Merge branch 'master' into mm-hotfixes-stable
[linux-2.6-block.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2022 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83         case NL80211_BAND_LC:
84                 if (chan == 14)
85                         return MHZ_TO_KHZ(2484);
86                 else if (chan < 14)
87                         return MHZ_TO_KHZ(2407 + chan * 5);
88                 break;
89         case NL80211_BAND_5GHZ:
90                 if (chan >= 182 && chan <= 196)
91                         return MHZ_TO_KHZ(4000 + chan * 5);
92                 else
93                         return MHZ_TO_KHZ(5000 + chan * 5);
94                 break;
95         case NL80211_BAND_6GHZ:
96                 /* see 802.11ax D6.1 27.3.23.2 */
97                 if (chan == 2)
98                         return MHZ_TO_KHZ(5935);
99                 if (chan <= 233)
100                         return MHZ_TO_KHZ(5950 + chan * 5);
101                 break;
102         case NL80211_BAND_60GHZ:
103                 if (chan < 7)
104                         return MHZ_TO_KHZ(56160 + chan * 2160);
105                 break;
106         case NL80211_BAND_S1GHZ:
107                 return 902000 + chan * 500;
108         default:
109                 ;
110         }
111         return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119                 return NL80211_CHAN_WIDTH_20_NOHT;
120
121         /*S1G defines a single allowed channel width per channel.
122          * Extract that width here.
123          */
124         if (chan->flags & IEEE80211_CHAN_1MHZ)
125                 return NL80211_CHAN_WIDTH_1;
126         else if (chan->flags & IEEE80211_CHAN_2MHZ)
127                 return NL80211_CHAN_WIDTH_2;
128         else if (chan->flags & IEEE80211_CHAN_4MHZ)
129                 return NL80211_CHAN_WIDTH_4;
130         else if (chan->flags & IEEE80211_CHAN_8MHZ)
131                 return NL80211_CHAN_WIDTH_8;
132         else if (chan->flags & IEEE80211_CHAN_16MHZ)
133                 return NL80211_CHAN_WIDTH_16;
134
135         pr_err("unknown channel width for channel at %dKHz?\n",
136                ieee80211_channel_to_khz(chan));
137
138         return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144         /* TODO: just handle MHz for now */
145         freq = KHZ_TO_MHZ(freq);
146
147         /* see 802.11 17.3.8.3.2 and Annex J */
148         if (freq == 2484)
149                 return 14;
150         else if (freq < 2484)
151                 return (freq - 2407) / 5;
152         else if (freq >= 4910 && freq <= 4980)
153                 return (freq - 4000) / 5;
154         else if (freq < 5925)
155                 return (freq - 5000) / 5;
156         else if (freq == 5935)
157                 return 2;
158         else if (freq <= 45000) /* DMG band lower limit */
159                 /* see 802.11ax D6.1 27.3.22.2 */
160                 return (freq - 5950) / 5;
161         else if (freq >= 58320 && freq <= 70200)
162                 return (freq - 56160) / 2160;
163         else
164                 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169                                                     u32 freq)
170 {
171         enum nl80211_band band;
172         struct ieee80211_supported_band *sband;
173         int i;
174
175         for (band = 0; band < NUM_NL80211_BANDS; band++) {
176                 sband = wiphy->bands[band];
177
178                 if (!sband)
179                         continue;
180
181                 for (i = 0; i < sband->n_channels; i++) {
182                         struct ieee80211_channel *chan = &sband->channels[i];
183
184                         if (ieee80211_channel_to_khz(chan) == freq)
185                                 return chan;
186                 }
187         }
188
189         return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195         int i, want;
196
197         switch (sband->band) {
198         case NL80211_BAND_5GHZ:
199         case NL80211_BAND_6GHZ:
200                 want = 3;
201                 for (i = 0; i < sband->n_bitrates; i++) {
202                         if (sband->bitrates[i].bitrate == 60 ||
203                             sband->bitrates[i].bitrate == 120 ||
204                             sband->bitrates[i].bitrate == 240) {
205                                 sband->bitrates[i].flags |=
206                                         IEEE80211_RATE_MANDATORY_A;
207                                 want--;
208                         }
209                 }
210                 WARN_ON(want);
211                 break;
212         case NL80211_BAND_2GHZ:
213         case NL80211_BAND_LC:
214                 want = 7;
215                 for (i = 0; i < sband->n_bitrates; i++) {
216                         switch (sband->bitrates[i].bitrate) {
217                         case 10:
218                         case 20:
219                         case 55:
220                         case 110:
221                                 sband->bitrates[i].flags |=
222                                         IEEE80211_RATE_MANDATORY_B |
223                                         IEEE80211_RATE_MANDATORY_G;
224                                 want--;
225                                 break;
226                         case 60:
227                         case 120:
228                         case 240:
229                                 sband->bitrates[i].flags |=
230                                         IEEE80211_RATE_MANDATORY_G;
231                                 want--;
232                                 fallthrough;
233                         default:
234                                 sband->bitrates[i].flags |=
235                                         IEEE80211_RATE_ERP_G;
236                                 break;
237                         }
238                 }
239                 WARN_ON(want != 0 && want != 3);
240                 break;
241         case NL80211_BAND_60GHZ:
242                 /* check for mandatory HT MCS 1..4 */
243                 WARN_ON(!sband->ht_cap.ht_supported);
244                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245                 break;
246         case NL80211_BAND_S1GHZ:
247                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248                  * mandatory is ok.
249                  */
250                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251                 break;
252         case NUM_NL80211_BANDS:
253         default:
254                 WARN_ON(1);
255                 break;
256         }
257 }
258
259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261         enum nl80211_band band;
262
263         for (band = 0; band < NUM_NL80211_BANDS; band++)
264                 if (wiphy->bands[band])
265                         set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270         int i;
271         for (i = 0; i < wiphy->n_cipher_suites; i++)
272                 if (cipher == wiphy->cipher_suites[i])
273                         return true;
274         return false;
275 }
276
277 static bool
278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280         struct wiphy *wiphy = &rdev->wiphy;
281         int i;
282
283         for (i = 0; i < wiphy->n_cipher_suites; i++) {
284                 switch (wiphy->cipher_suites[i]) {
285                 case WLAN_CIPHER_SUITE_AES_CMAC:
286                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289                         return true;
290                 }
291         }
292
293         return false;
294 }
295
296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297                             int key_idx, bool pairwise)
298 {
299         int max_key_idx;
300
301         if (pairwise)
302                 max_key_idx = 3;
303         else if (wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305                  wiphy_ext_feature_isset(&rdev->wiphy,
306                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307                 max_key_idx = 7;
308         else if (cfg80211_igtk_cipher_supported(rdev))
309                 max_key_idx = 5;
310         else
311                 max_key_idx = 3;
312
313         if (key_idx < 0 || key_idx > max_key_idx)
314                 return false;
315
316         return true;
317 }
318
319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320                                    struct key_params *params, int key_idx,
321                                    bool pairwise, const u8 *mac_addr)
322 {
323         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324                 return -EINVAL;
325
326         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327                 return -EINVAL;
328
329         if (pairwise && !mac_addr)
330                 return -EINVAL;
331
332         switch (params->cipher) {
333         case WLAN_CIPHER_SUITE_TKIP:
334                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335                 if ((pairwise && key_idx) ||
336                     params->mode != NL80211_KEY_RX_TX)
337                         return -EINVAL;
338                 break;
339         case WLAN_CIPHER_SUITE_CCMP:
340         case WLAN_CIPHER_SUITE_CCMP_256:
341         case WLAN_CIPHER_SUITE_GCMP:
342         case WLAN_CIPHER_SUITE_GCMP_256:
343                 /* IEEE802.11-2016 allows only 0 and - when supporting
344                  * Extended Key ID - 1 as index for pairwise keys.
345                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346                  * the driver supports Extended Key ID.
347                  * @NL80211_KEY_SET_TX can't be set when installing and
348                  * validating a key.
349                  */
350                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351                     params->mode == NL80211_KEY_SET_TX)
352                         return -EINVAL;
353                 if (wiphy_ext_feature_isset(&rdev->wiphy,
354                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355                         if (pairwise && (key_idx < 0 || key_idx > 1))
356                                 return -EINVAL;
357                 } else if (pairwise && key_idx) {
358                         return -EINVAL;
359                 }
360                 break;
361         case WLAN_CIPHER_SUITE_AES_CMAC:
362         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365                 /* Disallow BIP (group-only) cipher as pairwise cipher */
366                 if (pairwise)
367                         return -EINVAL;
368                 if (key_idx < 4)
369                         return -EINVAL;
370                 break;
371         case WLAN_CIPHER_SUITE_WEP40:
372         case WLAN_CIPHER_SUITE_WEP104:
373                 if (key_idx > 3)
374                         return -EINVAL;
375                 break;
376         default:
377                 break;
378         }
379
380         switch (params->cipher) {
381         case WLAN_CIPHER_SUITE_WEP40:
382                 if (params->key_len != WLAN_KEY_LEN_WEP40)
383                         return -EINVAL;
384                 break;
385         case WLAN_CIPHER_SUITE_TKIP:
386                 if (params->key_len != WLAN_KEY_LEN_TKIP)
387                         return -EINVAL;
388                 break;
389         case WLAN_CIPHER_SUITE_CCMP:
390                 if (params->key_len != WLAN_KEY_LEN_CCMP)
391                         return -EINVAL;
392                 break;
393         case WLAN_CIPHER_SUITE_CCMP_256:
394                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395                         return -EINVAL;
396                 break;
397         case WLAN_CIPHER_SUITE_GCMP:
398                 if (params->key_len != WLAN_KEY_LEN_GCMP)
399                         return -EINVAL;
400                 break;
401         case WLAN_CIPHER_SUITE_GCMP_256:
402                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403                         return -EINVAL;
404                 break;
405         case WLAN_CIPHER_SUITE_WEP104:
406                 if (params->key_len != WLAN_KEY_LEN_WEP104)
407                         return -EINVAL;
408                 break;
409         case WLAN_CIPHER_SUITE_AES_CMAC:
410                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411                         return -EINVAL;
412                 break;
413         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415                         return -EINVAL;
416                 break;
417         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419                         return -EINVAL;
420                 break;
421         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423                         return -EINVAL;
424                 break;
425         default:
426                 /*
427                  * We don't know anything about this algorithm,
428                  * allow using it -- but the driver must check
429                  * all parameters! We still check below whether
430                  * or not the driver supports this algorithm,
431                  * of course.
432                  */
433                 break;
434         }
435
436         if (params->seq) {
437                 switch (params->cipher) {
438                 case WLAN_CIPHER_SUITE_WEP40:
439                 case WLAN_CIPHER_SUITE_WEP104:
440                         /* These ciphers do not use key sequence */
441                         return -EINVAL;
442                 case WLAN_CIPHER_SUITE_TKIP:
443                 case WLAN_CIPHER_SUITE_CCMP:
444                 case WLAN_CIPHER_SUITE_CCMP_256:
445                 case WLAN_CIPHER_SUITE_GCMP:
446                 case WLAN_CIPHER_SUITE_GCMP_256:
447                 case WLAN_CIPHER_SUITE_AES_CMAC:
448                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451                         if (params->seq_len != 6)
452                                 return -EINVAL;
453                         break;
454                 }
455         }
456
457         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458                 return -EINVAL;
459
460         return 0;
461 }
462
463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465         unsigned int hdrlen = 24;
466
467         if (ieee80211_is_ext(fc)) {
468                 hdrlen = 4;
469                 goto out;
470         }
471
472         if (ieee80211_is_data(fc)) {
473                 if (ieee80211_has_a4(fc))
474                         hdrlen = 30;
475                 if (ieee80211_is_data_qos(fc)) {
476                         hdrlen += IEEE80211_QOS_CTL_LEN;
477                         if (ieee80211_has_order(fc))
478                                 hdrlen += IEEE80211_HT_CTL_LEN;
479                 }
480                 goto out;
481         }
482
483         if (ieee80211_is_mgmt(fc)) {
484                 if (ieee80211_has_order(fc))
485                         hdrlen += IEEE80211_HT_CTL_LEN;
486                 goto out;
487         }
488
489         if (ieee80211_is_ctl(fc)) {
490                 /*
491                  * ACK and CTS are 10 bytes, all others 16. To see how
492                  * to get this condition consider
493                  *   subtype mask:   0b0000000011110000 (0x00F0)
494                  *   ACK subtype:    0b0000000011010000 (0x00D0)
495                  *   CTS subtype:    0b0000000011000000 (0x00C0)
496                  *   bits that matter:         ^^^      (0x00E0)
497                  *   value of those: 0b0000000011000000 (0x00C0)
498                  */
499                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500                         hdrlen = 10;
501                 else
502                         hdrlen = 16;
503         }
504 out:
505         return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511         const struct ieee80211_hdr *hdr =
512                         (const struct ieee80211_hdr *)skb->data;
513         unsigned int hdrlen;
514
515         if (unlikely(skb->len < 10))
516                 return 0;
517         hdrlen = ieee80211_hdrlen(hdr->frame_control);
518         if (unlikely(hdrlen > skb->len))
519                 return 0;
520         return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526         int ae = flags & MESH_FLAGS_AE;
527         /* 802.11-2012, 8.2.4.7.3 */
528         switch (ae) {
529         default:
530         case 0:
531                 return 6;
532         case MESH_FLAGS_AE_A4:
533                 return 12;
534         case MESH_FLAGS_AE_A5_A6:
535                 return 18;
536         }
537 }
538
539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
546                                   const u8 *addr, enum nl80211_iftype iftype,
547                                   u8 data_offset, bool is_amsdu)
548 {
549         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
550         struct {
551                 u8 hdr[ETH_ALEN] __aligned(2);
552                 __be16 proto;
553         } payload;
554         struct ethhdr tmp;
555         u16 hdrlen;
556         u8 mesh_flags = 0;
557
558         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
559                 return -1;
560
561         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
562         if (skb->len < hdrlen + 8)
563                 return -1;
564
565         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
566          * header
567          * IEEE 802.11 address fields:
568          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
569          *   0     0   DA    SA    BSSID n/a
570          *   0     1   DA    BSSID SA    n/a
571          *   1     0   BSSID SA    DA    n/a
572          *   1     1   RA    TA    DA    SA
573          */
574         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
575         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
576
577         if (iftype == NL80211_IFTYPE_MESH_POINT)
578                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
579
580         mesh_flags &= MESH_FLAGS_AE;
581
582         switch (hdr->frame_control &
583                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
584         case cpu_to_le16(IEEE80211_FCTL_TODS):
585                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
586                              iftype != NL80211_IFTYPE_AP_VLAN &&
587                              iftype != NL80211_IFTYPE_P2P_GO))
588                         return -1;
589                 break;
590         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
591                 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
592                              iftype != NL80211_IFTYPE_AP_VLAN &&
593                              iftype != NL80211_IFTYPE_STATION))
594                         return -1;
595                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
596                         if (mesh_flags == MESH_FLAGS_AE_A4)
597                                 return -1;
598                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
599                                 skb_copy_bits(skb, hdrlen +
600                                         offsetof(struct ieee80211s_hdr, eaddr1),
601                                         tmp.h_dest, 2 * ETH_ALEN);
602                         }
603                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
604                 }
605                 break;
606         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
607                 if ((iftype != NL80211_IFTYPE_STATION &&
608                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
609                      iftype != NL80211_IFTYPE_MESH_POINT) ||
610                     (is_multicast_ether_addr(tmp.h_dest) &&
611                      ether_addr_equal(tmp.h_source, addr)))
612                         return -1;
613                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
614                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
615                                 return -1;
616                         if (mesh_flags == MESH_FLAGS_AE_A4)
617                                 skb_copy_bits(skb, hdrlen +
618                                         offsetof(struct ieee80211s_hdr, eaddr1),
619                                         tmp.h_source, ETH_ALEN);
620                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
621                 }
622                 break;
623         case cpu_to_le16(0):
624                 if (iftype != NL80211_IFTYPE_ADHOC &&
625                     iftype != NL80211_IFTYPE_STATION &&
626                     iftype != NL80211_IFTYPE_OCB)
627                                 return -1;
628                 break;
629         }
630
631         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
632         tmp.h_proto = payload.proto;
633
634         if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
635                     tmp.h_proto != htons(ETH_P_AARP) &&
636                     tmp.h_proto != htons(ETH_P_IPX)) ||
637                    ether_addr_equal(payload.hdr, bridge_tunnel_header))) {
638                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
639                  * replace EtherType */
640                 hdrlen += ETH_ALEN + 2;
641                 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
642         } else {
643                 tmp.h_proto = htons(skb->len - hdrlen);
644         }
645
646         pskb_pull(skb, hdrlen);
647
648         if (!ehdr)
649                 ehdr = skb_push(skb, sizeof(struct ethhdr));
650         memcpy(ehdr, &tmp, sizeof(tmp));
651
652         return 0;
653 }
654 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
655
656 static void
657 __frame_add_frag(struct sk_buff *skb, struct page *page,
658                  void *ptr, int len, int size)
659 {
660         struct skb_shared_info *sh = skb_shinfo(skb);
661         int page_offset;
662
663         get_page(page);
664         page_offset = ptr - page_address(page);
665         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
666 }
667
668 static void
669 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
670                             int offset, int len)
671 {
672         struct skb_shared_info *sh = skb_shinfo(skb);
673         const skb_frag_t *frag = &sh->frags[0];
674         struct page *frag_page;
675         void *frag_ptr;
676         int frag_len, frag_size;
677         int head_size = skb->len - skb->data_len;
678         int cur_len;
679
680         frag_page = virt_to_head_page(skb->head);
681         frag_ptr = skb->data;
682         frag_size = head_size;
683
684         while (offset >= frag_size) {
685                 offset -= frag_size;
686                 frag_page = skb_frag_page(frag);
687                 frag_ptr = skb_frag_address(frag);
688                 frag_size = skb_frag_size(frag);
689                 frag++;
690         }
691
692         frag_ptr += offset;
693         frag_len = frag_size - offset;
694
695         cur_len = min(len, frag_len);
696
697         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
698         len -= cur_len;
699
700         while (len > 0) {
701                 frag_len = skb_frag_size(frag);
702                 cur_len = min(len, frag_len);
703                 __frame_add_frag(frame, skb_frag_page(frag),
704                                  skb_frag_address(frag), cur_len, frag_len);
705                 len -= cur_len;
706                 frag++;
707         }
708 }
709
710 static struct sk_buff *
711 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
712                        int offset, int len, bool reuse_frag)
713 {
714         struct sk_buff *frame;
715         int cur_len = len;
716
717         if (skb->len - offset < len)
718                 return NULL;
719
720         /*
721          * When reusing framents, copy some data to the head to simplify
722          * ethernet header handling and speed up protocol header processing
723          * in the stack later.
724          */
725         if (reuse_frag)
726                 cur_len = min_t(int, len, 32);
727
728         /*
729          * Allocate and reserve two bytes more for payload
730          * alignment since sizeof(struct ethhdr) is 14.
731          */
732         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
733         if (!frame)
734                 return NULL;
735
736         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
737         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
738
739         len -= cur_len;
740         if (!len)
741                 return frame;
742
743         offset += cur_len;
744         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
745
746         return frame;
747 }
748
749 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
750                               const u8 *addr, enum nl80211_iftype iftype,
751                               const unsigned int extra_headroom,
752                               const u8 *check_da, const u8 *check_sa)
753 {
754         unsigned int hlen = ALIGN(extra_headroom, 4);
755         struct sk_buff *frame = NULL;
756         u16 ethertype;
757         u8 *payload;
758         int offset = 0, remaining;
759         struct ethhdr eth;
760         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
761         bool reuse_skb = false;
762         bool last = false;
763
764         while (!last) {
765                 unsigned int subframe_len;
766                 int len;
767                 u8 padding;
768
769                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
770                 len = ntohs(eth.h_proto);
771                 subframe_len = sizeof(struct ethhdr) + len;
772                 padding = (4 - subframe_len) & 0x3;
773
774                 /* the last MSDU has no padding */
775                 remaining = skb->len - offset;
776                 if (subframe_len > remaining)
777                         goto purge;
778                 /* mitigate A-MSDU aggregation injection attacks */
779                 if (ether_addr_equal(eth.h_dest, rfc1042_header))
780                         goto purge;
781
782                 offset += sizeof(struct ethhdr);
783                 last = remaining <= subframe_len + padding;
784
785                 /* FIXME: should we really accept multicast DA? */
786                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
787                      !ether_addr_equal(check_da, eth.h_dest)) ||
788                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
789                         offset += len + padding;
790                         continue;
791                 }
792
793                 /* reuse skb for the last subframe */
794                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
795                         skb_pull(skb, offset);
796                         frame = skb;
797                         reuse_skb = true;
798                 } else {
799                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
800                                                        reuse_frag);
801                         if (!frame)
802                                 goto purge;
803
804                         offset += len + padding;
805                 }
806
807                 skb_reset_network_header(frame);
808                 frame->dev = skb->dev;
809                 frame->priority = skb->priority;
810
811                 payload = frame->data;
812                 ethertype = (payload[6] << 8) | payload[7];
813                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
814                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
815                            ether_addr_equal(payload, bridge_tunnel_header))) {
816                         eth.h_proto = htons(ethertype);
817                         skb_pull(frame, ETH_ALEN + 2);
818                 }
819
820                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
821                 __skb_queue_tail(list, frame);
822         }
823
824         if (!reuse_skb)
825                 dev_kfree_skb(skb);
826
827         return;
828
829  purge:
830         __skb_queue_purge(list);
831         dev_kfree_skb(skb);
832 }
833 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
834
835 /* Given a data frame determine the 802.1p/1d tag to use. */
836 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
837                                     struct cfg80211_qos_map *qos_map)
838 {
839         unsigned int dscp;
840         unsigned char vlan_priority;
841         unsigned int ret;
842
843         /* skb->priority values from 256->263 are magic values to
844          * directly indicate a specific 802.1d priority.  This is used
845          * to allow 802.1d priority to be passed directly in from VLAN
846          * tags, etc.
847          */
848         if (skb->priority >= 256 && skb->priority <= 263) {
849                 ret = skb->priority - 256;
850                 goto out;
851         }
852
853         if (skb_vlan_tag_present(skb)) {
854                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
855                         >> VLAN_PRIO_SHIFT;
856                 if (vlan_priority > 0) {
857                         ret = vlan_priority;
858                         goto out;
859                 }
860         }
861
862         switch (skb->protocol) {
863         case htons(ETH_P_IP):
864                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
865                 break;
866         case htons(ETH_P_IPV6):
867                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
868                 break;
869         case htons(ETH_P_MPLS_UC):
870         case htons(ETH_P_MPLS_MC): {
871                 struct mpls_label mpls_tmp, *mpls;
872
873                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
874                                           sizeof(*mpls), &mpls_tmp);
875                 if (!mpls)
876                         return 0;
877
878                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
879                         >> MPLS_LS_TC_SHIFT;
880                 goto out;
881         }
882         case htons(ETH_P_80221):
883                 /* 802.21 is always network control traffic */
884                 return 7;
885         default:
886                 return 0;
887         }
888
889         if (qos_map) {
890                 unsigned int i, tmp_dscp = dscp >> 2;
891
892                 for (i = 0; i < qos_map->num_des; i++) {
893                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
894                                 ret = qos_map->dscp_exception[i].up;
895                                 goto out;
896                         }
897                 }
898
899                 for (i = 0; i < 8; i++) {
900                         if (tmp_dscp >= qos_map->up[i].low &&
901                             tmp_dscp <= qos_map->up[i].high) {
902                                 ret = i;
903                                 goto out;
904                         }
905                 }
906         }
907
908         ret = dscp >> 5;
909 out:
910         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
911 }
912 EXPORT_SYMBOL(cfg80211_classify8021d);
913
914 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
915 {
916         const struct cfg80211_bss_ies *ies;
917
918         ies = rcu_dereference(bss->ies);
919         if (!ies)
920                 return NULL;
921
922         return cfg80211_find_elem(id, ies->data, ies->len);
923 }
924 EXPORT_SYMBOL(ieee80211_bss_get_elem);
925
926 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
927 {
928         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
929         struct net_device *dev = wdev->netdev;
930         int i;
931
932         if (!wdev->connect_keys)
933                 return;
934
935         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
936                 if (!wdev->connect_keys->params[i].cipher)
937                         continue;
938                 if (rdev_add_key(rdev, dev, i, false, NULL,
939                                  &wdev->connect_keys->params[i])) {
940                         netdev_err(dev, "failed to set key %d\n", i);
941                         continue;
942                 }
943                 if (wdev->connect_keys->def == i &&
944                     rdev_set_default_key(rdev, dev, i, true, true)) {
945                         netdev_err(dev, "failed to set defkey %d\n", i);
946                         continue;
947                 }
948         }
949
950         kfree_sensitive(wdev->connect_keys);
951         wdev->connect_keys = NULL;
952 }
953
954 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
955 {
956         struct cfg80211_event *ev;
957         unsigned long flags;
958
959         spin_lock_irqsave(&wdev->event_lock, flags);
960         while (!list_empty(&wdev->event_list)) {
961                 ev = list_first_entry(&wdev->event_list,
962                                       struct cfg80211_event, list);
963                 list_del(&ev->list);
964                 spin_unlock_irqrestore(&wdev->event_lock, flags);
965
966                 wdev_lock(wdev);
967                 switch (ev->type) {
968                 case EVENT_CONNECT_RESULT:
969                         __cfg80211_connect_result(
970                                 wdev->netdev,
971                                 &ev->cr,
972                                 ev->cr.status == WLAN_STATUS_SUCCESS);
973                         break;
974                 case EVENT_ROAMED:
975                         __cfg80211_roamed(wdev, &ev->rm);
976                         break;
977                 case EVENT_DISCONNECTED:
978                         __cfg80211_disconnected(wdev->netdev,
979                                                 ev->dc.ie, ev->dc.ie_len,
980                                                 ev->dc.reason,
981                                                 !ev->dc.locally_generated);
982                         break;
983                 case EVENT_IBSS_JOINED:
984                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
985                                                ev->ij.channel);
986                         break;
987                 case EVENT_STOPPED:
988                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
989                         break;
990                 case EVENT_PORT_AUTHORIZED:
991                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
992                         break;
993                 }
994                 wdev_unlock(wdev);
995
996                 kfree(ev);
997
998                 spin_lock_irqsave(&wdev->event_lock, flags);
999         }
1000         spin_unlock_irqrestore(&wdev->event_lock, flags);
1001 }
1002
1003 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1004 {
1005         struct wireless_dev *wdev;
1006
1007         lockdep_assert_held(&rdev->wiphy.mtx);
1008
1009         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1010                 cfg80211_process_wdev_events(wdev);
1011 }
1012
1013 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1014                           struct net_device *dev, enum nl80211_iftype ntype,
1015                           struct vif_params *params)
1016 {
1017         int err;
1018         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1019
1020         lockdep_assert_held(&rdev->wiphy.mtx);
1021
1022         /* don't support changing VLANs, you just re-create them */
1023         if (otype == NL80211_IFTYPE_AP_VLAN)
1024                 return -EOPNOTSUPP;
1025
1026         /* cannot change into P2P device or NAN */
1027         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1028             ntype == NL80211_IFTYPE_NAN)
1029                 return -EOPNOTSUPP;
1030
1031         if (!rdev->ops->change_virtual_intf ||
1032             !(rdev->wiphy.interface_modes & (1 << ntype)))
1033                 return -EOPNOTSUPP;
1034
1035         if (ntype != otype) {
1036                 /* if it's part of a bridge, reject changing type to station/ibss */
1037                 if (netif_is_bridge_port(dev) &&
1038                     (ntype == NL80211_IFTYPE_ADHOC ||
1039                      ntype == NL80211_IFTYPE_STATION ||
1040                      ntype == NL80211_IFTYPE_P2P_CLIENT))
1041                         return -EBUSY;
1042
1043                 dev->ieee80211_ptr->use_4addr = false;
1044                 wdev_lock(dev->ieee80211_ptr);
1045                 rdev_set_qos_map(rdev, dev, NULL);
1046                 wdev_unlock(dev->ieee80211_ptr);
1047
1048                 switch (otype) {
1049                 case NL80211_IFTYPE_AP:
1050                 case NL80211_IFTYPE_P2P_GO:
1051                         cfg80211_stop_ap(rdev, dev, -1, true);
1052                         break;
1053                 case NL80211_IFTYPE_ADHOC:
1054                         cfg80211_leave_ibss(rdev, dev, false);
1055                         break;
1056                 case NL80211_IFTYPE_STATION:
1057                 case NL80211_IFTYPE_P2P_CLIENT:
1058                         wdev_lock(dev->ieee80211_ptr);
1059                         cfg80211_disconnect(rdev, dev,
1060                                             WLAN_REASON_DEAUTH_LEAVING, true);
1061                         wdev_unlock(dev->ieee80211_ptr);
1062                         break;
1063                 case NL80211_IFTYPE_MESH_POINT:
1064                         /* mesh should be handled? */
1065                         break;
1066                 case NL80211_IFTYPE_OCB:
1067                         cfg80211_leave_ocb(rdev, dev);
1068                         break;
1069                 default:
1070                         break;
1071                 }
1072
1073                 cfg80211_process_rdev_events(rdev);
1074                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1075
1076                 memset(&dev->ieee80211_ptr->u, 0,
1077                        sizeof(dev->ieee80211_ptr->u));
1078                 memset(&dev->ieee80211_ptr->links, 0,
1079                        sizeof(dev->ieee80211_ptr->links));
1080         }
1081
1082         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1083
1084         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1085
1086         if (!err && params && params->use_4addr != -1)
1087                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1088
1089         if (!err) {
1090                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1091                 switch (ntype) {
1092                 case NL80211_IFTYPE_STATION:
1093                         if (dev->ieee80211_ptr->use_4addr)
1094                                 break;
1095                         fallthrough;
1096                 case NL80211_IFTYPE_OCB:
1097                 case NL80211_IFTYPE_P2P_CLIENT:
1098                 case NL80211_IFTYPE_ADHOC:
1099                         dev->priv_flags |= IFF_DONT_BRIDGE;
1100                         break;
1101                 case NL80211_IFTYPE_P2P_GO:
1102                 case NL80211_IFTYPE_AP:
1103                 case NL80211_IFTYPE_AP_VLAN:
1104                 case NL80211_IFTYPE_MESH_POINT:
1105                         /* bridging OK */
1106                         break;
1107                 case NL80211_IFTYPE_MONITOR:
1108                         /* monitor can't bridge anyway */
1109                         break;
1110                 case NL80211_IFTYPE_UNSPECIFIED:
1111                 case NUM_NL80211_IFTYPES:
1112                         /* not happening */
1113                         break;
1114                 case NL80211_IFTYPE_P2P_DEVICE:
1115                 case NL80211_IFTYPE_WDS:
1116                 case NL80211_IFTYPE_NAN:
1117                         WARN_ON(1);
1118                         break;
1119                 }
1120         }
1121
1122         if (!err && ntype != otype && netif_running(dev)) {
1123                 cfg80211_update_iface_num(rdev, ntype, 1);
1124                 cfg80211_update_iface_num(rdev, otype, -1);
1125         }
1126
1127         return err;
1128 }
1129
1130 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1131 {
1132         int modulation, streams, bitrate;
1133
1134         /* the formula below does only work for MCS values smaller than 32 */
1135         if (WARN_ON_ONCE(rate->mcs >= 32))
1136                 return 0;
1137
1138         modulation = rate->mcs & 7;
1139         streams = (rate->mcs >> 3) + 1;
1140
1141         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1142
1143         if (modulation < 4)
1144                 bitrate *= (modulation + 1);
1145         else if (modulation == 4)
1146                 bitrate *= (modulation + 2);
1147         else
1148                 bitrate *= (modulation + 3);
1149
1150         bitrate *= streams;
1151
1152         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1153                 bitrate = (bitrate / 9) * 10;
1154
1155         /* do NOT round down here */
1156         return (bitrate + 50000) / 100000;
1157 }
1158
1159 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1160 {
1161         static const u32 __mcs2bitrate[] = {
1162                 /* control PHY */
1163                 [0] =   275,
1164                 /* SC PHY */
1165                 [1] =  3850,
1166                 [2] =  7700,
1167                 [3] =  9625,
1168                 [4] = 11550,
1169                 [5] = 12512, /* 1251.25 mbps */
1170                 [6] = 15400,
1171                 [7] = 19250,
1172                 [8] = 23100,
1173                 [9] = 25025,
1174                 [10] = 30800,
1175                 [11] = 38500,
1176                 [12] = 46200,
1177                 /* OFDM PHY */
1178                 [13] =  6930,
1179                 [14] =  8662, /* 866.25 mbps */
1180                 [15] = 13860,
1181                 [16] = 17325,
1182                 [17] = 20790,
1183                 [18] = 27720,
1184                 [19] = 34650,
1185                 [20] = 41580,
1186                 [21] = 45045,
1187                 [22] = 51975,
1188                 [23] = 62370,
1189                 [24] = 67568, /* 6756.75 mbps */
1190                 /* LP-SC PHY */
1191                 [25] =  6260,
1192                 [26] =  8340,
1193                 [27] = 11120,
1194                 [28] = 12510,
1195                 [29] = 16680,
1196                 [30] = 22240,
1197                 [31] = 25030,
1198         };
1199
1200         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1201                 return 0;
1202
1203         return __mcs2bitrate[rate->mcs];
1204 }
1205
1206 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1207 {
1208         static const u32 __mcs2bitrate[] = {
1209                 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1210                 [7 - 6] = 50050, /* MCS 12.1 */
1211                 [8 - 6] = 53900,
1212                 [9 - 6] = 57750,
1213                 [10 - 6] = 63900,
1214                 [11 - 6] = 75075,
1215                 [12 - 6] = 80850,
1216         };
1217
1218         /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1219         if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1220                 return 0;
1221
1222         return __mcs2bitrate[rate->mcs - 6];
1223 }
1224
1225 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1226 {
1227         static const u32 __mcs2bitrate[] = {
1228                 /* control PHY */
1229                 [0] =   275,
1230                 /* SC PHY */
1231                 [1] =  3850,
1232                 [2] =  7700,
1233                 [3] =  9625,
1234                 [4] = 11550,
1235                 [5] = 12512, /* 1251.25 mbps */
1236                 [6] = 13475,
1237                 [7] = 15400,
1238                 [8] = 19250,
1239                 [9] = 23100,
1240                 [10] = 25025,
1241                 [11] = 26950,
1242                 [12] = 30800,
1243                 [13] = 38500,
1244                 [14] = 46200,
1245                 [15] = 50050,
1246                 [16] = 53900,
1247                 [17] = 57750,
1248                 [18] = 69300,
1249                 [19] = 75075,
1250                 [20] = 80850,
1251         };
1252
1253         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1254                 return 0;
1255
1256         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1257 }
1258
1259 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1260 {
1261         static const u32 base[4][12] = {
1262                 {   6500000,
1263                    13000000,
1264                    19500000,
1265                    26000000,
1266                    39000000,
1267                    52000000,
1268                    58500000,
1269                    65000000,
1270                    78000000,
1271                 /* not in the spec, but some devices use this: */
1272                    86700000,
1273                    97500000,
1274                   108300000,
1275                 },
1276                 {  13500000,
1277                    27000000,
1278                    40500000,
1279                    54000000,
1280                    81000000,
1281                   108000000,
1282                   121500000,
1283                   135000000,
1284                   162000000,
1285                   180000000,
1286                   202500000,
1287                   225000000,
1288                 },
1289                 {  29300000,
1290                    58500000,
1291                    87800000,
1292                   117000000,
1293                   175500000,
1294                   234000000,
1295                   263300000,
1296                   292500000,
1297                   351000000,
1298                   390000000,
1299                   438800000,
1300                   487500000,
1301                 },
1302                 {  58500000,
1303                   117000000,
1304                   175500000,
1305                   234000000,
1306                   351000000,
1307                   468000000,
1308                   526500000,
1309                   585000000,
1310                   702000000,
1311                   780000000,
1312                   877500000,
1313                   975000000,
1314                 },
1315         };
1316         u32 bitrate;
1317         int idx;
1318
1319         if (rate->mcs > 11)
1320                 goto warn;
1321
1322         switch (rate->bw) {
1323         case RATE_INFO_BW_160:
1324                 idx = 3;
1325                 break;
1326         case RATE_INFO_BW_80:
1327                 idx = 2;
1328                 break;
1329         case RATE_INFO_BW_40:
1330                 idx = 1;
1331                 break;
1332         case RATE_INFO_BW_5:
1333         case RATE_INFO_BW_10:
1334         default:
1335                 goto warn;
1336         case RATE_INFO_BW_20:
1337                 idx = 0;
1338         }
1339
1340         bitrate = base[idx][rate->mcs];
1341         bitrate *= rate->nss;
1342
1343         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1344                 bitrate = (bitrate / 9) * 10;
1345
1346         /* do NOT round down here */
1347         return (bitrate + 50000) / 100000;
1348  warn:
1349         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1350                   rate->bw, rate->mcs, rate->nss);
1351         return 0;
1352 }
1353
1354 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1355 {
1356 #define SCALE 6144
1357         u32 mcs_divisors[14] = {
1358                 102399, /* 16.666666... */
1359                  51201, /*  8.333333... */
1360                  34134, /*  5.555555... */
1361                  25599, /*  4.166666... */
1362                  17067, /*  2.777777... */
1363                  12801, /*  2.083333... */
1364                  11377, /*  1.851725... */
1365                  10239, /*  1.666666... */
1366                   8532, /*  1.388888... */
1367                   7680, /*  1.250000... */
1368                   6828, /*  1.111111... */
1369                   6144, /*  1.000000... */
1370                   5690, /*  0.926106... */
1371                   5120, /*  0.833333... */
1372         };
1373         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1374         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1375         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1376         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1377         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1378         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1379         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1380         u64 tmp;
1381         u32 result;
1382
1383         if (WARN_ON_ONCE(rate->mcs > 13))
1384                 return 0;
1385
1386         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1387                 return 0;
1388         if (WARN_ON_ONCE(rate->he_ru_alloc >
1389                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1390                 return 0;
1391         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1392                 return 0;
1393
1394         if (rate->bw == RATE_INFO_BW_160)
1395                 result = rates_160M[rate->he_gi];
1396         else if (rate->bw == RATE_INFO_BW_80 ||
1397                  (rate->bw == RATE_INFO_BW_HE_RU &&
1398                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1399                 result = rates_969[rate->he_gi];
1400         else if (rate->bw == RATE_INFO_BW_40 ||
1401                  (rate->bw == RATE_INFO_BW_HE_RU &&
1402                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1403                 result = rates_484[rate->he_gi];
1404         else if (rate->bw == RATE_INFO_BW_20 ||
1405                  (rate->bw == RATE_INFO_BW_HE_RU &&
1406                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1407                 result = rates_242[rate->he_gi];
1408         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1409                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1410                 result = rates_106[rate->he_gi];
1411         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1412                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1413                 result = rates_52[rate->he_gi];
1414         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1415                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1416                 result = rates_26[rate->he_gi];
1417         else {
1418                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1419                      rate->bw, rate->he_ru_alloc);
1420                 return 0;
1421         }
1422
1423         /* now scale to the appropriate MCS */
1424         tmp = result;
1425         tmp *= SCALE;
1426         do_div(tmp, mcs_divisors[rate->mcs]);
1427         result = tmp;
1428
1429         /* and take NSS, DCM into account */
1430         result = (result * rate->nss) / 8;
1431         if (rate->he_dcm)
1432                 result /= 2;
1433
1434         return result / 10000;
1435 }
1436
1437 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1438 {
1439 #define SCALE 6144
1440         static const u32 mcs_divisors[16] = {
1441                 102399, /* 16.666666... */
1442                  51201, /*  8.333333... */
1443                  34134, /*  5.555555... */
1444                  25599, /*  4.166666... */
1445                  17067, /*  2.777777... */
1446                  12801, /*  2.083333... */
1447                  11377, /*  1.851725... */
1448                  10239, /*  1.666666... */
1449                   8532, /*  1.388888... */
1450                   7680, /*  1.250000... */
1451                   6828, /*  1.111111... */
1452                   6144, /*  1.000000... */
1453                   5690, /*  0.926106... */
1454                   5120, /*  0.833333... */
1455                 409600, /* 66.666666... */
1456                 204800, /* 33.333333... */
1457         };
1458         static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1459         static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1460         static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1461         static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1462         static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1463         static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1464         u64 tmp;
1465         u32 result;
1466
1467         if (WARN_ON_ONCE(rate->mcs > 15))
1468                 return 0;
1469         if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1470                 return 0;
1471         if (WARN_ON_ONCE(rate->eht_ru_alloc >
1472                          NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1473                 return 0;
1474         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1475                 return 0;
1476
1477         /* Bandwidth checks for MCS 14 */
1478         if (rate->mcs == 14) {
1479                 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1480                      rate->bw != RATE_INFO_BW_80 &&
1481                      rate->bw != RATE_INFO_BW_160 &&
1482                      rate->bw != RATE_INFO_BW_320) ||
1483                     (rate->bw == RATE_INFO_BW_EHT_RU &&
1484                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1485                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1486                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1487                         WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1488                              rate->bw, rate->eht_ru_alloc);
1489                         return 0;
1490                 }
1491         }
1492
1493         if (rate->bw == RATE_INFO_BW_320 ||
1494             (rate->bw == RATE_INFO_BW_EHT_RU &&
1495              rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1496                 result = 4 * rates_996[rate->eht_gi];
1497         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1498                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1499                 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1500         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1501                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1502                 result = 3 * rates_996[rate->eht_gi];
1503         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1504                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1505                 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1506         else if (rate->bw == RATE_INFO_BW_160 ||
1507                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1508                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1509                 result = 2 * rates_996[rate->eht_gi];
1510         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1511                  rate->eht_ru_alloc ==
1512                  NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1513                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1514                          + rates_242[rate->eht_gi];
1515         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1516                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1517                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1518         else if (rate->bw == RATE_INFO_BW_80 ||
1519                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1520                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1521                 result = rates_996[rate->eht_gi];
1522         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1523                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1524                 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1525         else if (rate->bw == RATE_INFO_BW_40 ||
1526                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1527                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1528                 result = rates_484[rate->eht_gi];
1529         else if (rate->bw == RATE_INFO_BW_20 ||
1530                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1531                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1532                 result = rates_242[rate->eht_gi];
1533         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1534                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1535                 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1536         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1537                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1538                 result = rates_106[rate->eht_gi];
1539         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1540                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1541                 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1542         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1543                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1544                 result = rates_52[rate->eht_gi];
1545         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1546                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1547                 result = rates_26[rate->eht_gi];
1548         else {
1549                 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1550                      rate->bw, rate->eht_ru_alloc);
1551                 return 0;
1552         }
1553
1554         /* now scale to the appropriate MCS */
1555         tmp = result;
1556         tmp *= SCALE;
1557         do_div(tmp, mcs_divisors[rate->mcs]);
1558         result = tmp;
1559
1560         /* and take NSS */
1561         result = (result * rate->nss) / 8;
1562
1563         return result / 10000;
1564 }
1565
1566 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1567 {
1568         if (rate->flags & RATE_INFO_FLAGS_MCS)
1569                 return cfg80211_calculate_bitrate_ht(rate);
1570         if (rate->flags & RATE_INFO_FLAGS_DMG)
1571                 return cfg80211_calculate_bitrate_dmg(rate);
1572         if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1573                 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1574         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1575                 return cfg80211_calculate_bitrate_edmg(rate);
1576         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1577                 return cfg80211_calculate_bitrate_vht(rate);
1578         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1579                 return cfg80211_calculate_bitrate_he(rate);
1580         if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1581                 return cfg80211_calculate_bitrate_eht(rate);
1582
1583         return rate->legacy;
1584 }
1585 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1586
1587 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1588                           enum ieee80211_p2p_attr_id attr,
1589                           u8 *buf, unsigned int bufsize)
1590 {
1591         u8 *out = buf;
1592         u16 attr_remaining = 0;
1593         bool desired_attr = false;
1594         u16 desired_len = 0;
1595
1596         while (len > 0) {
1597                 unsigned int iedatalen;
1598                 unsigned int copy;
1599                 const u8 *iedata;
1600
1601                 if (len < 2)
1602                         return -EILSEQ;
1603                 iedatalen = ies[1];
1604                 if (iedatalen + 2 > len)
1605                         return -EILSEQ;
1606
1607                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1608                         goto cont;
1609
1610                 if (iedatalen < 4)
1611                         goto cont;
1612
1613                 iedata = ies + 2;
1614
1615                 /* check WFA OUI, P2P subtype */
1616                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1617                     iedata[2] != 0x9a || iedata[3] != 0x09)
1618                         goto cont;
1619
1620                 iedatalen -= 4;
1621                 iedata += 4;
1622
1623                 /* check attribute continuation into this IE */
1624                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1625                 if (copy && desired_attr) {
1626                         desired_len += copy;
1627                         if (out) {
1628                                 memcpy(out, iedata, min(bufsize, copy));
1629                                 out += min(bufsize, copy);
1630                                 bufsize -= min(bufsize, copy);
1631                         }
1632
1633
1634                         if (copy == attr_remaining)
1635                                 return desired_len;
1636                 }
1637
1638                 attr_remaining -= copy;
1639                 if (attr_remaining)
1640                         goto cont;
1641
1642                 iedatalen -= copy;
1643                 iedata += copy;
1644
1645                 while (iedatalen > 0) {
1646                         u16 attr_len;
1647
1648                         /* P2P attribute ID & size must fit */
1649                         if (iedatalen < 3)
1650                                 return -EILSEQ;
1651                         desired_attr = iedata[0] == attr;
1652                         attr_len = get_unaligned_le16(iedata + 1);
1653                         iedatalen -= 3;
1654                         iedata += 3;
1655
1656                         copy = min_t(unsigned int, attr_len, iedatalen);
1657
1658                         if (desired_attr) {
1659                                 desired_len += copy;
1660                                 if (out) {
1661                                         memcpy(out, iedata, min(bufsize, copy));
1662                                         out += min(bufsize, copy);
1663                                         bufsize -= min(bufsize, copy);
1664                                 }
1665
1666                                 if (copy == attr_len)
1667                                         return desired_len;
1668                         }
1669
1670                         iedata += copy;
1671                         iedatalen -= copy;
1672                         attr_remaining = attr_len - copy;
1673                 }
1674
1675  cont:
1676                 len -= ies[1] + 2;
1677                 ies += ies[1] + 2;
1678         }
1679
1680         if (attr_remaining && desired_attr)
1681                 return -EILSEQ;
1682
1683         return -ENOENT;
1684 }
1685 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1686
1687 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1688 {
1689         int i;
1690
1691         /* Make sure array values are legal */
1692         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1693                 return false;
1694
1695         i = 0;
1696         while (i < n_ids) {
1697                 if (ids[i] == WLAN_EID_EXTENSION) {
1698                         if (id_ext && (ids[i + 1] == id))
1699                                 return true;
1700
1701                         i += 2;
1702                         continue;
1703                 }
1704
1705                 if (ids[i] == id && !id_ext)
1706                         return true;
1707
1708                 i++;
1709         }
1710         return false;
1711 }
1712
1713 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1714 {
1715         /* we assume a validly formed IEs buffer */
1716         u8 len = ies[pos + 1];
1717
1718         pos += 2 + len;
1719
1720         /* the IE itself must have 255 bytes for fragments to follow */
1721         if (len < 255)
1722                 return pos;
1723
1724         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1725                 len = ies[pos + 1];
1726                 pos += 2 + len;
1727         }
1728
1729         return pos;
1730 }
1731
1732 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1733                               const u8 *ids, int n_ids,
1734                               const u8 *after_ric, int n_after_ric,
1735                               size_t offset)
1736 {
1737         size_t pos = offset;
1738
1739         while (pos < ielen) {
1740                 u8 ext = 0;
1741
1742                 if (ies[pos] == WLAN_EID_EXTENSION)
1743                         ext = 2;
1744                 if ((pos + ext) >= ielen)
1745                         break;
1746
1747                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1748                                           ies[pos] == WLAN_EID_EXTENSION))
1749                         break;
1750
1751                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1752                         pos = skip_ie(ies, ielen, pos);
1753
1754                         while (pos < ielen) {
1755                                 if (ies[pos] == WLAN_EID_EXTENSION)
1756                                         ext = 2;
1757                                 else
1758                                         ext = 0;
1759
1760                                 if ((pos + ext) >= ielen)
1761                                         break;
1762
1763                                 if (!ieee80211_id_in_list(after_ric,
1764                                                           n_after_ric,
1765                                                           ies[pos + ext],
1766                                                           ext == 2))
1767                                         pos = skip_ie(ies, ielen, pos);
1768                                 else
1769                                         break;
1770                         }
1771                 } else {
1772                         pos = skip_ie(ies, ielen, pos);
1773                 }
1774         }
1775
1776         return pos;
1777 }
1778 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1779
1780 bool ieee80211_operating_class_to_band(u8 operating_class,
1781                                        enum nl80211_band *band)
1782 {
1783         switch (operating_class) {
1784         case 112:
1785         case 115 ... 127:
1786         case 128 ... 130:
1787                 *band = NL80211_BAND_5GHZ;
1788                 return true;
1789         case 131 ... 135:
1790                 *band = NL80211_BAND_6GHZ;
1791                 return true;
1792         case 81:
1793         case 82:
1794         case 83:
1795         case 84:
1796                 *band = NL80211_BAND_2GHZ;
1797                 return true;
1798         case 180:
1799                 *band = NL80211_BAND_60GHZ;
1800                 return true;
1801         }
1802
1803         return false;
1804 }
1805 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1806
1807 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1808                                           u8 *op_class)
1809 {
1810         u8 vht_opclass;
1811         u32 freq = chandef->center_freq1;
1812
1813         if (freq >= 2412 && freq <= 2472) {
1814                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1815                         return false;
1816
1817                 /* 2.407 GHz, channels 1..13 */
1818                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1819                         if (freq > chandef->chan->center_freq)
1820                                 *op_class = 83; /* HT40+ */
1821                         else
1822                                 *op_class = 84; /* HT40- */
1823                 } else {
1824                         *op_class = 81;
1825                 }
1826
1827                 return true;
1828         }
1829
1830         if (freq == 2484) {
1831                 /* channel 14 is only for IEEE 802.11b */
1832                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1833                         return false;
1834
1835                 *op_class = 82; /* channel 14 */
1836                 return true;
1837         }
1838
1839         switch (chandef->width) {
1840         case NL80211_CHAN_WIDTH_80:
1841                 vht_opclass = 128;
1842                 break;
1843         case NL80211_CHAN_WIDTH_160:
1844                 vht_opclass = 129;
1845                 break;
1846         case NL80211_CHAN_WIDTH_80P80:
1847                 vht_opclass = 130;
1848                 break;
1849         case NL80211_CHAN_WIDTH_10:
1850         case NL80211_CHAN_WIDTH_5:
1851                 return false; /* unsupported for now */
1852         default:
1853                 vht_opclass = 0;
1854                 break;
1855         }
1856
1857         /* 5 GHz, channels 36..48 */
1858         if (freq >= 5180 && freq <= 5240) {
1859                 if (vht_opclass) {
1860                         *op_class = vht_opclass;
1861                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1862                         if (freq > chandef->chan->center_freq)
1863                                 *op_class = 116;
1864                         else
1865                                 *op_class = 117;
1866                 } else {
1867                         *op_class = 115;
1868                 }
1869
1870                 return true;
1871         }
1872
1873         /* 5 GHz, channels 52..64 */
1874         if (freq >= 5260 && freq <= 5320) {
1875                 if (vht_opclass) {
1876                         *op_class = vht_opclass;
1877                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1878                         if (freq > chandef->chan->center_freq)
1879                                 *op_class = 119;
1880                         else
1881                                 *op_class = 120;
1882                 } else {
1883                         *op_class = 118;
1884                 }
1885
1886                 return true;
1887         }
1888
1889         /* 5 GHz, channels 100..144 */
1890         if (freq >= 5500 && freq <= 5720) {
1891                 if (vht_opclass) {
1892                         *op_class = vht_opclass;
1893                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1894                         if (freq > chandef->chan->center_freq)
1895                                 *op_class = 122;
1896                         else
1897                                 *op_class = 123;
1898                 } else {
1899                         *op_class = 121;
1900                 }
1901
1902                 return true;
1903         }
1904
1905         /* 5 GHz, channels 149..169 */
1906         if (freq >= 5745 && freq <= 5845) {
1907                 if (vht_opclass) {
1908                         *op_class = vht_opclass;
1909                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1910                         if (freq > chandef->chan->center_freq)
1911                                 *op_class = 126;
1912                         else
1913                                 *op_class = 127;
1914                 } else if (freq <= 5805) {
1915                         *op_class = 124;
1916                 } else {
1917                         *op_class = 125;
1918                 }
1919
1920                 return true;
1921         }
1922
1923         /* 56.16 GHz, channel 1..4 */
1924         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1925                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1926                         return false;
1927
1928                 *op_class = 180;
1929                 return true;
1930         }
1931
1932         /* not supported yet */
1933         return false;
1934 }
1935 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1936
1937 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
1938 {
1939         switch (wdev->iftype) {
1940         case NL80211_IFTYPE_AP:
1941         case NL80211_IFTYPE_P2P_GO:
1942                 WARN_ON(wdev->valid_links);
1943                 return wdev->links[0].ap.beacon_interval;
1944         case NL80211_IFTYPE_MESH_POINT:
1945                 return wdev->u.mesh.beacon_interval;
1946         case NL80211_IFTYPE_ADHOC:
1947                 return wdev->u.ibss.beacon_interval;
1948         default:
1949                 break;
1950         }
1951
1952         return 0;
1953 }
1954
1955 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1956                                        u32 *beacon_int_gcd,
1957                                        bool *beacon_int_different)
1958 {
1959         struct wireless_dev *wdev;
1960
1961         *beacon_int_gcd = 0;
1962         *beacon_int_different = false;
1963
1964         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1965                 int wdev_bi;
1966
1967                 /* this feature isn't supported with MLO */
1968                 if (wdev->valid_links)
1969                         continue;
1970
1971                 wdev_bi = cfg80211_wdev_bi(wdev);
1972
1973                 if (!wdev_bi)
1974                         continue;
1975
1976                 if (!*beacon_int_gcd) {
1977                         *beacon_int_gcd = wdev_bi;
1978                         continue;
1979                 }
1980
1981                 if (wdev_bi == *beacon_int_gcd)
1982                         continue;
1983
1984                 *beacon_int_different = true;
1985                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
1986         }
1987
1988         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1989                 if (*beacon_int_gcd)
1990                         *beacon_int_different = true;
1991                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1992         }
1993 }
1994
1995 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1996                                  enum nl80211_iftype iftype, u32 beacon_int)
1997 {
1998         /*
1999          * This is just a basic pre-condition check; if interface combinations
2000          * are possible the driver must already be checking those with a call
2001          * to cfg80211_check_combinations(), in which case we'll validate more
2002          * through the cfg80211_calculate_bi_data() call and code in
2003          * cfg80211_iter_combinations().
2004          */
2005
2006         if (beacon_int < 10 || beacon_int > 10000)
2007                 return -EINVAL;
2008
2009         return 0;
2010 }
2011
2012 int cfg80211_iter_combinations(struct wiphy *wiphy,
2013                                struct iface_combination_params *params,
2014                                void (*iter)(const struct ieee80211_iface_combination *c,
2015                                             void *data),
2016                                void *data)
2017 {
2018         const struct ieee80211_regdomain *regdom;
2019         enum nl80211_dfs_regions region = 0;
2020         int i, j, iftype;
2021         int num_interfaces = 0;
2022         u32 used_iftypes = 0;
2023         u32 beacon_int_gcd;
2024         bool beacon_int_different;
2025
2026         /*
2027          * This is a bit strange, since the iteration used to rely only on
2028          * the data given by the driver, but here it now relies on context,
2029          * in form of the currently operating interfaces.
2030          * This is OK for all current users, and saves us from having to
2031          * push the GCD calculations into all the drivers.
2032          * In the future, this should probably rely more on data that's in
2033          * cfg80211 already - the only thing not would appear to be any new
2034          * interfaces (while being brought up) and channel/radar data.
2035          */
2036         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2037                                    &beacon_int_gcd, &beacon_int_different);
2038
2039         if (params->radar_detect) {
2040                 rcu_read_lock();
2041                 regdom = rcu_dereference(cfg80211_regdomain);
2042                 if (regdom)
2043                         region = regdom->dfs_region;
2044                 rcu_read_unlock();
2045         }
2046
2047         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2048                 num_interfaces += params->iftype_num[iftype];
2049                 if (params->iftype_num[iftype] > 0 &&
2050                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2051                         used_iftypes |= BIT(iftype);
2052         }
2053
2054         for (i = 0; i < wiphy->n_iface_combinations; i++) {
2055                 const struct ieee80211_iface_combination *c;
2056                 struct ieee80211_iface_limit *limits;
2057                 u32 all_iftypes = 0;
2058
2059                 c = &wiphy->iface_combinations[i];
2060
2061                 if (num_interfaces > c->max_interfaces)
2062                         continue;
2063                 if (params->num_different_channels > c->num_different_channels)
2064                         continue;
2065
2066                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2067                                  GFP_KERNEL);
2068                 if (!limits)
2069                         return -ENOMEM;
2070
2071                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2072                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2073                                 continue;
2074                         for (j = 0; j < c->n_limits; j++) {
2075                                 all_iftypes |= limits[j].types;
2076                                 if (!(limits[j].types & BIT(iftype)))
2077                                         continue;
2078                                 if (limits[j].max < params->iftype_num[iftype])
2079                                         goto cont;
2080                                 limits[j].max -= params->iftype_num[iftype];
2081                         }
2082                 }
2083
2084                 if (params->radar_detect !=
2085                         (c->radar_detect_widths & params->radar_detect))
2086                         goto cont;
2087
2088                 if (params->radar_detect && c->radar_detect_regions &&
2089                     !(c->radar_detect_regions & BIT(region)))
2090                         goto cont;
2091
2092                 /* Finally check that all iftypes that we're currently
2093                  * using are actually part of this combination. If they
2094                  * aren't then we can't use this combination and have
2095                  * to continue to the next.
2096                  */
2097                 if ((all_iftypes & used_iftypes) != used_iftypes)
2098                         goto cont;
2099
2100                 if (beacon_int_gcd) {
2101                         if (c->beacon_int_min_gcd &&
2102                             beacon_int_gcd < c->beacon_int_min_gcd)
2103                                 goto cont;
2104                         if (!c->beacon_int_min_gcd && beacon_int_different)
2105                                 goto cont;
2106                 }
2107
2108                 /* This combination covered all interface types and
2109                  * supported the requested numbers, so we're good.
2110                  */
2111
2112                 (*iter)(c, data);
2113  cont:
2114                 kfree(limits);
2115         }
2116
2117         return 0;
2118 }
2119 EXPORT_SYMBOL(cfg80211_iter_combinations);
2120
2121 static void
2122 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2123                           void *data)
2124 {
2125         int *num = data;
2126         (*num)++;
2127 }
2128
2129 int cfg80211_check_combinations(struct wiphy *wiphy,
2130                                 struct iface_combination_params *params)
2131 {
2132         int err, num = 0;
2133
2134         err = cfg80211_iter_combinations(wiphy, params,
2135                                          cfg80211_iter_sum_ifcombs, &num);
2136         if (err)
2137                 return err;
2138         if (num == 0)
2139                 return -EBUSY;
2140
2141         return 0;
2142 }
2143 EXPORT_SYMBOL(cfg80211_check_combinations);
2144
2145 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2146                            const u8 *rates, unsigned int n_rates,
2147                            u32 *mask)
2148 {
2149         int i, j;
2150
2151         if (!sband)
2152                 return -EINVAL;
2153
2154         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2155                 return -EINVAL;
2156
2157         *mask = 0;
2158
2159         for (i = 0; i < n_rates; i++) {
2160                 int rate = (rates[i] & 0x7f) * 5;
2161                 bool found = false;
2162
2163                 for (j = 0; j < sband->n_bitrates; j++) {
2164                         if (sband->bitrates[j].bitrate == rate) {
2165                                 found = true;
2166                                 *mask |= BIT(j);
2167                                 break;
2168                         }
2169                 }
2170                 if (!found)
2171                         return -EINVAL;
2172         }
2173
2174         /*
2175          * mask must have at least one bit set here since we
2176          * didn't accept a 0-length rates array nor allowed
2177          * entries in the array that didn't exist
2178          */
2179
2180         return 0;
2181 }
2182
2183 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2184 {
2185         enum nl80211_band band;
2186         unsigned int n_channels = 0;
2187
2188         for (band = 0; band < NUM_NL80211_BANDS; band++)
2189                 if (wiphy->bands[band])
2190                         n_channels += wiphy->bands[band]->n_channels;
2191
2192         return n_channels;
2193 }
2194 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2195
2196 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2197                          struct station_info *sinfo)
2198 {
2199         struct cfg80211_registered_device *rdev;
2200         struct wireless_dev *wdev;
2201
2202         wdev = dev->ieee80211_ptr;
2203         if (!wdev)
2204                 return -EOPNOTSUPP;
2205
2206         rdev = wiphy_to_rdev(wdev->wiphy);
2207         if (!rdev->ops->get_station)
2208                 return -EOPNOTSUPP;
2209
2210         memset(sinfo, 0, sizeof(*sinfo));
2211
2212         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2213 }
2214 EXPORT_SYMBOL(cfg80211_get_station);
2215
2216 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2217 {
2218         int i;
2219
2220         if (!f)
2221                 return;
2222
2223         kfree(f->serv_spec_info);
2224         kfree(f->srf_bf);
2225         kfree(f->srf_macs);
2226         for (i = 0; i < f->num_rx_filters; i++)
2227                 kfree(f->rx_filters[i].filter);
2228
2229         for (i = 0; i < f->num_tx_filters; i++)
2230                 kfree(f->tx_filters[i].filter);
2231
2232         kfree(f->rx_filters);
2233         kfree(f->tx_filters);
2234         kfree(f);
2235 }
2236 EXPORT_SYMBOL(cfg80211_free_nan_func);
2237
2238 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2239                                 u32 center_freq_khz, u32 bw_khz)
2240 {
2241         u32 start_freq_khz, end_freq_khz;
2242
2243         start_freq_khz = center_freq_khz - (bw_khz / 2);
2244         end_freq_khz = center_freq_khz + (bw_khz / 2);
2245
2246         if (start_freq_khz >= freq_range->start_freq_khz &&
2247             end_freq_khz <= freq_range->end_freq_khz)
2248                 return true;
2249
2250         return false;
2251 }
2252
2253 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2254 {
2255         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2256                                 sizeof(*(sinfo->pertid)),
2257                                 gfp);
2258         if (!sinfo->pertid)
2259                 return -ENOMEM;
2260
2261         return 0;
2262 }
2263 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2264
2265 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2266 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2267 const unsigned char rfc1042_header[] __aligned(2) =
2268         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2269 EXPORT_SYMBOL(rfc1042_header);
2270
2271 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2272 const unsigned char bridge_tunnel_header[] __aligned(2) =
2273         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2274 EXPORT_SYMBOL(bridge_tunnel_header);
2275
2276 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2277 struct iapp_layer2_update {
2278         u8 da[ETH_ALEN];        /* broadcast */
2279         u8 sa[ETH_ALEN];        /* STA addr */
2280         __be16 len;             /* 6 */
2281         u8 dsap;                /* 0 */
2282         u8 ssap;                /* 0 */
2283         u8 control;
2284         u8 xid_info[3];
2285 } __packed;
2286
2287 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2288 {
2289         struct iapp_layer2_update *msg;
2290         struct sk_buff *skb;
2291
2292         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2293          * bridge devices */
2294
2295         skb = dev_alloc_skb(sizeof(*msg));
2296         if (!skb)
2297                 return;
2298         msg = skb_put(skb, sizeof(*msg));
2299
2300         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2301          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2302
2303         eth_broadcast_addr(msg->da);
2304         ether_addr_copy(msg->sa, addr);
2305         msg->len = htons(6);
2306         msg->dsap = 0;
2307         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2308         msg->control = 0xaf;    /* XID response lsb.1111F101.
2309                                  * F=0 (no poll command; unsolicited frame) */
2310         msg->xid_info[0] = 0x81;        /* XID format identifier */
2311         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2312         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2313
2314         skb->dev = dev;
2315         skb->protocol = eth_type_trans(skb, dev);
2316         memset(skb->cb, 0, sizeof(skb->cb));
2317         netif_rx(skb);
2318 }
2319 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2320
2321 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2322                               enum ieee80211_vht_chanwidth bw,
2323                               int mcs, bool ext_nss_bw_capable,
2324                               unsigned int max_vht_nss)
2325 {
2326         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2327         int ext_nss_bw;
2328         int supp_width;
2329         int i, mcs_encoding;
2330
2331         if (map == 0xffff)
2332                 return 0;
2333
2334         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2335                 return 0;
2336         if (mcs <= 7)
2337                 mcs_encoding = 0;
2338         else if (mcs == 8)
2339                 mcs_encoding = 1;
2340         else
2341                 mcs_encoding = 2;
2342
2343         if (!max_vht_nss) {
2344                 /* find max_vht_nss for the given MCS */
2345                 for (i = 7; i >= 0; i--) {
2346                         int supp = (map >> (2 * i)) & 3;
2347
2348                         if (supp == 3)
2349                                 continue;
2350
2351                         if (supp >= mcs_encoding) {
2352                                 max_vht_nss = i + 1;
2353                                 break;
2354                         }
2355                 }
2356         }
2357
2358         if (!(cap->supp_mcs.tx_mcs_map &
2359                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2360                 return max_vht_nss;
2361
2362         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2363                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2364         supp_width = le32_get_bits(cap->vht_cap_info,
2365                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2366
2367         /* if not capable, treat ext_nss_bw as 0 */
2368         if (!ext_nss_bw_capable)
2369                 ext_nss_bw = 0;
2370
2371         /* This is invalid */
2372         if (supp_width == 3)
2373                 return 0;
2374
2375         /* This is an invalid combination so pretend nothing is supported */
2376         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2377                 return 0;
2378
2379         /*
2380          * Cover all the special cases according to IEEE 802.11-2016
2381          * Table 9-250. All other cases are either factor of 1 or not
2382          * valid/supported.
2383          */
2384         switch (bw) {
2385         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2386         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2387                 if ((supp_width == 1 || supp_width == 2) &&
2388                     ext_nss_bw == 3)
2389                         return 2 * max_vht_nss;
2390                 break;
2391         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2392                 if (supp_width == 0 &&
2393                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2394                         return max_vht_nss / 2;
2395                 if (supp_width == 0 &&
2396                     ext_nss_bw == 3)
2397                         return (3 * max_vht_nss) / 4;
2398                 if (supp_width == 1 &&
2399                     ext_nss_bw == 3)
2400                         return 2 * max_vht_nss;
2401                 break;
2402         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2403                 if (supp_width == 0 && ext_nss_bw == 1)
2404                         return 0; /* not possible */
2405                 if (supp_width == 0 &&
2406                     ext_nss_bw == 2)
2407                         return max_vht_nss / 2;
2408                 if (supp_width == 0 &&
2409                     ext_nss_bw == 3)
2410                         return (3 * max_vht_nss) / 4;
2411                 if (supp_width == 1 &&
2412                     ext_nss_bw == 0)
2413                         return 0; /* not possible */
2414                 if (supp_width == 1 &&
2415                     ext_nss_bw == 1)
2416                         return max_vht_nss / 2;
2417                 if (supp_width == 1 &&
2418                     ext_nss_bw == 2)
2419                         return (3 * max_vht_nss) / 4;
2420                 break;
2421         }
2422
2423         /* not covered or invalid combination received */
2424         return max_vht_nss;
2425 }
2426 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2427
2428 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2429                              bool is_4addr, u8 check_swif)
2430
2431 {
2432         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2433
2434         switch (check_swif) {
2435         case 0:
2436                 if (is_vlan && is_4addr)
2437                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2438                 return wiphy->interface_modes & BIT(iftype);
2439         case 1:
2440                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2441                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2442                 return wiphy->software_iftypes & BIT(iftype);
2443         default:
2444                 break;
2445         }
2446
2447         return false;
2448 }
2449 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2450
2451 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2452 {
2453         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2454
2455         ASSERT_WDEV_LOCK(wdev);
2456
2457         switch (wdev->iftype) {
2458         case NL80211_IFTYPE_AP:
2459         case NL80211_IFTYPE_P2P_GO:
2460                 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2461                 break;
2462         default:
2463                 /* per-link not relevant */
2464                 break;
2465         }
2466
2467         wdev->valid_links &= ~BIT(link_id);
2468
2469         rdev_del_intf_link(rdev, wdev, link_id);
2470
2471         eth_zero_addr(wdev->links[link_id].addr);
2472 }
2473
2474 void cfg80211_remove_links(struct wireless_dev *wdev)
2475 {
2476         unsigned int link_id;
2477
2478         wdev_lock(wdev);
2479         if (wdev->valid_links) {
2480                 for_each_valid_link(wdev, link_id)
2481                         cfg80211_remove_link(wdev, link_id);
2482         }
2483         wdev_unlock(wdev);
2484 }
2485
2486 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2487                                  struct wireless_dev *wdev)
2488 {
2489         cfg80211_remove_links(wdev);
2490
2491         return rdev_del_virtual_intf(rdev, wdev);
2492 }
2493
2494 const struct wiphy_iftype_ext_capab *
2495 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2496 {
2497         int i;
2498
2499         for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2500                 if (wiphy->iftype_ext_capab[i].iftype == type)
2501                         return &wiphy->iftype_ext_capab[i];
2502         }
2503
2504         return NULL;
2505 }
2506 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);