }
2268
2269 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2270 {
2271         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2272 }
2273
2274 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2275 {
2276         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2277                                 0);
2278
2279         BUG_ON(rc);
2280 }
2281 EXPORT_SYMBOL(security_skb_classify_flow);
2282
2283 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2284
2285 #ifdef CONFIG_KEYS
2286
2287 int security_key_alloc(struct key *key, const struct cred *cred,
2288                        unsigned long flags)
2289 {
2290         return call_int_hook(key_alloc, 0, key, cred, flags);
2291 }
2292
2293 void security_key_free(struct key *key)
2294 {
2295         call_void_hook(key_free, key);
2296 }
2297
2298 int security_key_permission(key_ref_t key_ref,
2299                             const struct cred *cred, unsigned perm)
2300 {
2301         return call_int_hook(key_permission, 0, key_ref, cred, perm);
2302 }
2303
2304 int security_key_getsecurity(struct key *key, char **_buffer)
2305 {
2306         *_buffer = NULL;
2307         return call_int_hook(key_getsecurity, 0, key, _buffer);
2308 }
2309
2310 #endif  /* CONFIG_KEYS */
2311
2312 #ifdef CONFIG_AUDIT
2313
2314 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2315 {
2316         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2317 }
2318
2319 int security_audit_rule_known(struct audit_krule *krule)
2320 {
2321         return call_int_hook(audit_rule_known, 0, krule);
2322 }
2323
2324 void security_audit_rule_free(void *lsmrule)
2325 {
2326         call_void_hook(audit_rule_free, lsmrule);
2327 }
2328
2329 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2330 {
2331         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2332 }
2333 #endif /* CONFIG_AUDIT */
2334
2335 #ifdef CONFIG_BPF_SYSCALL
2336 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2337 {
2338         return call_int_hook(bpf, 0, cmd, attr, size);
2339 }
2340 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2341 {
2342         return call_int_hook(bpf_map, 0, map, fmode);
2343 }
2344 int security_bpf_prog(struct bpf_prog *prog)
2345 {
2346         return call_int_hook(bpf_prog, 0, prog);
2347 }
2348 int security_bpf_map_alloc(struct bpf_map *map)
2349 {
2350         return call_int_hook(bpf_map_alloc_security, 0, map);
2351 }
2352 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2353 {
2354         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2355 }
2356 void security_bpf_map_free(struct bpf_map *map)
2357 {
2358         call_void_hook(bpf_map_free_security, map);
2359 }
2360 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2361 {
2362         call_void_hook(bpf_prog_free_security, aux);
2363 }
2364 #endif /* CONFIG_BPF_SYSCALL */