Merge tag 'perf-tools-fixes-for-v6.4-1-2023-05-20' of git://git.kernel.org/pub/scm...
[linux-block.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2022 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83         case NL80211_BAND_LC:
84                 if (chan == 14)
85                         return MHZ_TO_KHZ(2484);
86                 else if (chan < 14)
87                         return MHZ_TO_KHZ(2407 + chan * 5);
88                 break;
89         case NL80211_BAND_5GHZ:
90                 if (chan >= 182 && chan <= 196)
91                         return MHZ_TO_KHZ(4000 + chan * 5);
92                 else
93                         return MHZ_TO_KHZ(5000 + chan * 5);
94                 break;
95         case NL80211_BAND_6GHZ:
96                 /* see 802.11ax D6.1 27.3.23.2 */
97                 if (chan == 2)
98                         return MHZ_TO_KHZ(5935);
99                 if (chan <= 233)
100                         return MHZ_TO_KHZ(5950 + chan * 5);
101                 break;
102         case NL80211_BAND_60GHZ:
103                 if (chan < 7)
104                         return MHZ_TO_KHZ(56160 + chan * 2160);
105                 break;
106         case NL80211_BAND_S1GHZ:
107                 return 902000 + chan * 500;
108         default:
109                 ;
110         }
111         return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119                 return NL80211_CHAN_WIDTH_20_NOHT;
120
121         /*S1G defines a single allowed channel width per channel.
122          * Extract that width here.
123          */
124         if (chan->flags & IEEE80211_CHAN_1MHZ)
125                 return NL80211_CHAN_WIDTH_1;
126         else if (chan->flags & IEEE80211_CHAN_2MHZ)
127                 return NL80211_CHAN_WIDTH_2;
128         else if (chan->flags & IEEE80211_CHAN_4MHZ)
129                 return NL80211_CHAN_WIDTH_4;
130         else if (chan->flags & IEEE80211_CHAN_8MHZ)
131                 return NL80211_CHAN_WIDTH_8;
132         else if (chan->flags & IEEE80211_CHAN_16MHZ)
133                 return NL80211_CHAN_WIDTH_16;
134
135         pr_err("unknown channel width for channel at %dKHz?\n",
136                ieee80211_channel_to_khz(chan));
137
138         return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144         /* TODO: just handle MHz for now */
145         freq = KHZ_TO_MHZ(freq);
146
147         /* see 802.11 17.3.8.3.2 and Annex J */
148         if (freq == 2484)
149                 return 14;
150         else if (freq < 2484)
151                 return (freq - 2407) / 5;
152         else if (freq >= 4910 && freq <= 4980)
153                 return (freq - 4000) / 5;
154         else if (freq < 5925)
155                 return (freq - 5000) / 5;
156         else if (freq == 5935)
157                 return 2;
158         else if (freq <= 45000) /* DMG band lower limit */
159                 /* see 802.11ax D6.1 27.3.22.2 */
160                 return (freq - 5950) / 5;
161         else if (freq >= 58320 && freq <= 70200)
162                 return (freq - 56160) / 2160;
163         else
164                 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169                                                     u32 freq)
170 {
171         enum nl80211_band band;
172         struct ieee80211_supported_band *sband;
173         int i;
174
175         for (band = 0; band < NUM_NL80211_BANDS; band++) {
176                 sband = wiphy->bands[band];
177
178                 if (!sband)
179                         continue;
180
181                 for (i = 0; i < sband->n_channels; i++) {
182                         struct ieee80211_channel *chan = &sband->channels[i];
183
184                         if (ieee80211_channel_to_khz(chan) == freq)
185                                 return chan;
186                 }
187         }
188
189         return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195         int i, want;
196
197         switch (sband->band) {
198         case NL80211_BAND_5GHZ:
199         case NL80211_BAND_6GHZ:
200                 want = 3;
201                 for (i = 0; i < sband->n_bitrates; i++) {
202                         if (sband->bitrates[i].bitrate == 60 ||
203                             sband->bitrates[i].bitrate == 120 ||
204                             sband->bitrates[i].bitrate == 240) {
205                                 sband->bitrates[i].flags |=
206                                         IEEE80211_RATE_MANDATORY_A;
207                                 want--;
208                         }
209                 }
210                 WARN_ON(want);
211                 break;
212         case NL80211_BAND_2GHZ:
213         case NL80211_BAND_LC:
214                 want = 7;
215                 for (i = 0; i < sband->n_bitrates; i++) {
216                         switch (sband->bitrates[i].bitrate) {
217                         case 10:
218                         case 20:
219                         case 55:
220                         case 110:
221                                 sband->bitrates[i].flags |=
222                                         IEEE80211_RATE_MANDATORY_B |
223                                         IEEE80211_RATE_MANDATORY_G;
224                                 want--;
225                                 break;
226                         case 60:
227                         case 120:
228                         case 240:
229                                 sband->bitrates[i].flags |=
230                                         IEEE80211_RATE_MANDATORY_G;
231                                 want--;
232                                 fallthrough;
233                         default:
234                                 sband->bitrates[i].flags |=
235                                         IEEE80211_RATE_ERP_G;
236                                 break;
237                         }
238                 }
239                 WARN_ON(want != 0 && want != 3);
240                 break;
241         case NL80211_BAND_60GHZ:
242                 /* check for mandatory HT MCS 1..4 */
243                 WARN_ON(!sband->ht_cap.ht_supported);
244                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245                 break;
246         case NL80211_BAND_S1GHZ:
247                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248                  * mandatory is ok.
249                  */
250                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251                 break;
252         case NUM_NL80211_BANDS:
253         default:
254                 WARN_ON(1);
255                 break;
256         }
257 }
258
259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261         enum nl80211_band band;
262
263         for (band = 0; band < NUM_NL80211_BANDS; band++)
264                 if (wiphy->bands[band])
265                         set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270         int i;
271         for (i = 0; i < wiphy->n_cipher_suites; i++)
272                 if (cipher == wiphy->cipher_suites[i])
273                         return true;
274         return false;
275 }
276
277 static bool
278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280         struct wiphy *wiphy = &rdev->wiphy;
281         int i;
282
283         for (i = 0; i < wiphy->n_cipher_suites; i++) {
284                 switch (wiphy->cipher_suites[i]) {
285                 case WLAN_CIPHER_SUITE_AES_CMAC:
286                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289                         return true;
290                 }
291         }
292
293         return false;
294 }
295
296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297                             int key_idx, bool pairwise)
298 {
299         int max_key_idx;
300
301         if (pairwise)
302                 max_key_idx = 3;
303         else if (wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305                  wiphy_ext_feature_isset(&rdev->wiphy,
306                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307                 max_key_idx = 7;
308         else if (cfg80211_igtk_cipher_supported(rdev))
309                 max_key_idx = 5;
310         else
311                 max_key_idx = 3;
312
313         if (key_idx < 0 || key_idx > max_key_idx)
314                 return false;
315
316         return true;
317 }
318
319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320                                    struct key_params *params, int key_idx,
321                                    bool pairwise, const u8 *mac_addr)
322 {
323         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324                 return -EINVAL;
325
326         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327                 return -EINVAL;
328
329         if (pairwise && !mac_addr)
330                 return -EINVAL;
331
332         switch (params->cipher) {
333         case WLAN_CIPHER_SUITE_TKIP:
334                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335                 if ((pairwise && key_idx) ||
336                     params->mode != NL80211_KEY_RX_TX)
337                         return -EINVAL;
338                 break;
339         case WLAN_CIPHER_SUITE_CCMP:
340         case WLAN_CIPHER_SUITE_CCMP_256:
341         case WLAN_CIPHER_SUITE_GCMP:
342         case WLAN_CIPHER_SUITE_GCMP_256:
343                 /* IEEE802.11-2016 allows only 0 and - when supporting
344                  * Extended Key ID - 1 as index for pairwise keys.
345                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346                  * the driver supports Extended Key ID.
347                  * @NL80211_KEY_SET_TX can't be set when installing and
348                  * validating a key.
349                  */
350                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351                     params->mode == NL80211_KEY_SET_TX)
352                         return -EINVAL;
353                 if (wiphy_ext_feature_isset(&rdev->wiphy,
354                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355                         if (pairwise && (key_idx < 0 || key_idx > 1))
356                                 return -EINVAL;
357                 } else if (pairwise && key_idx) {
358                         return -EINVAL;
359                 }
360                 break;
361         case WLAN_CIPHER_SUITE_AES_CMAC:
362         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365                 /* Disallow BIP (group-only) cipher as pairwise cipher */
366                 if (pairwise)
367                         return -EINVAL;
368                 if (key_idx < 4)
369                         return -EINVAL;
370                 break;
371         case WLAN_CIPHER_SUITE_WEP40:
372         case WLAN_CIPHER_SUITE_WEP104:
373                 if (key_idx > 3)
374                         return -EINVAL;
375                 break;
376         default:
377                 break;
378         }
379
380         switch (params->cipher) {
381         case WLAN_CIPHER_SUITE_WEP40:
382                 if (params->key_len != WLAN_KEY_LEN_WEP40)
383                         return -EINVAL;
384                 break;
385         case WLAN_CIPHER_SUITE_TKIP:
386                 if (params->key_len != WLAN_KEY_LEN_TKIP)
387                         return -EINVAL;
388                 break;
389         case WLAN_CIPHER_SUITE_CCMP:
390                 if (params->key_len != WLAN_KEY_LEN_CCMP)
391                         return -EINVAL;
392                 break;
393         case WLAN_CIPHER_SUITE_CCMP_256:
394                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395                         return -EINVAL;
396                 break;
397         case WLAN_CIPHER_SUITE_GCMP:
398                 if (params->key_len != WLAN_KEY_LEN_GCMP)
399                         return -EINVAL;
400                 break;
401         case WLAN_CIPHER_SUITE_GCMP_256:
402                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403                         return -EINVAL;
404                 break;
405         case WLAN_CIPHER_SUITE_WEP104:
406                 if (params->key_len != WLAN_KEY_LEN_WEP104)
407                         return -EINVAL;
408                 break;
409         case WLAN_CIPHER_SUITE_AES_CMAC:
410                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411                         return -EINVAL;
412                 break;
413         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415                         return -EINVAL;
416                 break;
417         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419                         return -EINVAL;
420                 break;
421         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423                         return -EINVAL;
424                 break;
425         default:
426                 /*
427                  * We don't know anything about this algorithm,
428                  * allow using it -- but the driver must check
429                  * all parameters! We still check below whether
430                  * or not the driver supports this algorithm,
431                  * of course.
432                  */
433                 break;
434         }
435
436         if (params->seq) {
437                 switch (params->cipher) {
438                 case WLAN_CIPHER_SUITE_WEP40:
439                 case WLAN_CIPHER_SUITE_WEP104:
440                         /* These ciphers do not use key sequence */
441                         return -EINVAL;
442                 case WLAN_CIPHER_SUITE_TKIP:
443                 case WLAN_CIPHER_SUITE_CCMP:
444                 case WLAN_CIPHER_SUITE_CCMP_256:
445                 case WLAN_CIPHER_SUITE_GCMP:
446                 case WLAN_CIPHER_SUITE_GCMP_256:
447                 case WLAN_CIPHER_SUITE_AES_CMAC:
448                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451                         if (params->seq_len != 6)
452                                 return -EINVAL;
453                         break;
454                 }
455         }
456
457         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458                 return -EINVAL;
459
460         return 0;
461 }
462
463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465         unsigned int hdrlen = 24;
466
467         if (ieee80211_is_ext(fc)) {
468                 hdrlen = 4;
469                 goto out;
470         }
471
472         if (ieee80211_is_data(fc)) {
473                 if (ieee80211_has_a4(fc))
474                         hdrlen = 30;
475                 if (ieee80211_is_data_qos(fc)) {
476                         hdrlen += IEEE80211_QOS_CTL_LEN;
477                         if (ieee80211_has_order(fc))
478                                 hdrlen += IEEE80211_HT_CTL_LEN;
479                 }
480                 goto out;
481         }
482
483         if (ieee80211_is_mgmt(fc)) {
484                 if (ieee80211_has_order(fc))
485                         hdrlen += IEEE80211_HT_CTL_LEN;
486                 goto out;
487         }
488
489         if (ieee80211_is_ctl(fc)) {
490                 /*
491                  * ACK and CTS are 10 bytes, all others 16. To see how
492                  * to get this condition consider
493                  *   subtype mask:   0b0000000011110000 (0x00F0)
494                  *   ACK subtype:    0b0000000011010000 (0x00D0)
495                  *   CTS subtype:    0b0000000011000000 (0x00C0)
496                  *   bits that matter:         ^^^      (0x00E0)
497                  *   value of those: 0b0000000011000000 (0x00C0)
498                  */
499                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500                         hdrlen = 10;
501                 else
502                         hdrlen = 16;
503         }
504 out:
505         return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511         const struct ieee80211_hdr *hdr =
512                         (const struct ieee80211_hdr *)skb->data;
513         unsigned int hdrlen;
514
515         if (unlikely(skb->len < 10))
516                 return 0;
517         hdrlen = ieee80211_hdrlen(hdr->frame_control);
518         if (unlikely(hdrlen > skb->len))
519                 return 0;
520         return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526         int ae = flags & MESH_FLAGS_AE;
527         /* 802.11-2012, 8.2.4.7.3 */
528         switch (ae) {
529         default:
530         case 0:
531                 return 6;
532         case MESH_FLAGS_AE_A4:
533                 return 12;
534         case MESH_FLAGS_AE_A5_A6:
535                 return 18;
536         }
537 }
538
539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
546 {
547         const __be16 *hdr_proto = hdr + ETH_ALEN;
548
549         if (!(ether_addr_equal(hdr, rfc1042_header) &&
550               *hdr_proto != htons(ETH_P_AARP) &&
551               *hdr_proto != htons(ETH_P_IPX)) &&
552             !ether_addr_equal(hdr, bridge_tunnel_header))
553                 return false;
554
555         *proto = *hdr_proto;
556
557         return true;
558 }
559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
560
561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
562 {
563         const void *mesh_addr;
564         struct {
565                 struct ethhdr eth;
566                 u8 flags;
567         } payload;
568         int hdrlen;
569         int ret;
570
571         ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
572         if (ret)
573                 return ret;
574
575         hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
576
577         if (likely(pskb_may_pull(skb, hdrlen + 8) &&
578                    ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
579                                                    &payload.eth.h_proto)))
580                 hdrlen += ETH_ALEN + 2;
581         else if (!pskb_may_pull(skb, hdrlen))
582                 return -EINVAL;
583
584         mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
585         switch (payload.flags & MESH_FLAGS_AE) {
586         case MESH_FLAGS_AE_A4:
587                 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
588                 break;
589         case MESH_FLAGS_AE_A5_A6:
590                 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
591                 break;
592         default:
593                 break;
594         }
595
596         pskb_pull(skb, hdrlen - sizeof(payload.eth));
597         memcpy(skb->data, &payload.eth, sizeof(payload.eth));
598
599         return 0;
600 }
601 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
602
603 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
604                                   const u8 *addr, enum nl80211_iftype iftype,
605                                   u8 data_offset, bool is_amsdu)
606 {
607         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
608         struct {
609                 u8 hdr[ETH_ALEN] __aligned(2);
610                 __be16 proto;
611         } payload;
612         struct ethhdr tmp;
613         u16 hdrlen;
614
615         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
616                 return -1;
617
618         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
619         if (skb->len < hdrlen)
620                 return -1;
621
622         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
623          * header
624          * IEEE 802.11 address fields:
625          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
626          *   0     0   DA    SA    BSSID n/a
627          *   0     1   DA    BSSID SA    n/a
628          *   1     0   BSSID SA    DA    n/a
629          *   1     1   RA    TA    DA    SA
630          */
631         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
632         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
633
634         switch (hdr->frame_control &
635                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
636         case cpu_to_le16(IEEE80211_FCTL_TODS):
637                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
638                              iftype != NL80211_IFTYPE_AP_VLAN &&
639                              iftype != NL80211_IFTYPE_P2P_GO))
640                         return -1;
641                 break;
642         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
643                 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
644                              iftype != NL80211_IFTYPE_AP_VLAN &&
645                              iftype != NL80211_IFTYPE_STATION))
646                         return -1;
647                 break;
648         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
649                 if ((iftype != NL80211_IFTYPE_STATION &&
650                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
651                      iftype != NL80211_IFTYPE_MESH_POINT) ||
652                     (is_multicast_ether_addr(tmp.h_dest) &&
653                      ether_addr_equal(tmp.h_source, addr)))
654                         return -1;
655                 break;
656         case cpu_to_le16(0):
657                 if (iftype != NL80211_IFTYPE_ADHOC &&
658                     iftype != NL80211_IFTYPE_STATION &&
659                     iftype != NL80211_IFTYPE_OCB)
660                                 return -1;
661                 break;
662         }
663
664         if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
665                    skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
666                    ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
667                 /* remove RFC1042 or Bridge-Tunnel encapsulation */
668                 hdrlen += ETH_ALEN + 2;
669                 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
670         } else {
671                 tmp.h_proto = htons(skb->len - hdrlen);
672         }
673
674         pskb_pull(skb, hdrlen);
675
676         if (!ehdr)
677                 ehdr = skb_push(skb, sizeof(struct ethhdr));
678         memcpy(ehdr, &tmp, sizeof(tmp));
679
680         return 0;
681 }
682 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
683
684 static void
685 __frame_add_frag(struct sk_buff *skb, struct page *page,
686                  void *ptr, int len, int size)
687 {
688         struct skb_shared_info *sh = skb_shinfo(skb);
689         int page_offset;
690
691         get_page(page);
692         page_offset = ptr - page_address(page);
693         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
694 }
695
696 static void
697 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
698                             int offset, int len)
699 {
700         struct skb_shared_info *sh = skb_shinfo(skb);
701         const skb_frag_t *frag = &sh->frags[0];
702         struct page *frag_page;
703         void *frag_ptr;
704         int frag_len, frag_size;
705         int head_size = skb->len - skb->data_len;
706         int cur_len;
707
708         frag_page = virt_to_head_page(skb->head);
709         frag_ptr = skb->data;
710         frag_size = head_size;
711
712         while (offset >= frag_size) {
713                 offset -= frag_size;
714                 frag_page = skb_frag_page(frag);
715                 frag_ptr = skb_frag_address(frag);
716                 frag_size = skb_frag_size(frag);
717                 frag++;
718         }
719
720         frag_ptr += offset;
721         frag_len = frag_size - offset;
722
723         cur_len = min(len, frag_len);
724
725         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
726         len -= cur_len;
727
728         while (len > 0) {
729                 frag_len = skb_frag_size(frag);
730                 cur_len = min(len, frag_len);
731                 __frame_add_frag(frame, skb_frag_page(frag),
732                                  skb_frag_address(frag), cur_len, frag_len);
733                 len -= cur_len;
734                 frag++;
735         }
736 }
737
738 static struct sk_buff *
739 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
740                        int offset, int len, bool reuse_frag,
741                        int min_len)
742 {
743         struct sk_buff *frame;
744         int cur_len = len;
745
746         if (skb->len - offset < len)
747                 return NULL;
748
749         /*
750          * When reusing framents, copy some data to the head to simplify
751          * ethernet header handling and speed up protocol header processing
752          * in the stack later.
753          */
754         if (reuse_frag)
755                 cur_len = min_t(int, len, min_len);
756
757         /*
758          * Allocate and reserve two bytes more for payload
759          * alignment since sizeof(struct ethhdr) is 14.
760          */
761         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
762         if (!frame)
763                 return NULL;
764
765         frame->priority = skb->priority;
766         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
767         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
768
769         len -= cur_len;
770         if (!len)
771                 return frame;
772
773         offset += cur_len;
774         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
775
776         return frame;
777 }
778
779 static u16
780 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
781 {
782         __le16 *field_le = field;
783         __be16 *field_be = field;
784         u16 len;
785
786         if (hdr_type >= 2)
787                 len = le16_to_cpu(*field_le);
788         else
789                 len = be16_to_cpu(*field_be);
790         if (hdr_type)
791                 len += __ieee80211_get_mesh_hdrlen(mesh_flags);
792
793         return len;
794 }
795
796 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
797 {
798         int offset = 0, remaining, subframe_len, padding;
799
800         for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
801                 struct {
802                     __be16 len;
803                     u8 mesh_flags;
804                 } hdr;
805                 u16 len;
806
807                 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
808                         return false;
809
810                 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
811                                                       mesh_hdr);
812                 subframe_len = sizeof(struct ethhdr) + len;
813                 padding = (4 - subframe_len) & 0x3;
814                 remaining = skb->len - offset;
815
816                 if (subframe_len > remaining)
817                         return false;
818         }
819
820         return true;
821 }
822 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
823
824 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
825                               const u8 *addr, enum nl80211_iftype iftype,
826                               const unsigned int extra_headroom,
827                               const u8 *check_da, const u8 *check_sa,
828                               u8 mesh_control)
829 {
830         unsigned int hlen = ALIGN(extra_headroom, 4);
831         struct sk_buff *frame = NULL;
832         int offset = 0, remaining;
833         struct {
834                 struct ethhdr eth;
835                 uint8_t flags;
836         } hdr;
837         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
838         bool reuse_skb = false;
839         bool last = false;
840         int copy_len = sizeof(hdr.eth);
841
842         if (iftype == NL80211_IFTYPE_MESH_POINT)
843                 copy_len = sizeof(hdr);
844
845         while (!last) {
846                 unsigned int subframe_len;
847                 int len, mesh_len = 0;
848                 u8 padding;
849
850                 skb_copy_bits(skb, offset, &hdr, copy_len);
851                 if (iftype == NL80211_IFTYPE_MESH_POINT)
852                         mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
853                 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
854                                                       mesh_control);
855                 subframe_len = sizeof(struct ethhdr) + len;
856                 padding = (4 - subframe_len) & 0x3;
857
858                 /* the last MSDU has no padding */
859                 remaining = skb->len - offset;
860                 if (subframe_len > remaining)
861                         goto purge;
862                 /* mitigate A-MSDU aggregation injection attacks */
863                 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
864                         goto purge;
865
866                 offset += sizeof(struct ethhdr);
867                 last = remaining <= subframe_len + padding;
868
869                 /* FIXME: should we really accept multicast DA? */
870                 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
871                      !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
872                     (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
873                         offset += len + padding;
874                         continue;
875                 }
876
877                 /* reuse skb for the last subframe */
878                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
879                         skb_pull(skb, offset);
880                         frame = skb;
881                         reuse_skb = true;
882                 } else {
883                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
884                                                        reuse_frag, 32 + mesh_len);
885                         if (!frame)
886                                 goto purge;
887
888                         offset += len + padding;
889                 }
890
891                 skb_reset_network_header(frame);
892                 frame->dev = skb->dev;
893                 frame->priority = skb->priority;
894
895                 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
896                            ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
897                         skb_pull(frame, ETH_ALEN + 2);
898
899                 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
900                 __skb_queue_tail(list, frame);
901         }
902
903         if (!reuse_skb)
904                 dev_kfree_skb(skb);
905
906         return;
907
908  purge:
909         __skb_queue_purge(list);
910         dev_kfree_skb(skb);
911 }
912 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
913
914 /* Given a data frame determine the 802.1p/1d tag to use. */
915 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
916                                     struct cfg80211_qos_map *qos_map)
917 {
918         unsigned int dscp;
919         unsigned char vlan_priority;
920         unsigned int ret;
921
922         /* skb->priority values from 256->263 are magic values to
923          * directly indicate a specific 802.1d priority.  This is used
924          * to allow 802.1d priority to be passed directly in from VLAN
925          * tags, etc.
926          */
927         if (skb->priority >= 256 && skb->priority <= 263) {
928                 ret = skb->priority - 256;
929                 goto out;
930         }
931
932         if (skb_vlan_tag_present(skb)) {
933                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
934                         >> VLAN_PRIO_SHIFT;
935                 if (vlan_priority > 0) {
936                         ret = vlan_priority;
937                         goto out;
938                 }
939         }
940
941         switch (skb->protocol) {
942         case htons(ETH_P_IP):
943                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
944                 break;
945         case htons(ETH_P_IPV6):
946                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
947                 break;
948         case htons(ETH_P_MPLS_UC):
949         case htons(ETH_P_MPLS_MC): {
950                 struct mpls_label mpls_tmp, *mpls;
951
952                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
953                                           sizeof(*mpls), &mpls_tmp);
954                 if (!mpls)
955                         return 0;
956
957                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
958                         >> MPLS_LS_TC_SHIFT;
959                 goto out;
960         }
961         case htons(ETH_P_80221):
962                 /* 802.21 is always network control traffic */
963                 return 7;
964         default:
965                 return 0;
966         }
967
968         if (qos_map) {
969                 unsigned int i, tmp_dscp = dscp >> 2;
970
971                 for (i = 0; i < qos_map->num_des; i++) {
972                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
973                                 ret = qos_map->dscp_exception[i].up;
974                                 goto out;
975                         }
976                 }
977
978                 for (i = 0; i < 8; i++) {
979                         if (tmp_dscp >= qos_map->up[i].low &&
980                             tmp_dscp <= qos_map->up[i].high) {
981                                 ret = i;
982                                 goto out;
983                         }
984                 }
985         }
986
987         ret = dscp >> 5;
988 out:
989         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
990 }
991 EXPORT_SYMBOL(cfg80211_classify8021d);
992
993 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
994 {
995         const struct cfg80211_bss_ies *ies;
996
997         ies = rcu_dereference(bss->ies);
998         if (!ies)
999                 return NULL;
1000
1001         return cfg80211_find_elem(id, ies->data, ies->len);
1002 }
1003 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1004
1005 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1006 {
1007         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1008         struct net_device *dev = wdev->netdev;
1009         int i;
1010
1011         if (!wdev->connect_keys)
1012                 return;
1013
1014         for (i = 0; i < 4; i++) {
1015                 if (!wdev->connect_keys->params[i].cipher)
1016                         continue;
1017                 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1018                                  &wdev->connect_keys->params[i])) {
1019                         netdev_err(dev, "failed to set key %d\n", i);
1020                         continue;
1021                 }
1022                 if (wdev->connect_keys->def == i &&
1023                     rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1024                         netdev_err(dev, "failed to set defkey %d\n", i);
1025                         continue;
1026                 }
1027         }
1028
1029         kfree_sensitive(wdev->connect_keys);
1030         wdev->connect_keys = NULL;
1031 }
1032
1033 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1034 {
1035         struct cfg80211_event *ev;
1036         unsigned long flags;
1037
1038         spin_lock_irqsave(&wdev->event_lock, flags);
1039         while (!list_empty(&wdev->event_list)) {
1040                 ev = list_first_entry(&wdev->event_list,
1041                                       struct cfg80211_event, list);
1042                 list_del(&ev->list);
1043                 spin_unlock_irqrestore(&wdev->event_lock, flags);
1044
1045                 wdev_lock(wdev);
1046                 switch (ev->type) {
1047                 case EVENT_CONNECT_RESULT:
1048                         __cfg80211_connect_result(
1049                                 wdev->netdev,
1050                                 &ev->cr,
1051                                 ev->cr.status == WLAN_STATUS_SUCCESS);
1052                         break;
1053                 case EVENT_ROAMED:
1054                         __cfg80211_roamed(wdev, &ev->rm);
1055                         break;
1056                 case EVENT_DISCONNECTED:
1057                         __cfg80211_disconnected(wdev->netdev,
1058                                                 ev->dc.ie, ev->dc.ie_len,
1059                                                 ev->dc.reason,
1060                                                 !ev->dc.locally_generated);
1061                         break;
1062                 case EVENT_IBSS_JOINED:
1063                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1064                                                ev->ij.channel);
1065                         break;
1066                 case EVENT_STOPPED:
1067                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1068                         break;
1069                 case EVENT_PORT_AUTHORIZED:
1070                         __cfg80211_port_authorized(wdev, ev->pa.bssid,
1071                                                    ev->pa.td_bitmap,
1072                                                    ev->pa.td_bitmap_len);
1073                         break;
1074                 }
1075                 wdev_unlock(wdev);
1076
1077                 kfree(ev);
1078
1079                 spin_lock_irqsave(&wdev->event_lock, flags);
1080         }
1081         spin_unlock_irqrestore(&wdev->event_lock, flags);
1082 }
1083
1084 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1085 {
1086         struct wireless_dev *wdev;
1087
1088         lockdep_assert_held(&rdev->wiphy.mtx);
1089
1090         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1091                 cfg80211_process_wdev_events(wdev);
1092 }
1093
1094 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1095                           struct net_device *dev, enum nl80211_iftype ntype,
1096                           struct vif_params *params)
1097 {
1098         int err;
1099         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1100
1101         lockdep_assert_held(&rdev->wiphy.mtx);
1102
1103         /* don't support changing VLANs, you just re-create them */
1104         if (otype == NL80211_IFTYPE_AP_VLAN)
1105                 return -EOPNOTSUPP;
1106
1107         /* cannot change into P2P device or NAN */
1108         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1109             ntype == NL80211_IFTYPE_NAN)
1110                 return -EOPNOTSUPP;
1111
1112         if (!rdev->ops->change_virtual_intf ||
1113             !(rdev->wiphy.interface_modes & (1 << ntype)))
1114                 return -EOPNOTSUPP;
1115
1116         if (ntype != otype) {
1117                 /* if it's part of a bridge, reject changing type to station/ibss */
1118                 if (netif_is_bridge_port(dev) &&
1119                     (ntype == NL80211_IFTYPE_ADHOC ||
1120                      ntype == NL80211_IFTYPE_STATION ||
1121                      ntype == NL80211_IFTYPE_P2P_CLIENT))
1122                         return -EBUSY;
1123
1124                 dev->ieee80211_ptr->use_4addr = false;
1125                 wdev_lock(dev->ieee80211_ptr);
1126                 rdev_set_qos_map(rdev, dev, NULL);
1127                 wdev_unlock(dev->ieee80211_ptr);
1128
1129                 switch (otype) {
1130                 case NL80211_IFTYPE_AP:
1131                 case NL80211_IFTYPE_P2P_GO:
1132                         cfg80211_stop_ap(rdev, dev, -1, true);
1133                         break;
1134                 case NL80211_IFTYPE_ADHOC:
1135                         cfg80211_leave_ibss(rdev, dev, false);
1136                         break;
1137                 case NL80211_IFTYPE_STATION:
1138                 case NL80211_IFTYPE_P2P_CLIENT:
1139                         wdev_lock(dev->ieee80211_ptr);
1140                         cfg80211_disconnect(rdev, dev,
1141                                             WLAN_REASON_DEAUTH_LEAVING, true);
1142                         wdev_unlock(dev->ieee80211_ptr);
1143                         break;
1144                 case NL80211_IFTYPE_MESH_POINT:
1145                         /* mesh should be handled? */
1146                         break;
1147                 case NL80211_IFTYPE_OCB:
1148                         cfg80211_leave_ocb(rdev, dev);
1149                         break;
1150                 default:
1151                         break;
1152                 }
1153
1154                 cfg80211_process_rdev_events(rdev);
1155                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1156
1157                 memset(&dev->ieee80211_ptr->u, 0,
1158                        sizeof(dev->ieee80211_ptr->u));
1159                 memset(&dev->ieee80211_ptr->links, 0,
1160                        sizeof(dev->ieee80211_ptr->links));
1161         }
1162
1163         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1164
1165         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1166
1167         if (!err && params && params->use_4addr != -1)
1168                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1169
1170         if (!err) {
1171                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1172                 switch (ntype) {
1173                 case NL80211_IFTYPE_STATION:
1174                         if (dev->ieee80211_ptr->use_4addr)
1175                                 break;
1176                         fallthrough;
1177                 case NL80211_IFTYPE_OCB:
1178                 case NL80211_IFTYPE_P2P_CLIENT:
1179                 case NL80211_IFTYPE_ADHOC:
1180                         dev->priv_flags |= IFF_DONT_BRIDGE;
1181                         break;
1182                 case NL80211_IFTYPE_P2P_GO:
1183                 case NL80211_IFTYPE_AP:
1184                 case NL80211_IFTYPE_AP_VLAN:
1185                 case NL80211_IFTYPE_MESH_POINT:
1186                         /* bridging OK */
1187                         break;
1188                 case NL80211_IFTYPE_MONITOR:
1189                         /* monitor can't bridge anyway */
1190                         break;
1191                 case NL80211_IFTYPE_UNSPECIFIED:
1192                 case NUM_NL80211_IFTYPES:
1193                         /* not happening */
1194                         break;
1195                 case NL80211_IFTYPE_P2P_DEVICE:
1196                 case NL80211_IFTYPE_WDS:
1197                 case NL80211_IFTYPE_NAN:
1198                         WARN_ON(1);
1199                         break;
1200                 }
1201         }
1202
1203         if (!err && ntype != otype && netif_running(dev)) {
1204                 cfg80211_update_iface_num(rdev, ntype, 1);
1205                 cfg80211_update_iface_num(rdev, otype, -1);
1206         }
1207
1208         return err;
1209 }
1210
1211 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1212 {
1213         int modulation, streams, bitrate;
1214
1215         /* the formula below does only work for MCS values smaller than 32 */
1216         if (WARN_ON_ONCE(rate->mcs >= 32))
1217                 return 0;
1218
1219         modulation = rate->mcs & 7;
1220         streams = (rate->mcs >> 3) + 1;
1221
1222         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1223
1224         if (modulation < 4)
1225                 bitrate *= (modulation + 1);
1226         else if (modulation == 4)
1227                 bitrate *= (modulation + 2);
1228         else
1229                 bitrate *= (modulation + 3);
1230
1231         bitrate *= streams;
1232
1233         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1234                 bitrate = (bitrate / 9) * 10;
1235
1236         /* do NOT round down here */
1237         return (bitrate + 50000) / 100000;
1238 }
1239
1240 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1241 {
1242         static const u32 __mcs2bitrate[] = {
1243                 /* control PHY */
1244                 [0] =   275,
1245                 /* SC PHY */
1246                 [1] =  3850,
1247                 [2] =  7700,
1248                 [3] =  9625,
1249                 [4] = 11550,
1250                 [5] = 12512, /* 1251.25 mbps */
1251                 [6] = 15400,
1252                 [7] = 19250,
1253                 [8] = 23100,
1254                 [9] = 25025,
1255                 [10] = 30800,
1256                 [11] = 38500,
1257                 [12] = 46200,
1258                 /* OFDM PHY */
1259                 [13] =  6930,
1260                 [14] =  8662, /* 866.25 mbps */
1261                 [15] = 13860,
1262                 [16] = 17325,
1263                 [17] = 20790,
1264                 [18] = 27720,
1265                 [19] = 34650,
1266                 [20] = 41580,
1267                 [21] = 45045,
1268                 [22] = 51975,
1269                 [23] = 62370,
1270                 [24] = 67568, /* 6756.75 mbps */
1271                 /* LP-SC PHY */
1272                 [25] =  6260,
1273                 [26] =  8340,
1274                 [27] = 11120,
1275                 [28] = 12510,
1276                 [29] = 16680,
1277                 [30] = 22240,
1278                 [31] = 25030,
1279         };
1280
1281         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1282                 return 0;
1283
1284         return __mcs2bitrate[rate->mcs];
1285 }
1286
1287 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1288 {
1289         static const u32 __mcs2bitrate[] = {
1290                 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1291                 [7 - 6] = 50050, /* MCS 12.1 */
1292                 [8 - 6] = 53900,
1293                 [9 - 6] = 57750,
1294                 [10 - 6] = 63900,
1295                 [11 - 6] = 75075,
1296                 [12 - 6] = 80850,
1297         };
1298
1299         /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1300         if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1301                 return 0;
1302
1303         return __mcs2bitrate[rate->mcs - 6];
1304 }
1305
1306 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1307 {
1308         static const u32 __mcs2bitrate[] = {
1309                 /* control PHY */
1310                 [0] =   275,
1311                 /* SC PHY */
1312                 [1] =  3850,
1313                 [2] =  7700,
1314                 [3] =  9625,
1315                 [4] = 11550,
1316                 [5] = 12512, /* 1251.25 mbps */
1317                 [6] = 13475,
1318                 [7] = 15400,
1319                 [8] = 19250,
1320                 [9] = 23100,
1321                 [10] = 25025,
1322                 [11] = 26950,
1323                 [12] = 30800,
1324                 [13] = 38500,
1325                 [14] = 46200,
1326                 [15] = 50050,
1327                 [16] = 53900,
1328                 [17] = 57750,
1329                 [18] = 69300,
1330                 [19] = 75075,
1331                 [20] = 80850,
1332         };
1333
1334         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1335                 return 0;
1336
1337         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1338 }
1339
1340 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1341 {
1342         static const u32 base[4][12] = {
1343                 {   6500000,
1344                    13000000,
1345                    19500000,
1346                    26000000,
1347                    39000000,
1348                    52000000,
1349                    58500000,
1350                    65000000,
1351                    78000000,
1352                 /* not in the spec, but some devices use this: */
1353                    86700000,
1354                    97500000,
1355                   108300000,
1356                 },
1357                 {  13500000,
1358                    27000000,
1359                    40500000,
1360                    54000000,
1361                    81000000,
1362                   108000000,
1363                   121500000,
1364                   135000000,
1365                   162000000,
1366                   180000000,
1367                   202500000,
1368                   225000000,
1369                 },
1370                 {  29300000,
1371                    58500000,
1372                    87800000,
1373                   117000000,
1374                   175500000,
1375                   234000000,
1376                   263300000,
1377                   292500000,
1378                   351000000,
1379                   390000000,
1380                   438800000,
1381                   487500000,
1382                 },
1383                 {  58500000,
1384                   117000000,
1385                   175500000,
1386                   234000000,
1387                   351000000,
1388                   468000000,
1389                   526500000,
1390                   585000000,
1391                   702000000,
1392                   780000000,
1393                   877500000,
1394                   975000000,
1395                 },
1396         };
1397         u32 bitrate;
1398         int idx;
1399
1400         if (rate->mcs > 11)
1401                 goto warn;
1402
1403         switch (rate->bw) {
1404         case RATE_INFO_BW_160:
1405                 idx = 3;
1406                 break;
1407         case RATE_INFO_BW_80:
1408                 idx = 2;
1409                 break;
1410         case RATE_INFO_BW_40:
1411                 idx = 1;
1412                 break;
1413         case RATE_INFO_BW_5:
1414         case RATE_INFO_BW_10:
1415         default:
1416                 goto warn;
1417         case RATE_INFO_BW_20:
1418                 idx = 0;
1419         }
1420
1421         bitrate = base[idx][rate->mcs];
1422         bitrate *= rate->nss;
1423
1424         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1425                 bitrate = (bitrate / 9) * 10;
1426
1427         /* do NOT round down here */
1428         return (bitrate + 50000) / 100000;
1429  warn:
1430         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1431                   rate->bw, rate->mcs, rate->nss);
1432         return 0;
1433 }
1434
1435 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1436 {
1437 #define SCALE 6144
1438         u32 mcs_divisors[14] = {
1439                 102399, /* 16.666666... */
1440                  51201, /*  8.333333... */
1441                  34134, /*  5.555555... */
1442                  25599, /*  4.166666... */
1443                  17067, /*  2.777777... */
1444                  12801, /*  2.083333... */
1445                  11377, /*  1.851725... */
1446                  10239, /*  1.666666... */
1447                   8532, /*  1.388888... */
1448                   7680, /*  1.250000... */
1449                   6828, /*  1.111111... */
1450                   6144, /*  1.000000... */
1451                   5690, /*  0.926106... */
1452                   5120, /*  0.833333... */
1453         };
1454         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1455         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1456         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1457         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1458         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1459         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1460         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1461         u64 tmp;
1462         u32 result;
1463
1464         if (WARN_ON_ONCE(rate->mcs > 13))
1465                 return 0;
1466
1467         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1468                 return 0;
1469         if (WARN_ON_ONCE(rate->he_ru_alloc >
1470                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1471                 return 0;
1472         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1473                 return 0;
1474
1475         if (rate->bw == RATE_INFO_BW_160)
1476                 result = rates_160M[rate->he_gi];
1477         else if (rate->bw == RATE_INFO_BW_80 ||
1478                  (rate->bw == RATE_INFO_BW_HE_RU &&
1479                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1480                 result = rates_969[rate->he_gi];
1481         else if (rate->bw == RATE_INFO_BW_40 ||
1482                  (rate->bw == RATE_INFO_BW_HE_RU &&
1483                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1484                 result = rates_484[rate->he_gi];
1485         else if (rate->bw == RATE_INFO_BW_20 ||
1486                  (rate->bw == RATE_INFO_BW_HE_RU &&
1487                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1488                 result = rates_242[rate->he_gi];
1489         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1490                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1491                 result = rates_106[rate->he_gi];
1492         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1493                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1494                 result = rates_52[rate->he_gi];
1495         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1496                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1497                 result = rates_26[rate->he_gi];
1498         else {
1499                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1500                      rate->bw, rate->he_ru_alloc);
1501                 return 0;
1502         }
1503
1504         /* now scale to the appropriate MCS */
1505         tmp = result;
1506         tmp *= SCALE;
1507         do_div(tmp, mcs_divisors[rate->mcs]);
1508         result = tmp;
1509
1510         /* and take NSS, DCM into account */
1511         result = (result * rate->nss) / 8;
1512         if (rate->he_dcm)
1513                 result /= 2;
1514
1515         return result / 10000;
1516 }
1517
1518 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1519 {
1520 #define SCALE 6144
1521         static const u32 mcs_divisors[16] = {
1522                 102399, /* 16.666666... */
1523                  51201, /*  8.333333... */
1524                  34134, /*  5.555555... */
1525                  25599, /*  4.166666... */
1526                  17067, /*  2.777777... */
1527                  12801, /*  2.083333... */
1528                  11377, /*  1.851725... */
1529                  10239, /*  1.666666... */
1530                   8532, /*  1.388888... */
1531                   7680, /*  1.250000... */
1532                   6828, /*  1.111111... */
1533                   6144, /*  1.000000... */
1534                   5690, /*  0.926106... */
1535                   5120, /*  0.833333... */
1536                 409600, /* 66.666666... */
1537                 204800, /* 33.333333... */
1538         };
1539         static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1540         static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1541         static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1542         static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1543         static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1544         static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1545         u64 tmp;
1546         u32 result;
1547
1548         if (WARN_ON_ONCE(rate->mcs > 15))
1549                 return 0;
1550         if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1551                 return 0;
1552         if (WARN_ON_ONCE(rate->eht_ru_alloc >
1553                          NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1554                 return 0;
1555         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1556                 return 0;
1557
1558         /* Bandwidth checks for MCS 14 */
1559         if (rate->mcs == 14) {
1560                 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1561                      rate->bw != RATE_INFO_BW_80 &&
1562                      rate->bw != RATE_INFO_BW_160 &&
1563                      rate->bw != RATE_INFO_BW_320) ||
1564                     (rate->bw == RATE_INFO_BW_EHT_RU &&
1565                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1566                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1567                      rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1568                         WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1569                              rate->bw, rate->eht_ru_alloc);
1570                         return 0;
1571                 }
1572         }
1573
1574         if (rate->bw == RATE_INFO_BW_320 ||
1575             (rate->bw == RATE_INFO_BW_EHT_RU &&
1576              rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1577                 result = 4 * rates_996[rate->eht_gi];
1578         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1579                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1580                 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1581         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1582                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1583                 result = 3 * rates_996[rate->eht_gi];
1584         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1585                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1586                 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1587         else if (rate->bw == RATE_INFO_BW_160 ||
1588                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1589                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1590                 result = 2 * rates_996[rate->eht_gi];
1591         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1592                  rate->eht_ru_alloc ==
1593                  NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1594                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1595                          + rates_242[rate->eht_gi];
1596         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1597                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1598                 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1599         else if (rate->bw == RATE_INFO_BW_80 ||
1600                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1601                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1602                 result = rates_996[rate->eht_gi];
1603         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1604                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1605                 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1606         else if (rate->bw == RATE_INFO_BW_40 ||
1607                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1608                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1609                 result = rates_484[rate->eht_gi];
1610         else if (rate->bw == RATE_INFO_BW_20 ||
1611                  (rate->bw == RATE_INFO_BW_EHT_RU &&
1612                   rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1613                 result = rates_242[rate->eht_gi];
1614         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1615                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1616                 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1617         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1618                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1619                 result = rates_106[rate->eht_gi];
1620         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1621                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1622                 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1623         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1624                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1625                 result = rates_52[rate->eht_gi];
1626         else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1627                  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1628                 result = rates_26[rate->eht_gi];
1629         else {
1630                 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1631                      rate->bw, rate->eht_ru_alloc);
1632                 return 0;
1633         }
1634
1635         /* now scale to the appropriate MCS */
1636         tmp = result;
1637         tmp *= SCALE;
1638         do_div(tmp, mcs_divisors[rate->mcs]);
1639
1640         /* and take NSS */
1641         tmp *= rate->nss;
1642         do_div(tmp, 8);
1643
1644         result = tmp;
1645
1646         return result / 10000;
1647 }
1648
1649 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1650 {
1651         if (rate->flags & RATE_INFO_FLAGS_MCS)
1652                 return cfg80211_calculate_bitrate_ht(rate);
1653         if (rate->flags & RATE_INFO_FLAGS_DMG)
1654                 return cfg80211_calculate_bitrate_dmg(rate);
1655         if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1656                 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1657         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1658                 return cfg80211_calculate_bitrate_edmg(rate);
1659         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1660                 return cfg80211_calculate_bitrate_vht(rate);
1661         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1662                 return cfg80211_calculate_bitrate_he(rate);
1663         if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1664                 return cfg80211_calculate_bitrate_eht(rate);
1665
1666         return rate->legacy;
1667 }
1668 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1669
1670 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1671                           enum ieee80211_p2p_attr_id attr,
1672                           u8 *buf, unsigned int bufsize)
1673 {
1674         u8 *out = buf;
1675         u16 attr_remaining = 0;
1676         bool desired_attr = false;
1677         u16 desired_len = 0;
1678
1679         while (len > 0) {
1680                 unsigned int iedatalen;
1681                 unsigned int copy;
1682                 const u8 *iedata;
1683
1684                 if (len < 2)
1685                         return -EILSEQ;
1686                 iedatalen = ies[1];
1687                 if (iedatalen + 2 > len)
1688                         return -EILSEQ;
1689
1690                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1691                         goto cont;
1692
1693                 if (iedatalen < 4)
1694                         goto cont;
1695
1696                 iedata = ies + 2;
1697
1698                 /* check WFA OUI, P2P subtype */
1699                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1700                     iedata[2] != 0x9a || iedata[3] != 0x09)
1701                         goto cont;
1702
1703                 iedatalen -= 4;
1704                 iedata += 4;
1705
1706                 /* check attribute continuation into this IE */
1707                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1708                 if (copy && desired_attr) {
1709                         desired_len += copy;
1710                         if (out) {
1711                                 memcpy(out, iedata, min(bufsize, copy));
1712                                 out += min(bufsize, copy);
1713                                 bufsize -= min(bufsize, copy);
1714                         }
1715
1716
1717                         if (copy == attr_remaining)
1718                                 return desired_len;
1719                 }
1720
1721                 attr_remaining -= copy;
1722                 if (attr_remaining)
1723                         goto cont;
1724
1725                 iedatalen -= copy;
1726                 iedata += copy;
1727
1728                 while (iedatalen > 0) {
1729                         u16 attr_len;
1730
1731                         /* P2P attribute ID & size must fit */
1732                         if (iedatalen < 3)
1733                                 return -EILSEQ;
1734                         desired_attr = iedata[0] == attr;
1735                         attr_len = get_unaligned_le16(iedata + 1);
1736                         iedatalen -= 3;
1737                         iedata += 3;
1738
1739                         copy = min_t(unsigned int, attr_len, iedatalen);
1740
1741                         if (desired_attr) {
1742                                 desired_len += copy;
1743                                 if (out) {
1744                                         memcpy(out, iedata, min(bufsize, copy));
1745                                         out += min(bufsize, copy);
1746                                         bufsize -= min(bufsize, copy);
1747                                 }
1748
1749                                 if (copy == attr_len)
1750                                         return desired_len;
1751                         }
1752
1753                         iedata += copy;
1754                         iedatalen -= copy;
1755                         attr_remaining = attr_len - copy;
1756                 }
1757
1758  cont:
1759                 len -= ies[1] + 2;
1760                 ies += ies[1] + 2;
1761         }
1762
1763         if (attr_remaining && desired_attr)
1764                 return -EILSEQ;
1765
1766         return -ENOENT;
1767 }
1768 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1769
1770 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1771 {
1772         int i;
1773
1774         /* Make sure array values are legal */
1775         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1776                 return false;
1777
1778         i = 0;
1779         while (i < n_ids) {
1780                 if (ids[i] == WLAN_EID_EXTENSION) {
1781                         if (id_ext && (ids[i + 1] == id))
1782                                 return true;
1783
1784                         i += 2;
1785                         continue;
1786                 }
1787
1788                 if (ids[i] == id && !id_ext)
1789                         return true;
1790
1791                 i++;
1792         }
1793         return false;
1794 }
1795
1796 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1797 {
1798         /* we assume a validly formed IEs buffer */
1799         u8 len = ies[pos + 1];
1800
1801         pos += 2 + len;
1802
1803         /* the IE itself must have 255 bytes for fragments to follow */
1804         if (len < 255)
1805                 return pos;
1806
1807         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1808                 len = ies[pos + 1];
1809                 pos += 2 + len;
1810         }
1811
1812         return pos;
1813 }
1814
1815 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1816                               const u8 *ids, int n_ids,
1817                               const u8 *after_ric, int n_after_ric,
1818                               size_t offset)
1819 {
1820         size_t pos = offset;
1821
1822         while (pos < ielen) {
1823                 u8 ext = 0;
1824
1825                 if (ies[pos] == WLAN_EID_EXTENSION)
1826                         ext = 2;
1827                 if ((pos + ext) >= ielen)
1828                         break;
1829
1830                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1831                                           ies[pos] == WLAN_EID_EXTENSION))
1832                         break;
1833
1834                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1835                         pos = skip_ie(ies, ielen, pos);
1836
1837                         while (pos < ielen) {
1838                                 if (ies[pos] == WLAN_EID_EXTENSION)
1839                                         ext = 2;
1840                                 else
1841                                         ext = 0;
1842
1843                                 if ((pos + ext) >= ielen)
1844                                         break;
1845
1846                                 if (!ieee80211_id_in_list(after_ric,
1847                                                           n_after_ric,
1848                                                           ies[pos + ext],
1849                                                           ext == 2))
1850                                         pos = skip_ie(ies, ielen, pos);
1851                                 else
1852                                         break;
1853                         }
1854                 } else {
1855                         pos = skip_ie(ies, ielen, pos);
1856                 }
1857         }
1858
1859         return pos;
1860 }
1861 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1862
1863 bool ieee80211_operating_class_to_band(u8 operating_class,
1864                                        enum nl80211_band *band)
1865 {
1866         switch (operating_class) {
1867         case 112:
1868         case 115 ... 127:
1869         case 128 ... 130:
1870                 *band = NL80211_BAND_5GHZ;
1871                 return true;
1872         case 131 ... 135:
1873                 *band = NL80211_BAND_6GHZ;
1874                 return true;
1875         case 81:
1876         case 82:
1877         case 83:
1878         case 84:
1879                 *band = NL80211_BAND_2GHZ;
1880                 return true;
1881         case 180:
1882                 *band = NL80211_BAND_60GHZ;
1883                 return true;
1884         }
1885
1886         return false;
1887 }
1888 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1889
1890 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1891                                           u8 *op_class)
1892 {
1893         u8 vht_opclass;
1894         u32 freq = chandef->center_freq1;
1895
1896         if (freq >= 2412 && freq <= 2472) {
1897                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1898                         return false;
1899
1900                 /* 2.407 GHz, channels 1..13 */
1901                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1902                         if (freq > chandef->chan->center_freq)
1903                                 *op_class = 83; /* HT40+ */
1904                         else
1905                                 *op_class = 84; /* HT40- */
1906                 } else {
1907                         *op_class = 81;
1908                 }
1909
1910                 return true;
1911         }
1912
1913         if (freq == 2484) {
1914                 /* channel 14 is only for IEEE 802.11b */
1915                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1916                         return false;
1917
1918                 *op_class = 82; /* channel 14 */
1919                 return true;
1920         }
1921
1922         switch (chandef->width) {
1923         case NL80211_CHAN_WIDTH_80:
1924                 vht_opclass = 128;
1925                 break;
1926         case NL80211_CHAN_WIDTH_160:
1927                 vht_opclass = 129;
1928                 break;
1929         case NL80211_CHAN_WIDTH_80P80:
1930                 vht_opclass = 130;
1931                 break;
1932         case NL80211_CHAN_WIDTH_10:
1933         case NL80211_CHAN_WIDTH_5:
1934                 return false; /* unsupported for now */
1935         default:
1936                 vht_opclass = 0;
1937                 break;
1938         }
1939
1940         /* 5 GHz, channels 36..48 */
1941         if (freq >= 5180 && freq <= 5240) {
1942                 if (vht_opclass) {
1943                         *op_class = vht_opclass;
1944                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1945                         if (freq > chandef->chan->center_freq)
1946                                 *op_class = 116;
1947                         else
1948                                 *op_class = 117;
1949                 } else {
1950                         *op_class = 115;
1951                 }
1952
1953                 return true;
1954         }
1955
1956         /* 5 GHz, channels 52..64 */
1957         if (freq >= 5260 && freq <= 5320) {
1958                 if (vht_opclass) {
1959                         *op_class = vht_opclass;
1960                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1961                         if (freq > chandef->chan->center_freq)
1962                                 *op_class = 119;
1963                         else
1964                                 *op_class = 120;
1965                 } else {
1966                         *op_class = 118;
1967                 }
1968
1969                 return true;
1970         }
1971
1972         /* 5 GHz, channels 100..144 */
1973         if (freq >= 5500 && freq <= 5720) {
1974                 if (vht_opclass) {
1975                         *op_class = vht_opclass;
1976                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1977                         if (freq > chandef->chan->center_freq)
1978                                 *op_class = 122;
1979                         else
1980                                 *op_class = 123;
1981                 } else {
1982                         *op_class = 121;
1983                 }
1984
1985                 return true;
1986         }
1987
1988         /* 5 GHz, channels 149..169 */
1989         if (freq >= 5745 && freq <= 5845) {
1990                 if (vht_opclass) {
1991                         *op_class = vht_opclass;
1992                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1993                         if (freq > chandef->chan->center_freq)
1994                                 *op_class = 126;
1995                         else
1996                                 *op_class = 127;
1997                 } else if (freq <= 5805) {
1998                         *op_class = 124;
1999                 } else {
2000                         *op_class = 125;
2001                 }
2002
2003                 return true;
2004         }
2005
2006         /* 56.16 GHz, channel 1..4 */
2007         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2008                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2009                         return false;
2010
2011                 *op_class = 180;
2012                 return true;
2013         }
2014
2015         /* not supported yet */
2016         return false;
2017 }
2018 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2019
2020 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2021 {
2022         switch (wdev->iftype) {
2023         case NL80211_IFTYPE_AP:
2024         case NL80211_IFTYPE_P2P_GO:
2025                 WARN_ON(wdev->valid_links);
2026                 return wdev->links[0].ap.beacon_interval;
2027         case NL80211_IFTYPE_MESH_POINT:
2028                 return wdev->u.mesh.beacon_interval;
2029         case NL80211_IFTYPE_ADHOC:
2030                 return wdev->u.ibss.beacon_interval;
2031         default:
2032                 break;
2033         }
2034
2035         return 0;
2036 }
2037
2038 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2039                                        u32 *beacon_int_gcd,
2040                                        bool *beacon_int_different)
2041 {
2042         struct wireless_dev *wdev;
2043
2044         *beacon_int_gcd = 0;
2045         *beacon_int_different = false;
2046
2047         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2048                 int wdev_bi;
2049
2050                 /* this feature isn't supported with MLO */
2051                 if (wdev->valid_links)
2052                         continue;
2053
2054                 wdev_bi = cfg80211_wdev_bi(wdev);
2055
2056                 if (!wdev_bi)
2057                         continue;
2058
2059                 if (!*beacon_int_gcd) {
2060                         *beacon_int_gcd = wdev_bi;
2061                         continue;
2062                 }
2063
2064                 if (wdev_bi == *beacon_int_gcd)
2065                         continue;
2066
2067                 *beacon_int_different = true;
2068                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2069         }
2070
2071         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2072                 if (*beacon_int_gcd)
2073                         *beacon_int_different = true;
2074                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2075         }
2076 }
2077
2078 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2079                                  enum nl80211_iftype iftype, u32 beacon_int)
2080 {
2081         /*
2082          * This is just a basic pre-condition check; if interface combinations
2083          * are possible the driver must already be checking those with a call
2084          * to cfg80211_check_combinations(), in which case we'll validate more
2085          * through the cfg80211_calculate_bi_data() call and code in
2086          * cfg80211_iter_combinations().
2087          */
2088
2089         if (beacon_int < 10 || beacon_int > 10000)
2090                 return -EINVAL;
2091
2092         return 0;
2093 }
2094
2095 int cfg80211_iter_combinations(struct wiphy *wiphy,
2096                                struct iface_combination_params *params,
2097                                void (*iter)(const struct ieee80211_iface_combination *c,
2098                                             void *data),
2099                                void *data)
2100 {
2101         const struct ieee80211_regdomain *regdom;
2102         enum nl80211_dfs_regions region = 0;
2103         int i, j, iftype;
2104         int num_interfaces = 0;
2105         u32 used_iftypes = 0;
2106         u32 beacon_int_gcd;
2107         bool beacon_int_different;
2108
2109         /*
2110          * This is a bit strange, since the iteration used to rely only on
2111          * the data given by the driver, but here it now relies on context,
2112          * in form of the currently operating interfaces.
2113          * This is OK for all current users, and saves us from having to
2114          * push the GCD calculations into all the drivers.
2115          * In the future, this should probably rely more on data that's in
2116          * cfg80211 already - the only thing not would appear to be any new
2117          * interfaces (while being brought up) and channel/radar data.
2118          */
2119         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2120                                    &beacon_int_gcd, &beacon_int_different);
2121
2122         if (params->radar_detect) {
2123                 rcu_read_lock();
2124                 regdom = rcu_dereference(cfg80211_regdomain);
2125                 if (regdom)
2126                         region = regdom->dfs_region;
2127                 rcu_read_unlock();
2128         }
2129
2130         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2131                 num_interfaces += params->iftype_num[iftype];
2132                 if (params->iftype_num[iftype] > 0 &&
2133                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2134                         used_iftypes |= BIT(iftype);
2135         }
2136
2137         for (i = 0; i < wiphy->n_iface_combinations; i++) {
2138                 const struct ieee80211_iface_combination *c;
2139                 struct ieee80211_iface_limit *limits;
2140                 u32 all_iftypes = 0;
2141
2142                 c = &wiphy->iface_combinations[i];
2143
2144                 if (num_interfaces > c->max_interfaces)
2145                         continue;
2146                 if (params->num_different_channels > c->num_different_channels)
2147                         continue;
2148
2149                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2150                                  GFP_KERNEL);
2151                 if (!limits)
2152                         return -ENOMEM;
2153
2154                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2155                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2156                                 continue;
2157                         for (j = 0; j < c->n_limits; j++) {
2158                                 all_iftypes |= limits[j].types;
2159                                 if (!(limits[j].types & BIT(iftype)))
2160                                         continue;
2161                                 if (limits[j].max < params->iftype_num[iftype])
2162                                         goto cont;
2163                                 limits[j].max -= params->iftype_num[iftype];
2164                         }
2165                 }
2166
2167                 if (params->radar_detect !=
2168                         (c->radar_detect_widths & params->radar_detect))
2169                         goto cont;
2170
2171                 if (params->radar_detect && c->radar_detect_regions &&
2172                     !(c->radar_detect_regions & BIT(region)))
2173                         goto cont;
2174
2175                 /* Finally check that all iftypes that we're currently
2176                  * using are actually part of this combination. If they
2177                  * aren't then we can't use this combination and have
2178                  * to continue to the next.
2179                  */
2180                 if ((all_iftypes & used_iftypes) != used_iftypes)
2181                         goto cont;
2182
2183                 if (beacon_int_gcd) {
2184                         if (c->beacon_int_min_gcd &&
2185                             beacon_int_gcd < c->beacon_int_min_gcd)
2186                                 goto cont;
2187                         if (!c->beacon_int_min_gcd && beacon_int_different)
2188                                 goto cont;
2189                 }
2190
2191                 /* This combination covered all interface types and
2192                  * supported the requested numbers, so we're good.
2193                  */
2194
2195                 (*iter)(c, data);
2196  cont:
2197                 kfree(limits);
2198         }
2199
2200         return 0;
2201 }
2202 EXPORT_SYMBOL(cfg80211_iter_combinations);
2203
2204 static void
2205 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2206                           void *data)
2207 {
2208         int *num = data;
2209         (*num)++;
2210 }
2211
2212 int cfg80211_check_combinations(struct wiphy *wiphy,
2213                                 struct iface_combination_params *params)
2214 {
2215         int err, num = 0;
2216
2217         err = cfg80211_iter_combinations(wiphy, params,
2218                                          cfg80211_iter_sum_ifcombs, &num);
2219         if (err)
2220                 return err;
2221         if (num == 0)
2222                 return -EBUSY;
2223
2224         return 0;
2225 }
2226 EXPORT_SYMBOL(cfg80211_check_combinations);
2227
2228 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2229                            const u8 *rates, unsigned int n_rates,
2230                            u32 *mask)
2231 {
2232         int i, j;
2233
2234         if (!sband)
2235                 return -EINVAL;
2236
2237         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2238                 return -EINVAL;
2239
2240         *mask = 0;
2241
2242         for (i = 0; i < n_rates; i++) {
2243                 int rate = (rates[i] & 0x7f) * 5;
2244                 bool found = false;
2245
2246                 for (j = 0; j < sband->n_bitrates; j++) {
2247                         if (sband->bitrates[j].bitrate == rate) {
2248                                 found = true;
2249                                 *mask |= BIT(j);
2250                                 break;
2251                         }
2252                 }
2253                 if (!found)
2254                         return -EINVAL;
2255         }
2256
2257         /*
2258          * mask must have at least one bit set here since we
2259          * didn't accept a 0-length rates array nor allowed
2260          * entries in the array that didn't exist
2261          */
2262
2263         return 0;
2264 }
2265
2266 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2267 {
2268         enum nl80211_band band;
2269         unsigned int n_channels = 0;
2270
2271         for (band = 0; band < NUM_NL80211_BANDS; band++)
2272                 if (wiphy->bands[band])
2273                         n_channels += wiphy->bands[band]->n_channels;
2274
2275         return n_channels;
2276 }
2277 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2278
2279 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2280                          struct station_info *sinfo)
2281 {
2282         struct cfg80211_registered_device *rdev;
2283         struct wireless_dev *wdev;
2284
2285         wdev = dev->ieee80211_ptr;
2286         if (!wdev)
2287                 return -EOPNOTSUPP;
2288
2289         rdev = wiphy_to_rdev(wdev->wiphy);
2290         if (!rdev->ops->get_station)
2291                 return -EOPNOTSUPP;
2292
2293         memset(sinfo, 0, sizeof(*sinfo));
2294
2295         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2296 }
2297 EXPORT_SYMBOL(cfg80211_get_station);
2298
2299 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2300 {
2301         int i;
2302
2303         if (!f)
2304                 return;
2305
2306         kfree(f->serv_spec_info);
2307         kfree(f->srf_bf);
2308         kfree(f->srf_macs);
2309         for (i = 0; i < f->num_rx_filters; i++)
2310                 kfree(f->rx_filters[i].filter);
2311
2312         for (i = 0; i < f->num_tx_filters; i++)
2313                 kfree(f->tx_filters[i].filter);
2314
2315         kfree(f->rx_filters);
2316         kfree(f->tx_filters);
2317         kfree(f);
2318 }
2319 EXPORT_SYMBOL(cfg80211_free_nan_func);
2320
2321 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2322                                 u32 center_freq_khz, u32 bw_khz)
2323 {
2324         u32 start_freq_khz, end_freq_khz;
2325
2326         start_freq_khz = center_freq_khz - (bw_khz / 2);
2327         end_freq_khz = center_freq_khz + (bw_khz / 2);
2328
2329         if (start_freq_khz >= freq_range->start_freq_khz &&
2330             end_freq_khz <= freq_range->end_freq_khz)
2331                 return true;
2332
2333         return false;
2334 }
2335
2336 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2337 {
2338         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2339                                 sizeof(*(sinfo->pertid)),
2340                                 gfp);
2341         if (!sinfo->pertid)
2342                 return -ENOMEM;
2343
2344         return 0;
2345 }
2346 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2347
2348 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2349 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2350 const unsigned char rfc1042_header[] __aligned(2) =
2351         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2352 EXPORT_SYMBOL(rfc1042_header);
2353
2354 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2355 const unsigned char bridge_tunnel_header[] __aligned(2) =
2356         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2357 EXPORT_SYMBOL(bridge_tunnel_header);
2358
2359 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2360 struct iapp_layer2_update {
2361         u8 da[ETH_ALEN];        /* broadcast */
2362         u8 sa[ETH_ALEN];        /* STA addr */
2363         __be16 len;             /* 6 */
2364         u8 dsap;                /* 0 */
2365         u8 ssap;                /* 0 */
2366         u8 control;
2367         u8 xid_info[3];
2368 } __packed;
2369
2370 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2371 {
2372         struct iapp_layer2_update *msg;
2373         struct sk_buff *skb;
2374
2375         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2376          * bridge devices */
2377
2378         skb = dev_alloc_skb(sizeof(*msg));
2379         if (!skb)
2380                 return;
2381         msg = skb_put(skb, sizeof(*msg));
2382
2383         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2384          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2385
2386         eth_broadcast_addr(msg->da);
2387         ether_addr_copy(msg->sa, addr);
2388         msg->len = htons(6);
2389         msg->dsap = 0;
2390         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2391         msg->control = 0xaf;    /* XID response lsb.1111F101.
2392                                  * F=0 (no poll command; unsolicited frame) */
2393         msg->xid_info[0] = 0x81;        /* XID format identifier */
2394         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2395         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2396
2397         skb->dev = dev;
2398         skb->protocol = eth_type_trans(skb, dev);
2399         memset(skb->cb, 0, sizeof(skb->cb));
2400         netif_rx(skb);
2401 }
2402 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2403
2404 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2405                               enum ieee80211_vht_chanwidth bw,
2406                               int mcs, bool ext_nss_bw_capable,
2407                               unsigned int max_vht_nss)
2408 {
2409         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2410         int ext_nss_bw;
2411         int supp_width;
2412         int i, mcs_encoding;
2413
2414         if (map == 0xffff)
2415                 return 0;
2416
2417         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2418                 return 0;
2419         if (mcs <= 7)
2420                 mcs_encoding = 0;
2421         else if (mcs == 8)
2422                 mcs_encoding = 1;
2423         else
2424                 mcs_encoding = 2;
2425
2426         if (!max_vht_nss) {
2427                 /* find max_vht_nss for the given MCS */
2428                 for (i = 7; i >= 0; i--) {
2429                         int supp = (map >> (2 * i)) & 3;
2430
2431                         if (supp == 3)
2432                                 continue;
2433
2434                         if (supp >= mcs_encoding) {
2435                                 max_vht_nss = i + 1;
2436                                 break;
2437                         }
2438                 }
2439         }
2440
2441         if (!(cap->supp_mcs.tx_mcs_map &
2442                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2443                 return max_vht_nss;
2444
2445         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2446                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2447         supp_width = le32_get_bits(cap->vht_cap_info,
2448                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2449
2450         /* if not capable, treat ext_nss_bw as 0 */
2451         if (!ext_nss_bw_capable)
2452                 ext_nss_bw = 0;
2453
2454         /* This is invalid */
2455         if (supp_width == 3)
2456                 return 0;
2457
2458         /* This is an invalid combination so pretend nothing is supported */
2459         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2460                 return 0;
2461
2462         /*
2463          * Cover all the special cases according to IEEE 802.11-2016
2464          * Table 9-250. All other cases are either factor of 1 or not
2465          * valid/supported.
2466          */
2467         switch (bw) {
2468         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2469         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2470                 if ((supp_width == 1 || supp_width == 2) &&
2471                     ext_nss_bw == 3)
2472                         return 2 * max_vht_nss;
2473                 break;
2474         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2475                 if (supp_width == 0 &&
2476                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2477                         return max_vht_nss / 2;
2478                 if (supp_width == 0 &&
2479                     ext_nss_bw == 3)
2480                         return (3 * max_vht_nss) / 4;
2481                 if (supp_width == 1 &&
2482                     ext_nss_bw == 3)
2483                         return 2 * max_vht_nss;
2484                 break;
2485         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2486                 if (supp_width == 0 && ext_nss_bw == 1)
2487                         return 0; /* not possible */
2488                 if (supp_width == 0 &&
2489                     ext_nss_bw == 2)
2490                         return max_vht_nss / 2;
2491                 if (supp_width == 0 &&
2492                     ext_nss_bw == 3)
2493                         return (3 * max_vht_nss) / 4;
2494                 if (supp_width == 1 &&
2495                     ext_nss_bw == 0)
2496                         return 0; /* not possible */
2497                 if (supp_width == 1 &&
2498                     ext_nss_bw == 1)
2499                         return max_vht_nss / 2;
2500                 if (supp_width == 1 &&
2501                     ext_nss_bw == 2)
2502                         return (3 * max_vht_nss) / 4;
2503                 break;
2504         }
2505
2506         /* not covered or invalid combination received */
2507         return max_vht_nss;
2508 }
2509 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2510
2511 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2512                              bool is_4addr, u8 check_swif)
2513
2514 {
2515         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2516
2517         switch (check_swif) {
2518         case 0:
2519                 if (is_vlan && is_4addr)
2520                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2521                 return wiphy->interface_modes & BIT(iftype);
2522         case 1:
2523                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2524                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2525                 return wiphy->software_iftypes & BIT(iftype);
2526         default:
2527                 break;
2528         }
2529
2530         return false;
2531 }
2532 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2533
2534 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2535 {
2536         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2537
2538         ASSERT_WDEV_LOCK(wdev);
2539
2540         switch (wdev->iftype) {
2541         case NL80211_IFTYPE_AP:
2542         case NL80211_IFTYPE_P2P_GO:
2543                 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2544                 break;
2545         default:
2546                 /* per-link not relevant */
2547                 break;
2548         }
2549
2550         wdev->valid_links &= ~BIT(link_id);
2551
2552         rdev_del_intf_link(rdev, wdev, link_id);
2553
2554         eth_zero_addr(wdev->links[link_id].addr);
2555 }
2556
2557 void cfg80211_remove_links(struct wireless_dev *wdev)
2558 {
2559         unsigned int link_id;
2560
2561         wdev_lock(wdev);
2562         if (wdev->valid_links) {
2563                 for_each_valid_link(wdev, link_id)
2564                         cfg80211_remove_link(wdev, link_id);
2565         }
2566         wdev_unlock(wdev);
2567 }
2568
2569 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2570                                  struct wireless_dev *wdev)
2571 {
2572         cfg80211_remove_links(wdev);
2573
2574         return rdev_del_virtual_intf(rdev, wdev);
2575 }
2576
2577 const struct wiphy_iftype_ext_capab *
2578 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2579 {
2580         int i;
2581
2582         for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2583                 if (wiphy->iftype_ext_capab[i].iftype == type)
2584                         return &wiphy->iftype_ext_capab[i];
2585         }
2586
2587         return NULL;
2588 }
2589 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);