Merge tag 'csky-for-linus-6.4' of https://github.com/c-sky/csky-linux
[linux-block.git] / rust / helpers.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Non-trivial C macros cannot be used in Rust. Similarly, inlined C functions
4  * cannot be called either. This file explicitly creates functions ("helpers")
5  * that wrap those so that they can be called from Rust.
6  *
7  * Even though Rust kernel modules should never use directly the bindings, some
8  * of these helpers need to be exported because Rust generics and inlined
9  * functions may not get their code generated in the crate where they are
10  * defined. Other helpers, called from non-inline functions, may not be
11  * exported, in principle. However, in general, the Rust compiler does not
12  * guarantee codegen will be performed for a non-inline function either.
13  * Therefore, this file exports all the helpers. In the future, this may be
14  * revisited to reduce the number of exports after the compiler is informed
15  * about the places codegen is required.
16  *
17  * All symbols are exported as GPL-only to guarantee no GPL-only feature is
18  * accidentally exposed.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/build_bug.h>
23 #include <linux/err.h>
24 #include <linux/refcount.h>
25 #include <linux/mutex.h>
26 #include <linux/spinlock.h>
27 #include <linux/sched/signal.h>
28 #include <linux/wait.h>
29
30 __noreturn void rust_helper_BUG(void)
31 {
32         BUG();
33 }
34 EXPORT_SYMBOL_GPL(rust_helper_BUG);
35
36 void rust_helper_mutex_lock(struct mutex *lock)
37 {
38         mutex_lock(lock);
39 }
40 EXPORT_SYMBOL_GPL(rust_helper_mutex_lock);
41
42 void rust_helper___spin_lock_init(spinlock_t *lock, const char *name,
43                                   struct lock_class_key *key)
44 {
45 #ifdef CONFIG_DEBUG_SPINLOCK
46         __raw_spin_lock_init(spinlock_check(lock), name, key, LD_WAIT_CONFIG);
47 #else
48         spin_lock_init(lock);
49 #endif
50 }
51 EXPORT_SYMBOL_GPL(rust_helper___spin_lock_init);
52
53 void rust_helper_spin_lock(spinlock_t *lock)
54 {
55         spin_lock(lock);
56 }
57 EXPORT_SYMBOL_GPL(rust_helper_spin_lock);
58
59 void rust_helper_spin_unlock(spinlock_t *lock)
60 {
61         spin_unlock(lock);
62 }
63 EXPORT_SYMBOL_GPL(rust_helper_spin_unlock);
64
65 void rust_helper_init_wait(struct wait_queue_entry *wq_entry)
66 {
67         init_wait(wq_entry);
68 }
69 EXPORT_SYMBOL_GPL(rust_helper_init_wait);
70
71 int rust_helper_signal_pending(struct task_struct *t)
72 {
73         return signal_pending(t);
74 }
75 EXPORT_SYMBOL_GPL(rust_helper_signal_pending);
76
77 refcount_t rust_helper_REFCOUNT_INIT(int n)
78 {
79         return (refcount_t)REFCOUNT_INIT(n);
80 }
81 EXPORT_SYMBOL_GPL(rust_helper_REFCOUNT_INIT);
82
83 void rust_helper_refcount_inc(refcount_t *r)
84 {
85         refcount_inc(r);
86 }
87 EXPORT_SYMBOL_GPL(rust_helper_refcount_inc);
88
89 bool rust_helper_refcount_dec_and_test(refcount_t *r)
90 {
91         return refcount_dec_and_test(r);
92 }
93 EXPORT_SYMBOL_GPL(rust_helper_refcount_dec_and_test);
94
95 __force void *rust_helper_ERR_PTR(long err)
96 {
97         return ERR_PTR(err);
98 }
99 EXPORT_SYMBOL_GPL(rust_helper_ERR_PTR);
100
101 bool rust_helper_IS_ERR(__force const void *ptr)
102 {
103         return IS_ERR(ptr);
104 }
105 EXPORT_SYMBOL_GPL(rust_helper_IS_ERR);
106
107 long rust_helper_PTR_ERR(__force const void *ptr)
108 {
109         return PTR_ERR(ptr);
110 }
111 EXPORT_SYMBOL_GPL(rust_helper_PTR_ERR);
112
113 struct task_struct *rust_helper_get_current(void)
114 {
115         return current;
116 }
117 EXPORT_SYMBOL_GPL(rust_helper_get_current);
118
119 void rust_helper_get_task_struct(struct task_struct *t)
120 {
121         get_task_struct(t);
122 }
123 EXPORT_SYMBOL_GPL(rust_helper_get_task_struct);
124
125 void rust_helper_put_task_struct(struct task_struct *t)
126 {
127         put_task_struct(t);
128 }
129 EXPORT_SYMBOL_GPL(rust_helper_put_task_struct);
130
131 /*
132  * We use `bindgen`'s `--size_t-is-usize` option to bind the C `size_t` type
133  * as the Rust `usize` type, so we can use it in contexts where Rust
134  * expects a `usize` like slice (array) indices. `usize` is defined to be
135  * the same as C's `uintptr_t` type (can hold any pointer) but not
136  * necessarily the same as `size_t` (can hold the size of any single
137  * object). Most modern platforms use the same concrete integer type for
138  * both of them, but in case we find ourselves on a platform where
139  * that's not true, fail early instead of risking ABI or
140  * integer-overflow issues.
141  *
142  * If your platform fails this assertion, it means that you are in
143  * danger of integer-overflow bugs (even if you attempt to remove
144  * `--size_t-is-usize`). It may be easiest to change the kernel ABI on
145  * your platform such that `size_t` matches `uintptr_t` (i.e., to increase
146  * `size_t`, because `uintptr_t` has to be at least as big as `size_t`).
147  */
148 static_assert(
149         sizeof(size_t) == sizeof(uintptr_t) &&
150         __alignof__(size_t) == __alignof__(uintptr_t),
151         "Rust code expects C `size_t` to match Rust `usize`"
152 );