Merge tag 'media/v6.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-2.6-block.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016       Intel Deutschland GmbH
8  * Copyright (C) 2018-2024 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78 #define IEEE80211_SCAN_RESULT_EXPIRE    (30 * HZ)
79
80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82         struct cfg80211_bss_ies *ies;
83
84         if (WARN_ON(atomic_read(&bss->hold)))
85                 return;
86
87         ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88         if (ies && !bss->pub.hidden_beacon_bss)
89                 kfree_rcu(ies, rcu_head);
90         ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91         if (ies)
92                 kfree_rcu(ies, rcu_head);
93
94         /*
95          * This happens when the module is removed, it doesn't
96          * really matter any more save for completeness
97          */
98         if (!list_empty(&bss->hidden_list))
99                 list_del(&bss->hidden_list);
100
101         kfree(bss);
102 }
103
104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105                                struct cfg80211_internal_bss *bss)
106 {
107         lockdep_assert_held(&rdev->bss_lock);
108
109         bss->refcount++;
110
111         if (bss->pub.hidden_beacon_bss)
112                 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114         if (bss->pub.transmitted_bss)
115                 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117
118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119                                struct cfg80211_internal_bss *bss)
120 {
121         lockdep_assert_held(&rdev->bss_lock);
122
123         if (bss->pub.hidden_beacon_bss) {
124                 struct cfg80211_internal_bss *hbss;
125
126                 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127                 hbss->refcount--;
128                 if (hbss->refcount == 0)
129                         bss_free(hbss);
130         }
131
132         if (bss->pub.transmitted_bss) {
133                 struct cfg80211_internal_bss *tbss;
134
135                 tbss = bss_from_pub(bss->pub.transmitted_bss);
136                 tbss->refcount--;
137                 if (tbss->refcount == 0)
138                         bss_free(tbss);
139         }
140
141         bss->refcount--;
142         if (bss->refcount == 0)
143                 bss_free(bss);
144 }
145
146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147                                   struct cfg80211_internal_bss *bss)
148 {
149         lockdep_assert_held(&rdev->bss_lock);
150
151         if (!list_empty(&bss->hidden_list)) {
152                 /*
153                  * don't remove the beacon entry if it has
154                  * probe responses associated with it
155                  */
156                 if (!bss->pub.hidden_beacon_bss)
157                         return false;
158                 /*
159                  * if it's a probe response entry break its
160                  * link to the other entries in the group
161                  */
162                 list_del_init(&bss->hidden_list);
163         }
164
165         list_del_init(&bss->list);
166         list_del_init(&bss->pub.nontrans_list);
167         rb_erase(&bss->rbn, &rdev->bss_tree);
168         rdev->bss_entries--;
169         WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170                   "rdev bss entries[%d]/list[empty:%d] corruption\n",
171                   rdev->bss_entries, list_empty(&rdev->bss_list));
172         bss_ref_put(rdev, bss);
173         return true;
174 }
175
176 bool cfg80211_is_element_inherited(const struct element *elem,
177                                    const struct element *non_inherit_elem)
178 {
179         u8 id_len, ext_id_len, i, loop_len, id;
180         const u8 *list;
181
182         if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183                 return false;
184
185         if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186             elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187                 return false;
188
189         if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190                 return true;
191
192         /*
193          * non inheritance element format is:
194          * ext ID (56) | IDs list len | list | extension IDs list len | list
195          * Both lists are optional. Both lengths are mandatory.
196          * This means valid length is:
197          * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198          */
199         id_len = non_inherit_elem->data[1];
200         if (non_inherit_elem->datalen < 3 + id_len)
201                 return true;
202
203         ext_id_len = non_inherit_elem->data[2 + id_len];
204         if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205                 return true;
206
207         if (elem->id == WLAN_EID_EXTENSION) {
208                 if (!ext_id_len)
209                         return true;
210                 loop_len = ext_id_len;
211                 list = &non_inherit_elem->data[3 + id_len];
212                 id = elem->data[0];
213         } else {
214                 if (!id_len)
215                         return true;
216                 loop_len = id_len;
217                 list = &non_inherit_elem->data[2];
218                 id = elem->id;
219         }
220
221         for (i = 0; i < loop_len; i++) {
222                 if (list[i] == id)
223                         return false;
224         }
225
226         return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231                                             const u8 *ie, size_t ie_len,
232                                             u8 **pos, u8 *buf, size_t buf_len)
233 {
234         if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235                     elem->data + elem->datalen > ie + ie_len))
236                 return 0;
237
238         if (elem->datalen + 2 > buf + buf_len - *pos)
239                 return 0;
240
241         memcpy(*pos, elem, elem->datalen + 2);
242         *pos += elem->datalen + 2;
243
244         /* Finish if it is not fragmented  */
245         if (elem->datalen != 255)
246                 return *pos - buf;
247
248         ie_len = ie + ie_len - elem->data - elem->datalen;
249         ie = (const u8 *)elem->data + elem->datalen;
250
251         for_each_element(elem, ie, ie_len) {
252                 if (elem->id != WLAN_EID_FRAGMENT)
253                         break;
254
255                 if (elem->datalen + 2 > buf + buf_len - *pos)
256                         return 0;
257
258                 memcpy(*pos, elem, elem->datalen + 2);
259                 *pos += elem->datalen + 2;
260
261                 if (elem->datalen != 255)
262                         break;
263         }
264
265         return *pos - buf;
266 }
267
268 VISIBLE_IF_CFG80211_KUNIT size_t
269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270                     const u8 *subie, size_t subie_len,
271                     u8 *new_ie, size_t new_ie_len)
272 {
273         const struct element *non_inherit_elem, *parent, *sub;
274         u8 *pos = new_ie;
275         u8 id, ext_id;
276         unsigned int match_len;
277
278         non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279                                                   subie, subie_len);
280
281         /* We copy the elements one by one from the parent to the generated
282          * elements.
283          * If they are not inherited (included in subie or in the non
284          * inheritance element), then we copy all occurrences the first time
285          * we see this element type.
286          */
287         for_each_element(parent, ie, ielen) {
288                 if (parent->id == WLAN_EID_FRAGMENT)
289                         continue;
290
291                 if (parent->id == WLAN_EID_EXTENSION) {
292                         if (parent->datalen < 1)
293                                 continue;
294
295                         id = WLAN_EID_EXTENSION;
296                         ext_id = parent->data[0];
297                         match_len = 1;
298                 } else {
299                         id = parent->id;
300                         match_len = 0;
301                 }
302
303                 /* Find first occurrence in subie */
304                 sub = cfg80211_find_elem_match(id, subie, subie_len,
305                                                &ext_id, match_len, 0);
306
307                 /* Copy from parent if not in subie and inherited */
308                 if (!sub &&
309                     cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310                         if (!cfg80211_copy_elem_with_frags(parent,
311                                                            ie, ielen,
312                                                            &pos, new_ie,
313                                                            new_ie_len))
314                                 return 0;
315
316                         continue;
317                 }
318
319                 /* Already copied if an earlier element had the same type */
320                 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321                                              &ext_id, match_len, 0))
322                         continue;
323
324                 /* Not inheriting, copy all similar elements from subie */
325                 while (sub) {
326                         if (!cfg80211_copy_elem_with_frags(sub,
327                                                            subie, subie_len,
328                                                            &pos, new_ie,
329                                                            new_ie_len))
330                                 return 0;
331
332                         sub = cfg80211_find_elem_match(id,
333                                                        sub->data + sub->datalen,
334                                                        subie_len + subie -
335                                                        (sub->data +
336                                                         sub->datalen),
337                                                        &ext_id, match_len, 0);
338                 }
339         }
340
341         /* The above misses elements that are included in subie but not in the
342          * parent, so do a pass over subie and append those.
343          * Skip the non-tx BSSID caps and non-inheritance element.
344          */
345         for_each_element(sub, subie, subie_len) {
346                 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347                         continue;
348
349                 if (sub->id == WLAN_EID_FRAGMENT)
350                         continue;
351
352                 if (sub->id == WLAN_EID_EXTENSION) {
353                         if (sub->datalen < 1)
354                                 continue;
355
356                         id = WLAN_EID_EXTENSION;
357                         ext_id = sub->data[0];
358                         match_len = 1;
359
360                         if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361                                 continue;
362                 } else {
363                         id = sub->id;
364                         match_len = 0;
365                 }
366
367                 /* Processed if one was included in the parent */
368                 if (cfg80211_find_elem_match(id, ie, ielen,
369                                              &ext_id, match_len, 0))
370                         continue;
371
372                 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373                                                    &pos, new_ie, new_ie_len))
374                         return 0;
375         }
376
377         return pos - new_ie;
378 }
379 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
381 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382                    const u8 *ssid, size_t ssid_len)
383 {
384         const struct cfg80211_bss_ies *ies;
385         const struct element *ssid_elem;
386
387         if (bssid && !ether_addr_equal(a->bssid, bssid))
388                 return false;
389
390         if (!ssid)
391                 return true;
392
393         ies = rcu_access_pointer(a->ies);
394         if (!ies)
395                 return false;
396         ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397         if (!ssid_elem)
398                 return false;
399         if (ssid_elem->datalen != ssid_len)
400                 return false;
401         return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402 }
403
404 static int
405 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406                            struct cfg80211_bss *nontrans_bss)
407 {
408         const struct element *ssid_elem;
409         struct cfg80211_bss *bss = NULL;
410
411         rcu_read_lock();
412         ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413         if (!ssid_elem) {
414                 rcu_read_unlock();
415                 return -EINVAL;
416         }
417
418         /* check if nontrans_bss is in the list */
419         list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420                 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421                            ssid_elem->datalen)) {
422                         rcu_read_unlock();
423                         return 0;
424                 }
425         }
426
427         rcu_read_unlock();
428
429         /*
430          * This is a bit weird - it's not on the list, but already on another
431          * one! The only way that could happen is if there's some BSSID/SSID
432          * shared by multiple APs in their multi-BSSID profiles, potentially
433          * with hidden SSID mixed in ... ignore it.
434          */
435         if (!list_empty(&nontrans_bss->nontrans_list))
436                 return -EINVAL;
437
438         /* add to the list */
439         list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440         return 0;
441 }
442
443 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444                                   unsigned long expire_time)
445 {
446         struct cfg80211_internal_bss *bss, *tmp;
447         bool expired = false;
448
449         lockdep_assert_held(&rdev->bss_lock);
450
451         list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452                 if (atomic_read(&bss->hold))
453                         continue;
454                 if (!time_after(expire_time, bss->ts))
455                         continue;
456
457                 if (__cfg80211_unlink_bss(rdev, bss))
458                         expired = true;
459         }
460
461         if (expired)
462                 rdev->bss_generation++;
463 }
464
465 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466 {
467         struct cfg80211_internal_bss *bss, *oldest = NULL;
468         bool ret;
469
470         lockdep_assert_held(&rdev->bss_lock);
471
472         list_for_each_entry(bss, &rdev->bss_list, list) {
473                 if (atomic_read(&bss->hold))
474                         continue;
475
476                 if (!list_empty(&bss->hidden_list) &&
477                     !bss->pub.hidden_beacon_bss)
478                         continue;
479
480                 if (oldest && time_before(oldest->ts, bss->ts))
481                         continue;
482                 oldest = bss;
483         }
484
485         if (WARN_ON(!oldest))
486                 return false;
487
488         /*
489          * The callers make sure to increase rdev->bss_generation if anything
490          * gets removed (and a new entry added), so there's no need to also do
491          * it here.
492          */
493
494         ret = __cfg80211_unlink_bss(rdev, oldest);
495         WARN_ON(!ret);
496         return ret;
497 }
498
499 static u8 cfg80211_parse_bss_param(u8 data,
500                                    struct cfg80211_colocated_ap *coloc_ap)
501 {
502         coloc_ap->oct_recommended =
503                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504         coloc_ap->same_ssid =
505                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506         coloc_ap->multi_bss =
507                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508         coloc_ap->transmitted_bssid =
509                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510         coloc_ap->unsolicited_probe =
511                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512         coloc_ap->colocated_ess =
513                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515         return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516 }
517
518 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519                                     const struct element **elem, u32 *s_ssid)
520 {
521
522         *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523         if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524                 return -EINVAL;
525
526         *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527         return 0;
528 }
529
530 VISIBLE_IF_CFG80211_KUNIT void
531 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532 {
533         struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535         list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536                 list_del(&ap->list);
537                 kfree(ap);
538         }
539 }
540 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
542 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543                                   const u8 *pos, u8 length,
544                                   const struct element *ssid_elem,
545                                   u32 s_ssid_tmp)
546 {
547         u8 bss_params;
548
549         entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551         /* The length is already verified by the caller to contain bss_params */
552         if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553                 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555                 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556                 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557                 entry->short_ssid_valid = true;
558
559                 bss_params = tbtt_info->bss_params;
560
561                 /* Ignore disabled links */
562                 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563                         if (le16_get_bits(tbtt_info->mld_params.params,
564                                           IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565                                 return -EINVAL;
566                 }
567
568                 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569                                           psd_20))
570                         entry->psd_20 = tbtt_info->psd_20;
571         } else {
572                 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574                 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576                 bss_params = tbtt_info->bss_params;
577
578                 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579                                           psd_20))
580                         entry->psd_20 = tbtt_info->psd_20;
581         }
582
583         /* ignore entries with invalid BSSID */
584         if (!is_valid_ether_addr(entry->bssid))
585                 return -EINVAL;
586
587         /* skip non colocated APs */
588         if (!cfg80211_parse_bss_param(bss_params, entry))
589                 return -EINVAL;
590
591         /* no information about the short ssid. Consider the entry valid
592          * for now. It would later be dropped in case there are explicit
593          * SSIDs that need to be matched
594          */
595         if (!entry->same_ssid && !entry->short_ssid_valid)
596                 return 0;
597
598         if (entry->same_ssid) {
599                 entry->short_ssid = s_ssid_tmp;
600                 entry->short_ssid_valid = true;
601
602                 /*
603                  * This is safe because we validate datalen in
604                  * cfg80211_parse_colocated_ap(), before calling this
605                  * function.
606                  */
607                 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608                 entry->ssid_len = ssid_elem->datalen;
609         }
610
611         return 0;
612 }
613
614 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615                        enum cfg80211_rnr_iter_ret
616                        (*iter)(void *data, u8 type,
617                                const struct ieee80211_neighbor_ap_info *info,
618                                const u8 *tbtt_info, u8 tbtt_info_len),
619                        void *iter_data)
620 {
621         const struct element *rnr;
622         const u8 *pos, *end;
623
624         for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625                             elems, elems_len) {
626                 const struct ieee80211_neighbor_ap_info *info;
627
628                 pos = rnr->data;
629                 end = rnr->data + rnr->datalen;
630
631                 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632                 while (sizeof(*info) <= end - pos) {
633                         u8 length, i, count;
634                         u8 type;
635
636                         info = (void *)pos;
637                         count = u8_get_bits(info->tbtt_info_hdr,
638                                             IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639                                 1;
640                         length = info->tbtt_info_len;
641
642                         pos += sizeof(*info);
643
644                         if (count * length > end - pos)
645                                 return false;
646
647                         type = u8_get_bits(info->tbtt_info_hdr,
648                                            IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650                         for (i = 0; i < count; i++) {
651                                 switch (iter(iter_data, type, info,
652                                              pos, length)) {
653                                 case RNR_ITER_CONTINUE:
654                                         break;
655                                 case RNR_ITER_BREAK:
656                                         return true;
657                                 case RNR_ITER_ERROR:
658                                         return false;
659                                 }
660
661                                 pos += length;
662                         }
663                 }
664
665                 if (pos != end)
666                         return false;
667         }
668
669         return true;
670 }
671 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673 struct colocated_ap_data {
674         const struct element *ssid_elem;
675         struct list_head ap_list;
676         u32 s_ssid_tmp;
677         int n_coloc;
678 };
679
680 static enum cfg80211_rnr_iter_ret
681 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682                                  const struct ieee80211_neighbor_ap_info *info,
683                                  const u8 *tbtt_info, u8 tbtt_info_len)
684 {
685         struct colocated_ap_data *data = _data;
686         struct cfg80211_colocated_ap *entry;
687         enum nl80211_band band;
688
689         if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690                 return RNR_ITER_CONTINUE;
691
692         if (!ieee80211_operating_class_to_band(info->op_class, &band))
693                 return RNR_ITER_CONTINUE;
694
695         /* TBTT info must include bss param + BSSID + (short SSID or
696          * same_ssid bit to be set). Ignore other options, and move to
697          * the next AP info
698          */
699         if (band != NL80211_BAND_6GHZ ||
700             !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701                                            bss_params) ||
702               tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703               tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704                                            bss_params)))
705                 return RNR_ITER_CONTINUE;
706
707         entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708         if (!entry)
709                 return RNR_ITER_ERROR;
710
711         entry->center_freq =
712                 ieee80211_channel_to_frequency(info->channel, band);
713
714         if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715                                     data->ssid_elem, data->s_ssid_tmp)) {
716                 data->n_coloc++;
717                 list_add_tail(&entry->list, &data->ap_list);
718         } else {
719                 kfree(entry);
720         }
721
722         return RNR_ITER_CONTINUE;
723 }
724
725 VISIBLE_IF_CFG80211_KUNIT int
726 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727                             struct list_head *list)
728 {
729         struct colocated_ap_data data = {};
730         int ret;
731
732         INIT_LIST_HEAD(&data.ap_list);
733
734         ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735         if (ret)
736                 return 0;
737
738         if (!cfg80211_iter_rnr(ies->data, ies->len,
739                                cfg80211_parse_colocated_ap_iter, &data)) {
740                 cfg80211_free_coloc_ap_list(&data.ap_list);
741                 return 0;
742         }
743
744         list_splice_tail(&data.ap_list, list);
745         return data.n_coloc;
746 }
747 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
749 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750                                         struct ieee80211_channel *chan,
751                                         bool add_to_6ghz)
752 {
753         int i;
754         u32 n_channels = request->n_channels;
755         struct cfg80211_scan_6ghz_params *params =
756                 &request->scan_6ghz_params[request->n_6ghz_params];
757
758         for (i = 0; i < n_channels; i++) {
759                 if (request->channels[i] == chan) {
760                         if (add_to_6ghz)
761                                 params->channel_idx = i;
762                         return;
763                 }
764         }
765
766         request->channels[n_channels] = chan;
767         if (add_to_6ghz)
768                 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769                         n_channels;
770
771         request->n_channels++;
772 }
773
774 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775                                      struct cfg80211_scan_request *request)
776 {
777         int i;
778         u32 s_ssid;
779
780         for (i = 0; i < request->n_ssids; i++) {
781                 /* wildcard ssid in the scan request */
782                 if (!request->ssids[i].ssid_len) {
783                         if (ap->multi_bss && !ap->transmitted_bssid)
784                                 continue;
785
786                         return true;
787                 }
788
789                 if (ap->ssid_len &&
790                     ap->ssid_len == request->ssids[i].ssid_len) {
791                         if (!memcmp(request->ssids[i].ssid, ap->ssid,
792                                     ap->ssid_len))
793                                 return true;
794                 } else if (ap->short_ssid_valid) {
795                         s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
796                                            request->ssids[i].ssid_len);
797
798                         if (ap->short_ssid == s_ssid)
799                                 return true;
800                 }
801         }
802
803         return false;
804 }
805
806 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807 {
808         u8 i;
809         struct cfg80211_colocated_ap *ap;
810         int n_channels, count = 0, err;
811         struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812         LIST_HEAD(coloc_ap_list);
813         bool need_scan_psc = true;
814         const struct ieee80211_sband_iftype_data *iftd;
815
816         rdev_req->scan_6ghz = true;
817
818         if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819                 return -EOPNOTSUPP;
820
821         iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
822                                                rdev_req->wdev->iftype);
823         if (!iftd || !iftd->he_cap.has_he)
824                 return -EOPNOTSUPP;
825
826         n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
827
828         if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
829                 struct cfg80211_internal_bss *intbss;
830
831                 spin_lock_bh(&rdev->bss_lock);
832                 list_for_each_entry(intbss, &rdev->bss_list, list) {
833                         struct cfg80211_bss *res = &intbss->pub;
834                         const struct cfg80211_bss_ies *ies;
835                         const struct element *ssid_elem;
836                         struct cfg80211_colocated_ap *entry;
837                         u32 s_ssid_tmp;
838                         int ret;
839
840                         ies = rcu_access_pointer(res->ies);
841                         count += cfg80211_parse_colocated_ap(ies,
842                                                              &coloc_ap_list);
843
844                         /* In case the scan request specified a specific BSSID
845                          * and the BSS is found and operating on 6GHz band then
846                          * add this AP to the collocated APs list.
847                          * This is relevant for ML probe requests when the lower
848                          * band APs have not been discovered.
849                          */
850                         if (is_broadcast_ether_addr(rdev_req->bssid) ||
851                             !ether_addr_equal(rdev_req->bssid, res->bssid) ||
852                             res->channel->band != NL80211_BAND_6GHZ)
853                                 continue;
854
855                         ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
856                                                        &s_ssid_tmp);
857                         if (ret)
858                                 continue;
859
860                         entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
861                                         GFP_ATOMIC);
862
863                         if (!entry)
864                                 continue;
865
866                         memcpy(entry->bssid, res->bssid, ETH_ALEN);
867                         entry->short_ssid = s_ssid_tmp;
868                         memcpy(entry->ssid, ssid_elem->data,
869                                ssid_elem->datalen);
870                         entry->ssid_len = ssid_elem->datalen;
871                         entry->short_ssid_valid = true;
872                         entry->center_freq = res->channel->center_freq;
873
874                         list_add_tail(&entry->list, &coloc_ap_list);
875                         count++;
876                 }
877                 spin_unlock_bh(&rdev->bss_lock);
878         }
879
880         request = kzalloc(struct_size(request, channels, n_channels) +
881                           sizeof(*request->scan_6ghz_params) * count +
882                           sizeof(*request->ssids) * rdev_req->n_ssids,
883                           GFP_KERNEL);
884         if (!request) {
885                 cfg80211_free_coloc_ap_list(&coloc_ap_list);
886                 return -ENOMEM;
887         }
888
889         *request = *rdev_req;
890         request->n_channels = 0;
891         request->scan_6ghz_params =
892                 (void *)&request->channels[n_channels];
893
894         /*
895          * PSC channels should not be scanned in case of direct scan with 1 SSID
896          * and at least one of the reported co-located APs with same SSID
897          * indicating that all APs in the same ESS are co-located
898          */
899         if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
900                 list_for_each_entry(ap, &coloc_ap_list, list) {
901                         if (ap->colocated_ess &&
902                             cfg80211_find_ssid_match(ap, request)) {
903                                 need_scan_psc = false;
904                                 break;
905                         }
906                 }
907         }
908
909         /*
910          * add to the scan request the channels that need to be scanned
911          * regardless of the collocated APs (PSC channels or all channels
912          * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
913          */
914         for (i = 0; i < rdev_req->n_channels; i++) {
915                 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
916                     ((need_scan_psc &&
917                       cfg80211_channel_is_psc(rdev_req->channels[i])) ||
918                      !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
919                         cfg80211_scan_req_add_chan(request,
920                                                    rdev_req->channels[i],
921                                                    false);
922                 }
923         }
924
925         if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
926                 goto skip;
927
928         list_for_each_entry(ap, &coloc_ap_list, list) {
929                 bool found = false;
930                 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
931                         &request->scan_6ghz_params[request->n_6ghz_params];
932                 struct ieee80211_channel *chan =
933                         ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
934
935                 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
936                         continue;
937
938                 for (i = 0; i < rdev_req->n_channels; i++) {
939                         if (rdev_req->channels[i] == chan)
940                                 found = true;
941                 }
942
943                 if (!found)
944                         continue;
945
946                 if (request->n_ssids > 0 &&
947                     !cfg80211_find_ssid_match(ap, request))
948                         continue;
949
950                 if (!is_broadcast_ether_addr(request->bssid) &&
951                     !ether_addr_equal(request->bssid, ap->bssid))
952                         continue;
953
954                 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
955                         continue;
956
957                 cfg80211_scan_req_add_chan(request, chan, true);
958                 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
959                 scan_6ghz_params->short_ssid = ap->short_ssid;
960                 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
961                 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
962                 scan_6ghz_params->psd_20 = ap->psd_20;
963
964                 /*
965                  * If a PSC channel is added to the scan and 'need_scan_psc' is
966                  * set to false, then all the APs that the scan logic is
967                  * interested with on the channel are collocated and thus there
968                  * is no need to perform the initial PSC channel listen.
969                  */
970                 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
971                         scan_6ghz_params->psc_no_listen = true;
972
973                 request->n_6ghz_params++;
974         }
975
976 skip:
977         cfg80211_free_coloc_ap_list(&coloc_ap_list);
978
979         if (request->n_channels) {
980                 struct cfg80211_scan_request *old = rdev->int_scan_req;
981                 rdev->int_scan_req = request;
982
983                 /*
984                  * Add the ssids from the parent scan request to the new scan
985                  * request, so the driver would be able to use them in its
986                  * probe requests to discover hidden APs on PSC channels.
987                  */
988                 request->ssids = (void *)&request->channels[request->n_channels];
989                 request->n_ssids = rdev_req->n_ssids;
990                 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
991                        request->n_ssids);
992
993                 /*
994                  * If this scan follows a previous scan, save the scan start
995                  * info from the first part of the scan
996                  */
997                 if (old)
998                         rdev->int_scan_req->info = old->info;
999
1000                 err = rdev_scan(rdev, request);
1001                 if (err) {
1002                         rdev->int_scan_req = old;
1003                         kfree(request);
1004                 } else {
1005                         kfree(old);
1006                 }
1007
1008                 return err;
1009         }
1010
1011         kfree(request);
1012         return -EINVAL;
1013 }
1014
1015 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1016 {
1017         struct cfg80211_scan_request *request;
1018         struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1019         u32 n_channels = 0, idx, i;
1020
1021         if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1022                 return rdev_scan(rdev, rdev_req);
1023
1024         for (i = 0; i < rdev_req->n_channels; i++) {
1025                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1026                         n_channels++;
1027         }
1028
1029         if (!n_channels)
1030                 return cfg80211_scan_6ghz(rdev);
1031
1032         request = kzalloc(struct_size(request, channels, n_channels),
1033                           GFP_KERNEL);
1034         if (!request)
1035                 return -ENOMEM;
1036
1037         *request = *rdev_req;
1038         request->n_channels = n_channels;
1039
1040         for (i = idx = 0; i < rdev_req->n_channels; i++) {
1041                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1042                         request->channels[idx++] = rdev_req->channels[i];
1043         }
1044
1045         rdev_req->scan_6ghz = false;
1046         rdev->int_scan_req = request;
1047         return rdev_scan(rdev, request);
1048 }
1049
1050 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1051                            bool send_message)
1052 {
1053         struct cfg80211_scan_request *request, *rdev_req;
1054         struct wireless_dev *wdev;
1055         struct sk_buff *msg;
1056 #ifdef CONFIG_CFG80211_WEXT
1057         union iwreq_data wrqu;
1058 #endif
1059
1060         lockdep_assert_held(&rdev->wiphy.mtx);
1061
1062         if (rdev->scan_msg) {
1063                 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1064                 rdev->scan_msg = NULL;
1065                 return;
1066         }
1067
1068         rdev_req = rdev->scan_req;
1069         if (!rdev_req)
1070                 return;
1071
1072         wdev = rdev_req->wdev;
1073         request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1074
1075         if (wdev_running(wdev) &&
1076             (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1077             !rdev_req->scan_6ghz && !request->info.aborted &&
1078             !cfg80211_scan_6ghz(rdev))
1079                 return;
1080
1081         /*
1082          * This must be before sending the other events!
1083          * Otherwise, wpa_supplicant gets completely confused with
1084          * wext events.
1085          */
1086         if (wdev->netdev)
1087                 cfg80211_sme_scan_done(wdev->netdev);
1088
1089         if (!request->info.aborted &&
1090             request->flags & NL80211_SCAN_FLAG_FLUSH) {
1091                 /* flush entries from previous scans */
1092                 spin_lock_bh(&rdev->bss_lock);
1093                 __cfg80211_bss_expire(rdev, request->scan_start);
1094                 spin_unlock_bh(&rdev->bss_lock);
1095         }
1096
1097         msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1098
1099 #ifdef CONFIG_CFG80211_WEXT
1100         if (wdev->netdev && !request->info.aborted) {
1101                 memset(&wrqu, 0, sizeof(wrqu));
1102
1103                 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1104         }
1105 #endif
1106
1107         dev_put(wdev->netdev);
1108
1109         kfree(rdev->int_scan_req);
1110         rdev->int_scan_req = NULL;
1111
1112         kfree(rdev->scan_req);
1113         rdev->scan_req = NULL;
1114
1115         if (!send_message)
1116                 rdev->scan_msg = msg;
1117         else
1118                 nl80211_send_scan_msg(rdev, msg);
1119 }
1120
1121 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1122 {
1123         ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1124 }
1125
1126 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1127                         struct cfg80211_scan_info *info)
1128 {
1129         struct cfg80211_scan_info old_info = request->info;
1130
1131         trace_cfg80211_scan_done(request, info);
1132         WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1133                 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1134
1135         request->info = *info;
1136
1137         /*
1138          * In case the scan is split, the scan_start_tsf and tsf_bssid should
1139          * be of the first part. In such a case old_info.scan_start_tsf should
1140          * be non zero.
1141          */
1142         if (request->scan_6ghz && old_info.scan_start_tsf) {
1143                 request->info.scan_start_tsf = old_info.scan_start_tsf;
1144                 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1145                        sizeof(request->info.tsf_bssid));
1146         }
1147
1148         request->notified = true;
1149         wiphy_work_queue(request->wiphy,
1150                          &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1151 }
1152 EXPORT_SYMBOL(cfg80211_scan_done);
1153
1154 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1155                                  struct cfg80211_sched_scan_request *req)
1156 {
1157         lockdep_assert_held(&rdev->wiphy.mtx);
1158
1159         list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1160 }
1161
1162 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1163                                         struct cfg80211_sched_scan_request *req)
1164 {
1165         lockdep_assert_held(&rdev->wiphy.mtx);
1166
1167         list_del_rcu(&req->list);
1168         kfree_rcu(req, rcu_head);
1169 }
1170
1171 static struct cfg80211_sched_scan_request *
1172 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1173 {
1174         struct cfg80211_sched_scan_request *pos;
1175
1176         list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1177                                 lockdep_is_held(&rdev->wiphy.mtx)) {
1178                 if (pos->reqid == reqid)
1179                         return pos;
1180         }
1181         return NULL;
1182 }
1183
1184 /*
1185  * Determines if a scheduled scan request can be handled. When a legacy
1186  * scheduled scan is running no other scheduled scan is allowed regardless
1187  * whether the request is for legacy or multi-support scan. When a multi-support
1188  * scheduled scan is running a request for legacy scan is not allowed. In this
1189  * case a request for multi-support scan can be handled if resources are
1190  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1191  */
1192 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1193                                      bool want_multi)
1194 {
1195         struct cfg80211_sched_scan_request *pos;
1196         int i = 0;
1197
1198         list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1199                 /* request id zero means legacy in progress */
1200                 if (!i && !pos->reqid)
1201                         return -EINPROGRESS;
1202                 i++;
1203         }
1204
1205         if (i) {
1206                 /* no legacy allowed when multi request(s) are active */
1207                 if (!want_multi)
1208                         return -EINPROGRESS;
1209
1210                 /* resource limit reached */
1211                 if (i == rdev->wiphy.max_sched_scan_reqs)
1212                         return -ENOSPC;
1213         }
1214         return 0;
1215 }
1216
1217 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1218 {
1219         struct cfg80211_registered_device *rdev;
1220         struct cfg80211_sched_scan_request *req, *tmp;
1221
1222         rdev = container_of(work, struct cfg80211_registered_device,
1223                            sched_scan_res_wk);
1224
1225         wiphy_lock(&rdev->wiphy);
1226         list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1227                 if (req->report_results) {
1228                         req->report_results = false;
1229                         if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1230                                 /* flush entries from previous scans */
1231                                 spin_lock_bh(&rdev->bss_lock);
1232                                 __cfg80211_bss_expire(rdev, req->scan_start);
1233                                 spin_unlock_bh(&rdev->bss_lock);
1234                                 req->scan_start = jiffies;
1235                         }
1236                         nl80211_send_sched_scan(req,
1237                                                 NL80211_CMD_SCHED_SCAN_RESULTS);
1238                 }
1239         }
1240         wiphy_unlock(&rdev->wiphy);
1241 }
1242
1243 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1244 {
1245         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1246         struct cfg80211_sched_scan_request *request;
1247
1248         trace_cfg80211_sched_scan_results(wiphy, reqid);
1249         /* ignore if we're not scanning */
1250
1251         rcu_read_lock();
1252         request = cfg80211_find_sched_scan_req(rdev, reqid);
1253         if (request) {
1254                 request->report_results = true;
1255                 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1256         }
1257         rcu_read_unlock();
1258 }
1259 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1260
1261 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1262 {
1263         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1264
1265         lockdep_assert_held(&wiphy->mtx);
1266
1267         trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1268
1269         __cfg80211_stop_sched_scan(rdev, reqid, true);
1270 }
1271 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1272
1273 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1274 {
1275         wiphy_lock(wiphy);
1276         cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1277         wiphy_unlock(wiphy);
1278 }
1279 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1280
1281 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1282                                  struct cfg80211_sched_scan_request *req,
1283                                  bool driver_initiated)
1284 {
1285         lockdep_assert_held(&rdev->wiphy.mtx);
1286
1287         if (!driver_initiated) {
1288                 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1289                 if (err)
1290                         return err;
1291         }
1292
1293         nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1294
1295         cfg80211_del_sched_scan_req(rdev, req);
1296
1297         return 0;
1298 }
1299
1300 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1301                                u64 reqid, bool driver_initiated)
1302 {
1303         struct cfg80211_sched_scan_request *sched_scan_req;
1304
1305         lockdep_assert_held(&rdev->wiphy.mtx);
1306
1307         sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1308         if (!sched_scan_req)
1309                 return -ENOENT;
1310
1311         return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1312                                             driver_initiated);
1313 }
1314
1315 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1316                       unsigned long age_secs)
1317 {
1318         struct cfg80211_internal_bss *bss;
1319         unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1320
1321         spin_lock_bh(&rdev->bss_lock);
1322         list_for_each_entry(bss, &rdev->bss_list, list)
1323                 bss->ts -= age_jiffies;
1324         spin_unlock_bh(&rdev->bss_lock);
1325 }
1326
1327 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1328 {
1329         __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1330 }
1331
1332 void cfg80211_bss_flush(struct wiphy *wiphy)
1333 {
1334         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1335
1336         spin_lock_bh(&rdev->bss_lock);
1337         __cfg80211_bss_expire(rdev, jiffies);
1338         spin_unlock_bh(&rdev->bss_lock);
1339 }
1340 EXPORT_SYMBOL(cfg80211_bss_flush);
1341
1342 const struct element *
1343 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1344                          const u8 *match, unsigned int match_len,
1345                          unsigned int match_offset)
1346 {
1347         const struct element *elem;
1348
1349         for_each_element_id(elem, eid, ies, len) {
1350                 if (elem->datalen >= match_offset + match_len &&
1351                     !memcmp(elem->data + match_offset, match, match_len))
1352                         return elem;
1353         }
1354
1355         return NULL;
1356 }
1357 EXPORT_SYMBOL(cfg80211_find_elem_match);
1358
1359 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1360                                                 const u8 *ies,
1361                                                 unsigned int len)
1362 {
1363         const struct element *elem;
1364         u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1365         int match_len = (oui_type < 0) ? 3 : sizeof(match);
1366
1367         if (WARN_ON(oui_type > 0xff))
1368                 return NULL;
1369
1370         elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1371                                         match, match_len, 0);
1372
1373         if (!elem || elem->datalen < 4)
1374                 return NULL;
1375
1376         return elem;
1377 }
1378 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1379
1380 /**
1381  * enum bss_compare_mode - BSS compare mode
1382  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1383  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1384  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1385  */
1386 enum bss_compare_mode {
1387         BSS_CMP_REGULAR,
1388         BSS_CMP_HIDE_ZLEN,
1389         BSS_CMP_HIDE_NUL,
1390 };
1391
1392 static int cmp_bss(struct cfg80211_bss *a,
1393                    struct cfg80211_bss *b,
1394                    enum bss_compare_mode mode)
1395 {
1396         const struct cfg80211_bss_ies *a_ies, *b_ies;
1397         const u8 *ie1 = NULL;
1398         const u8 *ie2 = NULL;
1399         int i, r;
1400
1401         if (a->channel != b->channel)
1402                 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1403                        (a->channel->center_freq * 1000 + a->channel->freq_offset);
1404
1405         a_ies = rcu_access_pointer(a->ies);
1406         if (!a_ies)
1407                 return -1;
1408         b_ies = rcu_access_pointer(b->ies);
1409         if (!b_ies)
1410                 return 1;
1411
1412         if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1413                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1414                                        a_ies->data, a_ies->len);
1415         if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1416                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1417                                        b_ies->data, b_ies->len);
1418         if (ie1 && ie2) {
1419                 int mesh_id_cmp;
1420
1421                 if (ie1[1] == ie2[1])
1422                         mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1423                 else
1424                         mesh_id_cmp = ie2[1] - ie1[1];
1425
1426                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1427                                        a_ies->data, a_ies->len);
1428                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1429                                        b_ies->data, b_ies->len);
1430                 if (ie1 && ie2) {
1431                         if (mesh_id_cmp)
1432                                 return mesh_id_cmp;
1433                         if (ie1[1] != ie2[1])
1434                                 return ie2[1] - ie1[1];
1435                         return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1436                 }
1437         }
1438
1439         r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1440         if (r)
1441                 return r;
1442
1443         ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1444         ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1445
1446         if (!ie1 && !ie2)
1447                 return 0;
1448
1449         /*
1450          * Note that with "hide_ssid", the function returns a match if
1451          * the already-present BSS ("b") is a hidden SSID beacon for
1452          * the new BSS ("a").
1453          */
1454
1455         /* sort missing IE before (left of) present IE */
1456         if (!ie1)
1457                 return -1;
1458         if (!ie2)
1459                 return 1;
1460
1461         switch (mode) {
1462         case BSS_CMP_HIDE_ZLEN:
1463                 /*
1464                  * In ZLEN mode we assume the BSS entry we're
1465                  * looking for has a zero-length SSID. So if
1466                  * the one we're looking at right now has that,
1467                  * return 0. Otherwise, return the difference
1468                  * in length, but since we're looking for the
1469                  * 0-length it's really equivalent to returning
1470                  * the length of the one we're looking at.
1471                  *
1472                  * No content comparison is needed as we assume
1473                  * the content length is zero.
1474                  */
1475                 return ie2[1];
1476         case BSS_CMP_REGULAR:
1477         default:
1478                 /* sort by length first, then by contents */
1479                 if (ie1[1] != ie2[1])
1480                         return ie2[1] - ie1[1];
1481                 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1482         case BSS_CMP_HIDE_NUL:
1483                 if (ie1[1] != ie2[1])
1484                         return ie2[1] - ie1[1];
1485                 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1486                 for (i = 0; i < ie2[1]; i++)
1487                         if (ie2[i + 2])
1488                                 return -1;
1489                 return 0;
1490         }
1491 }
1492
1493 static bool cfg80211_bss_type_match(u16 capability,
1494                                     enum nl80211_band band,
1495                                     enum ieee80211_bss_type bss_type)
1496 {
1497         bool ret = true;
1498         u16 mask, val;
1499
1500         if (bss_type == IEEE80211_BSS_TYPE_ANY)
1501                 return ret;
1502
1503         if (band == NL80211_BAND_60GHZ) {
1504                 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1505                 switch (bss_type) {
1506                 case IEEE80211_BSS_TYPE_ESS:
1507                         val = WLAN_CAPABILITY_DMG_TYPE_AP;
1508                         break;
1509                 case IEEE80211_BSS_TYPE_PBSS:
1510                         val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1511                         break;
1512                 case IEEE80211_BSS_TYPE_IBSS:
1513                         val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1514                         break;
1515                 default:
1516                         return false;
1517                 }
1518         } else {
1519                 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1520                 switch (bss_type) {
1521                 case IEEE80211_BSS_TYPE_ESS:
1522                         val = WLAN_CAPABILITY_ESS;
1523                         break;
1524                 case IEEE80211_BSS_TYPE_IBSS:
1525                         val = WLAN_CAPABILITY_IBSS;
1526                         break;
1527                 case IEEE80211_BSS_TYPE_MBSS:
1528                         val = 0;
1529                         break;
1530                 default:
1531                         return false;
1532                 }
1533         }
1534
1535         ret = ((capability & mask) == val);
1536         return ret;
1537 }
1538
1539 /* Returned bss is reference counted and must be cleaned up appropriately. */
1540 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1541                                         struct ieee80211_channel *channel,
1542                                         const u8 *bssid,
1543                                         const u8 *ssid, size_t ssid_len,
1544                                         enum ieee80211_bss_type bss_type,
1545                                         enum ieee80211_privacy privacy,
1546                                         u32 use_for)
1547 {
1548         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1549         struct cfg80211_internal_bss *bss, *res = NULL;
1550         unsigned long now = jiffies;
1551         int bss_privacy;
1552
1553         trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1554                                privacy);
1555
1556         spin_lock_bh(&rdev->bss_lock);
1557
1558         list_for_each_entry(bss, &rdev->bss_list, list) {
1559                 if (!cfg80211_bss_type_match(bss->pub.capability,
1560                                              bss->pub.channel->band, bss_type))
1561                         continue;
1562
1563                 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1564                 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1565                     (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1566                         continue;
1567                 if (channel && bss->pub.channel != channel)
1568                         continue;
1569                 if (!is_valid_ether_addr(bss->pub.bssid))
1570                         continue;
1571                 if ((bss->pub.use_for & use_for) != use_for)
1572                         continue;
1573                 /* Don't get expired BSS structs */
1574                 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1575                     !atomic_read(&bss->hold))
1576                         continue;
1577                 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1578                         res = bss;
1579                         bss_ref_get(rdev, res);
1580                         break;
1581                 }
1582         }
1583
1584         spin_unlock_bh(&rdev->bss_lock);
1585         if (!res)
1586                 return NULL;
1587         trace_cfg80211_return_bss(&res->pub);
1588         return &res->pub;
1589 }
1590 EXPORT_SYMBOL(__cfg80211_get_bss);
1591
1592 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1593                           struct cfg80211_internal_bss *bss)
1594 {
1595         struct rb_node **p = &rdev->bss_tree.rb_node;
1596         struct rb_node *parent = NULL;
1597         struct cfg80211_internal_bss *tbss;
1598         int cmp;
1599
1600         while (*p) {
1601                 parent = *p;
1602                 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1603
1604                 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1605
1606                 if (WARN_ON(!cmp)) {
1607                         /* will sort of leak this BSS */
1608                         return;
1609                 }
1610
1611                 if (cmp < 0)
1612                         p = &(*p)->rb_left;
1613                 else
1614                         p = &(*p)->rb_right;
1615         }
1616
1617         rb_link_node(&bss->rbn, parent, p);
1618         rb_insert_color(&bss->rbn, &rdev->bss_tree);
1619 }
1620
1621 static struct cfg80211_internal_bss *
1622 rb_find_bss(struct cfg80211_registered_device *rdev,
1623             struct cfg80211_internal_bss *res,
1624             enum bss_compare_mode mode)
1625 {
1626         struct rb_node *n = rdev->bss_tree.rb_node;
1627         struct cfg80211_internal_bss *bss;
1628         int r;
1629
1630         while (n) {
1631                 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1632                 r = cmp_bss(&res->pub, &bss->pub, mode);
1633
1634                 if (r == 0)
1635                         return bss;
1636                 else if (r < 0)
1637                         n = n->rb_left;
1638                 else
1639                         n = n->rb_right;
1640         }
1641
1642         return NULL;
1643 }
1644
1645 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1646                                    struct cfg80211_internal_bss *new)
1647 {
1648         const struct cfg80211_bss_ies *ies;
1649         struct cfg80211_internal_bss *bss;
1650         const u8 *ie;
1651         int i, ssidlen;
1652         u8 fold = 0;
1653         u32 n_entries = 0;
1654
1655         ies = rcu_access_pointer(new->pub.beacon_ies);
1656         if (WARN_ON(!ies))
1657                 return false;
1658
1659         ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1660         if (!ie) {
1661                 /* nothing to do */
1662                 return true;
1663         }
1664
1665         ssidlen = ie[1];
1666         for (i = 0; i < ssidlen; i++)
1667                 fold |= ie[2 + i];
1668
1669         if (fold) {
1670                 /* not a hidden SSID */
1671                 return true;
1672         }
1673
1674         /* This is the bad part ... */
1675
1676         list_for_each_entry(bss, &rdev->bss_list, list) {
1677                 /*
1678                  * we're iterating all the entries anyway, so take the
1679                  * opportunity to validate the list length accounting
1680                  */
1681                 n_entries++;
1682
1683                 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1684                         continue;
1685                 if (bss->pub.channel != new->pub.channel)
1686                         continue;
1687                 if (rcu_access_pointer(bss->pub.beacon_ies))
1688                         continue;
1689                 ies = rcu_access_pointer(bss->pub.ies);
1690                 if (!ies)
1691                         continue;
1692                 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1693                 if (!ie)
1694                         continue;
1695                 if (ssidlen && ie[1] != ssidlen)
1696                         continue;
1697                 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1698                         continue;
1699                 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1700                         list_del(&bss->hidden_list);
1701                 /* combine them */
1702                 list_add(&bss->hidden_list, &new->hidden_list);
1703                 bss->pub.hidden_beacon_bss = &new->pub;
1704                 new->refcount += bss->refcount;
1705                 rcu_assign_pointer(bss->pub.beacon_ies,
1706                                    new->pub.beacon_ies);
1707         }
1708
1709         WARN_ONCE(n_entries != rdev->bss_entries,
1710                   "rdev bss entries[%d]/list[len:%d] corruption\n",
1711                   rdev->bss_entries, n_entries);
1712
1713         return true;
1714 }
1715
1716 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1717                                          const struct cfg80211_bss_ies *new_ies,
1718                                          const struct cfg80211_bss_ies *old_ies)
1719 {
1720         struct cfg80211_internal_bss *bss;
1721
1722         /* Assign beacon IEs to all sub entries */
1723         list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1724                 const struct cfg80211_bss_ies *ies;
1725
1726                 ies = rcu_access_pointer(bss->pub.beacon_ies);
1727                 WARN_ON(ies != old_ies);
1728
1729                 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1730         }
1731 }
1732
1733 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1734                                       struct cfg80211_internal_bss *known,
1735                                       const struct cfg80211_bss_ies *old)
1736 {
1737         const struct ieee80211_ext_chansw_ie *ecsa;
1738         const struct element *elem_new, *elem_old;
1739         const struct cfg80211_bss_ies *new, *bcn;
1740
1741         if (known->pub.proberesp_ecsa_stuck)
1742                 return;
1743
1744         new = rcu_dereference_protected(known->pub.proberesp_ies,
1745                                         lockdep_is_held(&rdev->bss_lock));
1746         if (WARN_ON(!new))
1747                 return;
1748
1749         if (new->tsf - old->tsf < USEC_PER_SEC)
1750                 return;
1751
1752         elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1753                                       old->data, old->len);
1754         if (!elem_old)
1755                 return;
1756
1757         elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1758                                       new->data, new->len);
1759         if (!elem_new)
1760                 return;
1761
1762         bcn = rcu_dereference_protected(known->pub.beacon_ies,
1763                                         lockdep_is_held(&rdev->bss_lock));
1764         if (bcn &&
1765             cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1766                                bcn->data, bcn->len))
1767                 return;
1768
1769         if (elem_new->datalen != elem_old->datalen)
1770                 return;
1771         if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1772                 return;
1773         if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1774                 return;
1775
1776         ecsa = (void *)elem_new->data;
1777
1778         if (!ecsa->mode)
1779                 return;
1780
1781         if (ecsa->new_ch_num !=
1782             ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1783                 return;
1784
1785         known->pub.proberesp_ecsa_stuck = 1;
1786 }
1787
1788 static bool
1789 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1790                           struct cfg80211_internal_bss *known,
1791                           struct cfg80211_internal_bss *new,
1792                           bool signal_valid)
1793 {
1794         lockdep_assert_held(&rdev->bss_lock);
1795
1796         /* Update IEs */
1797         if (rcu_access_pointer(new->pub.proberesp_ies)) {
1798                 const struct cfg80211_bss_ies *old;
1799
1800                 old = rcu_access_pointer(known->pub.proberesp_ies);
1801
1802                 rcu_assign_pointer(known->pub.proberesp_ies,
1803                                    new->pub.proberesp_ies);
1804                 /* Override possible earlier Beacon frame IEs */
1805                 rcu_assign_pointer(known->pub.ies,
1806                                    new->pub.proberesp_ies);
1807                 if (old) {
1808                         cfg80211_check_stuck_ecsa(rdev, known, old);
1809                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1810                 }
1811         }
1812
1813         if (rcu_access_pointer(new->pub.beacon_ies)) {
1814                 const struct cfg80211_bss_ies *old;
1815
1816                 if (known->pub.hidden_beacon_bss &&
1817                     !list_empty(&known->hidden_list)) {
1818                         const struct cfg80211_bss_ies *f;
1819
1820                         /* The known BSS struct is one of the probe
1821                          * response members of a group, but we're
1822                          * receiving a beacon (beacon_ies in the new
1823                          * bss is used). This can only mean that the
1824                          * AP changed its beacon from not having an
1825                          * SSID to showing it, which is confusing so
1826                          * drop this information.
1827                          */
1828
1829                         f = rcu_access_pointer(new->pub.beacon_ies);
1830                         kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1831                         return false;
1832                 }
1833
1834                 old = rcu_access_pointer(known->pub.beacon_ies);
1835
1836                 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1837
1838                 /* Override IEs if they were from a beacon before */
1839                 if (old == rcu_access_pointer(known->pub.ies))
1840                         rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1841
1842                 cfg80211_update_hidden_bsses(known,
1843                                              rcu_access_pointer(new->pub.beacon_ies),
1844                                              old);
1845
1846                 if (old)
1847                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1848         }
1849
1850         known->pub.beacon_interval = new->pub.beacon_interval;
1851
1852         /* don't update the signal if beacon was heard on
1853          * adjacent channel.
1854          */
1855         if (signal_valid)
1856                 known->pub.signal = new->pub.signal;
1857         known->pub.capability = new->pub.capability;
1858         known->ts = new->ts;
1859         known->ts_boottime = new->ts_boottime;
1860         known->parent_tsf = new->parent_tsf;
1861         known->pub.chains = new->pub.chains;
1862         memcpy(known->pub.chain_signal, new->pub.chain_signal,
1863                IEEE80211_MAX_CHAINS);
1864         ether_addr_copy(known->parent_bssid, new->parent_bssid);
1865         known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1866         known->pub.bssid_index = new->pub.bssid_index;
1867         known->pub.use_for &= new->pub.use_for;
1868         known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1869
1870         return true;
1871 }
1872
1873 /* Returned bss is reference counted and must be cleaned up appropriately. */
1874 static struct cfg80211_internal_bss *
1875 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1876                       struct cfg80211_internal_bss *tmp,
1877                       bool signal_valid, unsigned long ts)
1878 {
1879         struct cfg80211_internal_bss *found = NULL;
1880         struct cfg80211_bss_ies *ies;
1881
1882         if (WARN_ON(!tmp->pub.channel))
1883                 goto free_ies;
1884
1885         tmp->ts = ts;
1886
1887         if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1888                 goto free_ies;
1889
1890         found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1891
1892         if (found) {
1893                 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1894                         return NULL;
1895         } else {
1896                 struct cfg80211_internal_bss *new;
1897                 struct cfg80211_internal_bss *hidden;
1898
1899                 /*
1900                  * create a copy -- the "res" variable that is passed in
1901                  * is allocated on the stack since it's not needed in the
1902                  * more common case of an update
1903                  */
1904                 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1905                               GFP_ATOMIC);
1906                 if (!new)
1907                         goto free_ies;
1908                 memcpy(new, tmp, sizeof(*new));
1909                 new->refcount = 1;
1910                 INIT_LIST_HEAD(&new->hidden_list);
1911                 INIT_LIST_HEAD(&new->pub.nontrans_list);
1912                 /* we'll set this later if it was non-NULL */
1913                 new->pub.transmitted_bss = NULL;
1914
1915                 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1916                         hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1917                         if (!hidden)
1918                                 hidden = rb_find_bss(rdev, tmp,
1919                                                      BSS_CMP_HIDE_NUL);
1920                         if (hidden) {
1921                                 new->pub.hidden_beacon_bss = &hidden->pub;
1922                                 list_add(&new->hidden_list,
1923                                          &hidden->hidden_list);
1924                                 hidden->refcount++;
1925
1926                                 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1927                                 rcu_assign_pointer(new->pub.beacon_ies,
1928                                                    hidden->pub.beacon_ies);
1929                                 if (ies)
1930                                         kfree_rcu(ies, rcu_head);
1931                         }
1932                 } else {
1933                         /*
1934                          * Ok so we found a beacon, and don't have an entry. If
1935                          * it's a beacon with hidden SSID, we might be in for an
1936                          * expensive search for any probe responses that should
1937                          * be grouped with this beacon for updates ...
1938                          */
1939                         if (!cfg80211_combine_bsses(rdev, new)) {
1940                                 bss_ref_put(rdev, new);
1941                                 return NULL;
1942                         }
1943                 }
1944
1945                 if (rdev->bss_entries >= bss_entries_limit &&
1946                     !cfg80211_bss_expire_oldest(rdev)) {
1947                         bss_ref_put(rdev, new);
1948                         return NULL;
1949                 }
1950
1951                 /* This must be before the call to bss_ref_get */
1952                 if (tmp->pub.transmitted_bss) {
1953                         new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1954                         bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1955                 }
1956
1957                 list_add_tail(&new->list, &rdev->bss_list);
1958                 rdev->bss_entries++;
1959                 rb_insert_bss(rdev, new);
1960                 found = new;
1961         }
1962
1963         rdev->bss_generation++;
1964         bss_ref_get(rdev, found);
1965
1966         return found;
1967
1968 free_ies:
1969         ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1970         if (ies)
1971                 kfree_rcu(ies, rcu_head);
1972         ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1973         if (ies)
1974                 kfree_rcu(ies, rcu_head);
1975
1976         return NULL;
1977 }
1978
1979 struct cfg80211_internal_bss *
1980 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1981                     struct cfg80211_internal_bss *tmp,
1982                     bool signal_valid, unsigned long ts)
1983 {
1984         struct cfg80211_internal_bss *res;
1985
1986         spin_lock_bh(&rdev->bss_lock);
1987         res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1988         spin_unlock_bh(&rdev->bss_lock);
1989
1990         return res;
1991 }
1992
1993 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1994                                     enum nl80211_band band)
1995 {
1996         const struct element *tmp;
1997
1998         if (band == NL80211_BAND_6GHZ) {
1999                 struct ieee80211_he_operation *he_oper;
2000
2001                 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2002                                              ielen);
2003                 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2004                     tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2005                         const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2006
2007                         he_oper = (void *)&tmp->data[1];
2008
2009                         he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2010                         if (!he_6ghz_oper)
2011                                 return -1;
2012
2013                         return he_6ghz_oper->primary;
2014                 }
2015         } else if (band == NL80211_BAND_S1GHZ) {
2016                 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2017                 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2018                         struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2019
2020                         return s1gop->oper_ch;
2021                 }
2022         } else {
2023                 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2024                 if (tmp && tmp->datalen == 1)
2025                         return tmp->data[0];
2026
2027                 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2028                 if (tmp &&
2029                     tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2030                         struct ieee80211_ht_operation *htop = (void *)tmp->data;
2031
2032                         return htop->primary_chan;
2033                 }
2034         }
2035
2036         return -1;
2037 }
2038 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2039
2040 /*
2041  * Update RX channel information based on the available frame payload
2042  * information. This is mainly for the 2.4 GHz band where frames can be received
2043  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2044  * element to indicate the current (transmitting) channel, but this might also
2045  * be needed on other bands if RX frequency does not match with the actual
2046  * operating channel of a BSS, or if the AP reports a different primary channel.
2047  */
2048 static struct ieee80211_channel *
2049 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2050                          struct ieee80211_channel *channel)
2051 {
2052         u32 freq;
2053         int channel_number;
2054         struct ieee80211_channel *alt_channel;
2055
2056         channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2057                                                          channel->band);
2058
2059         if (channel_number < 0) {
2060                 /* No channel information in frame payload */
2061                 return channel;
2062         }
2063
2064         freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2065
2066         /*
2067          * Frame info (beacon/prob res) is the same as received channel,
2068          * no need for further processing.
2069          */
2070         if (freq == ieee80211_channel_to_khz(channel))
2071                 return channel;
2072
2073         alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2074         if (!alt_channel) {
2075                 if (channel->band == NL80211_BAND_2GHZ ||
2076                     channel->band == NL80211_BAND_6GHZ) {
2077                         /*
2078                          * Better not allow unexpected channels when that could
2079                          * be going beyond the 1-11 range (e.g., discovering
2080                          * BSS on channel 12 when radio is configured for
2081                          * channel 11) or beyond the 6 GHz channel range.
2082                          */
2083                         return NULL;
2084                 }
2085
2086                 /* No match for the payload channel number - ignore it */
2087                 return channel;
2088         }
2089
2090         /*
2091          * Use the channel determined through the payload channel number
2092          * instead of the RX channel reported by the driver.
2093          */
2094         if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2095                 return NULL;
2096         return alt_channel;
2097 }
2098
2099 struct cfg80211_inform_single_bss_data {
2100         struct cfg80211_inform_bss *drv_data;
2101         enum cfg80211_bss_frame_type ftype;
2102         struct ieee80211_channel *channel;
2103         u8 bssid[ETH_ALEN];
2104         u64 tsf;
2105         u16 capability;
2106         u16 beacon_interval;
2107         const u8 *ie;
2108         size_t ielen;
2109
2110         enum {
2111                 BSS_SOURCE_DIRECT = 0,
2112                 BSS_SOURCE_MBSSID,
2113                 BSS_SOURCE_STA_PROFILE,
2114         } bss_source;
2115         /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2116         struct cfg80211_bss *source_bss;
2117         u8 max_bssid_indicator;
2118         u8 bssid_index;
2119
2120         u8 use_for;
2121         u64 cannot_use_reasons;
2122 };
2123
2124 static bool cfg80211_6ghz_power_type_valid(const u8 *ie, size_t ielen,
2125                                            const u32 flags)
2126 {
2127         const struct element *tmp;
2128         struct ieee80211_he_operation *he_oper;
2129
2130         tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2131         if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2132                 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2133
2134                 he_oper = (void *)&tmp->data[1];
2135                 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2136
2137                 if (!he_6ghz_oper)
2138                         return false;
2139
2140                 switch (u8_get_bits(he_6ghz_oper->control,
2141                                     IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2142                 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2143                 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2144                         return true;
2145                 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2146                 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2147                         return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2148                 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2149                         return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2150                 default:
2151                         return false;
2152                 }
2153         }
2154         return false;
2155 }
2156
2157 /* Returned bss is reference counted and must be cleaned up appropriately. */
2158 static struct cfg80211_bss *
2159 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2160                                 struct cfg80211_inform_single_bss_data *data,
2161                                 gfp_t gfp)
2162 {
2163         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2164         struct cfg80211_inform_bss *drv_data = data->drv_data;
2165         struct cfg80211_bss_ies *ies;
2166         struct ieee80211_channel *channel;
2167         struct cfg80211_internal_bss tmp = {}, *res;
2168         int bss_type;
2169         bool signal_valid;
2170         unsigned long ts;
2171
2172         if (WARN_ON(!wiphy))
2173                 return NULL;
2174
2175         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2176                     (drv_data->signal < 0 || drv_data->signal > 100)))
2177                 return NULL;
2178
2179         if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2180                 return NULL;
2181
2182         channel = data->channel;
2183         if (!channel)
2184                 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2185                                                    drv_data->chan);
2186         if (!channel)
2187                 return NULL;
2188
2189         if (channel->band == NL80211_BAND_6GHZ &&
2190             !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2191                                             channel->flags)) {
2192                 data->use_for = 0;
2193                 data->cannot_use_reasons =
2194                         NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2195         }
2196
2197         memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2198         tmp.pub.channel = channel;
2199         if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2200                 tmp.pub.signal = drv_data->signal;
2201         else
2202                 tmp.pub.signal = 0;
2203         tmp.pub.beacon_interval = data->beacon_interval;
2204         tmp.pub.capability = data->capability;
2205         tmp.ts_boottime = drv_data->boottime_ns;
2206         tmp.parent_tsf = drv_data->parent_tsf;
2207         ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2208         tmp.pub.chains = drv_data->chains;
2209         memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2210                IEEE80211_MAX_CHAINS);
2211         tmp.pub.use_for = data->use_for;
2212         tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2213
2214         switch (data->bss_source) {
2215         case BSS_SOURCE_MBSSID:
2216                 tmp.pub.transmitted_bss = data->source_bss;
2217                 fallthrough;
2218         case BSS_SOURCE_STA_PROFILE:
2219                 ts = bss_from_pub(data->source_bss)->ts;
2220                 tmp.pub.bssid_index = data->bssid_index;
2221                 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2222                 break;
2223         case BSS_SOURCE_DIRECT:
2224                 ts = jiffies;
2225
2226                 if (channel->band == NL80211_BAND_60GHZ) {
2227                         bss_type = data->capability &
2228                                    WLAN_CAPABILITY_DMG_TYPE_MASK;
2229                         if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2230                             bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2231                                 regulatory_hint_found_beacon(wiphy, channel,
2232                                                              gfp);
2233                 } else {
2234                         if (data->capability & WLAN_CAPABILITY_ESS)
2235                                 regulatory_hint_found_beacon(wiphy, channel,
2236                                                              gfp);
2237                 }
2238                 break;
2239         }
2240
2241         /*
2242          * If we do not know here whether the IEs are from a Beacon or Probe
2243          * Response frame, we need to pick one of the options and only use it
2244          * with the driver that does not provide the full Beacon/Probe Response
2245          * frame. Use Beacon frame pointer to avoid indicating that this should
2246          * override the IEs pointer should we have received an earlier
2247          * indication of Probe Response data.
2248          */
2249         ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2250         if (!ies)
2251                 return NULL;
2252         ies->len = data->ielen;
2253         ies->tsf = data->tsf;
2254         ies->from_beacon = false;
2255         memcpy(ies->data, data->ie, data->ielen);
2256
2257         switch (data->ftype) {
2258         case CFG80211_BSS_FTYPE_BEACON:
2259         case CFG80211_BSS_FTYPE_S1G_BEACON:
2260                 ies->from_beacon = true;
2261                 fallthrough;
2262         case CFG80211_BSS_FTYPE_UNKNOWN:
2263                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2264                 break;
2265         case CFG80211_BSS_FTYPE_PRESP:
2266                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2267                 break;
2268         }
2269         rcu_assign_pointer(tmp.pub.ies, ies);
2270
2271         signal_valid = drv_data->chan == channel;
2272         spin_lock_bh(&rdev->bss_lock);
2273         res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2274         if (!res)
2275                 goto drop;
2276
2277         rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2278
2279         if (data->bss_source == BSS_SOURCE_MBSSID) {
2280                 /* this is a nontransmitting bss, we need to add it to
2281                  * transmitting bss' list if it is not there
2282                  */
2283                 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2284                         if (__cfg80211_unlink_bss(rdev, res)) {
2285                                 rdev->bss_generation++;
2286                                 res = NULL;
2287                         }
2288                 }
2289
2290                 if (!res)
2291                         goto drop;
2292         }
2293         spin_unlock_bh(&rdev->bss_lock);
2294
2295         trace_cfg80211_return_bss(&res->pub);
2296         /* __cfg80211_bss_update gives us a referenced result */
2297         return &res->pub;
2298
2299 drop:
2300         spin_unlock_bh(&rdev->bss_lock);
2301         return NULL;
2302 }
2303
2304 static const struct element
2305 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2306                                    const struct element *mbssid_elem,
2307                                    const struct element *sub_elem)
2308 {
2309         const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2310         const struct element *next_mbssid;
2311         const struct element *next_sub;
2312
2313         next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2314                                          mbssid_end,
2315                                          ielen - (mbssid_end - ie));
2316
2317         /*
2318          * If it is not the last subelement in current MBSSID IE or there isn't
2319          * a next MBSSID IE - profile is complete.
2320         */
2321         if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2322             !next_mbssid)
2323                 return NULL;
2324
2325         /* For any length error, just return NULL */
2326
2327         if (next_mbssid->datalen < 4)
2328                 return NULL;
2329
2330         next_sub = (void *)&next_mbssid->data[1];
2331
2332         if (next_mbssid->data + next_mbssid->datalen <
2333             next_sub->data + next_sub->datalen)
2334                 return NULL;
2335
2336         if (next_sub->id != 0 || next_sub->datalen < 2)
2337                 return NULL;
2338
2339         /*
2340          * Check if the first element in the next sub element is a start
2341          * of a new profile
2342          */
2343         return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2344                NULL : next_mbssid;
2345 }
2346
2347 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2348                               const struct element *mbssid_elem,
2349                               const struct element *sub_elem,
2350                               u8 *merged_ie, size_t max_copy_len)
2351 {
2352         size_t copied_len = sub_elem->datalen;
2353         const struct element *next_mbssid;
2354
2355         if (sub_elem->datalen > max_copy_len)
2356                 return 0;
2357
2358         memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2359
2360         while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2361                                                                 mbssid_elem,
2362                                                                 sub_elem))) {
2363                 const struct element *next_sub = (void *)&next_mbssid->data[1];
2364
2365                 if (copied_len + next_sub->datalen > max_copy_len)
2366                         break;
2367                 memcpy(merged_ie + copied_len, next_sub->data,
2368                        next_sub->datalen);
2369                 copied_len += next_sub->datalen;
2370         }
2371
2372         return copied_len;
2373 }
2374 EXPORT_SYMBOL(cfg80211_merge_profile);
2375
2376 static void
2377 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2378                            struct cfg80211_inform_single_bss_data *tx_data,
2379                            struct cfg80211_bss *source_bss,
2380                            gfp_t gfp)
2381 {
2382         struct cfg80211_inform_single_bss_data data = {
2383                 .drv_data = tx_data->drv_data,
2384                 .ftype = tx_data->ftype,
2385                 .tsf = tx_data->tsf,
2386                 .beacon_interval = tx_data->beacon_interval,
2387                 .source_bss = source_bss,
2388                 .bss_source = BSS_SOURCE_MBSSID,
2389                 .use_for = tx_data->use_for,
2390                 .cannot_use_reasons = tx_data->cannot_use_reasons,
2391         };
2392         const u8 *mbssid_index_ie;
2393         const struct element *elem, *sub;
2394         u8 *new_ie, *profile;
2395         u64 seen_indices = 0;
2396         struct cfg80211_bss *bss;
2397
2398         if (!source_bss)
2399                 return;
2400         if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2401                                 tx_data->ie, tx_data->ielen))
2402                 return;
2403         if (!wiphy->support_mbssid)
2404                 return;
2405         if (wiphy->support_only_he_mbssid &&
2406             !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2407                                     tx_data->ie, tx_data->ielen))
2408                 return;
2409
2410         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2411         if (!new_ie)
2412                 return;
2413
2414         profile = kmalloc(tx_data->ielen, gfp);
2415         if (!profile)
2416                 goto out;
2417
2418         for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2419                             tx_data->ie, tx_data->ielen) {
2420                 if (elem->datalen < 4)
2421                         continue;
2422                 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2423                         continue;
2424                 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2425                         u8 profile_len;
2426
2427                         if (sub->id != 0 || sub->datalen < 4) {
2428                                 /* not a valid BSS profile */
2429                                 continue;
2430                         }
2431
2432                         if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2433                             sub->data[1] != 2) {
2434                                 /* The first element within the Nontransmitted
2435                                  * BSSID Profile is not the Nontransmitted
2436                                  * BSSID Capability element.
2437                                  */
2438                                 continue;
2439                         }
2440
2441                         memset(profile, 0, tx_data->ielen);
2442                         profile_len = cfg80211_merge_profile(tx_data->ie,
2443                                                              tx_data->ielen,
2444                                                              elem,
2445                                                              sub,
2446                                                              profile,
2447                                                              tx_data->ielen);
2448
2449                         /* found a Nontransmitted BSSID Profile */
2450                         mbssid_index_ie = cfg80211_find_ie
2451                                 (WLAN_EID_MULTI_BSSID_IDX,
2452                                  profile, profile_len);
2453                         if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2454                             mbssid_index_ie[2] == 0 ||
2455                             mbssid_index_ie[2] > 46 ||
2456                             mbssid_index_ie[2] >= (1 << elem->data[0])) {
2457                                 /* No valid Multiple BSSID-Index element */
2458                                 continue;
2459                         }
2460
2461                         if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2462                                 /* We don't support legacy split of a profile */
2463                                 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2464                                                     mbssid_index_ie[2]);
2465
2466                         seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2467
2468                         data.bssid_index = mbssid_index_ie[2];
2469                         data.max_bssid_indicator = elem->data[0];
2470
2471                         cfg80211_gen_new_bssid(tx_data->bssid,
2472                                                data.max_bssid_indicator,
2473                                                data.bssid_index,
2474                                                data.bssid);
2475
2476                         memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2477                         data.ie = new_ie;
2478                         data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2479                                                          tx_data->ielen,
2480                                                          profile,
2481                                                          profile_len,
2482                                                          new_ie,
2483                                                          IEEE80211_MAX_DATA_LEN);
2484                         if (!data.ielen)
2485                                 continue;
2486
2487                         data.capability = get_unaligned_le16(profile + 2);
2488                         bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2489                         if (!bss)
2490                                 break;
2491                         cfg80211_put_bss(wiphy, bss);
2492                 }
2493         }
2494
2495 out:
2496         kfree(new_ie);
2497         kfree(profile);
2498 }
2499
2500 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2501                                     size_t ieslen, u8 *data, size_t data_len,
2502                                     u8 frag_id)
2503 {
2504         const struct element *next;
2505         ssize_t copied;
2506         u8 elem_datalen;
2507
2508         if (!elem)
2509                 return -EINVAL;
2510
2511         /* elem might be invalid after the memmove */
2512         next = (void *)(elem->data + elem->datalen);
2513         elem_datalen = elem->datalen;
2514
2515         if (elem->id == WLAN_EID_EXTENSION) {
2516                 copied = elem->datalen - 1;
2517
2518                 if (data) {
2519                         if (copied > data_len)
2520                                 return -ENOSPC;
2521
2522                         memmove(data, elem->data + 1, copied);
2523                 }
2524         } else {
2525                 copied = elem->datalen;
2526
2527                 if (data) {
2528                         if (copied > data_len)
2529                                 return -ENOSPC;
2530
2531                         memmove(data, elem->data, copied);
2532                 }
2533         }
2534
2535         /* Fragmented elements must have 255 bytes */
2536         if (elem_datalen < 255)
2537                 return copied;
2538
2539         for (elem = next;
2540              elem->data < ies + ieslen &&
2541                 elem->data + elem->datalen <= ies + ieslen;
2542              elem = next) {
2543                 /* elem might be invalid after the memmove */
2544                 next = (void *)(elem->data + elem->datalen);
2545
2546                 if (elem->id != frag_id)
2547                         break;
2548
2549                 elem_datalen = elem->datalen;
2550
2551                 if (data) {
2552                         if (copied + elem_datalen > data_len)
2553                                 return -ENOSPC;
2554
2555                         memmove(data + copied, elem->data, elem_datalen);
2556                 }
2557
2558                 copied += elem_datalen;
2559
2560                 /* Only the last fragment may be short */
2561                 if (elem_datalen != 255)
2562                         break;
2563         }
2564
2565         return copied;
2566 }
2567 EXPORT_SYMBOL(cfg80211_defragment_element);
2568
2569 struct cfg80211_mle {
2570         struct ieee80211_multi_link_elem *mle;
2571         struct ieee80211_mle_per_sta_profile
2572                 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2573         ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2574
2575         u8 data[];
2576 };
2577
2578 static struct cfg80211_mle *
2579 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2580                     gfp_t gfp)
2581 {
2582         const struct element *elem;
2583         struct cfg80211_mle *res;
2584         size_t buf_len;
2585         ssize_t mle_len;
2586         u8 common_size, idx;
2587
2588         if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2589                 return NULL;
2590
2591         /* Required length for first defragmentation */
2592         buf_len = mle->datalen - 1;
2593         for_each_element(elem, mle->data + mle->datalen,
2594                          ielen - sizeof(*mle) + mle->datalen) {
2595                 if (elem->id != WLAN_EID_FRAGMENT)
2596                         break;
2597
2598                 buf_len += elem->datalen;
2599         }
2600
2601         res = kzalloc(struct_size(res, data, buf_len), gfp);
2602         if (!res)
2603                 return NULL;
2604
2605         mle_len = cfg80211_defragment_element(mle, ie, ielen,
2606                                               res->data, buf_len,
2607                                               WLAN_EID_FRAGMENT);
2608         if (mle_len < 0)
2609                 goto error;
2610
2611         res->mle = (void *)res->data;
2612
2613         /* Find the sub-element area in the buffer */
2614         common_size = ieee80211_mle_common_size((u8 *)res->mle);
2615         ie = res->data + common_size;
2616         ielen = mle_len - common_size;
2617
2618         idx = 0;
2619         for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2620                             ie, ielen) {
2621                 res->sta_prof[idx] = (void *)elem->data;
2622                 res->sta_prof_len[idx] = elem->datalen;
2623
2624                 idx++;
2625                 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2626                         break;
2627         }
2628         if (!for_each_element_completed(elem, ie, ielen))
2629                 goto error;
2630
2631         /* Defragment sta_info in-place */
2632         for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2633              idx++) {
2634                 if (res->sta_prof_len[idx] < 255)
2635                         continue;
2636
2637                 elem = (void *)res->sta_prof[idx] - 2;
2638
2639                 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2640                     res->sta_prof[idx + 1])
2641                         buf_len = (u8 *)res->sta_prof[idx + 1] -
2642                                   (u8 *)res->sta_prof[idx];
2643                 else
2644                         buf_len = ielen + ie - (u8 *)elem;
2645
2646                 res->sta_prof_len[idx] =
2647                         cfg80211_defragment_element(elem,
2648                                                     (u8 *)elem, buf_len,
2649                                                     (u8 *)res->sta_prof[idx],
2650                                                     buf_len,
2651                                                     IEEE80211_MLE_SUBELEM_FRAGMENT);
2652                 if (res->sta_prof_len[idx] < 0)
2653                         goto error;
2654         }
2655
2656         return res;
2657
2658 error:
2659         kfree(res);
2660         return NULL;
2661 }
2662
2663 struct tbtt_info_iter_data {
2664         const struct ieee80211_neighbor_ap_info *ap_info;
2665         u8 param_ch_count;
2666         u32 use_for;
2667         u8 mld_id, link_id;
2668         bool non_tx;
2669 };
2670
2671 static enum cfg80211_rnr_iter_ret
2672 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2673                           const struct ieee80211_neighbor_ap_info *info,
2674                           const u8 *tbtt_info, u8 tbtt_info_len)
2675 {
2676         const struct ieee80211_rnr_mld_params *mld_params;
2677         struct tbtt_info_iter_data *data = _data;
2678         u8 link_id;
2679         bool non_tx = false;
2680
2681         if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2682             tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2683                                          mld_params)) {
2684                 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2685                         (void *)tbtt_info;
2686
2687                 non_tx = (tbtt_info_ge_11->bss_params &
2688                           (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2689                            IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2690                          IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2691                 mld_params = &tbtt_info_ge_11->mld_params;
2692         } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2693                  tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2694                 mld_params = (void *)tbtt_info;
2695         else
2696                 return RNR_ITER_CONTINUE;
2697
2698         link_id = le16_get_bits(mld_params->params,
2699                                 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2700
2701         if (data->mld_id != mld_params->mld_id)
2702                 return RNR_ITER_CONTINUE;
2703
2704         if (data->link_id != link_id)
2705                 return RNR_ITER_CONTINUE;
2706
2707         data->ap_info = info;
2708         data->param_ch_count =
2709                 le16_get_bits(mld_params->params,
2710                               IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2711         data->non_tx = non_tx;
2712
2713         if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2714                 data->use_for = NL80211_BSS_USE_FOR_ALL;
2715         else
2716                 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2717         return RNR_ITER_BREAK;
2718 }
2719
2720 static u8
2721 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2722                              const struct ieee80211_neighbor_ap_info **ap_info,
2723                              u8 *param_ch_count, bool *non_tx)
2724 {
2725         struct tbtt_info_iter_data data = {
2726                 .mld_id = mld_id,
2727                 .link_id = link_id,
2728         };
2729
2730         cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2731
2732         *ap_info = data.ap_info;
2733         *param_ch_count = data.param_ch_count;
2734         *non_tx = data.non_tx;
2735
2736         return data.use_for;
2737 }
2738
2739 static struct element *
2740 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2741                           bool same_mld, u8 link_id, u8 bss_change_count,
2742                           gfp_t gfp)
2743 {
2744         const struct cfg80211_bss_ies *ies;
2745         struct ieee80211_neighbor_ap_info ap_info;
2746         struct ieee80211_tbtt_info_ge_11 tbtt_info;
2747         u32 short_ssid;
2748         const struct element *elem;
2749         struct element *res;
2750
2751         /*
2752          * We only generate the RNR to permit ML lookups. For that we do not
2753          * need an entry for the corresponding transmitting BSS, lets just skip
2754          * it even though it would be easy to add.
2755          */
2756         if (!same_mld)
2757                 return NULL;
2758
2759         /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2760         rcu_read_lock();
2761         ies = rcu_dereference(source_bss->ies);
2762
2763         ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2764         ap_info.tbtt_info_hdr =
2765                         u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2766                                        IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2767                         u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2768
2769         ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2770
2771         /* operating class */
2772         elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2773                                   ies->data, ies->len);
2774         if (elem && elem->datalen >= 1) {
2775                 ap_info.op_class = elem->data[0];
2776         } else {
2777                 struct cfg80211_chan_def chandef;
2778
2779                 /* The AP is not providing us with anything to work with. So
2780                  * make up a somewhat reasonable operating class, but don't
2781                  * bother with it too much as no one will ever use the
2782                  * information.
2783                  */
2784                 cfg80211_chandef_create(&chandef, source_bss->channel,
2785                                         NL80211_CHAN_NO_HT);
2786
2787                 if (!ieee80211_chandef_to_operating_class(&chandef,
2788                                                           &ap_info.op_class))
2789                         goto out_unlock;
2790         }
2791
2792         /* Just set TBTT offset and PSD 20 to invalid/unknown */
2793         tbtt_info.tbtt_offset = 255;
2794         tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2795
2796         memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2797         if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2798                 goto out_unlock;
2799
2800         rcu_read_unlock();
2801
2802         tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2803
2804         tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2805
2806         if (is_mbssid) {
2807                 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2808                 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2809         }
2810
2811         tbtt_info.mld_params.mld_id = 0;
2812         tbtt_info.mld_params.params =
2813                 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2814                 le16_encode_bits(bss_change_count,
2815                                  IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2816
2817         res = kzalloc(struct_size(res, data,
2818                                   sizeof(ap_info) + ap_info.tbtt_info_len),
2819                       gfp);
2820         if (!res)
2821                 return NULL;
2822
2823         /* Copy the data */
2824         res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2825         res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2826         memcpy(res->data, &ap_info, sizeof(ap_info));
2827         memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2828
2829         return res;
2830
2831 out_unlock:
2832         rcu_read_unlock();
2833         return NULL;
2834 }
2835
2836 static void
2837 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2838                                 struct cfg80211_inform_single_bss_data *tx_data,
2839                                 struct cfg80211_bss *source_bss,
2840                                 const struct element *elem,
2841                                 gfp_t gfp)
2842 {
2843         struct cfg80211_inform_single_bss_data data = {
2844                 .drv_data = tx_data->drv_data,
2845                 .ftype = tx_data->ftype,
2846                 .source_bss = source_bss,
2847                 .bss_source = BSS_SOURCE_STA_PROFILE,
2848         };
2849         struct element *reporter_rnr = NULL;
2850         struct ieee80211_multi_link_elem *ml_elem;
2851         struct cfg80211_mle *mle;
2852         u16 control;
2853         u8 ml_common_len;
2854         u8 *new_ie = NULL;
2855         struct cfg80211_bss *bss;
2856         u8 mld_id, reporter_link_id, bss_change_count;
2857         u16 seen_links = 0;
2858         u8 i;
2859
2860         if (!ieee80211_mle_type_ok(elem->data + 1,
2861                                    IEEE80211_ML_CONTROL_TYPE_BASIC,
2862                                    elem->datalen - 1))
2863                 return;
2864
2865         ml_elem = (void *)(elem->data + 1);
2866         control = le16_to_cpu(ml_elem->control);
2867         ml_common_len = ml_elem->variable[0];
2868
2869         /* Must be present when transmitted by an AP (in a probe response) */
2870         if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2871             !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2872             !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2873                 return;
2874
2875         reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2876         bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2877
2878         /*
2879          * The MLD ID of the reporting AP is always zero. It is set if the AP
2880          * is part of an MBSSID set and will be non-zero for ML Elements
2881          * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2882          * Draft P802.11be_D3.2, 35.3.4.2)
2883          */
2884         mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2885
2886         /* Fully defrag the ML element for sta information/profile iteration */
2887         mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2888         if (!mle)
2889                 return;
2890
2891         /* No point in doing anything if there is no per-STA profile */
2892         if (!mle->sta_prof[0])
2893                 goto out;
2894
2895         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2896         if (!new_ie)
2897                 goto out;
2898
2899         reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2900                                                  u16_get_bits(control,
2901                                                               IEEE80211_MLC_BASIC_PRES_MLD_ID),
2902                                                  mld_id == 0, reporter_link_id,
2903                                                  bss_change_count,
2904                                                  gfp);
2905
2906         for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2907                 const struct ieee80211_neighbor_ap_info *ap_info;
2908                 enum nl80211_band band;
2909                 u32 freq;
2910                 const u8 *profile;
2911                 ssize_t profile_len;
2912                 u8 param_ch_count;
2913                 u8 link_id, use_for;
2914                 bool non_tx;
2915
2916                 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2917                                                           mle->sta_prof_len[i]))
2918                         continue;
2919
2920                 control = le16_to_cpu(mle->sta_prof[i]->control);
2921
2922                 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2923                         continue;
2924
2925                 link_id = u16_get_bits(control,
2926                                        IEEE80211_MLE_STA_CONTROL_LINK_ID);
2927                 if (seen_links & BIT(link_id))
2928                         break;
2929                 seen_links |= BIT(link_id);
2930
2931                 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2932                     !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2933                     !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2934                         continue;
2935
2936                 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2937                 data.beacon_interval =
2938                         get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2939                 data.tsf = tx_data->tsf +
2940                            get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2941
2942                 /* sta_info_len counts itself */
2943                 profile = mle->sta_prof[i]->variable +
2944                           mle->sta_prof[i]->sta_info_len - 1;
2945                 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2946                               profile;
2947
2948                 if (profile_len < 2)
2949                         continue;
2950
2951                 data.capability = get_unaligned_le16(profile);
2952                 profile += 2;
2953                 profile_len -= 2;
2954
2955                 /* Find in RNR to look up channel information */
2956                 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
2957                                                        tx_data->ielen,
2958                                                        mld_id, link_id,
2959                                                        &ap_info,
2960                                                        &param_ch_count,
2961                                                        &non_tx);
2962                 if (!use_for)
2963                         continue;
2964
2965                 /*
2966                  * As of 802.11be_D5.0, the specification does not give us any
2967                  * way of discovering both the MaxBSSID and the Multiple-BSSID
2968                  * Index. It does seem like the Multiple-BSSID Index element
2969                  * may be provided, but section 9.4.2.45 explicitly forbids
2970                  * including a Multiple-BSSID Element (in this case without any
2971                  * subelements).
2972                  * Without both pieces of information we cannot calculate the
2973                  * reference BSSID, so simply ignore the BSS.
2974                  */
2975                 if (non_tx)
2976                         continue;
2977
2978                 /* We could sanity check the BSSID is included */
2979
2980                 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2981                                                        &band))
2982                         continue;
2983
2984                 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2985                 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2986
2987                 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2988                     !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2989                         use_for = 0;
2990                         data.cannot_use_reasons =
2991                                 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2992                 }
2993                 data.use_for = use_for;
2994
2995                 /* Generate new elements */
2996                 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2997                 data.ie = new_ie;
2998                 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2999                                                  profile, profile_len,
3000                                                  new_ie,
3001                                                  IEEE80211_MAX_DATA_LEN);
3002                 if (!data.ielen)
3003                         continue;
3004
3005                 /* The generated elements do not contain:
3006                  *  - Basic ML element
3007                  *  - A TBTT entry in the RNR for the transmitting AP
3008                  *
3009                  * This information is needed both internally and in userspace
3010                  * as such, we should append it here.
3011                  */
3012                 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3013                     IEEE80211_MAX_DATA_LEN)
3014                         continue;
3015
3016                 /* Copy the Basic Multi-Link element including the common
3017                  * information, and then fix up the link ID and BSS param
3018                  * change count.
3019                  * Note that the ML element length has been verified and we
3020                  * also checked that it contains the link ID.
3021                  */
3022                 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3023                 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3024                 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3025                 memcpy(new_ie + data.ielen, ml_elem,
3026                        sizeof(*ml_elem) + ml_common_len);
3027
3028                 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3029                 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3030                         param_ch_count;
3031
3032                 data.ielen += sizeof(*ml_elem) + ml_common_len;
3033
3034                 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3035                         if (data.ielen + sizeof(struct element) +
3036                             reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3037                                 continue;
3038
3039                         memcpy(new_ie + data.ielen, reporter_rnr,
3040                                sizeof(struct element) + reporter_rnr->datalen);
3041                         data.ielen += sizeof(struct element) +
3042                                       reporter_rnr->datalen;
3043                 }
3044
3045                 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3046                 if (!bss)
3047                         break;
3048                 cfg80211_put_bss(wiphy, bss);
3049         }
3050
3051 out:
3052         kfree(reporter_rnr);
3053         kfree(new_ie);
3054         kfree(mle);
3055 }
3056
3057 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3058                                        struct cfg80211_inform_single_bss_data *tx_data,
3059                                        struct cfg80211_bss *source_bss,
3060                                        gfp_t gfp)
3061 {
3062         const struct element *elem;
3063
3064         if (!source_bss)
3065                 return;
3066
3067         if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3068                 return;
3069
3070         for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3071                                tx_data->ie, tx_data->ielen)
3072                 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3073                                                 elem, gfp);
3074 }
3075
3076 struct cfg80211_bss *
3077 cfg80211_inform_bss_data(struct wiphy *wiphy,
3078                          struct cfg80211_inform_bss *data,
3079                          enum cfg80211_bss_frame_type ftype,
3080                          const u8 *bssid, u64 tsf, u16 capability,
3081                          u16 beacon_interval, const u8 *ie, size_t ielen,
3082                          gfp_t gfp)
3083 {
3084         struct cfg80211_inform_single_bss_data inform_data = {
3085                 .drv_data = data,
3086                 .ftype = ftype,
3087                 .tsf = tsf,
3088                 .capability = capability,
3089                 .beacon_interval = beacon_interval,
3090                 .ie = ie,
3091                 .ielen = ielen,
3092                 .use_for = data->restrict_use ?
3093                                 data->use_for :
3094                                 NL80211_BSS_USE_FOR_ALL,
3095                 .cannot_use_reasons = data->cannot_use_reasons,
3096         };
3097         struct cfg80211_bss *res;
3098
3099         memcpy(inform_data.bssid, bssid, ETH_ALEN);
3100
3101         res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3102         if (!res)
3103                 return NULL;
3104
3105         /* don't do any further MBSSID/ML handling for S1G */
3106         if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3107                 return res;
3108
3109         cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3110
3111         cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3112
3113         return res;
3114 }
3115 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3116
3117 struct cfg80211_bss *
3118 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3119                                struct cfg80211_inform_bss *data,
3120                                struct ieee80211_mgmt *mgmt, size_t len,
3121                                gfp_t gfp)
3122 {
3123         size_t min_hdr_len = offsetof(struct ieee80211_mgmt,
3124                                       u.probe_resp.variable);
3125         struct ieee80211_ext *ext = NULL;
3126         enum cfg80211_bss_frame_type ftype;
3127         u16 beacon_interval;
3128         const u8 *bssid;
3129         u16 capability;
3130         const u8 *ie;
3131         size_t ielen;
3132         u64 tsf;
3133
3134         if (WARN_ON(!mgmt))
3135                 return NULL;
3136
3137         if (WARN_ON(!wiphy))
3138                 return NULL;
3139
3140         BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3141                      offsetof(struct ieee80211_mgmt, u.beacon.variable));
3142
3143         trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3144
3145         if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3146                 ext = (void *) mgmt;
3147                 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
3148                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3149                         min_hdr_len = offsetof(struct ieee80211_ext,
3150                                                u.s1g_short_beacon.variable);
3151         }
3152
3153         if (WARN_ON(len < min_hdr_len))
3154                 return NULL;
3155
3156         ielen = len - min_hdr_len;
3157         ie = mgmt->u.probe_resp.variable;
3158         if (ext) {
3159                 const struct ieee80211_s1g_bcn_compat_ie *compat;
3160                 const struct element *elem;
3161
3162                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3163                         ie = ext->u.s1g_short_beacon.variable;
3164                 else
3165                         ie = ext->u.s1g_beacon.variable;
3166
3167                 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3168                 if (!elem)
3169                         return NULL;
3170                 if (elem->datalen < sizeof(*compat))
3171                         return NULL;
3172                 compat = (void *)elem->data;
3173                 bssid = ext->u.s1g_beacon.sa;
3174                 capability = le16_to_cpu(compat->compat_info);
3175                 beacon_interval = le16_to_cpu(compat->beacon_int);
3176         } else {
3177                 bssid = mgmt->bssid;
3178                 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3179                 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3180         }
3181
3182         tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3183
3184         if (ieee80211_is_probe_resp(mgmt->frame_control))
3185                 ftype = CFG80211_BSS_FTYPE_PRESP;
3186         else if (ext)
3187                 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3188         else
3189                 ftype = CFG80211_BSS_FTYPE_BEACON;
3190
3191         return cfg80211_inform_bss_data(wiphy, data, ftype,
3192                                         bssid, tsf, capability,
3193                                         beacon_interval, ie, ielen,
3194                                         gfp);
3195 }
3196 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3197
3198 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3199 {
3200         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3201
3202         if (!pub)
3203                 return;
3204
3205         spin_lock_bh(&rdev->bss_lock);
3206         bss_ref_get(rdev, bss_from_pub(pub));
3207         spin_unlock_bh(&rdev->bss_lock);
3208 }
3209 EXPORT_SYMBOL(cfg80211_ref_bss);
3210
3211 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3212 {
3213         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3214
3215         if (!pub)
3216                 return;
3217
3218         spin_lock_bh(&rdev->bss_lock);
3219         bss_ref_put(rdev, bss_from_pub(pub));
3220         spin_unlock_bh(&rdev->bss_lock);
3221 }
3222 EXPORT_SYMBOL(cfg80211_put_bss);
3223
3224 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3225 {
3226         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3227         struct cfg80211_internal_bss *bss, *tmp1;
3228         struct cfg80211_bss *nontrans_bss, *tmp;
3229
3230         if (WARN_ON(!pub))
3231                 return;
3232
3233         bss = bss_from_pub(pub);
3234
3235         spin_lock_bh(&rdev->bss_lock);
3236         if (list_empty(&bss->list))
3237                 goto out;
3238
3239         list_for_each_entry_safe(nontrans_bss, tmp,
3240                                  &pub->nontrans_list,
3241                                  nontrans_list) {
3242                 tmp1 = bss_from_pub(nontrans_bss);
3243                 if (__cfg80211_unlink_bss(rdev, tmp1))
3244                         rdev->bss_generation++;
3245         }
3246
3247         if (__cfg80211_unlink_bss(rdev, bss))
3248                 rdev->bss_generation++;
3249 out:
3250         spin_unlock_bh(&rdev->bss_lock);
3251 }
3252 EXPORT_SYMBOL(cfg80211_unlink_bss);
3253
3254 void cfg80211_bss_iter(struct wiphy *wiphy,
3255                        struct cfg80211_chan_def *chandef,
3256                        void (*iter)(struct wiphy *wiphy,
3257                                     struct cfg80211_bss *bss,
3258                                     void *data),
3259                        void *iter_data)
3260 {
3261         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3262         struct cfg80211_internal_bss *bss;
3263
3264         spin_lock_bh(&rdev->bss_lock);
3265
3266         list_for_each_entry(bss, &rdev->bss_list, list) {
3267                 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3268                                                      false))
3269                         iter(wiphy, &bss->pub, iter_data);
3270         }
3271
3272         spin_unlock_bh(&rdev->bss_lock);
3273 }
3274 EXPORT_SYMBOL(cfg80211_bss_iter);
3275
3276 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3277                                      unsigned int link_id,
3278                                      struct ieee80211_channel *chan)
3279 {
3280         struct wiphy *wiphy = wdev->wiphy;
3281         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3282         struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3283         struct cfg80211_internal_bss *new = NULL;
3284         struct cfg80211_internal_bss *bss;
3285         struct cfg80211_bss *nontrans_bss;
3286         struct cfg80211_bss *tmp;
3287
3288         spin_lock_bh(&rdev->bss_lock);
3289
3290         /*
3291          * Some APs use CSA also for bandwidth changes, i.e., without actually
3292          * changing the control channel, so no need to update in such a case.
3293          */
3294         if (cbss->pub.channel == chan)
3295                 goto done;
3296
3297         /* use transmitting bss */
3298         if (cbss->pub.transmitted_bss)
3299                 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3300
3301         cbss->pub.channel = chan;
3302
3303         list_for_each_entry(bss, &rdev->bss_list, list) {
3304                 if (!cfg80211_bss_type_match(bss->pub.capability,
3305                                              bss->pub.channel->band,
3306                                              wdev->conn_bss_type))
3307                         continue;
3308
3309                 if (bss == cbss)
3310                         continue;
3311
3312                 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3313                         new = bss;
3314                         break;
3315                 }
3316         }
3317
3318         if (new) {
3319                 /* to save time, update IEs for transmitting bss only */
3320                 cfg80211_update_known_bss(rdev, cbss, new, false);
3321                 new->pub.proberesp_ies = NULL;
3322                 new->pub.beacon_ies = NULL;
3323
3324                 list_for_each_entry_safe(nontrans_bss, tmp,
3325                                          &new->pub.nontrans_list,
3326                                          nontrans_list) {
3327                         bss = bss_from_pub(nontrans_bss);
3328                         if (__cfg80211_unlink_bss(rdev, bss))
3329                                 rdev->bss_generation++;
3330                 }
3331
3332                 WARN_ON(atomic_read(&new->hold));
3333                 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3334                         rdev->bss_generation++;
3335         }
3336
3337         rb_erase(&cbss->rbn, &rdev->bss_tree);
3338         rb_insert_bss(rdev, cbss);
3339         rdev->bss_generation++;
3340
3341         list_for_each_entry_safe(nontrans_bss, tmp,
3342                                  &cbss->pub.nontrans_list,
3343                                  nontrans_list) {
3344                 bss = bss_from_pub(nontrans_bss);
3345                 bss->pub.channel = chan;
3346                 rb_erase(&bss->rbn, &rdev->bss_tree);
3347                 rb_insert_bss(rdev, bss);
3348                 rdev->bss_generation++;
3349         }
3350
3351 done:
3352         spin_unlock_bh(&rdev->bss_lock);
3353 }
3354
3355 #ifdef CONFIG_CFG80211_WEXT
3356 static struct cfg80211_registered_device *
3357 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3358 {
3359         struct cfg80211_registered_device *rdev;
3360         struct net_device *dev;
3361
3362         ASSERT_RTNL();
3363
3364         dev = dev_get_by_index(net, ifindex);
3365         if (!dev)
3366                 return ERR_PTR(-ENODEV);
3367         if (dev->ieee80211_ptr)
3368                 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3369         else
3370                 rdev = ERR_PTR(-ENODEV);
3371         dev_put(dev);
3372         return rdev;
3373 }
3374
3375 int cfg80211_wext_siwscan(struct net_device *dev,
3376                           struct iw_request_info *info,
3377                           union iwreq_data *wrqu, char *extra)
3378 {
3379         struct cfg80211_registered_device *rdev;
3380         struct wiphy *wiphy;
3381         struct iw_scan_req *wreq = NULL;
3382         struct cfg80211_scan_request *creq;
3383         int i, err, n_channels = 0;
3384         enum nl80211_band band;
3385
3386         if (!netif_running(dev))
3387                 return -ENETDOWN;
3388
3389         if (wrqu->data.length == sizeof(struct iw_scan_req))
3390                 wreq = (struct iw_scan_req *)extra;
3391
3392         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3393
3394         if (IS_ERR(rdev))
3395                 return PTR_ERR(rdev);
3396
3397         if (rdev->scan_req || rdev->scan_msg)
3398                 return -EBUSY;
3399
3400         wiphy = &rdev->wiphy;
3401
3402         /* Determine number of channels, needed to allocate creq */
3403         if (wreq && wreq->num_channels)
3404                 n_channels = wreq->num_channels;
3405         else
3406                 n_channels = ieee80211_get_num_supported_channels(wiphy);
3407
3408         creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3409                        n_channels * sizeof(void *),
3410                        GFP_ATOMIC);
3411         if (!creq)
3412                 return -ENOMEM;
3413
3414         creq->wiphy = wiphy;
3415         creq->wdev = dev->ieee80211_ptr;
3416         /* SSIDs come after channels */
3417         creq->ssids = (void *)&creq->channels[n_channels];
3418         creq->n_channels = n_channels;
3419         creq->n_ssids = 1;
3420         creq->scan_start = jiffies;
3421
3422         /* translate "Scan on frequencies" request */
3423         i = 0;
3424         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3425                 int j;
3426
3427                 if (!wiphy->bands[band])
3428                         continue;
3429
3430                 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3431                         /* ignore disabled channels */
3432                         if (wiphy->bands[band]->channels[j].flags &
3433                                                 IEEE80211_CHAN_DISABLED)
3434                                 continue;
3435
3436                         /* If we have a wireless request structure and the
3437                          * wireless request specifies frequencies, then search
3438                          * for the matching hardware channel.
3439                          */
3440                         if (wreq && wreq->num_channels) {
3441                                 int k;
3442                                 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3443                                 for (k = 0; k < wreq->num_channels; k++) {
3444                                         struct iw_freq *freq =
3445                                                 &wreq->channel_list[k];
3446                                         int wext_freq =
3447                                                 cfg80211_wext_freq(freq);
3448
3449                                         if (wext_freq == wiphy_freq)
3450                                                 goto wext_freq_found;
3451                                 }
3452                                 goto wext_freq_not_found;
3453                         }
3454
3455                 wext_freq_found:
3456                         creq->channels[i] = &wiphy->bands[band]->channels[j];
3457                         i++;
3458                 wext_freq_not_found: ;
3459                 }
3460         }
3461         /* No channels found? */
3462         if (!i) {
3463                 err = -EINVAL;
3464                 goto out;
3465         }
3466
3467         /* Set real number of channels specified in creq->channels[] */
3468         creq->n_channels = i;
3469
3470         /* translate "Scan for SSID" request */
3471         if (wreq) {
3472                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3473                         if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3474                                 err = -EINVAL;
3475                                 goto out;
3476                         }
3477                         memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3478                         creq->ssids[0].ssid_len = wreq->essid_len;
3479                 }
3480                 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3481                         creq->n_ssids = 0;
3482         }
3483
3484         for (i = 0; i < NUM_NL80211_BANDS; i++)
3485                 if (wiphy->bands[i])
3486                         creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3487
3488         eth_broadcast_addr(creq->bssid);
3489
3490         wiphy_lock(&rdev->wiphy);
3491
3492         rdev->scan_req = creq;
3493         err = rdev_scan(rdev, creq);
3494         if (err) {
3495                 rdev->scan_req = NULL;
3496                 /* creq will be freed below */
3497         } else {
3498                 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3499                 /* creq now owned by driver */
3500                 creq = NULL;
3501                 dev_hold(dev);
3502         }
3503         wiphy_unlock(&rdev->wiphy);
3504  out:
3505         kfree(creq);
3506         return err;
3507 }
3508 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3509
3510 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3511                                     const struct cfg80211_bss_ies *ies,
3512                                     char *current_ev, char *end_buf)
3513 {
3514         const u8 *pos, *end, *next;
3515         struct iw_event iwe;
3516
3517         if (!ies)
3518                 return current_ev;
3519
3520         /*
3521          * If needed, fragment the IEs buffer (at IE boundaries) into short
3522          * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3523          */
3524         pos = ies->data;
3525         end = pos + ies->len;
3526
3527         while (end - pos > IW_GENERIC_IE_MAX) {
3528                 next = pos + 2 + pos[1];
3529                 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3530                         next = next + 2 + next[1];
3531
3532                 memset(&iwe, 0, sizeof(iwe));
3533                 iwe.cmd = IWEVGENIE;
3534                 iwe.u.data.length = next - pos;
3535                 current_ev = iwe_stream_add_point_check(info, current_ev,
3536                                                         end_buf, &iwe,
3537                                                         (void *)pos);
3538                 if (IS_ERR(current_ev))
3539                         return current_ev;
3540                 pos = next;
3541         }
3542
3543         if (end > pos) {
3544                 memset(&iwe, 0, sizeof(iwe));
3545                 iwe.cmd = IWEVGENIE;
3546                 iwe.u.data.length = end - pos;
3547                 current_ev = iwe_stream_add_point_check(info, current_ev,
3548                                                         end_buf, &iwe,
3549                                                         (void *)pos);
3550                 if (IS_ERR(current_ev))
3551                         return current_ev;
3552         }
3553
3554         return current_ev;
3555 }
3556
3557 static char *
3558 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3559               struct cfg80211_internal_bss *bss, char *current_ev,
3560               char *end_buf)
3561 {
3562         const struct cfg80211_bss_ies *ies;
3563         struct iw_event iwe;
3564         const u8 *ie;
3565         u8 buf[50];
3566         u8 *cfg, *p, *tmp;
3567         int rem, i, sig;
3568         bool ismesh = false;
3569
3570         memset(&iwe, 0, sizeof(iwe));
3571         iwe.cmd = SIOCGIWAP;
3572         iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3573         memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3574         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3575                                                 IW_EV_ADDR_LEN);
3576         if (IS_ERR(current_ev))
3577                 return current_ev;
3578
3579         memset(&iwe, 0, sizeof(iwe));
3580         iwe.cmd = SIOCGIWFREQ;
3581         iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3582         iwe.u.freq.e = 0;
3583         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3584                                                 IW_EV_FREQ_LEN);
3585         if (IS_ERR(current_ev))
3586                 return current_ev;
3587
3588         memset(&iwe, 0, sizeof(iwe));
3589         iwe.cmd = SIOCGIWFREQ;
3590         iwe.u.freq.m = bss->pub.channel->center_freq;
3591         iwe.u.freq.e = 6;
3592         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3593                                                 IW_EV_FREQ_LEN);
3594         if (IS_ERR(current_ev))
3595                 return current_ev;
3596
3597         if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3598                 memset(&iwe, 0, sizeof(iwe));
3599                 iwe.cmd = IWEVQUAL;
3600                 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3601                                      IW_QUAL_NOISE_INVALID |
3602                                      IW_QUAL_QUAL_UPDATED;
3603                 switch (wiphy->signal_type) {
3604                 case CFG80211_SIGNAL_TYPE_MBM:
3605                         sig = bss->pub.signal / 100;
3606                         iwe.u.qual.level = sig;
3607                         iwe.u.qual.updated |= IW_QUAL_DBM;
3608                         if (sig < -110)         /* rather bad */
3609                                 sig = -110;
3610                         else if (sig > -40)     /* perfect */
3611                                 sig = -40;
3612                         /* will give a range of 0 .. 70 */
3613                         iwe.u.qual.qual = sig + 110;
3614                         break;
3615                 case CFG80211_SIGNAL_TYPE_UNSPEC:
3616                         iwe.u.qual.level = bss->pub.signal;
3617                         /* will give range 0 .. 100 */
3618                         iwe.u.qual.qual = bss->pub.signal;
3619                         break;
3620                 default:
3621                         /* not reached */
3622                         break;
3623                 }
3624                 current_ev = iwe_stream_add_event_check(info, current_ev,
3625                                                         end_buf, &iwe,
3626                                                         IW_EV_QUAL_LEN);
3627                 if (IS_ERR(current_ev))
3628                         return current_ev;
3629         }
3630
3631         memset(&iwe, 0, sizeof(iwe));
3632         iwe.cmd = SIOCGIWENCODE;
3633         if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3634                 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3635         else
3636                 iwe.u.data.flags = IW_ENCODE_DISABLED;
3637         iwe.u.data.length = 0;
3638         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3639                                                 &iwe, "");
3640         if (IS_ERR(current_ev))
3641                 return current_ev;
3642
3643         rcu_read_lock();
3644         ies = rcu_dereference(bss->pub.ies);
3645         rem = ies->len;
3646         ie = ies->data;
3647
3648         while (rem >= 2) {
3649                 /* invalid data */
3650                 if (ie[1] > rem - 2)
3651                         break;
3652
3653                 switch (ie[0]) {
3654                 case WLAN_EID_SSID:
3655                         memset(&iwe, 0, sizeof(iwe));
3656                         iwe.cmd = SIOCGIWESSID;
3657                         iwe.u.data.length = ie[1];
3658                         iwe.u.data.flags = 1;
3659                         current_ev = iwe_stream_add_point_check(info,
3660                                                                 current_ev,
3661                                                                 end_buf, &iwe,
3662                                                                 (u8 *)ie + 2);
3663                         if (IS_ERR(current_ev))
3664                                 goto unlock;
3665                         break;
3666                 case WLAN_EID_MESH_ID:
3667                         memset(&iwe, 0, sizeof(iwe));
3668                         iwe.cmd = SIOCGIWESSID;
3669                         iwe.u.data.length = ie[1];
3670                         iwe.u.data.flags = 1;
3671                         current_ev = iwe_stream_add_point_check(info,
3672                                                                 current_ev,
3673                                                                 end_buf, &iwe,
3674                                                                 (u8 *)ie + 2);
3675                         if (IS_ERR(current_ev))
3676                                 goto unlock;
3677                         break;
3678                 case WLAN_EID_MESH_CONFIG:
3679                         ismesh = true;
3680                         if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3681                                 break;
3682                         cfg = (u8 *)ie + 2;
3683                         memset(&iwe, 0, sizeof(iwe));
3684                         iwe.cmd = IWEVCUSTOM;
3685                         iwe.u.data.length = sprintf(buf,
3686                                                     "Mesh Network Path Selection Protocol ID: 0x%02X",
3687                                                     cfg[0]);
3688                         current_ev = iwe_stream_add_point_check(info,
3689                                                                 current_ev,
3690                                                                 end_buf,
3691                                                                 &iwe, buf);
3692                         if (IS_ERR(current_ev))
3693                                 goto unlock;
3694                         iwe.u.data.length = sprintf(buf,
3695                                                     "Path Selection Metric ID: 0x%02X",
3696                                                     cfg[1]);
3697                         current_ev = iwe_stream_add_point_check(info,
3698                                                                 current_ev,
3699                                                                 end_buf,
3700                                                                 &iwe, buf);
3701                         if (IS_ERR(current_ev))
3702                                 goto unlock;
3703                         iwe.u.data.length = sprintf(buf,
3704                                                     "Congestion Control Mode ID: 0x%02X",
3705                                                     cfg[2]);
3706                         current_ev = iwe_stream_add_point_check(info,
3707                                                                 current_ev,
3708                                                                 end_buf,
3709                                                                 &iwe, buf);
3710                         if (IS_ERR(current_ev))
3711                                 goto unlock;
3712                         iwe.u.data.length = sprintf(buf,
3713                                                     "Synchronization ID: 0x%02X",
3714                                                     cfg[3]);
3715                         current_ev = iwe_stream_add_point_check(info,
3716                                                                 current_ev,
3717                                                                 end_buf,
3718                                                                 &iwe, buf);
3719                         if (IS_ERR(current_ev))
3720                                 goto unlock;
3721                         iwe.u.data.length = sprintf(buf,
3722                                                     "Authentication ID: 0x%02X",
3723                                                     cfg[4]);
3724                         current_ev = iwe_stream_add_point_check(info,
3725                                                                 current_ev,
3726                                                                 end_buf,
3727                                                                 &iwe, buf);
3728                         if (IS_ERR(current_ev))
3729                                 goto unlock;
3730                         iwe.u.data.length = sprintf(buf,
3731                                                     "Formation Info: 0x%02X",
3732                                                     cfg[5]);
3733                         current_ev = iwe_stream_add_point_check(info,
3734                                                                 current_ev,
3735                                                                 end_buf,
3736                                                                 &iwe, buf);
3737                         if (IS_ERR(current_ev))
3738                                 goto unlock;
3739                         iwe.u.data.length = sprintf(buf,
3740                                                     "Capabilities: 0x%02X",
3741                                                     cfg[6]);
3742                         current_ev = iwe_stream_add_point_check(info,
3743                                                                 current_ev,
3744                                                                 end_buf,
3745                                                                 &iwe, buf);
3746                         if (IS_ERR(current_ev))
3747                                 goto unlock;
3748                         break;
3749                 case WLAN_EID_SUPP_RATES:
3750                 case WLAN_EID_EXT_SUPP_RATES:
3751                         /* display all supported rates in readable format */
3752                         p = current_ev + iwe_stream_lcp_len(info);
3753
3754                         memset(&iwe, 0, sizeof(iwe));
3755                         iwe.cmd = SIOCGIWRATE;
3756                         /* Those two flags are ignored... */
3757                         iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3758
3759                         for (i = 0; i < ie[1]; i++) {
3760                                 iwe.u.bitrate.value =
3761                                         ((ie[i + 2] & 0x7f) * 500000);
3762                                 tmp = p;
3763                                 p = iwe_stream_add_value(info, current_ev, p,
3764                                                          end_buf, &iwe,
3765                                                          IW_EV_PARAM_LEN);
3766                                 if (p == tmp) {
3767                                         current_ev = ERR_PTR(-E2BIG);
3768                                         goto unlock;
3769                                 }
3770                         }
3771                         current_ev = p;
3772                         break;
3773                 }
3774                 rem -= ie[1] + 2;
3775                 ie += ie[1] + 2;
3776         }
3777
3778         if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3779             ismesh) {
3780                 memset(&iwe, 0, sizeof(iwe));
3781                 iwe.cmd = SIOCGIWMODE;
3782                 if (ismesh)
3783                         iwe.u.mode = IW_MODE_MESH;
3784                 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3785                         iwe.u.mode = IW_MODE_MASTER;
3786                 else
3787                         iwe.u.mode = IW_MODE_ADHOC;
3788                 current_ev = iwe_stream_add_event_check(info, current_ev,
3789                                                         end_buf, &iwe,
3790                                                         IW_EV_UINT_LEN);
3791                 if (IS_ERR(current_ev))
3792                         goto unlock;
3793         }
3794
3795         memset(&iwe, 0, sizeof(iwe));
3796         iwe.cmd = IWEVCUSTOM;
3797         iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3798                                     (unsigned long long)(ies->tsf));
3799         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3800                                                 &iwe, buf);
3801         if (IS_ERR(current_ev))
3802                 goto unlock;
3803         memset(&iwe, 0, sizeof(iwe));
3804         iwe.cmd = IWEVCUSTOM;
3805         iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3806                                     elapsed_jiffies_msecs(bss->ts));
3807         current_ev = iwe_stream_add_point_check(info, current_ev,
3808                                                 end_buf, &iwe, buf);
3809         if (IS_ERR(current_ev))
3810                 goto unlock;
3811
3812         current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3813
3814  unlock:
3815         rcu_read_unlock();
3816         return current_ev;
3817 }
3818
3819
3820 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3821                                   struct iw_request_info *info,
3822                                   char *buf, size_t len)
3823 {
3824         char *current_ev = buf;
3825         char *end_buf = buf + len;
3826         struct cfg80211_internal_bss *bss;
3827         int err = 0;
3828
3829         spin_lock_bh(&rdev->bss_lock);
3830         cfg80211_bss_expire(rdev);
3831
3832         list_for_each_entry(bss, &rdev->bss_list, list) {
3833                 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3834                         err = -E2BIG;
3835                         break;
3836                 }
3837                 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3838                                            current_ev, end_buf);
3839                 if (IS_ERR(current_ev)) {
3840                         err = PTR_ERR(current_ev);
3841                         break;
3842                 }
3843         }
3844         spin_unlock_bh(&rdev->bss_lock);
3845
3846         if (err)
3847                 return err;
3848         return current_ev - buf;
3849 }
3850
3851
3852 int cfg80211_wext_giwscan(struct net_device *dev,
3853                           struct iw_request_info *info,
3854                           union iwreq_data *wrqu, char *extra)
3855 {
3856         struct iw_point *data = &wrqu->data;
3857         struct cfg80211_registered_device *rdev;
3858         int res;
3859
3860         if (!netif_running(dev))
3861                 return -ENETDOWN;
3862
3863         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3864
3865         if (IS_ERR(rdev))
3866                 return PTR_ERR(rdev);
3867
3868         if (rdev->scan_req || rdev->scan_msg)
3869                 return -EAGAIN;
3870
3871         res = ieee80211_scan_results(rdev, info, extra, data->length);
3872         data->length = 0;
3873         if (res >= 0) {
3874                 data->length = res;
3875                 res = 0;
3876         }
3877
3878         return res;
3879 }
3880 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3881 #endif