Merge tag '6.2-rc-ksmbd-server-fixes' of git://git.samba.org/ksmbd
[linux-block.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2022 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83         case NL80211_BAND_LC:
84                 if (chan == 14)
85                         return MHZ_TO_KHZ(2484);
86                 else if (chan < 14)
87                         return MHZ_TO_KHZ(2407 + chan * 5);
88                 break;
89         case NL80211_BAND_5GHZ:
90                 if (chan >= 182 && chan <= 196)
91                         return MHZ_TO_KHZ(4000 + chan * 5);
92                 else
93                         return MHZ_TO_KHZ(5000 + chan * 5);
94                 break;
95         case NL80211_BAND_6GHZ:
96                 /* see 802.11ax D6.1 27.3.23.2 */
97                 if (chan == 2)
98                         return MHZ_TO_KHZ(5935);
99                 if (chan <= 233)
100                         return MHZ_TO_KHZ(5950 + chan * 5);
101                 break;
102         case NL80211_BAND_60GHZ:
103                 if (chan < 7)
104                         return MHZ_TO_KHZ(56160 + chan * 2160);
105                 break;
106         case NL80211_BAND_S1GHZ:
107                 return 902000 + chan * 500;
108         default:
109                 ;
110         }
111         return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119                 return NL80211_CHAN_WIDTH_20_NOHT;
120
121         /*S1G defines a single allowed channel width per channel.
122          * Extract that width here.
123          */
124         if (chan->flags & IEEE80211_CHAN_1MHZ)
125                 return NL80211_CHAN_WIDTH_1;
126         else if (chan->flags & IEEE80211_CHAN_2MHZ)
127                 return NL80211_CHAN_WIDTH_2;
128         else if (chan->flags & IEEE80211_CHAN_4MHZ)
129                 return NL80211_CHAN_WIDTH_4;
130         else if (chan->flags & IEEE80211_CHAN_8MHZ)
131                 return NL80211_CHAN_WIDTH_8;
132         else if (chan->flags & IEEE80211_CHAN_16MHZ)
133                 return NL80211_CHAN_WIDTH_16;
134
135         pr_err("unknown channel width for channel at %dKHz?\n",
136                ieee80211_channel_to_khz(chan));
137
138         return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144         /* TODO: just handle MHz for now */
145         freq = KHZ_TO_MHZ(freq);
146
147         /* see 802.11 17.3.8.3.2 and Annex J */
148         if (freq == 2484)
149                 return 14;
150         else if (freq < 2484)
151                 return (freq - 2407) / 5;
152         else if (freq >= 4910 && freq <= 4980)
153                 return (freq - 4000) / 5;
154         else if (freq < 5925)
155                 return (freq - 5000) / 5;
156         else if (freq == 5935)
157                 return 2;
158         else if (freq <= 45000) /* DMG band lower limit */
159                 /* see 802.11ax D6.1 27.3.22.2 */
160                 return (freq - 5950) / 5;
161         else if (freq >= 58320 && freq <= 70200)
162                 return (freq - 56160) / 2160;
163         else
164                 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169                                                     u32 freq)
170 {
171         enum nl80211_band band;
172         struct ieee80211_supported_band *sband;
173         int i;
174
175         for (band = 0; band < NUM_NL80211_BANDS; band++) {
176                 sband = wiphy->bands[band];
177
178                 if (!sband)
179                         continue;
180
181                 for (i = 0; i < sband->n_channels; i++) {
182                         struct ieee80211_channel *chan = &sband->channels[i];
183
184                         if (ieee80211_channel_to_khz(chan) == freq)
185                                 return chan;
186                 }
187         }
188
189         return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195         int i, want;
196
197         switch (sband->band) {
198         case NL80211_BAND_5GHZ:
199         case NL80211_BAND_6GHZ:
200                 want = 3;
201                 for (i = 0; i < sband->n_bitrates; i++) {
202                         if (sband->bitrates[i].bitrate == 60 ||
203                             sband->bitrates[i].bitrate == 120 ||
204                             sband->bitrates[i].bitrate == 240) {
205                                 sband->bitrates[i].flags |=
206                                         IEEE80211_RATE_MANDATORY_A;
207                                 want--;
208                         }
209                 }
210                 WARN_ON(want);
211                 break;
212         case NL80211_BAND_2GHZ:
213         case NL80211_BAND_LC:
214                 want = 7;
215                 for (i = 0; i < sband->n_bitrates; i++) {
216                         switch (sband->bitrates[i].bitrate) {
217                         case 10:
218                         case 20:
219                         case 55:
220                         case 110:
221                                 sband->bitrates[i].flags |=
222                                         IEEE80211_RATE_MANDATORY_B |
223                                         IEEE80211_RATE_MANDATORY_G;
224                                 want--;
225                                 break;
226                         case 60:
227                         case 120:
228                         case 240:
229                                 sband->bitrates[i].flags |=
230                                         IEEE80211_RATE_MANDATORY_G;
231                                 want--;
232                                 fallthrough;
233                         default:
234                                 sband->bitrates[i].flags |=
235                                         IEEE80211_RATE_ERP_G;
236                                 break;
237                         }
238                 }
239                 WARN_ON(want != 0 && want != 3);
240                 break;
241         case NL80211_BAND_60GHZ:
242                 /* check for mandatory HT MCS 1..4 */
243                 WARN_ON(!sband->ht_cap.ht_supported);
244                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245                 break;
246         case NL80211_BAND_S1GHZ:
247                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248                  * mandatory is ok.
249                  */
250                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251                 break;
252         case NUM_NL80211_BANDS:
253         default:
254                 WARN_ON(1);
255                 break;
256         }
257 }
258
259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261         enum nl80211_band band;
262
263         for (band = 0; band < NUM_NL80211_BANDS; band++)
264                 if (wiphy->bands[band])
265                         set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270         int i;
271         for (i = 0; i < wiphy->n_cipher_suites; i++)
272                 if (cipher == wiphy->cipher_suites[i])
273                         return true;
274         return false;
275 }
276
277 static bool
278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280         struct wiphy *wiphy = &rdev->wiphy;
281         int i;
282
283         for (i = 0; i < wiphy->n_cipher_suites; i++) {
284                 switch (wiphy->cipher_suites[i]) {
285                 case WLAN_CIPHER_SUITE_AES_CMAC:
286                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289                         return true;
290                 }
291         }
292
293         return false;
294 }
295
296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297                             int key_idx, bool pairwise)
298 {
299         int max_key_idx;
300
301         if (pairwise)
302                 max_key_idx = 3;
303         else if (wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305                  wiphy_ext_feature_isset(&rdev->wiphy,
306                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307                 max_key_idx = 7;
308         else if (cfg80211_igtk_cipher_supported(rdev))
309                 max_key_idx = 5;
310         else
311                 max_key_idx = 3;
312
313         if (key_idx < 0 || key_idx > max_key_idx)
314                 return false;
315
316         return true;
317 }
318
319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320                                    struct key_params *params, int key_idx,
321                                    bool pairwise, const u8 *mac_addr)
322 {
323         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324                 return -EINVAL;
325
326         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327                 return -EINVAL;
328
329         if (pairwise && !mac_addr)
330                 return -EINVAL;
331
332         switch (params->cipher) {
333         case WLAN_CIPHER_SUITE_TKIP:
334                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335                 if ((pairwise && key_idx) ||
336                     params->mode != NL80211_KEY_RX_TX)
337                         return -EINVAL;
338                 break;
339         case WLAN_CIPHER_SUITE_CCMP:
340         case WLAN_CIPHER_SUITE_CCMP_256:
341         case WLAN_CIPHER_SUITE_GCMP:
342         case WLAN_CIPHER_SUITE_GCMP_256:
343                 /* IEEE802.11-2016 allows only 0 and - when supporting
344                  * Extended Key ID - 1 as index for pairwise keys.
345                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346                  * the driver supports Extended Key ID.
347                  * @NL80211_KEY_SET_TX can't be set when installing and
348                  * validating a key.
349                  */
350                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351                     params->mode == NL80211_KEY_SET_TX)
352                         return -EINVAL;
353                 if (wiphy_ext_feature_isset(&rdev->wiphy,
354                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355                         if (pairwise && (key_idx < 0 || key_idx > 1))
356                                 return -EINVAL;
357                 } else if (pairwise && key_idx) {
358                         return -EINVAL;
359                 }
360                 break;
361         case WLAN_CIPHER_SUITE_AES_CMAC:
362         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365                 /* Disallow BIP (group-only) cipher as pairwise cipher */
366                 if (pairwise)
367                         return -EINVAL;
368                 if (key_idx < 4)
369                         return -EINVAL;
370                 break;
371         case WLAN_CIPHER_SUITE_WEP40:
372         case WLAN_CIPHER_SUITE_WEP104:
373                 if (key_idx > 3)
374                         return -EINVAL;
375                 break;
376         default:
377                 break;
378         }
379
380         switch (params->cipher) {
381         case WLAN_CIPHER_SUITE_WEP40:
382                 if (params->key_len != WLAN_KEY_LEN_WEP40)
383                         return -EINVAL;
384                 break;
385         case WLAN_CIPHER_SUITE_TKIP:
386                 if (params->key_len != WLAN_KEY_LEN_TKIP)
387                         return -EINVAL;
388                 break;
389         case WLAN_CIPHER_SUITE_CCMP:
390                 if (params->key_len != WLAN_KEY_LEN_CCMP)
391                         return -EINVAL;
392                 break;
393         case WLAN_CIPHER_SUITE_CCMP_256:
394                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395                         return -EINVAL;
396                 break;
397         case WLAN_CIPHER_SUITE_GCMP:
398                 if (params->key_len != WLAN_KEY_LEN_GCMP)
399                         return -EINVAL;
400                 break;
401         case WLAN_CIPHER_SUITE_GCMP_256:
402                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403                         return -EINVAL;
404                 break;
405         case WLAN_CIPHER_SUITE_WEP104:
406                 if (params->key_len != WLAN_KEY_LEN_WEP104)
407                         return -EINVAL;
408                 break;
409         case WLAN_CIPHER_SUITE_AES_CMAC:
410                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411                         return -EINVAL;
412                 break;
413         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415                         return -EINVAL;
416                 break;
417         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419                         return -EINVAL;
420                 break;
421         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423                         return -EINVAL;
424                 break;
425         default:
426                 /*
427                  * We don't know anything about this algorithm,
428                  * allow using it -- but the driver must check
429                  * all parameters! We still check below whether
430                  * or not the driver supports this algorithm,
431                  * of course.
432                  */
433                 break;
434         }
435
436         if (params->seq) {
437                 switch (params->cipher) {
438                 case WLAN_CIPHER_SUITE_WEP40:
439                 case WLAN_CIPHER_SUITE_WEP104:
440                         /* These ciphers do not use key sequence */
441                         return -EINVAL;
442                 case WLAN_CIPHER_SUITE_TKIP:
443                 case WLAN_CIPHER_SUITE_CCMP:
444                 case WLAN_CIPHER_SUITE_CCMP_256:
445                 case WLAN_CIPHER_SUITE_GCMP:
446                 case WLAN_CIPHER_SUITE_GCMP_256:
447                 case WLAN_CIPHER_SUITE_AES_CMAC:
448                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451                         if (params->seq_len != 6)
452                                 return -EINVAL;
453                         break;
454                 }
455         }
456
457         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458                 return -EINVAL;
459
460         return 0;
461 }
462
463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465         unsigned int hdrlen = 24;
466
467         if (ieee80211_is_ext(fc)) {
468                 hdrlen = 4;
469                 goto out;
470         }
471
472         if (ieee80211_is_data(fc)) {
473                 if (ieee80211_has_a4(fc))
474                         hdrlen = 30;
475                 if (ieee80211_is_data_qos(fc)) {
476                         hdrlen += IEEE80211_QOS_CTL_LEN;
477                         if (ieee80211_has_order(fc))
478                                 hdrlen += IEEE80211_HT_CTL_LEN;
479                 }
480                 goto out;
481         }
482
483         if (ieee80211_is_mgmt(fc)) {
484                 if (ieee80211_has_order(fc))
485                         hdrlen += IEEE80211_HT_CTL_LEN;
486                 goto out;
487         }
488
489         if (ieee80211_is_ctl(fc)) {
490                 /*
491                  * ACK and CTS are 10 bytes, all others 16. To see how
492                  * to get this condition consider
493                  *   subtype mask:   0b0000000011110000 (0x00F0)
494                  *   ACK subtype:    0b0000000011010000 (0x00D0)
495                  *   CTS subtype:    0b0000000011000000 (0x00C0)
496                  *   bits that matter:         ^^^      (0x00E0)
497                  *   value of those: 0b0000000011000000 (0x00C0)
498                  */
499                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500                         hdrlen = 10;
501                 else
502                         hdrlen = 16;
503         }
504 out:
505         return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511         const struct ieee80211_hdr *hdr =
512                         (const struct ieee80211_hdr *)skb->data;
513         unsigned int hdrlen;
514
515         if (unlikely(skb->len < 10))
516                 return 0;
517         hdrlen = ieee80211_hdrlen(hdr->frame_control);
518         if (unlikely(hdrlen > skb->len))
519                 return 0;
520         return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526         int ae = flags & MESH_FLAGS_AE;
527         /* 802.11-2012, 8.2.4.7.3 */
528         switch (ae) {
529         default:
530         case 0:
531                 return 6;
532         case MESH_FLAGS_AE_A4:
533                 return 12;
534         case MESH_FLAGS_AE_A5_A6:
535                 return 18;
536         }
537 }
538
539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
546                                   const u8 *addr, enum nl80211_iftype iftype,
547                                   u8 data_offset, bool is_amsdu)
548 {
549         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
550         struct {
551                 u8 hdr[ETH_ALEN] __aligned(2);
552                 __be16 proto;
553         } payload;
554         struct ethhdr tmp;
555         u16 hdrlen;
556         u8 mesh_flags = 0;
557
558         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
559                 return -1;
560
561         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
562         if (skb->len < hdrlen)
563                 return -1;
564
565         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
566          * header
567          * IEEE 802.11 address fields:
568          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
569          *   0     0   DA    SA    BSSID n/a
570          *   0     1   DA    BSSID SA    n/a
571          *   1     0   BSSID SA    DA    n/a
572          *   1     1   RA    TA    DA    SA
573          */
574         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
575         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
576
577         if (iftype == NL80211_IFTYPE_MESH_POINT &&
578             skb_copy_bits(skb, hdrlen, &mesh_flags, 1) < 0)
579                 return -1;
580
581         mesh_flags &= MESH_FLAGS_AE;
582
583         switch (hdr->frame_control &
584                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
585         case cpu_to_le16(IEEE80211_FCTL_TODS):
586                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
587                              iftype != NL80211_IFTYPE_AP_VLAN &&
588                              iftype != NL80211_IFTYPE_P2P_GO))
589                         return -1;
590                 break;
591         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
592                 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
593                              iftype != NL80211_IFTYPE_AP_VLAN &&
594                              iftype != NL80211_IFTYPE_STATION))
595                         return -1;
596                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
597                         if (mesh_flags == MESH_FLAGS_AE_A4)
598                                 return -1;
599                         if (mesh_flags == MESH_FLAGS_AE_A5_A6 &&
600                             skb_copy_bits(skb, hdrlen +
601                                           offsetof(struct ieee80211s_hdr, eaddr1),
602                                           tmp.h_dest, 2 * ETH_ALEN) < 0)
603                                 return -1;
604
605                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
606                 }
607                 break;
608         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
609                 if ((iftype != NL80211_IFTYPE_STATION &&
610                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
611                      iftype != NL80211_IFTYPE_MESH_POINT) ||
612                     (is_multicast_ether_addr(tmp.h_dest) &&
613                      ether_addr_equal(tmp.h_source, addr)))
614                         return -1;
615                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
616                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
617                                 return -1;
618                         if (mesh_flags == MESH_FLAGS_AE_A4 &&
619                             skb_copy_bits(skb, hdrlen +
620                                           offsetof(struct ieee80211s_hdr, eaddr1),
621                                           tmp.h_source, ETH_ALEN) < 0)
622                                 return -1;
623                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
624                 }
625                 break;
626         case cpu_to_le16(0):
627                 if (iftype != NL80211_IFTYPE_ADHOC &&
628                     iftype != NL80211_IFTYPE_STATION &&
629                     iftype != NL80211_IFTYPE_OCB)
630                                 return -1;
631                 break;
632         }
633
634         if (likely(skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
635                    ((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
636                      payload.proto != htons(ETH_P_AARP) &&
637                      payload.proto != htons(ETH_P_IPX)) ||
638                     ether_addr_equal(payload.hdr, bridge_tunnel_header)))) {
639                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
640                  * replace EtherType */
641                 hdrlen += ETH_ALEN + 2;
642                 tmp.h_proto = payload.proto;
643                 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
644         } else {
645                 tmp.h_proto = htons(skb->len - hdrlen);
646         }
647
648         pskb_pull(skb, hdrlen);
649
650         if (!ehdr)
651                 ehdr = skb_push(skb, sizeof(struct ethhdr));
652         memcpy(ehdr, &tmp, sizeof(tmp));
653
654         return 0;
655 }
656 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
657
658 static void
659 __frame_add_frag(struct sk_buff *skb, struct page *page,
660                  void *ptr, int len, int size)
661 {
662         struct skb_shared_info *sh = skb_shinfo(skb);
663         int page_offset;
664
665         get_page(page);
666         page_offset = ptr - page_address(page);
667         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
668 }
669
670 static void
671 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
672                             int offset, int len)
673 {
674         struct skb_shared_info *sh = skb_shinfo(skb);
675         const skb_frag_t *frag = &sh->frags[0];
676         struct page *frag_page;
677         void *frag_ptr;
678         int frag_len, frag_size;
679         int head_size = skb->len - skb->data_len;
680         int cur_len;
681
682         frag_page = virt_to_head_page(skb->head);
683         frag_ptr = skb->data;
684         frag_size = head_size;
685
686         while (offset >= frag_size) {
687                 offset -= frag_size;
688                 frag_page = skb_frag_page(frag);
689                 frag_ptr = skb_frag_address(frag);
690                 frag_size = skb_frag_size(frag);
691                 frag++;
692         }
693
694         frag_ptr += offset;
695         frag_len = frag_size - offset;
696
697         cur_len = min(len, frag_len);
698
699         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
700         len -= cur_len;
701
702         while (len > 0) {
703                 frag_len = skb_frag_size(frag);
704                 cur_len = min(len, frag_len);
705                 __frame_add_frag(frame, skb_frag_page(frag),
706                                  skb_frag_address(frag), cur_len, frag_len);
707                 len -= cur_len;
708                 frag++;
709         }
710 }
711
712 static struct sk_buff *
713 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
714                        int offset, int len, bool reuse_frag)
715 {
716         struct sk_buff *frame;
717         int cur_len = len;
718
719         if (skb->len - offset < len)
720                 return NULL;
721
722         /*
723          * When reusing framents, copy some data to the head to simplify
724          * ethernet header handling and speed up protocol header processing
725          * in the stack later.
726          */
727         if (reuse_frag)
728                 cur_len = min_t(int, len, 32);
729
730         /*
731          * Allocate and reserve two bytes more for payload
732          * alignment since sizeof(struct ethhdr) is 14.
733          */
734         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
735         if (!frame)
736                 return NULL;
737
738         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
739         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
740
741         len -= cur_len;
742         if (!len)
743                 return frame;
744
745         offset += cur_len;
746         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
747
748         return frame;
749 }
750
751 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
752                               const u8 *addr, enum nl80211_iftype iftype,
753                               const unsigned int extra_headroom,
754                               const u8 *check_da, const u8 *check_sa)
755 {
756         unsigned int hlen = ALIGN(extra_headroom, 4);
757         struct sk_buff *frame = NULL;
758         u16 ethertype;
759         u8 *payload;
760         int offset = 0, remaining;
761         struct ethhdr eth;
762         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
763         bool reuse_skb = false;
764         bool last = false;
765
766         while (!last) {
767                 unsigned int subframe_len;
768                 int len;
769                 u8 padding;
770
771                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
772                 len = ntohs(eth.h_proto);
773                 subframe_len = sizeof(struct ethhdr) + len;
774                 padding = (4 - subframe_len) & 0x3;
775
776                 /* the last MSDU has no padding */
777                 remaining = skb->len - offset;
778                 if (subframe_len > remaining)
779                         goto purge;
780                 /* mitigate A-MSDU aggregation injection attacks */
781                 if (ether_addr_equal(eth.h_dest, rfc1042_header))
782                         goto purge;
783
784                 offset += sizeof(struct ethhdr);
785                 last = remaining <= subframe_len + padding;
786
787                 /* FIXME: should we really accept multicast DA? */
788                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
789                      !ether_addr_equal(check_da, eth.h_dest)) ||
790                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
791                         offset += len + padding;
792                         continue;
793                 }
794
795                 /* reuse skb for the last subframe */
796                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
797                         skb_pull(skb, offset);
798                         frame = skb;
799                         reuse_skb = true;
800                 } else {
801                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
802                                                        reuse_frag);
803                         if (!frame)
804                                 goto purge;
805
806                         offset += len + padding;
807                 }
808
809                 skb_reset_network_header(frame);
810                 frame->dev = skb->dev;
811                 frame->priority = skb->priority;
812
813                 payload = frame->data;
814                 ethertype = (payload[6] << 8) | payload[7];
815                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
816                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
817                            ether_addr_equal(payload, bridge_tunnel_header))) {
818                         eth.h_proto = htons(ethertype);
819                         skb_pull(frame, ETH_ALEN + 2);
820                 }
821
822                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
823                 __skb_queue_tail(list, frame);
824         }
825
826         if (!reuse_skb)
827                 dev_kfree_skb(skb);
828
829         return;
830
831  purge:
832         __skb_queue_purge(list);
833         dev_kfree_skb(skb);
834 }
835 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
836
837 /* Given a data frame determine the 802.1p/1d tag to use. */
838 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
839                                     struct cfg80211_qos_map *qos_map)
840 {
841         unsigned int dscp;
842         unsigned char vlan_priority;
843         unsigned int ret;
844
845         /* skb->priority values from 256->263 are magic values to
846          * directly indicate a specific 802.1d priority.  This is used
847          * to allow 802.1d priority to be passed directly in from VLAN
848          * tags, etc.
849          */
850         if (skb->priority >= 256 && skb->priority <= 263) {
851                 ret = skb->priority - 256;
852                 goto out;
853         }
854
855         if (skb_vlan_tag_present(skb)) {
856                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
857                         >> VLAN_PRIO_SHIFT;
858                 if (vlan_priority > 0) {
859                         ret = vlan_priority;
860                         goto out;
861                 }
862         }
863
864         switch (skb->protocol) {
865         case htons(ETH_P_IP):
866                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
867                 break;
868         case htons(ETH_P_IPV6):
869                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
870                 break;
871         case htons(ETH_P_MPLS_UC):
872         case htons(ETH_P_MPLS_MC): {
873                 struct mpls_label mpls_tmp, *mpls;
874
875                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
876                                           sizeof(*mpls), &mpls_tmp);
877                 if (!mpls)
878                         return 0;
879
880                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
881                         >> MPLS_LS_TC_SHIFT;
882                 goto out;
883         }
884         case htons(ETH_P_80221):
885                 /* 802.21 is always network control traffic */
886                 return 7;
887         default:
888                 return 0;
889         }
890
891         if (qos_map) {
892                 unsigned int i, tmp_dscp = dscp >> 2;
893
894                 for (i = 0; i < qos_map->num_des; i++) {
895                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
896                                 ret = qos_map->dscp_exception[i].up;
897                                 goto out;
898                         }
899                 }
900
901                 for (i = 0; i < 8; i++) {
902                         if (tmp_dscp >= qos_map->up[i].low &&
903                             tmp_dscp <= qos_map->up[i].high) {
904                                 ret = i;
905                                 goto out;
906                         }
907                 }
908         }
909
910         ret = dscp >> 5;
911 out:
912         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
913 }
914 EXPORT_SYMBOL(cfg80211_classify8021d);
915
916 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
917 {
918         const struct cfg80211_bss_ies *ies;
919
920         ies = rcu_dereference(bss->ies);
921         if (!ies)
922                 return NULL;
923
924         return cfg80211_find_elem(id, ies->data, ies->len);
925 }
926 EXPORT_SYMBOL(ieee80211_bss_get_elem);
927
928 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
929 {
930         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
931         struct net_device *dev = wdev->netdev;
932         int i;
933
934         if (!wdev->connect_keys)
935                 return;
936
937         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
938                 if (!wdev->connect_keys->params[i].cipher)
939                         continue;
940                 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
941                                  &wdev->connect_keys->params[i])) {
942                         netdev_err(dev, "failed to set key %d\n", i);
943                         continue;
944                 }
945                 if (wdev->connect_keys->def == i &&
946                     rdev_set_default_key(rdev, dev, -1, i, true, true)) {
947                         netdev_err(dev, "failed to set defkey %d\n", i);
948                         continue;
949                 }
950         }
951
952         kfree_sensitive(wdev->connect_keys);
953         wdev->connect_keys = NULL;
954 }
955
956 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
957 {
958         struct cfg80211_event *ev;
959         unsigned long flags;
960
961         spin_lock_irqsave(&wdev->event_lock, flags);
962         while (!list_empty(&wdev->event_list)) {
963                 ev = list_first_entry(&wdev->event_list,
964                                       struct cfg80211_event, list);
965                 list_del(&ev->list);
966                 spin_unlock_irqrestore(&wdev->event_lock, flags);
967
968                 wdev_lock(wdev);
969                 switch (ev->type) {
970                 case EVENT_CONNECT_RESULT:
971                         __cfg80211_connect_result(
972                                 wdev->netdev,
973                                 &ev->cr,
974                                 ev->cr.status == WLAN_STATUS_SUCCESS);
975                         break;
976                 case EVENT_ROAMED:
977                         __cfg80211_roamed(wdev, &ev->rm);
978                         break;
979                 case EVENT_DISCONNECTED:
980                         __cfg80211_disconnected(wdev->netdev,
981                                                 ev->dc.ie, ev->dc.ie_len,
982                                                 ev->dc.reason,
983                                                 !ev->dc.locally_generated);
984                         break;
985                 case EVENT_IBSS_JOINED:
986                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
987                                                ev->ij.channel);
988                         break;
989                 case EVENT_STOPPED:
990                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
991                         break;
992                 case EVENT_PORT_AUTHORIZED:
993                         __cfg80211_port_authorized(wdev, ev->pa.bssid,
994                                                    ev->pa.td_bitmap,
995                                                    ev->pa.td_bitmap_len);
996                         break;
997                 }
998                 wdev_unlock(wdev);
999
1000                 kfree(ev);
1001
1002                 spin_lock_irqsave(&wdev->event_lock, flags);
1003         }
1004         spin_unlock_irqrestore(&wdev->event_lock, flags);
1005 }
1006
1007 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1008 {
1009         struct wireless_dev *wdev;
1010
1011         lockdep_assert_held(&rdev->wiphy.mtx);
1012
1013         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1014                 cfg80211_process_wdev_events(wdev);
1015 }
1016
1017 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1018                           struct net_device *dev, enum nl80211_iftype ntype,
1019                           struct vif_params *params)
1020 {
1021         int err;
1022         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1023
1024         lockdep_assert_held(&rdev->wiphy.mtx);
1025
1026         /* don't support changing VLANs, you just re-create them */
1027         if (otype == NL80211_IFTYPE_AP_VLAN)
1028                 return -EOPNOTSUPP;
1029
1030         /* cannot change into P2P device or NAN */
1031         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1032             ntype == NL80211_IFTYPE_NAN)
1033                 return -EOPNOTSUPP;
1034
1035         if (!rdev->ops->change_virtual_intf ||
1036             !(rdev->wiphy.interface_modes & (1 << ntype)))
1037                 return -EOPNOTSUPP;
1038
1039         if (ntype != otype) {
1040                 /* if it's part of a bridge, reject changing type to station/ibss */
1041                 if (netif_is_bridge_port(dev) &&
1042                     (ntype == NL80211_IFTYPE_ADHOC ||
1043                      ntype == NL80211_IFTYPE_STATION ||
1044                      ntype == NL80211_IFTYPE_P2P_CLIENT))
1045                         return -EBUSY;
1046
1047                 dev->ieee80211_ptr->use_4addr = false;
1048                 wdev_lock(dev->ieee80211_ptr);
1049                 rdev_set_qos_map(rdev, dev, NULL);
1050                 wdev_unlock(dev->ieee80211_ptr);
1051
1052                 switch (otype) {
1053                 case NL80211_IFTYPE_AP:
1054                 case NL80211_IFTYPE_P2P_GO:
1055                         cfg80211_stop_ap(rdev, dev, -1, true);
1056                         break;
1057                 case NL80211_IFTYPE_ADHOC:
1058                         cfg80211_leave_ibss(rdev, dev, false);
1059                         break;
1060                 case NL80211_IFTYPE_STATION:
1061                 case NL80211_IFTYPE_P2P_CLIENT:
1062                         wdev_lock(dev->ieee80211_ptr);
1063                         cfg80211_disconnect(rdev, dev,
1064                                             WLAN_REASON_DEAUTH_LEAVING, true);
1065                         wdev_unlock(dev->ieee80211_ptr);
1066                         break;
1067                 case NL80211_IFTYPE_MESH_POINT:
1068                         /* mesh should be handled? */
1069                         break;
1070                 case NL80211_IFTYPE_OCB:
1071                         cfg80211_leave_ocb(rdev, dev);
1072                         break;
1073                 default:
1074                         break;
1075                 }
1076
1077                 cfg80211_process_rdev_events(rdev);
1078                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1079
1080                 memset(&dev->ieee80211_ptr->u, 0,
1081                        sizeof(dev->ieee80211_ptr->u));
1082                 memset(&dev->ieee80211_ptr->links, 0,
1083                        sizeof(dev->ieee80211_ptr->links));
1084         }
1085
1086         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1087
1088         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1089
1090         if (!err && params && params->use_4addr != -1)
1091                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1092
1093         if (!err) {
1094                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1095                 switch (ntype) {
1096                 case NL80211_IFTYPE_STATION:
1097                         if (dev->ieee80211_ptr->use_4addr)
1098                                 break;
1099                         fallthrough;
1100                 case NL80211_IFTYPE_OCB:
1101                 case NL80211_IFTYPE_P2P_CLIENT:
1102                 case NL80211_IFTYPE_ADHOC:
1103                         dev->priv_flags |= IFF_DONT_BRIDGE;
1104                         break;
1105                 case NL80211_IFTYPE_P2P_GO:
1106                 case NL80211_IFTYPE_AP:
1107                 case NL80211_IFTYPE_AP_VLAN:
1108                 case NL80211_IFTYPE_MESH_POINT:
1109                         /* bridging OK */
1110                         break;
1111                 case NL80211_IFTYPE_MONITOR:
1112                         /* monitor can't bridge anyway */
1113                         break;
1114                 case NL80211_IFTYPE_UNSPECIFIED:
1115                 case NUM_NL80211_IFTYPES:
1116                         /* not happening */
1117                         break;
1118                 case NL80211_IFTYPE_P2P_DEVICE:
1119                 case NL80211_IFTYPE_WDS:
1120                 case NL80211_IFTYPE_NAN:
1121                         WARN_ON(1);
1122                         break;
1123                 }
1124         }
1125
1126         if (!err && ntype != otype && netif_running(dev)) {
1127                 cfg80211_update_iface_num(rdev, ntype, 1);
1128                 cfg80211_update_iface_num(rdev, otype, -1);
1129         }
1130
1131         return err;
1132 }
1133
1134 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1135 {
1136         int modulation, streams, bitrate;
1137
1138         /* the formula below does only work for MCS values smaller than 32 */
1139         if (WARN_ON_ONCE(rate->mcs >= 32))
1140                 return 0;
1141
1142         modulation = rate->mcs & 7;
1143         streams = (rate->mcs >> 3) + 1;
1144
1145         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1146
1147         if (modulation < 4)
1148                 bitrate *= (modulation + 1);
1149         else if (modulation == 4)
1150                 bitrate *= (modulation + 2);
1151         else
1152                 bitrate *= (modulation + 3);
1153
1154         bitrate *= streams;
1155
1156         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1157                 bitrate = (bitrate / 9) * 10;
1158
1159         /* do NOT round down here */
1160         return (bitrate + 50000) / 100000;
1161 }
1162
1163 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1164 {
1165         static const u32 __mcs2bitrate[] = {
1166                 /* control PHY */
1167                 [0] =   275,
1168                 /* SC PHY */
1169                 [1] =  3850,
1170                 [2] =  7700,
1171                 [3] =  9625,
1172                 [4] = 11550,
1173                 [5] = 12512, /* 1251.25 mbps */
1174                 [6] = 15400,
1175                 [7] = 19250,
1176                 [8] = 23100,
1177                 [9] = 25025,
1178                 [10] = 30800,
1179                 [11] = 38500,
1180                 [12] = 46200,
1181                 /* OFDM PHY */
1182                 [13] =  6930,
1183                 [14] =  8662, /* 866.25 mbps */
1184                 [15] = 13860,
1185                 [16] = 17325,
1186                 [17] = 20790,
1187                 [18] = 27720,
1188                 [19] = 34650,
1189                 [20] = 41580,
1190                 [21] = 45045,
1191                 [22] = 51975,
1192                 [23] = 62370,
1193                 [24] = 67568, /* 6756.75 mbps */
1194                 /* LP-SC PHY */
1195                 [25] =  6260,
1196                 [26] =  8340,
1197                 [27] = 11120,
1198                 [28] = 12510,
1199                 [29] = 16680,
1200                 [30] = 22240,
1201                 [31] = 25030,
1202         };
1203
1204         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1205                 return 0;
1206
1207         return __mcs2bitrate[rate->mcs];
1208 }
1209
1210 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1211 {
1212         static const u32 __mcs2bitrate[] = {
1213                 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1214                 [7 - 6] = 50050, /* MCS 12.1 */
1215                 [8 - 6] = 53900,
1216                 [9 - 6] = 57750,
1217                 [10 - 6] = 63900,
1218                 [11 - 6] = 75075,
1219                 [12 - 6] = 80850,
1220         };
1221
1222         /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1223         if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1224                 return 0;
1225
1226         return __mcs2bitrate[rate->mcs - 6];
1227 }
1228
1229 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1230 {
1231         static const u32 __mcs2bitrate[] = {
1232                 /* control PHY */
1233                 [0] =   275,
1234                 /* SC PHY */
1235                 [1] =  3850,
1236                 [2] =  7700,
1237                 [3] =  9625,
1238                 [4] = 11550,
1239                 [5] = 12512, /* 1251.25 mbps */
1240                 [6] = 13475,
1241                 [7] = 15400,
1242                 [8] = 19250,
1243                 [9] = 23100,
1244                 [10] = 25025,
1245                 [11] = 26950,
1246                 [12] = 30800,
1247                 [13] = 38500,
1248                 [14] = 46200,
1249                 [15] = 50050,
1250                 [16] = 53900,
1251                 [17] = 57750,
1252                 [18] = 69300,
1253                 [19] = 75075,
1254                 [20] = 80850,
1255         };
1256
1257         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1258                 return 0;
1259
1260         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1261 }
1262
1263 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1264 {
1265         static const u32 base[4][12] = {
1266                 {   6500000,
1267                    13000000,
1268                    19500000,
1269                    26000000,
1270                    39000000,
1271                    52000000,
1272                    58500000,
1273                    65000000,
1274                    78000000,
1275                 /* not in the spec, but some devices use this: */
1276                    86700000,
1277                    97500000,
1278                   108300000,
1279                 },
1280                 {  13500000,
1281                    27000000,
1282                    40500000,
1283                    54000000,
1284                    81000000,
1285                   108000000,
1286                   121500000,
1287                   135000000,
1288                   162000000,
1289                   180000000,
1290                   202500000,
1291                   225000000,
1292                 },
1293                 {  29300000,
1294                    58500000,
1295                    87800000,
1296                   117000000,
1297                   175500000,
1298                   234000000,
1299                   263300000,
1300                   292500000,
1301                   351000000,
1302                   390000000,
1303                   438800000,
1304                   487500000,
1305                 },
1306                 {  58500000,
1307                   117000000,
1308                   175500000,
1309                   234000000,
1310                   351000000,
1311                   468000000,
1312                   526500000,
1313                   585000000,
1314                   702000000,
1315                   780000000,
1316                   877500000,
1317                   975000000,
1318                 },
1319         };
1320         u32 bitrate;
1321         int idx;
1322
1323         if (rate->mcs > 11)
1324                 goto warn;
1325
1326         switch (rate->bw) {
1327         case RATE_INFO_BW_160:
1328                 idx = 3;
1329                 break;
1330         case RATE_INFO_BW_80:
1331                 idx = 2;
1332                 break;
1333         case RATE_INFO_BW_40:
1334                 idx = 1;
1335                 break;
1336         case RATE_INFO_BW_5:
1337         case RATE_INFO_BW_10:
1338         default:
1339                 goto warn;
1340         case RATE_INFO_BW_20:
1341                 idx = 0;
1342         }
1343
1344         bitrate = base[idx][rate->mcs];
1345         bitrate *= rate->nss;
1346
1347         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1348                 bitrate = (bitrate / 9) * 10;
1349
1350         /* do NOT round down here */
1351         return (bitrate + 50000) / 100000;
1352  warn:
1353         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1354                   rate->bw, rate->mcs, rate->nss);
1355         return 0;
1356 }
1357
1358 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1359 {
1360 #define SCALE 6144
1361         u32 mcs_divisors[14] = {
1362                 102399, /* 16.666666... */
1363                  51201, /*  8.333333... */
1364                  34134, /*  5.555555... */
1365                  25599, /*  4.166666... */
1366                  17067, /*  2.777777... */
1367                  12801, /*  2.083333... */
1368                  11377, /*  1.851725... */
1369                  10239, /*  1.666666... */
1370                   8532, /*  1.388888... */
1371                   7680, /*  1.250000... */
1372                   6828, /*  1.111111... */
1373                   6144, /*  1.000000... */
1374                   5690, /*  0.926106... */
1375                   5120, /*  0.833333... */
1376         };
1377         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1378         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1379         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1380         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1381         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1382         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1383         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1384         u64 tmp;
1385         u32 result;
1386
1387         if (WARN_ON_ONCE(rate->mcs > 13))
1388                 return 0;
1389
1390         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1391                 return 0;
1392         if (WARN_ON_ONCE(rate->he_ru_alloc >
1393                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1394                 return 0;
1395         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1396                 return 0;
1397
1398         if (rate->bw == RATE_INFO_BW_160)
1399                 result = rates_160M[rate->he_gi];
1400         else if (rate->bw == RATE_INFO_BW_80 ||
1401                  (rate->bw == RATE_INFO_BW_HE_RU &&
1402                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1403                 result = rates_969[rate->he_gi];
1404         else if (rate->bw == RATE_INFO_BW_40 ||
1405                  (rate->bw == RATE_INFO_BW_HE_RU &&
1406                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1407                 result = rates_484[rate->he_gi];
1408         else if (rate->bw == RATE_INFO_BW_20 ||
1409                  (rate->bw == RATE_INFO_BW_HE_RU &&
1410                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1411                 result = rates_242[rate->he_gi];
1412         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1413                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1414                 result = rates_106[rate->he_gi];
1415         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1416                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1417                 result = rates_52[rate->he_gi];
1418         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1419                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1420                 result = rates_26[rate->he_gi];
1421         else {
1422                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1423                      rate->bw, rate->he_ru_alloc);
1424                 return 0;
1425         }
1426
1427         /* now scale to the appropriate MCS */
1428         tmp = result;
1429         tmp *= SCALE;
1430         do_div(tmp, mcs_divisors[rate->mcs]);
1431         result = tmp;
1432
1433         /* and take NSS, DCM into account */
1434         result = (result * rate->nss) / 8;
1435         if (rate->he_dcm)
1436                 result /= 2;
1437
1438         return result / 10000;
1439 }
1440
1441 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1442 {
1443 #define SCALE 6144
1444         static const u32 mcs_divisors[16] = {
1445                 102399, /* 16.666666... */
1446                  51201, /*  8.333333... */
1447                  34134, /*  5.555555... */
1448                  25599, /*  4.166666... */
1449                  17067, /*  2.777777... */
1450                  12801, /*  2.083333... */
1451                  11377, /*  1.851725... */
1452                  10239, /*  1.666666... */
1453                   8532, /*  1.388888... */
1454                   7680, /*  1.250000... */
1455                   6828, /*  1.111111... */
1456                   6144, /*  1.000000... */
1457                   5690, /*  0.926106... */
1458                   5120, /*  0.833333... */
1459                 409600, /* 66.666666... */
1460                 204800, /* 33.333333... */
1461         };
1462         static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1463         static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1464         static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1465         static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1466         static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1467         static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1468         u64 tmp;
1469         u32 result;
1470
1471         if (WARN_ON_ONCE(rate->mcs > 15))
1472                 return 0;
1473         if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1474                 return 0;
1475         if (WARN_ON_ONCE(rate->eht_ru_alloc >
1476                          NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1477                 return 0;
1478         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1479                 return 0;
1480
1481         /* Bandwidth checks for MCS 14 */
1482         if (rate->mcs == 14) {
1483                 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1484                      rate->bw != RATE_INFO_BW_80 &&
1485                      rate->bw != RATE_INFO_BW_160 &&
1486                      rate->bw != RATE_INFO_BW_320) ||
1487                     (rate->bw == RATE_INFO_BW_EHT_RU &&
1488                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1489                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1490                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1491                         WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1492                              rate->bw, rate->eht_ru_alloc);
1493                         return 0;
1494                 }
1495         }
1496
1497         if (rate->bw == RATE_INFO_BW_320 ||
1498             (rate->bw == RATE_INFO_BW_EHT_RU &&
1499              rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1500                 result = 4 * rates_996[rate->eht_gi];
1501         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1502                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1503                 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1504         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1505                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1506                 result = 3 * rates_996[rate->eht_gi];
1507         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1508                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1509                 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1510         else if (rate->bw == RATE_INFO_BW_160 ||
1511                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1512                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1513                 result = 2 * rates_996[rate->eht_gi];
1514         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1515                  rate->eht_ru_alloc ==
1516                  NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1517                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1518                          + rates_242[rate->eht_gi];
1519         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1520                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1521                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1522         else if (rate->bw == RATE_INFO_BW_80 ||
1523                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1524                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1525                 result = rates_996[rate->eht_gi];
1526         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1527                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1528                 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1529         else if (rate->bw == RATE_INFO_BW_40 ||
1530                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1531                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1532                 result = rates_484[rate->eht_gi];
1533         else if (rate->bw == RATE_INFO_BW_20 ||
1534                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1535                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1536                 result = rates_242[rate->eht_gi];
1537         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1538                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1539                 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1540         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1541                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1542                 result = rates_106[rate->eht_gi];
1543         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1544                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1545                 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1546         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1547                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1548                 result = rates_52[rate->eht_gi];
1549         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1550                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1551                 result = rates_26[rate->eht_gi];
1552         else {
1553                 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1554                      rate->bw, rate->eht_ru_alloc);
1555                 return 0;
1556         }
1557
1558         /* now scale to the appropriate MCS */
1559         tmp = result;
1560         tmp *= SCALE;
1561         do_div(tmp, mcs_divisors[rate->mcs]);
1562
1563         /* and take NSS */
1564         tmp *= rate->nss;
1565         do_div(tmp, 8);
1566
1567         result = tmp;
1568
1569         return result / 10000;
1570 }
1571
1572 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1573 {
1574         if (rate->flags & RATE_INFO_FLAGS_MCS)
1575                 return cfg80211_calculate_bitrate_ht(rate);
1576         if (rate->flags & RATE_INFO_FLAGS_DMG)
1577                 return cfg80211_calculate_bitrate_dmg(rate);
1578         if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1579                 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1580         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1581                 return cfg80211_calculate_bitrate_edmg(rate);
1582         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1583                 return cfg80211_calculate_bitrate_vht(rate);
1584         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1585                 return cfg80211_calculate_bitrate_he(rate);
1586         if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1587                 return cfg80211_calculate_bitrate_eht(rate);
1588
1589         return rate->legacy;
1590 }
1591 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1592
1593 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1594                           enum ieee80211_p2p_attr_id attr,
1595                           u8 *buf, unsigned int bufsize)
1596 {
1597         u8 *out = buf;
1598         u16 attr_remaining = 0;
1599         bool desired_attr = false;
1600         u16 desired_len = 0;
1601
1602         while (len > 0) {
1603                 unsigned int iedatalen;
1604                 unsigned int copy;
1605                 const u8 *iedata;
1606
1607                 if (len < 2)
1608                         return -EILSEQ;
1609                 iedatalen = ies[1];
1610                 if (iedatalen + 2 > len)
1611                         return -EILSEQ;
1612
1613                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1614                         goto cont;
1615
1616                 if (iedatalen < 4)
1617                         goto cont;
1618
1619                 iedata = ies + 2;
1620
1621                 /* check WFA OUI, P2P subtype */
1622                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1623                     iedata[2] != 0x9a || iedata[3] != 0x09)
1624                         goto cont;
1625
1626                 iedatalen -= 4;
1627                 iedata += 4;
1628
1629                 /* check attribute continuation into this IE */
1630                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1631                 if (copy && desired_attr) {
1632                         desired_len += copy;
1633                         if (out) {
1634                                 memcpy(out, iedata, min(bufsize, copy));
1635                                 out += min(bufsize, copy);
1636                                 bufsize -= min(bufsize, copy);
1637                         }
1638
1639
1640                         if (copy == attr_remaining)
1641                                 return desired_len;
1642                 }
1643
1644                 attr_remaining -= copy;
1645                 if (attr_remaining)
1646                         goto cont;
1647
1648                 iedatalen -= copy;
1649                 iedata += copy;
1650
1651                 while (iedatalen > 0) {
1652                         u16 attr_len;
1653
1654                         /* P2P attribute ID & size must fit */
1655                         if (iedatalen < 3)
1656                                 return -EILSEQ;
1657                         desired_attr = iedata[0] == attr;
1658                         attr_len = get_unaligned_le16(iedata + 1);
1659                         iedatalen -= 3;
1660                         iedata += 3;
1661
1662                         copy = min_t(unsigned int, attr_len, iedatalen);
1663
1664                         if (desired_attr) {
1665                                 desired_len += copy;
1666                                 if (out) {
1667                                         memcpy(out, iedata, min(bufsize, copy));
1668                                         out += min(bufsize, copy);
1669                                         bufsize -= min(bufsize, copy);
1670                                 }
1671
1672                                 if (copy == attr_len)
1673                                         return desired_len;
1674                         }
1675
1676                         iedata += copy;
1677                         iedatalen -= copy;
1678                         attr_remaining = attr_len - copy;
1679                 }
1680
1681  cont:
1682                 len -= ies[1] + 2;
1683                 ies += ies[1] + 2;
1684         }
1685
1686         if (attr_remaining && desired_attr)
1687                 return -EILSEQ;
1688
1689         return -ENOENT;
1690 }
1691 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1692
1693 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1694 {
1695         int i;
1696
1697         /* Make sure array values are legal */
1698         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1699                 return false;
1700
1701         i = 0;
1702         while (i < n_ids) {
1703                 if (ids[i] == WLAN_EID_EXTENSION) {
1704                         if (id_ext && (ids[i + 1] == id))
1705                                 return true;
1706
1707                         i += 2;
1708                         continue;
1709                 }
1710
1711                 if (ids[i] == id && !id_ext)
1712                         return true;
1713
1714                 i++;
1715         }
1716         return false;
1717 }
1718
1719 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1720 {
1721         /* we assume a validly formed IEs buffer */
1722         u8 len = ies[pos + 1];
1723
1724         pos += 2 + len;
1725
1726         /* the IE itself must have 255 bytes for fragments to follow */
1727         if (len < 255)
1728                 return pos;
1729
1730         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1731                 len = ies[pos + 1];
1732                 pos += 2 + len;
1733         }
1734
1735         return pos;
1736 }
1737
1738 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1739                               const u8 *ids, int n_ids,
1740                               const u8 *after_ric, int n_after_ric,
1741                               size_t offset)
1742 {
1743         size_t pos = offset;
1744
1745         while (pos < ielen) {
1746                 u8 ext = 0;
1747
1748                 if (ies[pos] == WLAN_EID_EXTENSION)
1749                         ext = 2;
1750                 if ((pos + ext) >= ielen)
1751                         break;
1752
1753                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1754                                           ies[pos] == WLAN_EID_EXTENSION))
1755                         break;
1756
1757                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1758                         pos = skip_ie(ies, ielen, pos);
1759
1760                         while (pos < ielen) {
1761                                 if (ies[pos] == WLAN_EID_EXTENSION)
1762                                         ext = 2;
1763                                 else
1764                                         ext = 0;
1765
1766                                 if ((pos + ext) >= ielen)
1767                                         break;
1768
1769                                 if (!ieee80211_id_in_list(after_ric,
1770                                                           n_after_ric,
1771                                                           ies[pos + ext],
1772                                                           ext == 2))
1773                                         pos = skip_ie(ies, ielen, pos);
1774                                 else
1775                                         break;
1776                         }
1777                 } else {
1778                         pos = skip_ie(ies, ielen, pos);
1779                 }
1780         }
1781
1782         return pos;
1783 }
1784 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1785
1786 bool ieee80211_operating_class_to_band(u8 operating_class,
1787                                        enum nl80211_band *band)
1788 {
1789         switch (operating_class) {
1790         case 112:
1791         case 115 ... 127:
1792         case 128 ... 130:
1793                 *band = NL80211_BAND_5GHZ;
1794                 return true;
1795         case 131 ... 135:
1796                 *band = NL80211_BAND_6GHZ;
1797                 return true;
1798         case 81:
1799         case 82:
1800         case 83:
1801         case 84:
1802                 *band = NL80211_BAND_2GHZ;
1803                 return true;
1804         case 180:
1805                 *band = NL80211_BAND_60GHZ;
1806                 return true;
1807         }
1808
1809         return false;
1810 }
1811 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1812
1813 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1814                                           u8 *op_class)
1815 {
1816         u8 vht_opclass;
1817         u32 freq = chandef->center_freq1;
1818
1819         if (freq >= 2412 && freq <= 2472) {
1820                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1821                         return false;
1822
1823                 /* 2.407 GHz, channels 1..13 */
1824                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1825                         if (freq > chandef->chan->center_freq)
1826                                 *op_class = 83; /* HT40+ */
1827                         else
1828                                 *op_class = 84; /* HT40- */
1829                 } else {
1830                         *op_class = 81;
1831                 }
1832
1833                 return true;
1834         }
1835
1836         if (freq == 2484) {
1837                 /* channel 14 is only for IEEE 802.11b */
1838                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1839                         return false;
1840
1841                 *op_class = 82; /* channel 14 */
1842                 return true;
1843         }
1844
1845         switch (chandef->width) {
1846         case NL80211_CHAN_WIDTH_80:
1847                 vht_opclass = 128;
1848                 break;
1849         case NL80211_CHAN_WIDTH_160:
1850                 vht_opclass = 129;
1851                 break;
1852         case NL80211_CHAN_WIDTH_80P80:
1853                 vht_opclass = 130;
1854                 break;
1855         case NL80211_CHAN_WIDTH_10:
1856         case NL80211_CHAN_WIDTH_5:
1857                 return false; /* unsupported for now */
1858         default:
1859                 vht_opclass = 0;
1860                 break;
1861         }
1862
1863         /* 5 GHz, channels 36..48 */
1864         if (freq >= 5180 && freq <= 5240) {
1865                 if (vht_opclass) {
1866                         *op_class = vht_opclass;
1867                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1868                         if (freq > chandef->chan->center_freq)
1869                                 *op_class = 116;
1870                         else
1871                                 *op_class = 117;
1872                 } else {
1873                         *op_class = 115;
1874                 }
1875
1876                 return true;
1877         }
1878
1879         /* 5 GHz, channels 52..64 */
1880         if (freq >= 5260 && freq <= 5320) {
1881                 if (vht_opclass) {
1882                         *op_class = vht_opclass;
1883                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1884                         if (freq > chandef->chan->center_freq)
1885                                 *op_class = 119;
1886                         else
1887                                 *op_class = 120;
1888                 } else {
1889                         *op_class = 118;
1890                 }
1891
1892                 return true;
1893         }
1894
1895         /* 5 GHz, channels 100..144 */
1896         if (freq >= 5500 && freq <= 5720) {
1897                 if (vht_opclass) {
1898                         *op_class = vht_opclass;
1899                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1900                         if (freq > chandef->chan->center_freq)
1901                                 *op_class = 122;
1902                         else
1903                                 *op_class = 123;
1904                 } else {
1905                         *op_class = 121;
1906                 }
1907
1908                 return true;
1909         }
1910
1911         /* 5 GHz, channels 149..169 */
1912         if (freq >= 5745 && freq <= 5845) {
1913                 if (vht_opclass) {
1914                         *op_class = vht_opclass;
1915                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1916                         if (freq > chandef->chan->center_freq)
1917                                 *op_class = 126;
1918                         else
1919                                 *op_class = 127;
1920                 } else if (freq <= 5805) {
1921                         *op_class = 124;
1922                 } else {
1923                         *op_class = 125;
1924                 }
1925
1926                 return true;
1927         }
1928
1929         /* 56.16 GHz, channel 1..4 */
1930         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1931                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1932                         return false;
1933
1934                 *op_class = 180;
1935                 return true;
1936         }
1937
1938         /* not supported yet */
1939         return false;
1940 }
1941 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1942
1943 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
1944 {
1945         switch (wdev->iftype) {
1946         case NL80211_IFTYPE_AP:
1947         case NL80211_IFTYPE_P2P_GO:
1948                 WARN_ON(wdev->valid_links);
1949                 return wdev->links[0].ap.beacon_interval;
1950         case NL80211_IFTYPE_MESH_POINT:
1951                 return wdev->u.mesh.beacon_interval;
1952         case NL80211_IFTYPE_ADHOC:
1953                 return wdev->u.ibss.beacon_interval;
1954         default:
1955                 break;
1956         }
1957
1958         return 0;
1959 }
1960
1961 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1962                                        u32 *beacon_int_gcd,
1963                                        bool *beacon_int_different)
1964 {
1965         struct wireless_dev *wdev;
1966
1967         *beacon_int_gcd = 0;
1968         *beacon_int_different = false;
1969
1970         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1971                 int wdev_bi;
1972
1973                 /* this feature isn't supported with MLO */
1974                 if (wdev->valid_links)
1975                         continue;
1976
1977                 wdev_bi = cfg80211_wdev_bi(wdev);
1978
1979                 if (!wdev_bi)
1980                         continue;
1981
1982                 if (!*beacon_int_gcd) {
1983                         *beacon_int_gcd = wdev_bi;
1984                         continue;
1985                 }
1986
1987                 if (wdev_bi == *beacon_int_gcd)
1988                         continue;
1989
1990                 *beacon_int_different = true;
1991                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
1992         }
1993
1994         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1995                 if (*beacon_int_gcd)
1996                         *beacon_int_different = true;
1997                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1998         }
1999 }
2000
2001 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2002                                  enum nl80211_iftype iftype, u32 beacon_int)
2003 {
2004         /*
2005          * This is just a basic pre-condition check; if interface combinations
2006          * are possible the driver must already be checking those with a call
2007          * to cfg80211_check_combinations(), in which case we'll validate more
2008          * through the cfg80211_calculate_bi_data() call and code in
2009          * cfg80211_iter_combinations().
2010          */
2011
2012         if (beacon_int < 10 || beacon_int > 10000)
2013                 return -EINVAL;
2014
2015         return 0;
2016 }
2017
2018 int cfg80211_iter_combinations(struct wiphy *wiphy,
2019                                struct iface_combination_params *params,
2020                                void (*iter)(const struct ieee80211_iface_combination *c,
2021                                             void *data),
2022                                void *data)
2023 {
2024         const struct ieee80211_regdomain *regdom;
2025         enum nl80211_dfs_regions region = 0;
2026         int i, j, iftype;
2027         int num_interfaces = 0;
2028         u32 used_iftypes = 0;
2029         u32 beacon_int_gcd;
2030         bool beacon_int_different;
2031
2032         /*
2033          * This is a bit strange, since the iteration used to rely only on
2034          * the data given by the driver, but here it now relies on context,
2035          * in form of the currently operating interfaces.
2036          * This is OK for all current users, and saves us from having to
2037          * push the GCD calculations into all the drivers.
2038          * In the future, this should probably rely more on data that's in
2039          * cfg80211 already - the only thing not would appear to be any new
2040          * interfaces (while being brought up) and channel/radar data.
2041          */
2042         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2043                                    &beacon_int_gcd, &beacon_int_different);
2044
2045         if (params->radar_detect) {
2046                 rcu_read_lock();
2047                 regdom = rcu_dereference(cfg80211_regdomain);
2048                 if (regdom)
2049                         region = regdom->dfs_region;
2050                 rcu_read_unlock();
2051         }
2052
2053         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2054                 num_interfaces += params->iftype_num[iftype];
2055                 if (params->iftype_num[iftype] > 0 &&
2056                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2057                         used_iftypes |= BIT(iftype);
2058         }
2059
2060         for (i = 0; i < wiphy->n_iface_combinations; i++) {
2061                 const struct ieee80211_iface_combination *c;
2062                 struct ieee80211_iface_limit *limits;
2063                 u32 all_iftypes = 0;
2064
2065                 c = &wiphy->iface_combinations[i];
2066
2067                 if (num_interfaces > c->max_interfaces)
2068                         continue;
2069                 if (params->num_different_channels > c->num_different_channels)
2070                         continue;
2071
2072                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2073                                  GFP_KERNEL);
2074                 if (!limits)
2075                         return -ENOMEM;
2076
2077                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2078                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2079                                 continue;
2080                         for (j = 0; j < c->n_limits; j++) {
2081                                 all_iftypes |= limits[j].types;
2082                                 if (!(limits[j].types & BIT(iftype)))
2083                                         continue;
2084                                 if (limits[j].max < params->iftype_num[iftype])
2085                                         goto cont;
2086                                 limits[j].max -= params->iftype_num[iftype];
2087                         }
2088                 }
2089
2090                 if (params->radar_detect !=
2091                         (c->radar_detect_widths & params->radar_detect))
2092                         goto cont;
2093
2094                 if (params->radar_detect && c->radar_detect_regions &&
2095                     !(c->radar_detect_regions & BIT(region)))
2096                         goto cont;
2097
2098                 /* Finally check that all iftypes that we're currently
2099                  * using are actually part of this combination. If they
2100                  * aren't then we can't use this combination and have
2101                  * to continue to the next.
2102                  */
2103                 if ((all_iftypes & used_iftypes) != used_iftypes)
2104                         goto cont;
2105
2106                 if (beacon_int_gcd) {
2107                         if (c->beacon_int_min_gcd &&
2108                             beacon_int_gcd < c->beacon_int_min_gcd)
2109                                 goto cont;
2110                         if (!c->beacon_int_min_gcd && beacon_int_different)
2111                                 goto cont;
2112                 }
2113
2114                 /* This combination covered all interface types and
2115                  * supported the requested numbers, so we're good.
2116                  */
2117
2118                 (*iter)(c, data);
2119  cont:
2120                 kfree(limits);
2121         }
2122
2123         return 0;
2124 }
2125 EXPORT_SYMBOL(cfg80211_iter_combinations);
2126
2127 static void
2128 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2129                           void *data)
2130 {
2131         int *num = data;
2132         (*num)++;
2133 }
2134
2135 int cfg80211_check_combinations(struct wiphy *wiphy,
2136                                 struct iface_combination_params *params)
2137 {
2138         int err, num = 0;
2139
2140         err = cfg80211_iter_combinations(wiphy, params,
2141                                          cfg80211_iter_sum_ifcombs, &num);
2142         if (err)
2143                 return err;
2144         if (num == 0)
2145                 return -EBUSY;
2146
2147         return 0;
2148 }
2149 EXPORT_SYMBOL(cfg80211_check_combinations);
2150
2151 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2152                            const u8 *rates, unsigned int n_rates,
2153                            u32 *mask)
2154 {
2155         int i, j;
2156
2157         if (!sband)
2158                 return -EINVAL;
2159
2160         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2161                 return -EINVAL;
2162
2163         *mask = 0;
2164
2165         for (i = 0; i < n_rates; i++) {
2166                 int rate = (rates[i] & 0x7f) * 5;
2167                 bool found = false;
2168
2169                 for (j = 0; j < sband->n_bitrates; j++) {
2170                         if (sband->bitrates[j].bitrate == rate) {
2171                                 found = true;
2172                                 *mask |= BIT(j);
2173                                 break;
2174                         }
2175                 }
2176                 if (!found)
2177                         return -EINVAL;
2178         }
2179
2180         /*
2181          * mask must have at least one bit set here since we
2182          * didn't accept a 0-length rates array nor allowed
2183          * entries in the array that didn't exist
2184          */
2185
2186         return 0;
2187 }
2188
2189 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2190 {
2191         enum nl80211_band band;
2192         unsigned int n_channels = 0;
2193
2194         for (band = 0; band < NUM_NL80211_BANDS; band++)
2195                 if (wiphy->bands[band])
2196                         n_channels += wiphy->bands[band]->n_channels;
2197
2198         return n_channels;
2199 }
2200 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2201
2202 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2203                          struct station_info *sinfo)
2204 {
2205         struct cfg80211_registered_device *rdev;
2206         struct wireless_dev *wdev;
2207
2208         wdev = dev->ieee80211_ptr;
2209         if (!wdev)
2210                 return -EOPNOTSUPP;
2211
2212         rdev = wiphy_to_rdev(wdev->wiphy);
2213         if (!rdev->ops->get_station)
2214                 return -EOPNOTSUPP;
2215
2216         memset(sinfo, 0, sizeof(*sinfo));
2217
2218         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2219 }
2220 EXPORT_SYMBOL(cfg80211_get_station);
2221
2222 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2223 {
2224         int i;
2225
2226         if (!f)
2227                 return;
2228
2229         kfree(f->serv_spec_info);
2230         kfree(f->srf_bf);
2231         kfree(f->srf_macs);
2232         for (i = 0; i < f->num_rx_filters; i++)
2233                 kfree(f->rx_filters[i].filter);
2234
2235         for (i = 0; i < f->num_tx_filters; i++)
2236                 kfree(f->tx_filters[i].filter);
2237
2238         kfree(f->rx_filters);
2239         kfree(f->tx_filters);
2240         kfree(f);
2241 }
2242 EXPORT_SYMBOL(cfg80211_free_nan_func);
2243
2244 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2245                                 u32 center_freq_khz, u32 bw_khz)
2246 {
2247         u32 start_freq_khz, end_freq_khz;
2248
2249         start_freq_khz = center_freq_khz - (bw_khz / 2);
2250         end_freq_khz = center_freq_khz + (bw_khz / 2);
2251
2252         if (start_freq_khz >= freq_range->start_freq_khz &&
2253             end_freq_khz <= freq_range->end_freq_khz)
2254                 return true;
2255
2256         return false;
2257 }
2258
2259 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2260 {
2261         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2262                                 sizeof(*(sinfo->pertid)),
2263                                 gfp);
2264         if (!sinfo->pertid)
2265                 return -ENOMEM;
2266
2267         return 0;
2268 }
2269 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2270
2271 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2272 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2273 const unsigned char rfc1042_header[] __aligned(2) =
2274         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2275 EXPORT_SYMBOL(rfc1042_header);
2276
2277 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2278 const unsigned char bridge_tunnel_header[] __aligned(2) =
2279         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2280 EXPORT_SYMBOL(bridge_tunnel_header);
2281
2282 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2283 struct iapp_layer2_update {
2284         u8 da[ETH_ALEN];        /* broadcast */
2285         u8 sa[ETH_ALEN];        /* STA addr */
2286         __be16 len;             /* 6 */
2287         u8 dsap;                /* 0 */
2288         u8 ssap;                /* 0 */
2289         u8 control;
2290         u8 xid_info[3];
2291 } __packed;
2292
2293 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2294 {
2295         struct iapp_layer2_update *msg;
2296         struct sk_buff *skb;
2297
2298         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2299          * bridge devices */
2300
2301         skb = dev_alloc_skb(sizeof(*msg));
2302         if (!skb)
2303                 return;
2304         msg = skb_put(skb, sizeof(*msg));
2305
2306         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2307          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2308
2309         eth_broadcast_addr(msg->da);
2310         ether_addr_copy(msg->sa, addr);
2311         msg->len = htons(6);
2312         msg->dsap = 0;
2313         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2314         msg->control = 0xaf;    /* XID response lsb.1111F101.
2315                                  * F=0 (no poll command; unsolicited frame) */
2316         msg->xid_info[0] = 0x81;        /* XID format identifier */
2317         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2318         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2319
2320         skb->dev = dev;
2321         skb->protocol = eth_type_trans(skb, dev);
2322         memset(skb->cb, 0, sizeof(skb->cb));
2323         netif_rx(skb);
2324 }
2325 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2326
2327 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2328                               enum ieee80211_vht_chanwidth bw,
2329                               int mcs, bool ext_nss_bw_capable,
2330                               unsigned int max_vht_nss)
2331 {
2332         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2333         int ext_nss_bw;
2334         int supp_width;
2335         int i, mcs_encoding;
2336
2337         if (map == 0xffff)
2338                 return 0;
2339
2340         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2341                 return 0;
2342         if (mcs <= 7)
2343                 mcs_encoding = 0;
2344         else if (mcs == 8)
2345                 mcs_encoding = 1;
2346         else
2347                 mcs_encoding = 2;
2348
2349         if (!max_vht_nss) {
2350                 /* find max_vht_nss for the given MCS */
2351                 for (i = 7; i >= 0; i--) {
2352                         int supp = (map >> (2 * i)) & 3;
2353
2354                         if (supp == 3)
2355                                 continue;
2356
2357                         if (supp >= mcs_encoding) {
2358                                 max_vht_nss = i + 1;
2359                                 break;
2360                         }
2361                 }
2362         }
2363
2364         if (!(cap->supp_mcs.tx_mcs_map &
2365                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2366                 return max_vht_nss;
2367
2368         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2369                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2370         supp_width = le32_get_bits(cap->vht_cap_info,
2371                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2372
2373         /* if not capable, treat ext_nss_bw as 0 */
2374         if (!ext_nss_bw_capable)
2375                 ext_nss_bw = 0;
2376
2377         /* This is invalid */
2378         if (supp_width == 3)
2379                 return 0;
2380
2381         /* This is an invalid combination so pretend nothing is supported */
2382         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2383                 return 0;
2384
2385         /*
2386          * Cover all the special cases according to IEEE 802.11-2016
2387          * Table 9-250. All other cases are either factor of 1 or not
2388          * valid/supported.
2389          */
2390         switch (bw) {
2391         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2392         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2393                 if ((supp_width == 1 || supp_width == 2) &&
2394                     ext_nss_bw == 3)
2395                         return 2 * max_vht_nss;
2396                 break;
2397         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2398                 if (supp_width == 0 &&
2399                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2400                         return max_vht_nss / 2;
2401                 if (supp_width == 0 &&
2402                     ext_nss_bw == 3)
2403                         return (3 * max_vht_nss) / 4;
2404                 if (supp_width == 1 &&
2405                     ext_nss_bw == 3)
2406                         return 2 * max_vht_nss;
2407                 break;
2408         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2409                 if (supp_width == 0 && ext_nss_bw == 1)
2410                         return 0; /* not possible */
2411                 if (supp_width == 0 &&
2412                     ext_nss_bw == 2)
2413                         return max_vht_nss / 2;
2414                 if (supp_width == 0 &&
2415                     ext_nss_bw == 3)
2416                         return (3 * max_vht_nss) / 4;
2417                 if (supp_width == 1 &&
2418                     ext_nss_bw == 0)
2419                         return 0; /* not possible */
2420                 if (supp_width == 1 &&
2421                     ext_nss_bw == 1)
2422                         return max_vht_nss / 2;
2423                 if (supp_width == 1 &&
2424                     ext_nss_bw == 2)
2425                         return (3 * max_vht_nss) / 4;
2426                 break;
2427         }
2428
2429         /* not covered or invalid combination received */
2430         return max_vht_nss;
2431 }
2432 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2433
2434 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2435                              bool is_4addr, u8 check_swif)
2436
2437 {
2438         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2439
2440         switch (check_swif) {
2441         case 0:
2442                 if (is_vlan && is_4addr)
2443                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2444                 return wiphy->interface_modes & BIT(iftype);
2445         case 1:
2446                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2447                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2448                 return wiphy->software_iftypes & BIT(iftype);
2449         default:
2450                 break;
2451         }
2452
2453         return false;
2454 }
2455 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2456
2457 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2458 {
2459         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2460
2461         ASSERT_WDEV_LOCK(wdev);
2462
2463         switch (wdev->iftype) {
2464         case NL80211_IFTYPE_AP:
2465         case NL80211_IFTYPE_P2P_GO:
2466                 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2467                 break;
2468         default:
2469                 /* per-link not relevant */
2470                 break;
2471         }
2472
2473         wdev->valid_links &= ~BIT(link_id);
2474
2475         rdev_del_intf_link(rdev, wdev, link_id);
2476
2477         eth_zero_addr(wdev->links[link_id].addr);
2478 }
2479
2480 void cfg80211_remove_links(struct wireless_dev *wdev)
2481 {
2482         unsigned int link_id;
2483
2484         wdev_lock(wdev);
2485         if (wdev->valid_links) {
2486                 for_each_valid_link(wdev, link_id)
2487                         cfg80211_remove_link(wdev, link_id);
2488         }
2489         wdev_unlock(wdev);
2490 }
2491
2492 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2493                                  struct wireless_dev *wdev)
2494 {
2495         cfg80211_remove_links(wdev);
2496
2497         return rdev_del_virtual_intf(rdev, wdev);
2498 }
2499
2500 const struct wiphy_iftype_ext_capab *
2501 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2502 {
2503         int i;
2504
2505         for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2506                 if (wiphy->iftype_ext_capab[i].iftype == type)
2507                         return &wiphy->iftype_ext_capab[i];
2508         }
2509
2510         return NULL;
2511 }
2512 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);