nl80211: Add LC placeholder band definition to nl80211_band
[linux-block.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83         case NL80211_BAND_LC:
84                 if (chan == 14)
85                         return MHZ_TO_KHZ(2484);
86                 else if (chan < 14)
87                         return MHZ_TO_KHZ(2407 + chan * 5);
88                 break;
89         case NL80211_BAND_5GHZ:
90                 if (chan >= 182 && chan <= 196)
91                         return MHZ_TO_KHZ(4000 + chan * 5);
92                 else
93                         return MHZ_TO_KHZ(5000 + chan * 5);
94                 break;
95         case NL80211_BAND_6GHZ:
96                 /* see 802.11ax D6.1 27.3.23.2 */
97                 if (chan == 2)
98                         return MHZ_TO_KHZ(5935);
99                 if (chan <= 233)
100                         return MHZ_TO_KHZ(5950 + chan * 5);
101                 break;
102         case NL80211_BAND_60GHZ:
103                 if (chan < 7)
104                         return MHZ_TO_KHZ(56160 + chan * 2160);
105                 break;
106         case NL80211_BAND_S1GHZ:
107                 return 902000 + chan * 500;
108         default:
109                 ;
110         }
111         return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119                 return NL80211_CHAN_WIDTH_20_NOHT;
120
121         /*S1G defines a single allowed channel width per channel.
122          * Extract that width here.
123          */
124         if (chan->flags & IEEE80211_CHAN_1MHZ)
125                 return NL80211_CHAN_WIDTH_1;
126         else if (chan->flags & IEEE80211_CHAN_2MHZ)
127                 return NL80211_CHAN_WIDTH_2;
128         else if (chan->flags & IEEE80211_CHAN_4MHZ)
129                 return NL80211_CHAN_WIDTH_4;
130         else if (chan->flags & IEEE80211_CHAN_8MHZ)
131                 return NL80211_CHAN_WIDTH_8;
132         else if (chan->flags & IEEE80211_CHAN_16MHZ)
133                 return NL80211_CHAN_WIDTH_16;
134
135         pr_err("unknown channel width for channel at %dKHz?\n",
136                ieee80211_channel_to_khz(chan));
137
138         return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144         /* TODO: just handle MHz for now */
145         freq = KHZ_TO_MHZ(freq);
146
147         /* see 802.11 17.3.8.3.2 and Annex J */
148         if (freq == 2484)
149                 return 14;
150         else if (freq < 2484)
151                 return (freq - 2407) / 5;
152         else if (freq >= 4910 && freq <= 4980)
153                 return (freq - 4000) / 5;
154         else if (freq < 5925)
155                 return (freq - 5000) / 5;
156         else if (freq == 5935)
157                 return 2;
158         else if (freq <= 45000) /* DMG band lower limit */
159                 /* see 802.11ax D6.1 27.3.22.2 */
160                 return (freq - 5950) / 5;
161         else if (freq >= 58320 && freq <= 70200)
162                 return (freq - 56160) / 2160;
163         else
164                 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169                                                     u32 freq)
170 {
171         enum nl80211_band band;
172         struct ieee80211_supported_band *sband;
173         int i;
174
175         for (band = 0; band < NUM_NL80211_BANDS; band++) {
176                 sband = wiphy->bands[band];
177
178                 if (!sband)
179                         continue;
180
181                 for (i = 0; i < sband->n_channels; i++) {
182                         struct ieee80211_channel *chan = &sband->channels[i];
183
184                         if (ieee80211_channel_to_khz(chan) == freq)
185                                 return chan;
186                 }
187         }
188
189         return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195         int i, want;
196
197         switch (sband->band) {
198         case NL80211_BAND_5GHZ:
199         case NL80211_BAND_6GHZ:
200                 want = 3;
201                 for (i = 0; i < sband->n_bitrates; i++) {
202                         if (sband->bitrates[i].bitrate == 60 ||
203                             sband->bitrates[i].bitrate == 120 ||
204                             sband->bitrates[i].bitrate == 240) {
205                                 sband->bitrates[i].flags |=
206                                         IEEE80211_RATE_MANDATORY_A;
207                                 want--;
208                         }
209                 }
210                 WARN_ON(want);
211                 break;
212         case NL80211_BAND_2GHZ:
213         case NL80211_BAND_LC:
214                 want = 7;
215                 for (i = 0; i < sband->n_bitrates; i++) {
216                         switch (sband->bitrates[i].bitrate) {
217                         case 10:
218                         case 20:
219                         case 55:
220                         case 110:
221                                 sband->bitrates[i].flags |=
222                                         IEEE80211_RATE_MANDATORY_B |
223                                         IEEE80211_RATE_MANDATORY_G;
224                                 want--;
225                                 break;
226                         case 60:
227                         case 120:
228                         case 240:
229                                 sband->bitrates[i].flags |=
230                                         IEEE80211_RATE_MANDATORY_G;
231                                 want--;
232                                 fallthrough;
233                         default:
234                                 sband->bitrates[i].flags |=
235                                         IEEE80211_RATE_ERP_G;
236                                 break;
237                         }
238                 }
239                 WARN_ON(want != 0 && want != 3);
240                 break;
241         case NL80211_BAND_60GHZ:
242                 /* check for mandatory HT MCS 1..4 */
243                 WARN_ON(!sband->ht_cap.ht_supported);
244                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245                 break;
246         case NL80211_BAND_S1GHZ:
247                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248                  * mandatory is ok.
249                  */
250                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251                 break;
252         case NUM_NL80211_BANDS:
253         default:
254                 WARN_ON(1);
255                 break;
256         }
257 }
258
259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261         enum nl80211_band band;
262
263         for (band = 0; band < NUM_NL80211_BANDS; band++)
264                 if (wiphy->bands[band])
265                         set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270         int i;
271         for (i = 0; i < wiphy->n_cipher_suites; i++)
272                 if (cipher == wiphy->cipher_suites[i])
273                         return true;
274         return false;
275 }
276
277 static bool
278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280         struct wiphy *wiphy = &rdev->wiphy;
281         int i;
282
283         for (i = 0; i < wiphy->n_cipher_suites; i++) {
284                 switch (wiphy->cipher_suites[i]) {
285                 case WLAN_CIPHER_SUITE_AES_CMAC:
286                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289                         return true;
290                 }
291         }
292
293         return false;
294 }
295
296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297                             int key_idx, bool pairwise)
298 {
299         int max_key_idx;
300
301         if (pairwise)
302                 max_key_idx = 3;
303         else if (wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305                  wiphy_ext_feature_isset(&rdev->wiphy,
306                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307                 max_key_idx = 7;
308         else if (cfg80211_igtk_cipher_supported(rdev))
309                 max_key_idx = 5;
310         else
311                 max_key_idx = 3;
312
313         if (key_idx < 0 || key_idx > max_key_idx)
314                 return false;
315
316         return true;
317 }
318
319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320                                    struct key_params *params, int key_idx,
321                                    bool pairwise, const u8 *mac_addr)
322 {
323         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324                 return -EINVAL;
325
326         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327                 return -EINVAL;
328
329         if (pairwise && !mac_addr)
330                 return -EINVAL;
331
332         switch (params->cipher) {
333         case WLAN_CIPHER_SUITE_TKIP:
334                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335                 if ((pairwise && key_idx) ||
336                     params->mode != NL80211_KEY_RX_TX)
337                         return -EINVAL;
338                 break;
339         case WLAN_CIPHER_SUITE_CCMP:
340         case WLAN_CIPHER_SUITE_CCMP_256:
341         case WLAN_CIPHER_SUITE_GCMP:
342         case WLAN_CIPHER_SUITE_GCMP_256:
343                 /* IEEE802.11-2016 allows only 0 and - when supporting
344                  * Extended Key ID - 1 as index for pairwise keys.
345                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346                  * the driver supports Extended Key ID.
347                  * @NL80211_KEY_SET_TX can't be set when installing and
348                  * validating a key.
349                  */
350                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351                     params->mode == NL80211_KEY_SET_TX)
352                         return -EINVAL;
353                 if (wiphy_ext_feature_isset(&rdev->wiphy,
354                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355                         if (pairwise && (key_idx < 0 || key_idx > 1))
356                                 return -EINVAL;
357                 } else if (pairwise && key_idx) {
358                         return -EINVAL;
359                 }
360                 break;
361         case WLAN_CIPHER_SUITE_AES_CMAC:
362         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365                 /* Disallow BIP (group-only) cipher as pairwise cipher */
366                 if (pairwise)
367                         return -EINVAL;
368                 if (key_idx < 4)
369                         return -EINVAL;
370                 break;
371         case WLAN_CIPHER_SUITE_WEP40:
372         case WLAN_CIPHER_SUITE_WEP104:
373                 if (key_idx > 3)
374                         return -EINVAL;
375                 break;
376         default:
377                 break;
378         }
379
380         switch (params->cipher) {
381         case WLAN_CIPHER_SUITE_WEP40:
382                 if (params->key_len != WLAN_KEY_LEN_WEP40)
383                         return -EINVAL;
384                 break;
385         case WLAN_CIPHER_SUITE_TKIP:
386                 if (params->key_len != WLAN_KEY_LEN_TKIP)
387                         return -EINVAL;
388                 break;
389         case WLAN_CIPHER_SUITE_CCMP:
390                 if (params->key_len != WLAN_KEY_LEN_CCMP)
391                         return -EINVAL;
392                 break;
393         case WLAN_CIPHER_SUITE_CCMP_256:
394                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395                         return -EINVAL;
396                 break;
397         case WLAN_CIPHER_SUITE_GCMP:
398                 if (params->key_len != WLAN_KEY_LEN_GCMP)
399                         return -EINVAL;
400                 break;
401         case WLAN_CIPHER_SUITE_GCMP_256:
402                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403                         return -EINVAL;
404                 break;
405         case WLAN_CIPHER_SUITE_WEP104:
406                 if (params->key_len != WLAN_KEY_LEN_WEP104)
407                         return -EINVAL;
408                 break;
409         case WLAN_CIPHER_SUITE_AES_CMAC:
410                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411                         return -EINVAL;
412                 break;
413         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415                         return -EINVAL;
416                 break;
417         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419                         return -EINVAL;
420                 break;
421         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423                         return -EINVAL;
424                 break;
425         default:
426                 /*
427                  * We don't know anything about this algorithm,
428                  * allow using it -- but the driver must check
429                  * all parameters! We still check below whether
430                  * or not the driver supports this algorithm,
431                  * of course.
432                  */
433                 break;
434         }
435
436         if (params->seq) {
437                 switch (params->cipher) {
438                 case WLAN_CIPHER_SUITE_WEP40:
439                 case WLAN_CIPHER_SUITE_WEP104:
440                         /* These ciphers do not use key sequence */
441                         return -EINVAL;
442                 case WLAN_CIPHER_SUITE_TKIP:
443                 case WLAN_CIPHER_SUITE_CCMP:
444                 case WLAN_CIPHER_SUITE_CCMP_256:
445                 case WLAN_CIPHER_SUITE_GCMP:
446                 case WLAN_CIPHER_SUITE_GCMP_256:
447                 case WLAN_CIPHER_SUITE_AES_CMAC:
448                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451                         if (params->seq_len != 6)
452                                 return -EINVAL;
453                         break;
454                 }
455         }
456
457         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458                 return -EINVAL;
459
460         return 0;
461 }
462
463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465         unsigned int hdrlen = 24;
466
467         if (ieee80211_is_ext(fc)) {
468                 hdrlen = 4;
469                 goto out;
470         }
471
472         if (ieee80211_is_data(fc)) {
473                 if (ieee80211_has_a4(fc))
474                         hdrlen = 30;
475                 if (ieee80211_is_data_qos(fc)) {
476                         hdrlen += IEEE80211_QOS_CTL_LEN;
477                         if (ieee80211_has_order(fc))
478                                 hdrlen += IEEE80211_HT_CTL_LEN;
479                 }
480                 goto out;
481         }
482
483         if (ieee80211_is_mgmt(fc)) {
484                 if (ieee80211_has_order(fc))
485                         hdrlen += IEEE80211_HT_CTL_LEN;
486                 goto out;
487         }
488
489         if (ieee80211_is_ctl(fc)) {
490                 /*
491                  * ACK and CTS are 10 bytes, all others 16. To see how
492                  * to get this condition consider
493                  *   subtype mask:   0b0000000011110000 (0x00F0)
494                  *   ACK subtype:    0b0000000011010000 (0x00D0)
495                  *   CTS subtype:    0b0000000011000000 (0x00C0)
496                  *   bits that matter:         ^^^      (0x00E0)
497                  *   value of those: 0b0000000011000000 (0x00C0)
498                  */
499                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500                         hdrlen = 10;
501                 else
502                         hdrlen = 16;
503         }
504 out:
505         return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511         const struct ieee80211_hdr *hdr =
512                         (const struct ieee80211_hdr *)skb->data;
513         unsigned int hdrlen;
514
515         if (unlikely(skb->len < 10))
516                 return 0;
517         hdrlen = ieee80211_hdrlen(hdr->frame_control);
518         if (unlikely(hdrlen > skb->len))
519                 return 0;
520         return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526         int ae = flags & MESH_FLAGS_AE;
527         /* 802.11-2012, 8.2.4.7.3 */
528         switch (ae) {
529         default:
530         case 0:
531                 return 6;
532         case MESH_FLAGS_AE_A4:
533                 return 12;
534         case MESH_FLAGS_AE_A5_A6:
535                 return 18;
536         }
537 }
538
539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
546                                   const u8 *addr, enum nl80211_iftype iftype,
547                                   u8 data_offset, bool is_amsdu)
548 {
549         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
550         struct {
551                 u8 hdr[ETH_ALEN] __aligned(2);
552                 __be16 proto;
553         } payload;
554         struct ethhdr tmp;
555         u16 hdrlen;
556         u8 mesh_flags = 0;
557
558         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
559                 return -1;
560
561         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
562         if (skb->len < hdrlen + 8)
563                 return -1;
564
565         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
566          * header
567          * IEEE 802.11 address fields:
568          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
569          *   0     0   DA    SA    BSSID n/a
570          *   0     1   DA    BSSID SA    n/a
571          *   1     0   BSSID SA    DA    n/a
572          *   1     1   RA    TA    DA    SA
573          */
574         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
575         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
576
577         if (iftype == NL80211_IFTYPE_MESH_POINT)
578                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
579
580         mesh_flags &= MESH_FLAGS_AE;
581
582         switch (hdr->frame_control &
583                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
584         case cpu_to_le16(IEEE80211_FCTL_TODS):
585                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
586                              iftype != NL80211_IFTYPE_AP_VLAN &&
587                              iftype != NL80211_IFTYPE_P2P_GO))
588                         return -1;
589                 break;
590         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
591                 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
592                              iftype != NL80211_IFTYPE_AP_VLAN &&
593                              iftype != NL80211_IFTYPE_STATION))
594                         return -1;
595                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
596                         if (mesh_flags == MESH_FLAGS_AE_A4)
597                                 return -1;
598                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
599                                 skb_copy_bits(skb, hdrlen +
600                                         offsetof(struct ieee80211s_hdr, eaddr1),
601                                         tmp.h_dest, 2 * ETH_ALEN);
602                         }
603                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
604                 }
605                 break;
606         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
607                 if ((iftype != NL80211_IFTYPE_STATION &&
608                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
609                      iftype != NL80211_IFTYPE_MESH_POINT) ||
610                     (is_multicast_ether_addr(tmp.h_dest) &&
611                      ether_addr_equal(tmp.h_source, addr)))
612                         return -1;
613                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
614                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
615                                 return -1;
616                         if (mesh_flags == MESH_FLAGS_AE_A4)
617                                 skb_copy_bits(skb, hdrlen +
618                                         offsetof(struct ieee80211s_hdr, eaddr1),
619                                         tmp.h_source, ETH_ALEN);
620                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
621                 }
622                 break;
623         case cpu_to_le16(0):
624                 if (iftype != NL80211_IFTYPE_ADHOC &&
625                     iftype != NL80211_IFTYPE_STATION &&
626                     iftype != NL80211_IFTYPE_OCB)
627                                 return -1;
628                 break;
629         }
630
631         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
632         tmp.h_proto = payload.proto;
633
634         if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
635                     tmp.h_proto != htons(ETH_P_AARP) &&
636                     tmp.h_proto != htons(ETH_P_IPX)) ||
637                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
638                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
639                  * replace EtherType */
640                 hdrlen += ETH_ALEN + 2;
641         else
642                 tmp.h_proto = htons(skb->len - hdrlen);
643
644         pskb_pull(skb, hdrlen);
645
646         if (!ehdr)
647                 ehdr = skb_push(skb, sizeof(struct ethhdr));
648         memcpy(ehdr, &tmp, sizeof(tmp));
649
650         return 0;
651 }
652 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
653
654 static void
655 __frame_add_frag(struct sk_buff *skb, struct page *page,
656                  void *ptr, int len, int size)
657 {
658         struct skb_shared_info *sh = skb_shinfo(skb);
659         int page_offset;
660
661         get_page(page);
662         page_offset = ptr - page_address(page);
663         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
664 }
665
666 static void
667 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
668                             int offset, int len)
669 {
670         struct skb_shared_info *sh = skb_shinfo(skb);
671         const skb_frag_t *frag = &sh->frags[0];
672         struct page *frag_page;
673         void *frag_ptr;
674         int frag_len, frag_size;
675         int head_size = skb->len - skb->data_len;
676         int cur_len;
677
678         frag_page = virt_to_head_page(skb->head);
679         frag_ptr = skb->data;
680         frag_size = head_size;
681
682         while (offset >= frag_size) {
683                 offset -= frag_size;
684                 frag_page = skb_frag_page(frag);
685                 frag_ptr = skb_frag_address(frag);
686                 frag_size = skb_frag_size(frag);
687                 frag++;
688         }
689
690         frag_ptr += offset;
691         frag_len = frag_size - offset;
692
693         cur_len = min(len, frag_len);
694
695         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
696         len -= cur_len;
697
698         while (len > 0) {
699                 frag_len = skb_frag_size(frag);
700                 cur_len = min(len, frag_len);
701                 __frame_add_frag(frame, skb_frag_page(frag),
702                                  skb_frag_address(frag), cur_len, frag_len);
703                 len -= cur_len;
704                 frag++;
705         }
706 }
707
708 static struct sk_buff *
709 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
710                        int offset, int len, bool reuse_frag)
711 {
712         struct sk_buff *frame;
713         int cur_len = len;
714
715         if (skb->len - offset < len)
716                 return NULL;
717
718         /*
719          * When reusing framents, copy some data to the head to simplify
720          * ethernet header handling and speed up protocol header processing
721          * in the stack later.
722          */
723         if (reuse_frag)
724                 cur_len = min_t(int, len, 32);
725
726         /*
727          * Allocate and reserve two bytes more for payload
728          * alignment since sizeof(struct ethhdr) is 14.
729          */
730         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
731         if (!frame)
732                 return NULL;
733
734         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
735         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
736
737         len -= cur_len;
738         if (!len)
739                 return frame;
740
741         offset += cur_len;
742         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
743
744         return frame;
745 }
746
747 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
748                               const u8 *addr, enum nl80211_iftype iftype,
749                               const unsigned int extra_headroom,
750                               const u8 *check_da, const u8 *check_sa)
751 {
752         unsigned int hlen = ALIGN(extra_headroom, 4);
753         struct sk_buff *frame = NULL;
754         u16 ethertype;
755         u8 *payload;
756         int offset = 0, remaining;
757         struct ethhdr eth;
758         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
759         bool reuse_skb = false;
760         bool last = false;
761
762         while (!last) {
763                 unsigned int subframe_len;
764                 int len;
765                 u8 padding;
766
767                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
768                 len = ntohs(eth.h_proto);
769                 subframe_len = sizeof(struct ethhdr) + len;
770                 padding = (4 - subframe_len) & 0x3;
771
772                 /* the last MSDU has no padding */
773                 remaining = skb->len - offset;
774                 if (subframe_len > remaining)
775                         goto purge;
776                 /* mitigate A-MSDU aggregation injection attacks */
777                 if (ether_addr_equal(eth.h_dest, rfc1042_header))
778                         goto purge;
779
780                 offset += sizeof(struct ethhdr);
781                 last = remaining <= subframe_len + padding;
782
783                 /* FIXME: should we really accept multicast DA? */
784                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
785                      !ether_addr_equal(check_da, eth.h_dest)) ||
786                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
787                         offset += len + padding;
788                         continue;
789                 }
790
791                 /* reuse skb for the last subframe */
792                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
793                         skb_pull(skb, offset);
794                         frame = skb;
795                         reuse_skb = true;
796                 } else {
797                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
798                                                        reuse_frag);
799                         if (!frame)
800                                 goto purge;
801
802                         offset += len + padding;
803                 }
804
805                 skb_reset_network_header(frame);
806                 frame->dev = skb->dev;
807                 frame->priority = skb->priority;
808
809                 payload = frame->data;
810                 ethertype = (payload[6] << 8) | payload[7];
811                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
812                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
813                            ether_addr_equal(payload, bridge_tunnel_header))) {
814                         eth.h_proto = htons(ethertype);
815                         skb_pull(frame, ETH_ALEN + 2);
816                 }
817
818                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
819                 __skb_queue_tail(list, frame);
820         }
821
822         if (!reuse_skb)
823                 dev_kfree_skb(skb);
824
825         return;
826
827  purge:
828         __skb_queue_purge(list);
829         dev_kfree_skb(skb);
830 }
831 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
832
833 /* Given a data frame determine the 802.1p/1d tag to use. */
834 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
835                                     struct cfg80211_qos_map *qos_map)
836 {
837         unsigned int dscp;
838         unsigned char vlan_priority;
839         unsigned int ret;
840
841         /* skb->priority values from 256->263 are magic values to
842          * directly indicate a specific 802.1d priority.  This is used
843          * to allow 802.1d priority to be passed directly in from VLAN
844          * tags, etc.
845          */
846         if (skb->priority >= 256 && skb->priority <= 263) {
847                 ret = skb->priority - 256;
848                 goto out;
849         }
850
851         if (skb_vlan_tag_present(skb)) {
852                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
853                         >> VLAN_PRIO_SHIFT;
854                 if (vlan_priority > 0) {
855                         ret = vlan_priority;
856                         goto out;
857                 }
858         }
859
860         switch (skb->protocol) {
861         case htons(ETH_P_IP):
862                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
863                 break;
864         case htons(ETH_P_IPV6):
865                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
866                 break;
867         case htons(ETH_P_MPLS_UC):
868         case htons(ETH_P_MPLS_MC): {
869                 struct mpls_label mpls_tmp, *mpls;
870
871                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
872                                           sizeof(*mpls), &mpls_tmp);
873                 if (!mpls)
874                         return 0;
875
876                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
877                         >> MPLS_LS_TC_SHIFT;
878                 goto out;
879         }
880         case htons(ETH_P_80221):
881                 /* 802.21 is always network control traffic */
882                 return 7;
883         default:
884                 return 0;
885         }
886
887         if (qos_map) {
888                 unsigned int i, tmp_dscp = dscp >> 2;
889
890                 for (i = 0; i < qos_map->num_des; i++) {
891                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
892                                 ret = qos_map->dscp_exception[i].up;
893                                 goto out;
894                         }
895                 }
896
897                 for (i = 0; i < 8; i++) {
898                         if (tmp_dscp >= qos_map->up[i].low &&
899                             tmp_dscp <= qos_map->up[i].high) {
900                                 ret = i;
901                                 goto out;
902                         }
903                 }
904         }
905
906         ret = dscp >> 5;
907 out:
908         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
909 }
910 EXPORT_SYMBOL(cfg80211_classify8021d);
911
912 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
913 {
914         const struct cfg80211_bss_ies *ies;
915
916         ies = rcu_dereference(bss->ies);
917         if (!ies)
918                 return NULL;
919
920         return cfg80211_find_elem(id, ies->data, ies->len);
921 }
922 EXPORT_SYMBOL(ieee80211_bss_get_elem);
923
924 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
925 {
926         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
927         struct net_device *dev = wdev->netdev;
928         int i;
929
930         if (!wdev->connect_keys)
931                 return;
932
933         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
934                 if (!wdev->connect_keys->params[i].cipher)
935                         continue;
936                 if (rdev_add_key(rdev, dev, i, false, NULL,
937                                  &wdev->connect_keys->params[i])) {
938                         netdev_err(dev, "failed to set key %d\n", i);
939                         continue;
940                 }
941                 if (wdev->connect_keys->def == i &&
942                     rdev_set_default_key(rdev, dev, i, true, true)) {
943                         netdev_err(dev, "failed to set defkey %d\n", i);
944                         continue;
945                 }
946         }
947
948         kfree_sensitive(wdev->connect_keys);
949         wdev->connect_keys = NULL;
950 }
951
952 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
953 {
954         struct cfg80211_event *ev;
955         unsigned long flags;
956
957         spin_lock_irqsave(&wdev->event_lock, flags);
958         while (!list_empty(&wdev->event_list)) {
959                 ev = list_first_entry(&wdev->event_list,
960                                       struct cfg80211_event, list);
961                 list_del(&ev->list);
962                 spin_unlock_irqrestore(&wdev->event_lock, flags);
963
964                 wdev_lock(wdev);
965                 switch (ev->type) {
966                 case EVENT_CONNECT_RESULT:
967                         __cfg80211_connect_result(
968                                 wdev->netdev,
969                                 &ev->cr,
970                                 ev->cr.status == WLAN_STATUS_SUCCESS);
971                         break;
972                 case EVENT_ROAMED:
973                         __cfg80211_roamed(wdev, &ev->rm);
974                         break;
975                 case EVENT_DISCONNECTED:
976                         __cfg80211_disconnected(wdev->netdev,
977                                                 ev->dc.ie, ev->dc.ie_len,
978                                                 ev->dc.reason,
979                                                 !ev->dc.locally_generated);
980                         break;
981                 case EVENT_IBSS_JOINED:
982                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
983                                                ev->ij.channel);
984                         break;
985                 case EVENT_STOPPED:
986                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
987                         break;
988                 case EVENT_PORT_AUTHORIZED:
989                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
990                         break;
991                 }
992                 wdev_unlock(wdev);
993
994                 kfree(ev);
995
996                 spin_lock_irqsave(&wdev->event_lock, flags);
997         }
998         spin_unlock_irqrestore(&wdev->event_lock, flags);
999 }
1000
1001 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1002 {
1003         struct wireless_dev *wdev;
1004
1005         lockdep_assert_held(&rdev->wiphy.mtx);
1006
1007         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1008                 cfg80211_process_wdev_events(wdev);
1009 }
1010
1011 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1012                           struct net_device *dev, enum nl80211_iftype ntype,
1013                           struct vif_params *params)
1014 {
1015         int err;
1016         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1017
1018         lockdep_assert_held(&rdev->wiphy.mtx);
1019
1020         /* don't support changing VLANs, you just re-create them */
1021         if (otype == NL80211_IFTYPE_AP_VLAN)
1022                 return -EOPNOTSUPP;
1023
1024         /* cannot change into P2P device or NAN */
1025         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1026             ntype == NL80211_IFTYPE_NAN)
1027                 return -EOPNOTSUPP;
1028
1029         if (!rdev->ops->change_virtual_intf ||
1030             !(rdev->wiphy.interface_modes & (1 << ntype)))
1031                 return -EOPNOTSUPP;
1032
1033         /* if it's part of a bridge, reject changing type to station/ibss */
1034         if (netif_is_bridge_port(dev) &&
1035             (ntype == NL80211_IFTYPE_ADHOC ||
1036              ntype == NL80211_IFTYPE_STATION ||
1037              ntype == NL80211_IFTYPE_P2P_CLIENT))
1038                 return -EBUSY;
1039
1040         if (ntype != otype) {
1041                 dev->ieee80211_ptr->use_4addr = false;
1042                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1043                 wdev_lock(dev->ieee80211_ptr);
1044                 rdev_set_qos_map(rdev, dev, NULL);
1045                 wdev_unlock(dev->ieee80211_ptr);
1046
1047                 switch (otype) {
1048                 case NL80211_IFTYPE_AP:
1049                         cfg80211_stop_ap(rdev, dev, true);
1050                         break;
1051                 case NL80211_IFTYPE_ADHOC:
1052                         cfg80211_leave_ibss(rdev, dev, false);
1053                         break;
1054                 case NL80211_IFTYPE_STATION:
1055                 case NL80211_IFTYPE_P2P_CLIENT:
1056                         wdev_lock(dev->ieee80211_ptr);
1057                         cfg80211_disconnect(rdev, dev,
1058                                             WLAN_REASON_DEAUTH_LEAVING, true);
1059                         wdev_unlock(dev->ieee80211_ptr);
1060                         break;
1061                 case NL80211_IFTYPE_MESH_POINT:
1062                         /* mesh should be handled? */
1063                         break;
1064                 case NL80211_IFTYPE_OCB:
1065                         cfg80211_leave_ocb(rdev, dev);
1066                         break;
1067                 default:
1068                         break;
1069                 }
1070
1071                 cfg80211_process_rdev_events(rdev);
1072                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1073         }
1074
1075         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1076
1077         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1078
1079         if (!err && params && params->use_4addr != -1)
1080                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1081
1082         if (!err) {
1083                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1084                 switch (ntype) {
1085                 case NL80211_IFTYPE_STATION:
1086                         if (dev->ieee80211_ptr->use_4addr)
1087                                 break;
1088                         fallthrough;
1089                 case NL80211_IFTYPE_OCB:
1090                 case NL80211_IFTYPE_P2P_CLIENT:
1091                 case NL80211_IFTYPE_ADHOC:
1092                         dev->priv_flags |= IFF_DONT_BRIDGE;
1093                         break;
1094                 case NL80211_IFTYPE_P2P_GO:
1095                 case NL80211_IFTYPE_AP:
1096                 case NL80211_IFTYPE_AP_VLAN:
1097                 case NL80211_IFTYPE_MESH_POINT:
1098                         /* bridging OK */
1099                         break;
1100                 case NL80211_IFTYPE_MONITOR:
1101                         /* monitor can't bridge anyway */
1102                         break;
1103                 case NL80211_IFTYPE_UNSPECIFIED:
1104                 case NUM_NL80211_IFTYPES:
1105                         /* not happening */
1106                         break;
1107                 case NL80211_IFTYPE_P2P_DEVICE:
1108                 case NL80211_IFTYPE_WDS:
1109                 case NL80211_IFTYPE_NAN:
1110                         WARN_ON(1);
1111                         break;
1112                 }
1113         }
1114
1115         if (!err && ntype != otype && netif_running(dev)) {
1116                 cfg80211_update_iface_num(rdev, ntype, 1);
1117                 cfg80211_update_iface_num(rdev, otype, -1);
1118         }
1119
1120         return err;
1121 }
1122
1123 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1124 {
1125         int modulation, streams, bitrate;
1126
1127         /* the formula below does only work for MCS values smaller than 32 */
1128         if (WARN_ON_ONCE(rate->mcs >= 32))
1129                 return 0;
1130
1131         modulation = rate->mcs & 7;
1132         streams = (rate->mcs >> 3) + 1;
1133
1134         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1135
1136         if (modulation < 4)
1137                 bitrate *= (modulation + 1);
1138         else if (modulation == 4)
1139                 bitrate *= (modulation + 2);
1140         else
1141                 bitrate *= (modulation + 3);
1142
1143         bitrate *= streams;
1144
1145         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1146                 bitrate = (bitrate / 9) * 10;
1147
1148         /* do NOT round down here */
1149         return (bitrate + 50000) / 100000;
1150 }
1151
1152 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1153 {
1154         static const u32 __mcs2bitrate[] = {
1155                 /* control PHY */
1156                 [0] =   275,
1157                 /* SC PHY */
1158                 [1] =  3850,
1159                 [2] =  7700,
1160                 [3] =  9625,
1161                 [4] = 11550,
1162                 [5] = 12512, /* 1251.25 mbps */
1163                 [6] = 15400,
1164                 [7] = 19250,
1165                 [8] = 23100,
1166                 [9] = 25025,
1167                 [10] = 30800,
1168                 [11] = 38500,
1169                 [12] = 46200,
1170                 /* OFDM PHY */
1171                 [13] =  6930,
1172                 [14] =  8662, /* 866.25 mbps */
1173                 [15] = 13860,
1174                 [16] = 17325,
1175                 [17] = 20790,
1176                 [18] = 27720,
1177                 [19] = 34650,
1178                 [20] = 41580,
1179                 [21] = 45045,
1180                 [22] = 51975,
1181                 [23] = 62370,
1182                 [24] = 67568, /* 6756.75 mbps */
1183                 /* LP-SC PHY */
1184                 [25] =  6260,
1185                 [26] =  8340,
1186                 [27] = 11120,
1187                 [28] = 12510,
1188                 [29] = 16680,
1189                 [30] = 22240,
1190                 [31] = 25030,
1191         };
1192
1193         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1194                 return 0;
1195
1196         return __mcs2bitrate[rate->mcs];
1197 }
1198
1199 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1200 {
1201         static const u32 __mcs2bitrate[] = {
1202                 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1203                 [7 - 6] = 50050, /* MCS 12.1 */
1204                 [8 - 6] = 53900,
1205                 [9 - 6] = 57750,
1206                 [10 - 6] = 63900,
1207                 [11 - 6] = 75075,
1208                 [12 - 6] = 80850,
1209         };
1210
1211         /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1212         if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1213                 return 0;
1214
1215         return __mcs2bitrate[rate->mcs - 6];
1216 }
1217
1218 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1219 {
1220         static const u32 __mcs2bitrate[] = {
1221                 /* control PHY */
1222                 [0] =   275,
1223                 /* SC PHY */
1224                 [1] =  3850,
1225                 [2] =  7700,
1226                 [3] =  9625,
1227                 [4] = 11550,
1228                 [5] = 12512, /* 1251.25 mbps */
1229                 [6] = 13475,
1230                 [7] = 15400,
1231                 [8] = 19250,
1232                 [9] = 23100,
1233                 [10] = 25025,
1234                 [11] = 26950,
1235                 [12] = 30800,
1236                 [13] = 38500,
1237                 [14] = 46200,
1238                 [15] = 50050,
1239                 [16] = 53900,
1240                 [17] = 57750,
1241                 [18] = 69300,
1242                 [19] = 75075,
1243                 [20] = 80850,
1244         };
1245
1246         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1247                 return 0;
1248
1249         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1250 }
1251
1252 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1253 {
1254         static const u32 base[4][12] = {
1255                 {   6500000,
1256                    13000000,
1257                    19500000,
1258                    26000000,
1259                    39000000,
1260                    52000000,
1261                    58500000,
1262                    65000000,
1263                    78000000,
1264                 /* not in the spec, but some devices use this: */
1265                    86700000,
1266                    97500000,
1267                   108300000,
1268                 },
1269                 {  13500000,
1270                    27000000,
1271                    40500000,
1272                    54000000,
1273                    81000000,
1274                   108000000,
1275                   121500000,
1276                   135000000,
1277                   162000000,
1278                   180000000,
1279                   202500000,
1280                   225000000,
1281                 },
1282                 {  29300000,
1283                    58500000,
1284                    87800000,
1285                   117000000,
1286                   175500000,
1287                   234000000,
1288                   263300000,
1289                   292500000,
1290                   351000000,
1291                   390000000,
1292                   438800000,
1293                   487500000,
1294                 },
1295                 {  58500000,
1296                   117000000,
1297                   175500000,
1298                   234000000,
1299                   351000000,
1300                   468000000,
1301                   526500000,
1302                   585000000,
1303                   702000000,
1304                   780000000,
1305                   877500000,
1306                   975000000,
1307                 },
1308         };
1309         u32 bitrate;
1310         int idx;
1311
1312         if (rate->mcs > 11)
1313                 goto warn;
1314
1315         switch (rate->bw) {
1316         case RATE_INFO_BW_160:
1317                 idx = 3;
1318                 break;
1319         case RATE_INFO_BW_80:
1320                 idx = 2;
1321                 break;
1322         case RATE_INFO_BW_40:
1323                 idx = 1;
1324                 break;
1325         case RATE_INFO_BW_5:
1326         case RATE_INFO_BW_10:
1327         default:
1328                 goto warn;
1329         case RATE_INFO_BW_20:
1330                 idx = 0;
1331         }
1332
1333         bitrate = base[idx][rate->mcs];
1334         bitrate *= rate->nss;
1335
1336         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1337                 bitrate = (bitrate / 9) * 10;
1338
1339         /* do NOT round down here */
1340         return (bitrate + 50000) / 100000;
1341  warn:
1342         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1343                   rate->bw, rate->mcs, rate->nss);
1344         return 0;
1345 }
1346
1347 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1348 {
1349 #define SCALE 6144
1350         u32 mcs_divisors[14] = {
1351                 102399, /* 16.666666... */
1352                  51201, /*  8.333333... */
1353                  34134, /*  5.555555... */
1354                  25599, /*  4.166666... */
1355                  17067, /*  2.777777... */
1356                  12801, /*  2.083333... */
1357                  11769, /*  1.851851... */
1358                  10239, /*  1.666666... */
1359                   8532, /*  1.388888... */
1360                   7680, /*  1.250000... */
1361                   6828, /*  1.111111... */
1362                   6144, /*  1.000000... */
1363                   5690, /*  0.926106... */
1364                   5120, /*  0.833333... */
1365         };
1366         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1367         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1368         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1369         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1370         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1371         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1372         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1373         u64 tmp;
1374         u32 result;
1375
1376         if (WARN_ON_ONCE(rate->mcs > 13))
1377                 return 0;
1378
1379         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1380                 return 0;
1381         if (WARN_ON_ONCE(rate->he_ru_alloc >
1382                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1383                 return 0;
1384         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1385                 return 0;
1386
1387         if (rate->bw == RATE_INFO_BW_160)
1388                 result = rates_160M[rate->he_gi];
1389         else if (rate->bw == RATE_INFO_BW_80 ||
1390                  (rate->bw == RATE_INFO_BW_HE_RU &&
1391                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1392                 result = rates_969[rate->he_gi];
1393         else if (rate->bw == RATE_INFO_BW_40 ||
1394                  (rate->bw == RATE_INFO_BW_HE_RU &&
1395                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1396                 result = rates_484[rate->he_gi];
1397         else if (rate->bw == RATE_INFO_BW_20 ||
1398                  (rate->bw == RATE_INFO_BW_HE_RU &&
1399                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1400                 result = rates_242[rate->he_gi];
1401         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1402                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1403                 result = rates_106[rate->he_gi];
1404         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1405                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1406                 result = rates_52[rate->he_gi];
1407         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1408                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1409                 result = rates_26[rate->he_gi];
1410         else {
1411                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1412                      rate->bw, rate->he_ru_alloc);
1413                 return 0;
1414         }
1415
1416         /* now scale to the appropriate MCS */
1417         tmp = result;
1418         tmp *= SCALE;
1419         do_div(tmp, mcs_divisors[rate->mcs]);
1420         result = tmp;
1421
1422         /* and take NSS, DCM into account */
1423         result = (result * rate->nss) / 8;
1424         if (rate->he_dcm)
1425                 result /= 2;
1426
1427         return result / 10000;
1428 }
1429
1430 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1431 {
1432         if (rate->flags & RATE_INFO_FLAGS_MCS)
1433                 return cfg80211_calculate_bitrate_ht(rate);
1434         if (rate->flags & RATE_INFO_FLAGS_DMG)
1435                 return cfg80211_calculate_bitrate_dmg(rate);
1436         if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1437                 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1438         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1439                 return cfg80211_calculate_bitrate_edmg(rate);
1440         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1441                 return cfg80211_calculate_bitrate_vht(rate);
1442         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1443                 return cfg80211_calculate_bitrate_he(rate);
1444
1445         return rate->legacy;
1446 }
1447 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1448
1449 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1450                           enum ieee80211_p2p_attr_id attr,
1451                           u8 *buf, unsigned int bufsize)
1452 {
1453         u8 *out = buf;
1454         u16 attr_remaining = 0;
1455         bool desired_attr = false;
1456         u16 desired_len = 0;
1457
1458         while (len > 0) {
1459                 unsigned int iedatalen;
1460                 unsigned int copy;
1461                 const u8 *iedata;
1462
1463                 if (len < 2)
1464                         return -EILSEQ;
1465                 iedatalen = ies[1];
1466                 if (iedatalen + 2 > len)
1467                         return -EILSEQ;
1468
1469                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1470                         goto cont;
1471
1472                 if (iedatalen < 4)
1473                         goto cont;
1474
1475                 iedata = ies + 2;
1476
1477                 /* check WFA OUI, P2P subtype */
1478                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1479                     iedata[2] != 0x9a || iedata[3] != 0x09)
1480                         goto cont;
1481
1482                 iedatalen -= 4;
1483                 iedata += 4;
1484
1485                 /* check attribute continuation into this IE */
1486                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1487                 if (copy && desired_attr) {
1488                         desired_len += copy;
1489                         if (out) {
1490                                 memcpy(out, iedata, min(bufsize, copy));
1491                                 out += min(bufsize, copy);
1492                                 bufsize -= min(bufsize, copy);
1493                         }
1494
1495
1496                         if (copy == attr_remaining)
1497                                 return desired_len;
1498                 }
1499
1500                 attr_remaining -= copy;
1501                 if (attr_remaining)
1502                         goto cont;
1503
1504                 iedatalen -= copy;
1505                 iedata += copy;
1506
1507                 while (iedatalen > 0) {
1508                         u16 attr_len;
1509
1510                         /* P2P attribute ID & size must fit */
1511                         if (iedatalen < 3)
1512                                 return -EILSEQ;
1513                         desired_attr = iedata[0] == attr;
1514                         attr_len = get_unaligned_le16(iedata + 1);
1515                         iedatalen -= 3;
1516                         iedata += 3;
1517
1518                         copy = min_t(unsigned int, attr_len, iedatalen);
1519
1520                         if (desired_attr) {
1521                                 desired_len += copy;
1522                                 if (out) {
1523                                         memcpy(out, iedata, min(bufsize, copy));
1524                                         out += min(bufsize, copy);
1525                                         bufsize -= min(bufsize, copy);
1526                                 }
1527
1528                                 if (copy == attr_len)
1529                                         return desired_len;
1530                         }
1531
1532                         iedata += copy;
1533                         iedatalen -= copy;
1534                         attr_remaining = attr_len - copy;
1535                 }
1536
1537  cont:
1538                 len -= ies[1] + 2;
1539                 ies += ies[1] + 2;
1540         }
1541
1542         if (attr_remaining && desired_attr)
1543                 return -EILSEQ;
1544
1545         return -ENOENT;
1546 }
1547 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1548
1549 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1550 {
1551         int i;
1552
1553         /* Make sure array values are legal */
1554         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1555                 return false;
1556
1557         i = 0;
1558         while (i < n_ids) {
1559                 if (ids[i] == WLAN_EID_EXTENSION) {
1560                         if (id_ext && (ids[i + 1] == id))
1561                                 return true;
1562
1563                         i += 2;
1564                         continue;
1565                 }
1566
1567                 if (ids[i] == id && !id_ext)
1568                         return true;
1569
1570                 i++;
1571         }
1572         return false;
1573 }
1574
1575 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1576 {
1577         /* we assume a validly formed IEs buffer */
1578         u8 len = ies[pos + 1];
1579
1580         pos += 2 + len;
1581
1582         /* the IE itself must have 255 bytes for fragments to follow */
1583         if (len < 255)
1584                 return pos;
1585
1586         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1587                 len = ies[pos + 1];
1588                 pos += 2 + len;
1589         }
1590
1591         return pos;
1592 }
1593
1594 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1595                               const u8 *ids, int n_ids,
1596                               const u8 *after_ric, int n_after_ric,
1597                               size_t offset)
1598 {
1599         size_t pos = offset;
1600
1601         while (pos < ielen) {
1602                 u8 ext = 0;
1603
1604                 if (ies[pos] == WLAN_EID_EXTENSION)
1605                         ext = 2;
1606                 if ((pos + ext) >= ielen)
1607                         break;
1608
1609                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1610                                           ies[pos] == WLAN_EID_EXTENSION))
1611                         break;
1612
1613                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1614                         pos = skip_ie(ies, ielen, pos);
1615
1616                         while (pos < ielen) {
1617                                 if (ies[pos] == WLAN_EID_EXTENSION)
1618                                         ext = 2;
1619                                 else
1620                                         ext = 0;
1621
1622                                 if ((pos + ext) >= ielen)
1623                                         break;
1624
1625                                 if (!ieee80211_id_in_list(after_ric,
1626                                                           n_after_ric,
1627                                                           ies[pos + ext],
1628                                                           ext == 2))
1629                                         pos = skip_ie(ies, ielen, pos);
1630                                 else
1631                                         break;
1632                         }
1633                 } else {
1634                         pos = skip_ie(ies, ielen, pos);
1635                 }
1636         }
1637
1638         return pos;
1639 }
1640 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1641
1642 bool ieee80211_operating_class_to_band(u8 operating_class,
1643                                        enum nl80211_band *band)
1644 {
1645         switch (operating_class) {
1646         case 112:
1647         case 115 ... 127:
1648         case 128 ... 130:
1649                 *band = NL80211_BAND_5GHZ;
1650                 return true;
1651         case 131 ... 135:
1652                 *band = NL80211_BAND_6GHZ;
1653                 return true;
1654         case 81:
1655         case 82:
1656         case 83:
1657         case 84:
1658                 *band = NL80211_BAND_2GHZ;
1659                 return true;
1660         case 180:
1661                 *band = NL80211_BAND_60GHZ;
1662                 return true;
1663         }
1664
1665         return false;
1666 }
1667 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1668
1669 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1670                                           u8 *op_class)
1671 {
1672         u8 vht_opclass;
1673         u32 freq = chandef->center_freq1;
1674
1675         if (freq >= 2412 && freq <= 2472) {
1676                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1677                         return false;
1678
1679                 /* 2.407 GHz, channels 1..13 */
1680                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1681                         if (freq > chandef->chan->center_freq)
1682                                 *op_class = 83; /* HT40+ */
1683                         else
1684                                 *op_class = 84; /* HT40- */
1685                 } else {
1686                         *op_class = 81;
1687                 }
1688
1689                 return true;
1690         }
1691
1692         if (freq == 2484) {
1693                 /* channel 14 is only for IEEE 802.11b */
1694                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1695                         return false;
1696
1697                 *op_class = 82; /* channel 14 */
1698                 return true;
1699         }
1700
1701         switch (chandef->width) {
1702         case NL80211_CHAN_WIDTH_80:
1703                 vht_opclass = 128;
1704                 break;
1705         case NL80211_CHAN_WIDTH_160:
1706                 vht_opclass = 129;
1707                 break;
1708         case NL80211_CHAN_WIDTH_80P80:
1709                 vht_opclass = 130;
1710                 break;
1711         case NL80211_CHAN_WIDTH_10:
1712         case NL80211_CHAN_WIDTH_5:
1713                 return false; /* unsupported for now */
1714         default:
1715                 vht_opclass = 0;
1716                 break;
1717         }
1718
1719         /* 5 GHz, channels 36..48 */
1720         if (freq >= 5180 && freq <= 5240) {
1721                 if (vht_opclass) {
1722                         *op_class = vht_opclass;
1723                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1724                         if (freq > chandef->chan->center_freq)
1725                                 *op_class = 116;
1726                         else
1727                                 *op_class = 117;
1728                 } else {
1729                         *op_class = 115;
1730                 }
1731
1732                 return true;
1733         }
1734
1735         /* 5 GHz, channels 52..64 */
1736         if (freq >= 5260 && freq <= 5320) {
1737                 if (vht_opclass) {
1738                         *op_class = vht_opclass;
1739                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1740                         if (freq > chandef->chan->center_freq)
1741                                 *op_class = 119;
1742                         else
1743                                 *op_class = 120;
1744                 } else {
1745                         *op_class = 118;
1746                 }
1747
1748                 return true;
1749         }
1750
1751         /* 5 GHz, channels 100..144 */
1752         if (freq >= 5500 && freq <= 5720) {
1753                 if (vht_opclass) {
1754                         *op_class = vht_opclass;
1755                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1756                         if (freq > chandef->chan->center_freq)
1757                                 *op_class = 122;
1758                         else
1759                                 *op_class = 123;
1760                 } else {
1761                         *op_class = 121;
1762                 }
1763
1764                 return true;
1765         }
1766
1767         /* 5 GHz, channels 149..169 */
1768         if (freq >= 5745 && freq <= 5845) {
1769                 if (vht_opclass) {
1770                         *op_class = vht_opclass;
1771                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1772                         if (freq > chandef->chan->center_freq)
1773                                 *op_class = 126;
1774                         else
1775                                 *op_class = 127;
1776                 } else if (freq <= 5805) {
1777                         *op_class = 124;
1778                 } else {
1779                         *op_class = 125;
1780                 }
1781
1782                 return true;
1783         }
1784
1785         /* 56.16 GHz, channel 1..4 */
1786         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1787                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1788                         return false;
1789
1790                 *op_class = 180;
1791                 return true;
1792         }
1793
1794         /* not supported yet */
1795         return false;
1796 }
1797 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1798
1799 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1800                                        u32 *beacon_int_gcd,
1801                                        bool *beacon_int_different)
1802 {
1803         struct wireless_dev *wdev;
1804
1805         *beacon_int_gcd = 0;
1806         *beacon_int_different = false;
1807
1808         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1809                 if (!wdev->beacon_interval)
1810                         continue;
1811
1812                 if (!*beacon_int_gcd) {
1813                         *beacon_int_gcd = wdev->beacon_interval;
1814                         continue;
1815                 }
1816
1817                 if (wdev->beacon_interval == *beacon_int_gcd)
1818                         continue;
1819
1820                 *beacon_int_different = true;
1821                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1822         }
1823
1824         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1825                 if (*beacon_int_gcd)
1826                         *beacon_int_different = true;
1827                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1828         }
1829 }
1830
1831 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1832                                  enum nl80211_iftype iftype, u32 beacon_int)
1833 {
1834         /*
1835          * This is just a basic pre-condition check; if interface combinations
1836          * are possible the driver must already be checking those with a call
1837          * to cfg80211_check_combinations(), in which case we'll validate more
1838          * through the cfg80211_calculate_bi_data() call and code in
1839          * cfg80211_iter_combinations().
1840          */
1841
1842         if (beacon_int < 10 || beacon_int > 10000)
1843                 return -EINVAL;
1844
1845         return 0;
1846 }
1847
1848 int cfg80211_iter_combinations(struct wiphy *wiphy,
1849                                struct iface_combination_params *params,
1850                                void (*iter)(const struct ieee80211_iface_combination *c,
1851                                             void *data),
1852                                void *data)
1853 {
1854         const struct ieee80211_regdomain *regdom;
1855         enum nl80211_dfs_regions region = 0;
1856         int i, j, iftype;
1857         int num_interfaces = 0;
1858         u32 used_iftypes = 0;
1859         u32 beacon_int_gcd;
1860         bool beacon_int_different;
1861
1862         /*
1863          * This is a bit strange, since the iteration used to rely only on
1864          * the data given by the driver, but here it now relies on context,
1865          * in form of the currently operating interfaces.
1866          * This is OK for all current users, and saves us from having to
1867          * push the GCD calculations into all the drivers.
1868          * In the future, this should probably rely more on data that's in
1869          * cfg80211 already - the only thing not would appear to be any new
1870          * interfaces (while being brought up) and channel/radar data.
1871          */
1872         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1873                                    &beacon_int_gcd, &beacon_int_different);
1874
1875         if (params->radar_detect) {
1876                 rcu_read_lock();
1877                 regdom = rcu_dereference(cfg80211_regdomain);
1878                 if (regdom)
1879                         region = regdom->dfs_region;
1880                 rcu_read_unlock();
1881         }
1882
1883         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1884                 num_interfaces += params->iftype_num[iftype];
1885                 if (params->iftype_num[iftype] > 0 &&
1886                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1887                         used_iftypes |= BIT(iftype);
1888         }
1889
1890         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1891                 const struct ieee80211_iface_combination *c;
1892                 struct ieee80211_iface_limit *limits;
1893                 u32 all_iftypes = 0;
1894
1895                 c = &wiphy->iface_combinations[i];
1896
1897                 if (num_interfaces > c->max_interfaces)
1898                         continue;
1899                 if (params->num_different_channels > c->num_different_channels)
1900                         continue;
1901
1902                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1903                                  GFP_KERNEL);
1904                 if (!limits)
1905                         return -ENOMEM;
1906
1907                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1908                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1909                                 continue;
1910                         for (j = 0; j < c->n_limits; j++) {
1911                                 all_iftypes |= limits[j].types;
1912                                 if (!(limits[j].types & BIT(iftype)))
1913                                         continue;
1914                                 if (limits[j].max < params->iftype_num[iftype])
1915                                         goto cont;
1916                                 limits[j].max -= params->iftype_num[iftype];
1917                         }
1918                 }
1919
1920                 if (params->radar_detect !=
1921                         (c->radar_detect_widths & params->radar_detect))
1922                         goto cont;
1923
1924                 if (params->radar_detect && c->radar_detect_regions &&
1925                     !(c->radar_detect_regions & BIT(region)))
1926                         goto cont;
1927
1928                 /* Finally check that all iftypes that we're currently
1929                  * using are actually part of this combination. If they
1930                  * aren't then we can't use this combination and have
1931                  * to continue to the next.
1932                  */
1933                 if ((all_iftypes & used_iftypes) != used_iftypes)
1934                         goto cont;
1935
1936                 if (beacon_int_gcd) {
1937                         if (c->beacon_int_min_gcd &&
1938                             beacon_int_gcd < c->beacon_int_min_gcd)
1939                                 goto cont;
1940                         if (!c->beacon_int_min_gcd && beacon_int_different)
1941                                 goto cont;
1942                 }
1943
1944                 /* This combination covered all interface types and
1945                  * supported the requested numbers, so we're good.
1946                  */
1947
1948                 (*iter)(c, data);
1949  cont:
1950                 kfree(limits);
1951         }
1952
1953         return 0;
1954 }
1955 EXPORT_SYMBOL(cfg80211_iter_combinations);
1956
1957 static void
1958 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1959                           void *data)
1960 {
1961         int *num = data;
1962         (*num)++;
1963 }
1964
1965 int cfg80211_check_combinations(struct wiphy *wiphy,
1966                                 struct iface_combination_params *params)
1967 {
1968         int err, num = 0;
1969
1970         err = cfg80211_iter_combinations(wiphy, params,
1971                                          cfg80211_iter_sum_ifcombs, &num);
1972         if (err)
1973                 return err;
1974         if (num == 0)
1975                 return -EBUSY;
1976
1977         return 0;
1978 }
1979 EXPORT_SYMBOL(cfg80211_check_combinations);
1980
1981 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1982                            const u8 *rates, unsigned int n_rates,
1983                            u32 *mask)
1984 {
1985         int i, j;
1986
1987         if (!sband)
1988                 return -EINVAL;
1989
1990         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1991                 return -EINVAL;
1992
1993         *mask = 0;
1994
1995         for (i = 0; i < n_rates; i++) {
1996                 int rate = (rates[i] & 0x7f) * 5;
1997                 bool found = false;
1998
1999                 for (j = 0; j < sband->n_bitrates; j++) {
2000                         if (sband->bitrates[j].bitrate == rate) {
2001                                 found = true;
2002                                 *mask |= BIT(j);
2003                                 break;
2004                         }
2005                 }
2006                 if (!found)
2007                         return -EINVAL;
2008         }
2009
2010         /*
2011          * mask must have at least one bit set here since we
2012          * didn't accept a 0-length rates array nor allowed
2013          * entries in the array that didn't exist
2014          */
2015
2016         return 0;
2017 }
2018
2019 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2020 {
2021         enum nl80211_band band;
2022         unsigned int n_channels = 0;
2023
2024         for (band = 0; band < NUM_NL80211_BANDS; band++)
2025                 if (wiphy->bands[band])
2026                         n_channels += wiphy->bands[band]->n_channels;
2027
2028         return n_channels;
2029 }
2030 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2031
2032 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2033                          struct station_info *sinfo)
2034 {
2035         struct cfg80211_registered_device *rdev;
2036         struct wireless_dev *wdev;
2037
2038         wdev = dev->ieee80211_ptr;
2039         if (!wdev)
2040                 return -EOPNOTSUPP;
2041
2042         rdev = wiphy_to_rdev(wdev->wiphy);
2043         if (!rdev->ops->get_station)
2044                 return -EOPNOTSUPP;
2045
2046         memset(sinfo, 0, sizeof(*sinfo));
2047
2048         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2049 }
2050 EXPORT_SYMBOL(cfg80211_get_station);
2051
2052 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2053 {
2054         int i;
2055
2056         if (!f)
2057                 return;
2058
2059         kfree(f->serv_spec_info);
2060         kfree(f->srf_bf);
2061         kfree(f->srf_macs);
2062         for (i = 0; i < f->num_rx_filters; i++)
2063                 kfree(f->rx_filters[i].filter);
2064
2065         for (i = 0; i < f->num_tx_filters; i++)
2066                 kfree(f->tx_filters[i].filter);
2067
2068         kfree(f->rx_filters);
2069         kfree(f->tx_filters);
2070         kfree(f);
2071 }
2072 EXPORT_SYMBOL(cfg80211_free_nan_func);
2073
2074 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2075                                 u32 center_freq_khz, u32 bw_khz)
2076 {
2077         u32 start_freq_khz, end_freq_khz;
2078
2079         start_freq_khz = center_freq_khz - (bw_khz / 2);
2080         end_freq_khz = center_freq_khz + (bw_khz / 2);
2081
2082         if (start_freq_khz >= freq_range->start_freq_khz &&
2083             end_freq_khz <= freq_range->end_freq_khz)
2084                 return true;
2085
2086         return false;
2087 }
2088
2089 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2090 {
2091         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2092                                 sizeof(*(sinfo->pertid)),
2093                                 gfp);
2094         if (!sinfo->pertid)
2095                 return -ENOMEM;
2096
2097         return 0;
2098 }
2099 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2100
2101 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2102 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2103 const unsigned char rfc1042_header[] __aligned(2) =
2104         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2105 EXPORT_SYMBOL(rfc1042_header);
2106
2107 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2108 const unsigned char bridge_tunnel_header[] __aligned(2) =
2109         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2110 EXPORT_SYMBOL(bridge_tunnel_header);
2111
2112 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2113 struct iapp_layer2_update {
2114         u8 da[ETH_ALEN];        /* broadcast */
2115         u8 sa[ETH_ALEN];        /* STA addr */
2116         __be16 len;             /* 6 */
2117         u8 dsap;                /* 0 */
2118         u8 ssap;                /* 0 */
2119         u8 control;
2120         u8 xid_info[3];
2121 } __packed;
2122
2123 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2124 {
2125         struct iapp_layer2_update *msg;
2126         struct sk_buff *skb;
2127
2128         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2129          * bridge devices */
2130
2131         skb = dev_alloc_skb(sizeof(*msg));
2132         if (!skb)
2133                 return;
2134         msg = skb_put(skb, sizeof(*msg));
2135
2136         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2137          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2138
2139         eth_broadcast_addr(msg->da);
2140         ether_addr_copy(msg->sa, addr);
2141         msg->len = htons(6);
2142         msg->dsap = 0;
2143         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2144         msg->control = 0xaf;    /* XID response lsb.1111F101.
2145                                  * F=0 (no poll command; unsolicited frame) */
2146         msg->xid_info[0] = 0x81;        /* XID format identifier */
2147         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2148         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2149
2150         skb->dev = dev;
2151         skb->protocol = eth_type_trans(skb, dev);
2152         memset(skb->cb, 0, sizeof(skb->cb));
2153         netif_rx_ni(skb);
2154 }
2155 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2156
2157 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2158                               enum ieee80211_vht_chanwidth bw,
2159                               int mcs, bool ext_nss_bw_capable,
2160                               unsigned int max_vht_nss)
2161 {
2162         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2163         int ext_nss_bw;
2164         int supp_width;
2165         int i, mcs_encoding;
2166
2167         if (map == 0xffff)
2168                 return 0;
2169
2170         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2171                 return 0;
2172         if (mcs <= 7)
2173                 mcs_encoding = 0;
2174         else if (mcs == 8)
2175                 mcs_encoding = 1;
2176         else
2177                 mcs_encoding = 2;
2178
2179         if (!max_vht_nss) {
2180                 /* find max_vht_nss for the given MCS */
2181                 for (i = 7; i >= 0; i--) {
2182                         int supp = (map >> (2 * i)) & 3;
2183
2184                         if (supp == 3)
2185                                 continue;
2186
2187                         if (supp >= mcs_encoding) {
2188                                 max_vht_nss = i + 1;
2189                                 break;
2190                         }
2191                 }
2192         }
2193
2194         if (!(cap->supp_mcs.tx_mcs_map &
2195                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2196                 return max_vht_nss;
2197
2198         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2199                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2200         supp_width = le32_get_bits(cap->vht_cap_info,
2201                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2202
2203         /* if not capable, treat ext_nss_bw as 0 */
2204         if (!ext_nss_bw_capable)
2205                 ext_nss_bw = 0;
2206
2207         /* This is invalid */
2208         if (supp_width == 3)
2209                 return 0;
2210
2211         /* This is an invalid combination so pretend nothing is supported */
2212         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2213                 return 0;
2214
2215         /*
2216          * Cover all the special cases according to IEEE 802.11-2016
2217          * Table 9-250. All other cases are either factor of 1 or not
2218          * valid/supported.
2219          */
2220         switch (bw) {
2221         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2222         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2223                 if ((supp_width == 1 || supp_width == 2) &&
2224                     ext_nss_bw == 3)
2225                         return 2 * max_vht_nss;
2226                 break;
2227         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2228                 if (supp_width == 0 &&
2229                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2230                         return max_vht_nss / 2;
2231                 if (supp_width == 0 &&
2232                     ext_nss_bw == 3)
2233                         return (3 * max_vht_nss) / 4;
2234                 if (supp_width == 1 &&
2235                     ext_nss_bw == 3)
2236                         return 2 * max_vht_nss;
2237                 break;
2238         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2239                 if (supp_width == 0 && ext_nss_bw == 1)
2240                         return 0; /* not possible */
2241                 if (supp_width == 0 &&
2242                     ext_nss_bw == 2)
2243                         return max_vht_nss / 2;
2244                 if (supp_width == 0 &&
2245                     ext_nss_bw == 3)
2246                         return (3 * max_vht_nss) / 4;
2247                 if (supp_width == 1 &&
2248                     ext_nss_bw == 0)
2249                         return 0; /* not possible */
2250                 if (supp_width == 1 &&
2251                     ext_nss_bw == 1)
2252                         return max_vht_nss / 2;
2253                 if (supp_width == 1 &&
2254                     ext_nss_bw == 2)
2255                         return (3 * max_vht_nss) / 4;
2256                 break;
2257         }
2258
2259         /* not covered or invalid combination received */
2260         return max_vht_nss;
2261 }
2262 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2263
2264 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2265                              bool is_4addr, u8 check_swif)
2266
2267 {
2268         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2269
2270         switch (check_swif) {
2271         case 0:
2272                 if (is_vlan && is_4addr)
2273                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2274                 return wiphy->interface_modes & BIT(iftype);
2275         case 1:
2276                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2277                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2278                 return wiphy->software_iftypes & BIT(iftype);
2279         default:
2280                 break;
2281         }
2282
2283         return false;
2284 }
2285 EXPORT_SYMBOL(cfg80211_iftype_allowed);