Merge tag 'media/v6.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-2.6-block.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2024 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
61
62 #include <net/cfg80211.h>
63 #include "core.h"
64 #include "reg.h"
65 #include "rdev-ops.h"
66 #include "nl80211.h"
67
68 /*
69  * Grace period we give before making sure all current interfaces reside on
70  * channels allowed by the current regulatory domain.
71  */
72 #define REG_ENFORCE_GRACE_MS 60000
73
74 /**
75  * enum reg_request_treatment - regulatory request treatment
76  *
77  * @REG_REQ_OK: continue processing the regulatory request
78  * @REG_REQ_IGNORE: ignore the regulatory request
79  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80  *      be intersected with the current one.
81  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82  *      regulatory settings, and no further processing is required.
83  */
84 enum reg_request_treatment {
85         REG_REQ_OK,
86         REG_REQ_IGNORE,
87         REG_REQ_INTERSECT,
88         REG_REQ_ALREADY_SET,
89 };
90
91 static struct regulatory_request core_request_world = {
92         .initiator = NL80211_REGDOM_SET_BY_CORE,
93         .alpha2[0] = '0',
94         .alpha2[1] = '0',
95         .intersect = false,
96         .processed = true,
97         .country_ie_env = ENVIRON_ANY,
98 };
99
100 /*
101  * Receipt of information from last regulatory request,
102  * protected by RTNL (and can be accessed with RCU protection)
103  */
104 static struct regulatory_request __rcu *last_request =
105         (void __force __rcu *)&core_request_world;
106
107 /* To trigger userspace events and load firmware */
108 static struct platform_device *reg_pdev;
109
110 /*
111  * Central wireless core regulatory domains, we only need two,
112  * the current one and a world regulatory domain in case we have no
113  * information to give us an alpha2.
114  * (protected by RTNL, can be read under RCU)
115  */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118 /*
119  * Number of devices that registered to the core
120  * that support cellular base station regulatory hints
121  * (protected by RTNL)
122  */
123 static int reg_num_devs_support_basehint;
124
125 /*
126  * State variable indicating if the platform on which the devices
127  * are attached is operating in an indoor environment. The state variable
128  * is relevant for all registered devices.
129  */
130 static bool reg_is_indoor;
131 static DEFINE_SPINLOCK(reg_indoor_lock);
132
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid;
135
136 static void restore_regulatory_settings(bool reset_user, bool cached);
137 static void print_regdomain(const struct ieee80211_regdomain *rd);
138 static void reg_process_hint(struct regulatory_request *reg_request);
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142         return rcu_dereference_rtnl(cfg80211_regdomain);
143 }
144
145 /*
146  * Returns the regulatory domain associated with the wiphy.
147  *
148  * Requires any of RTNL, wiphy mutex or RCU protection.
149  */
150 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151 {
152         return rcu_dereference_check(wiphy->regd,
153                                      lockdep_is_held(&wiphy->mtx) ||
154                                      lockdep_rtnl_is_held());
155 }
156 EXPORT_SYMBOL(get_wiphy_regdom);
157
158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159 {
160         switch (dfs_region) {
161         case NL80211_DFS_UNSET:
162                 return "unset";
163         case NL80211_DFS_FCC:
164                 return "FCC";
165         case NL80211_DFS_ETSI:
166                 return "ETSI";
167         case NL80211_DFS_JP:
168                 return "JP";
169         }
170         return "Unknown";
171 }
172
173 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174 {
175         const struct ieee80211_regdomain *regd = NULL;
176         const struct ieee80211_regdomain *wiphy_regd = NULL;
177         enum nl80211_dfs_regions dfs_region;
178
179         rcu_read_lock();
180         regd = get_cfg80211_regdom();
181         dfs_region = regd->dfs_region;
182
183         if (!wiphy)
184                 goto out;
185
186         wiphy_regd = get_wiphy_regdom(wiphy);
187         if (!wiphy_regd)
188                 goto out;
189
190         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191                 dfs_region = wiphy_regd->dfs_region;
192                 goto out;
193         }
194
195         if (wiphy_regd->dfs_region == regd->dfs_region)
196                 goto out;
197
198         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199                  dev_name(&wiphy->dev),
200                  reg_dfs_region_str(wiphy_regd->dfs_region),
201                  reg_dfs_region_str(regd->dfs_region));
202
203 out:
204         rcu_read_unlock();
205
206         return dfs_region;
207 }
208
209 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210 {
211         if (!r)
212                 return;
213         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214 }
215
216 static struct regulatory_request *get_last_request(void)
217 {
218         return rcu_dereference_rtnl(last_request);
219 }
220
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list);
223 static DEFINE_SPINLOCK(reg_requests_lock);
224
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list);
231
232 struct reg_beacon {
233         struct list_head list;
234         struct ieee80211_channel chan;
235 };
236
237 static void reg_check_chans_work(struct work_struct *work);
238 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239
240 static void reg_todo(struct work_struct *work);
241 static DECLARE_WORK(reg_work, reg_todo);
242
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom = {
245         .n_reg_rules = 8,
246         .alpha2 =  "00",
247         .reg_rules = {
248                 /* IEEE 802.11b/g, channels 1..11 */
249                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250                 /* IEEE 802.11b/g, channels 12..13. */
251                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
252                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253                 /* IEEE 802.11 channel 14 - Only JP enables
254                  * this and for 802.11b only */
255                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
256                         NL80211_RRF_NO_IR |
257                         NL80211_RRF_NO_OFDM),
258                 /* IEEE 802.11a, channel 36..48 */
259                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
260                         NL80211_RRF_NO_IR |
261                         NL80211_RRF_AUTO_BW),
262
263                 /* IEEE 802.11a, channel 52..64 - DFS required */
264                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
265                         NL80211_RRF_NO_IR |
266                         NL80211_RRF_AUTO_BW |
267                         NL80211_RRF_DFS),
268
269                 /* IEEE 802.11a, channel 100..144 - DFS required */
270                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
271                         NL80211_RRF_NO_IR |
272                         NL80211_RRF_DFS),
273
274                 /* IEEE 802.11a, channel 149..165 */
275                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
276                         NL80211_RRF_NO_IR),
277
278                 /* IEEE 802.11ad (60GHz), channels 1..3 */
279                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280         }
281 };
282
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain *cfg80211_world_regdom =
285         &world_regdom;
286
287 static char *ieee80211_regdom = "00";
288 static char user_alpha2[2];
289 static const struct ieee80211_regdomain *cfg80211_user_regdom;
290
291 module_param(ieee80211_regdom, charp, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293
294 static void reg_free_request(struct regulatory_request *request)
295 {
296         if (request == &core_request_world)
297                 return;
298
299         if (request != get_last_request())
300                 kfree(request);
301 }
302
303 static void reg_free_last_request(void)
304 {
305         struct regulatory_request *lr = get_last_request();
306
307         if (lr != &core_request_world && lr)
308                 kfree_rcu(lr, rcu_head);
309 }
310
311 static void reg_update_last_request(struct regulatory_request *request)
312 {
313         struct regulatory_request *lr;
314
315         lr = get_last_request();
316         if (lr == request)
317                 return;
318
319         reg_free_last_request();
320         rcu_assign_pointer(last_request, request);
321 }
322
323 static void reset_regdomains(bool full_reset,
324                              const struct ieee80211_regdomain *new_regdom)
325 {
326         const struct ieee80211_regdomain *r;
327
328         ASSERT_RTNL();
329
330         r = get_cfg80211_regdom();
331
332         /* avoid freeing static information or freeing something twice */
333         if (r == cfg80211_world_regdom)
334                 r = NULL;
335         if (cfg80211_world_regdom == &world_regdom)
336                 cfg80211_world_regdom = NULL;
337         if (r == &world_regdom)
338                 r = NULL;
339
340         rcu_free_regdom(r);
341         rcu_free_regdom(cfg80211_world_regdom);
342
343         cfg80211_world_regdom = &world_regdom;
344         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345
346         if (!full_reset)
347                 return;
348
349         reg_update_last_request(&core_request_world);
350 }
351
352 /*
353  * Dynamic world regulatory domain requested by the wireless
354  * core upon initialization
355  */
356 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357 {
358         struct regulatory_request *lr;
359
360         lr = get_last_request();
361
362         WARN_ON(!lr);
363
364         reset_regdomains(false, rd);
365
366         cfg80211_world_regdom = rd;
367 }
368
369 bool is_world_regdom(const char *alpha2)
370 {
371         if (!alpha2)
372                 return false;
373         return alpha2[0] == '0' && alpha2[1] == '0';
374 }
375
376 static bool is_alpha2_set(const char *alpha2)
377 {
378         if (!alpha2)
379                 return false;
380         return alpha2[0] && alpha2[1];
381 }
382
383 static bool is_unknown_alpha2(const char *alpha2)
384 {
385         if (!alpha2)
386                 return false;
387         /*
388          * Special case where regulatory domain was built by driver
389          * but a specific alpha2 cannot be determined
390          */
391         return alpha2[0] == '9' && alpha2[1] == '9';
392 }
393
394 static bool is_intersected_alpha2(const char *alpha2)
395 {
396         if (!alpha2)
397                 return false;
398         /*
399          * Special case where regulatory domain is the
400          * result of an intersection between two regulatory domain
401          * structures
402          */
403         return alpha2[0] == '9' && alpha2[1] == '8';
404 }
405
406 static bool is_an_alpha2(const char *alpha2)
407 {
408         if (!alpha2)
409                 return false;
410         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
411 }
412
413 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
414 {
415         if (!alpha2_x || !alpha2_y)
416                 return false;
417         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
418 }
419
420 static bool regdom_changes(const char *alpha2)
421 {
422         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
423
424         if (!r)
425                 return true;
426         return !alpha2_equal(r->alpha2, alpha2);
427 }
428
429 /*
430  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
431  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
432  * has ever been issued.
433  */
434 static bool is_user_regdom_saved(void)
435 {
436         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
437                 return false;
438
439         /* This would indicate a mistake on the design */
440         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
441                  "Unexpected user alpha2: %c%c\n",
442                  user_alpha2[0], user_alpha2[1]))
443                 return false;
444
445         return true;
446 }
447
448 static const struct ieee80211_regdomain *
449 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
450 {
451         struct ieee80211_regdomain *regd;
452         unsigned int i;
453
454         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
455                        GFP_KERNEL);
456         if (!regd)
457                 return ERR_PTR(-ENOMEM);
458
459         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
460
461         for (i = 0; i < src_regd->n_reg_rules; i++)
462                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
463                        sizeof(struct ieee80211_reg_rule));
464
465         return regd;
466 }
467
468 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
469 {
470         ASSERT_RTNL();
471
472         if (!IS_ERR(cfg80211_user_regdom))
473                 kfree(cfg80211_user_regdom);
474         cfg80211_user_regdom = reg_copy_regd(rd);
475 }
476
477 struct reg_regdb_apply_request {
478         struct list_head list;
479         const struct ieee80211_regdomain *regdom;
480 };
481
482 static LIST_HEAD(reg_regdb_apply_list);
483 static DEFINE_MUTEX(reg_regdb_apply_mutex);
484
485 static void reg_regdb_apply(struct work_struct *work)
486 {
487         struct reg_regdb_apply_request *request;
488
489         rtnl_lock();
490
491         mutex_lock(&reg_regdb_apply_mutex);
492         while (!list_empty(&reg_regdb_apply_list)) {
493                 request = list_first_entry(&reg_regdb_apply_list,
494                                            struct reg_regdb_apply_request,
495                                            list);
496                 list_del(&request->list);
497
498                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
499                 kfree(request);
500         }
501         mutex_unlock(&reg_regdb_apply_mutex);
502
503         rtnl_unlock();
504 }
505
506 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
507
508 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
509 {
510         struct reg_regdb_apply_request *request;
511
512         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
513         if (!request) {
514                 kfree(regdom);
515                 return -ENOMEM;
516         }
517
518         request->regdom = regdom;
519
520         mutex_lock(&reg_regdb_apply_mutex);
521         list_add_tail(&request->list, &reg_regdb_apply_list);
522         mutex_unlock(&reg_regdb_apply_mutex);
523
524         schedule_work(&reg_regdb_work);
525         return 0;
526 }
527
528 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
529 /* Max number of consecutive attempts to communicate with CRDA  */
530 #define REG_MAX_CRDA_TIMEOUTS 10
531
532 static u32 reg_crda_timeouts;
533
534 static void crda_timeout_work(struct work_struct *work);
535 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
536
537 static void crda_timeout_work(struct work_struct *work)
538 {
539         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540         rtnl_lock();
541         reg_crda_timeouts++;
542         restore_regulatory_settings(true, false);
543         rtnl_unlock();
544 }
545
546 static void cancel_crda_timeout(void)
547 {
548         cancel_delayed_work(&crda_timeout);
549 }
550
551 static void cancel_crda_timeout_sync(void)
552 {
553         cancel_delayed_work_sync(&crda_timeout);
554 }
555
556 static void reset_crda_timeouts(void)
557 {
558         reg_crda_timeouts = 0;
559 }
560
561 /*
562  * This lets us keep regulatory code which is updated on a regulatory
563  * basis in userspace.
564  */
565 static int call_crda(const char *alpha2)
566 {
567         char country[12];
568         char *env[] = { country, NULL };
569         int ret;
570
571         snprintf(country, sizeof(country), "COUNTRY=%c%c",
572                  alpha2[0], alpha2[1]);
573
574         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
575                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
576                 return -EINVAL;
577         }
578
579         if (!is_world_regdom((char *) alpha2))
580                 pr_debug("Calling CRDA for country: %c%c\n",
581                          alpha2[0], alpha2[1]);
582         else
583                 pr_debug("Calling CRDA to update world regulatory domain\n");
584
585         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
586         if (ret)
587                 return ret;
588
589         queue_delayed_work(system_power_efficient_wq,
590                            &crda_timeout, msecs_to_jiffies(3142));
591         return 0;
592 }
593 #else
594 static inline void cancel_crda_timeout(void) {}
595 static inline void cancel_crda_timeout_sync(void) {}
596 static inline void reset_crda_timeouts(void) {}
597 static inline int call_crda(const char *alpha2)
598 {
599         return -ENODATA;
600 }
601 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
602
603 /* code to directly load a firmware database through request_firmware */
604 static const struct fwdb_header *regdb;
605
606 struct fwdb_country {
607         u8 alpha2[2];
608         __be16 coll_ptr;
609         /* this struct cannot be extended */
610 } __packed __aligned(4);
611
612 struct fwdb_collection {
613         u8 len;
614         u8 n_rules;
615         u8 dfs_region;
616         /* no optional data yet */
617         /* aligned to 2, then followed by __be16 array of rule pointers */
618 } __packed __aligned(4);
619
620 enum fwdb_flags {
621         FWDB_FLAG_NO_OFDM       = BIT(0),
622         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
623         FWDB_FLAG_DFS           = BIT(2),
624         FWDB_FLAG_NO_IR         = BIT(3),
625         FWDB_FLAG_AUTO_BW       = BIT(4),
626 };
627
628 struct fwdb_wmm_ac {
629         u8 ecw;
630         u8 aifsn;
631         __be16 cot;
632 } __packed;
633
634 struct fwdb_wmm_rule {
635         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
636         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
637 } __packed;
638
639 struct fwdb_rule {
640         u8 len;
641         u8 flags;
642         __be16 max_eirp;
643         __be32 start, end, max_bw;
644         /* start of optional data */
645         __be16 cac_timeout;
646         __be16 wmm_ptr;
647 } __packed __aligned(4);
648
649 #define FWDB_MAGIC 0x52474442
650 #define FWDB_VERSION 20
651
652 struct fwdb_header {
653         __be32 magic;
654         __be32 version;
655         struct fwdb_country country[];
656 } __packed __aligned(4);
657
658 static int ecw2cw(int ecw)
659 {
660         return (1 << ecw) - 1;
661 }
662
663 static bool valid_wmm(struct fwdb_wmm_rule *rule)
664 {
665         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
666         int i;
667
668         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
669                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
670                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
671                 u8 aifsn = ac[i].aifsn;
672
673                 if (cw_min >= cw_max)
674                         return false;
675
676                 if (aifsn < 1)
677                         return false;
678         }
679
680         return true;
681 }
682
683 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
684 {
685         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
686
687         if ((u8 *)rule + sizeof(rule->len) > data + size)
688                 return false;
689
690         /* mandatory fields */
691         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
692                 return false;
693         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
694                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
695                 struct fwdb_wmm_rule *wmm;
696
697                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
698                         return false;
699
700                 wmm = (void *)(data + wmm_ptr);
701
702                 if (!valid_wmm(wmm))
703                         return false;
704         }
705         return true;
706 }
707
708 static bool valid_country(const u8 *data, unsigned int size,
709                           const struct fwdb_country *country)
710 {
711         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
712         struct fwdb_collection *coll = (void *)(data + ptr);
713         __be16 *rules_ptr;
714         unsigned int i;
715
716         /* make sure we can read len/n_rules */
717         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
718                 return false;
719
720         /* make sure base struct and all rules fit */
721         if ((u8 *)coll + ALIGN(coll->len, 2) +
722             (coll->n_rules * 2) > data + size)
723                 return false;
724
725         /* mandatory fields must exist */
726         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
727                 return false;
728
729         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
730
731         for (i = 0; i < coll->n_rules; i++) {
732                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
733
734                 if (!valid_rule(data, size, rule_ptr))
735                         return false;
736         }
737
738         return true;
739 }
740
741 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
742 #include <keys/asymmetric-type.h>
743
744 static struct key *builtin_regdb_keys;
745
746 static int __init load_builtin_regdb_keys(void)
747 {
748         builtin_regdb_keys =
749                 keyring_alloc(".builtin_regdb_keys",
750                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
751                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
752                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
753                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
754         if (IS_ERR(builtin_regdb_keys))
755                 return PTR_ERR(builtin_regdb_keys);
756
757         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
758
759 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
760         x509_load_certificate_list(shipped_regdb_certs,
761                                    shipped_regdb_certs_len,
762                                    builtin_regdb_keys);
763 #endif
764 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
765         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
766                 x509_load_certificate_list(extra_regdb_certs,
767                                            extra_regdb_certs_len,
768                                            builtin_regdb_keys);
769 #endif
770
771         return 0;
772 }
773
774 MODULE_FIRMWARE("regulatory.db.p7s");
775
776 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
777 {
778         const struct firmware *sig;
779         bool result;
780
781         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
782                 return false;
783
784         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
785                                         builtin_regdb_keys,
786                                         VERIFYING_UNSPECIFIED_SIGNATURE,
787                                         NULL, NULL) == 0;
788
789         release_firmware(sig);
790
791         return result;
792 }
793
794 static void free_regdb_keyring(void)
795 {
796         key_put(builtin_regdb_keys);
797 }
798 #else
799 static int load_builtin_regdb_keys(void)
800 {
801         return 0;
802 }
803
804 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
805 {
806         return true;
807 }
808
809 static void free_regdb_keyring(void)
810 {
811 }
812 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
813
814 static bool valid_regdb(const u8 *data, unsigned int size)
815 {
816         const struct fwdb_header *hdr = (void *)data;
817         const struct fwdb_country *country;
818
819         if (size < sizeof(*hdr))
820                 return false;
821
822         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
823                 return false;
824
825         if (hdr->version != cpu_to_be32(FWDB_VERSION))
826                 return false;
827
828         if (!regdb_has_valid_signature(data, size))
829                 return false;
830
831         country = &hdr->country[0];
832         while ((u8 *)(country + 1) <= data + size) {
833                 if (!country->coll_ptr)
834                         break;
835                 if (!valid_country(data, size, country))
836                         return false;
837                 country++;
838         }
839
840         return true;
841 }
842
843 static void set_wmm_rule(const struct fwdb_header *db,
844                          const struct fwdb_country *country,
845                          const struct fwdb_rule *rule,
846                          struct ieee80211_reg_rule *rrule)
847 {
848         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
849         struct fwdb_wmm_rule *wmm;
850         unsigned int i, wmm_ptr;
851
852         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
853         wmm = (void *)((u8 *)db + wmm_ptr);
854
855         if (!valid_wmm(wmm)) {
856                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
857                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
858                        country->alpha2[0], country->alpha2[1]);
859                 return;
860         }
861
862         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
863                 wmm_rule->client[i].cw_min =
864                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
865                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
866                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
867                 wmm_rule->client[i].cot =
868                         1000 * be16_to_cpu(wmm->client[i].cot);
869                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
870                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
871                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
872                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
873         }
874
875         rrule->has_wmm = true;
876 }
877
878 static int __regdb_query_wmm(const struct fwdb_header *db,
879                              const struct fwdb_country *country, int freq,
880                              struct ieee80211_reg_rule *rrule)
881 {
882         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
883         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
884         int i;
885
886         for (i = 0; i < coll->n_rules; i++) {
887                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
888                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
889                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
890
891                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
892                         continue;
893
894                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
895                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
896                         set_wmm_rule(db, country, rule, rrule);
897                         return 0;
898                 }
899         }
900
901         return -ENODATA;
902 }
903
904 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
905 {
906         const struct fwdb_header *hdr = regdb;
907         const struct fwdb_country *country;
908
909         if (!regdb)
910                 return -ENODATA;
911
912         if (IS_ERR(regdb))
913                 return PTR_ERR(regdb);
914
915         country = &hdr->country[0];
916         while (country->coll_ptr) {
917                 if (alpha2_equal(alpha2, country->alpha2))
918                         return __regdb_query_wmm(regdb, country, freq, rule);
919
920                 country++;
921         }
922
923         return -ENODATA;
924 }
925 EXPORT_SYMBOL(reg_query_regdb_wmm);
926
927 static int regdb_query_country(const struct fwdb_header *db,
928                                const struct fwdb_country *country)
929 {
930         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
931         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
932         struct ieee80211_regdomain *regdom;
933         unsigned int i;
934
935         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
936                          GFP_KERNEL);
937         if (!regdom)
938                 return -ENOMEM;
939
940         regdom->n_reg_rules = coll->n_rules;
941         regdom->alpha2[0] = country->alpha2[0];
942         regdom->alpha2[1] = country->alpha2[1];
943         regdom->dfs_region = coll->dfs_region;
944
945         for (i = 0; i < regdom->n_reg_rules; i++) {
946                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
947                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
948                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
949                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
950
951                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
952                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
953                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
954
955                 rrule->power_rule.max_antenna_gain = 0;
956                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
957
958                 rrule->flags = 0;
959                 if (rule->flags & FWDB_FLAG_NO_OFDM)
960                         rrule->flags |= NL80211_RRF_NO_OFDM;
961                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
962                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
963                 if (rule->flags & FWDB_FLAG_DFS)
964                         rrule->flags |= NL80211_RRF_DFS;
965                 if (rule->flags & FWDB_FLAG_NO_IR)
966                         rrule->flags |= NL80211_RRF_NO_IR;
967                 if (rule->flags & FWDB_FLAG_AUTO_BW)
968                         rrule->flags |= NL80211_RRF_AUTO_BW;
969
970                 rrule->dfs_cac_ms = 0;
971
972                 /* handle optional data */
973                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
974                         rrule->dfs_cac_ms =
975                                 1000 * be16_to_cpu(rule->cac_timeout);
976                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
977                         set_wmm_rule(db, country, rule, rrule);
978         }
979
980         return reg_schedule_apply(regdom);
981 }
982
983 static int query_regdb(const char *alpha2)
984 {
985         const struct fwdb_header *hdr = regdb;
986         const struct fwdb_country *country;
987
988         ASSERT_RTNL();
989
990         if (IS_ERR(regdb))
991                 return PTR_ERR(regdb);
992
993         country = &hdr->country[0];
994         while (country->coll_ptr) {
995                 if (alpha2_equal(alpha2, country->alpha2))
996                         return regdb_query_country(regdb, country);
997                 country++;
998         }
999
1000         return -ENODATA;
1001 }
1002
1003 static void regdb_fw_cb(const struct firmware *fw, void *context)
1004 {
1005         int set_error = 0;
1006         bool restore = true;
1007         void *db;
1008
1009         if (!fw) {
1010                 pr_info("failed to load regulatory.db\n");
1011                 set_error = -ENODATA;
1012         } else if (!valid_regdb(fw->data, fw->size)) {
1013                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1014                 set_error = -EINVAL;
1015         }
1016
1017         rtnl_lock();
1018         if (regdb && !IS_ERR(regdb)) {
1019                 /* negative case - a bug
1020                  * positive case - can happen due to race in case of multiple cb's in
1021                  * queue, due to usage of asynchronous callback
1022                  *
1023                  * Either case, just restore and free new db.
1024                  */
1025         } else if (set_error) {
1026                 regdb = ERR_PTR(set_error);
1027         } else if (fw) {
1028                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1029                 if (db) {
1030                         regdb = db;
1031                         restore = context && query_regdb(context);
1032                 } else {
1033                         restore = true;
1034                 }
1035         }
1036
1037         if (restore)
1038                 restore_regulatory_settings(true, false);
1039
1040         rtnl_unlock();
1041
1042         kfree(context);
1043
1044         release_firmware(fw);
1045 }
1046
1047 MODULE_FIRMWARE("regulatory.db");
1048
1049 static int query_regdb_file(const char *alpha2)
1050 {
1051         int err;
1052
1053         ASSERT_RTNL();
1054
1055         if (regdb)
1056                 return query_regdb(alpha2);
1057
1058         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059         if (!alpha2)
1060                 return -ENOMEM;
1061
1062         err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063                                       &reg_pdev->dev, GFP_KERNEL,
1064                                       (void *)alpha2, regdb_fw_cb);
1065         if (err)
1066                 kfree(alpha2);
1067
1068         return err;
1069 }
1070
1071 int reg_reload_regdb(void)
1072 {
1073         const struct firmware *fw;
1074         void *db;
1075         int err;
1076         const struct ieee80211_regdomain *current_regdomain;
1077         struct regulatory_request *request;
1078
1079         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1080         if (err)
1081                 return err;
1082
1083         if (!valid_regdb(fw->data, fw->size)) {
1084                 err = -ENODATA;
1085                 goto out;
1086         }
1087
1088         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1089         if (!db) {
1090                 err = -ENOMEM;
1091                 goto out;
1092         }
1093
1094         rtnl_lock();
1095         if (!IS_ERR_OR_NULL(regdb))
1096                 kfree(regdb);
1097         regdb = db;
1098
1099         /* reset regulatory domain */
1100         current_regdomain = get_cfg80211_regdom();
1101
1102         request = kzalloc(sizeof(*request), GFP_KERNEL);
1103         if (!request) {
1104                 err = -ENOMEM;
1105                 goto out_unlock;
1106         }
1107
1108         request->wiphy_idx = WIPHY_IDX_INVALID;
1109         request->alpha2[0] = current_regdomain->alpha2[0];
1110         request->alpha2[1] = current_regdomain->alpha2[1];
1111         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1112         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1113
1114         reg_process_hint(request);
1115
1116 out_unlock:
1117         rtnl_unlock();
1118  out:
1119         release_firmware(fw);
1120         return err;
1121 }
1122
1123 static bool reg_query_database(struct regulatory_request *request)
1124 {
1125         if (query_regdb_file(request->alpha2) == 0)
1126                 return true;
1127
1128         if (call_crda(request->alpha2) == 0)
1129                 return true;
1130
1131         return false;
1132 }
1133
1134 bool reg_is_valid_request(const char *alpha2)
1135 {
1136         struct regulatory_request *lr = get_last_request();
1137
1138         if (!lr || lr->processed)
1139                 return false;
1140
1141         return alpha2_equal(lr->alpha2, alpha2);
1142 }
1143
1144 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1145 {
1146         struct regulatory_request *lr = get_last_request();
1147
1148         /*
1149          * Follow the driver's regulatory domain, if present, unless a country
1150          * IE has been processed or a user wants to help complaince further
1151          */
1152         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1153             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1154             wiphy->regd)
1155                 return get_wiphy_regdom(wiphy);
1156
1157         return get_cfg80211_regdom();
1158 }
1159
1160 static unsigned int
1161 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1162                                  const struct ieee80211_reg_rule *rule)
1163 {
1164         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1165         const struct ieee80211_freq_range *freq_range_tmp;
1166         const struct ieee80211_reg_rule *tmp;
1167         u32 start_freq, end_freq, idx, no;
1168
1169         for (idx = 0; idx < rd->n_reg_rules; idx++)
1170                 if (rule == &rd->reg_rules[idx])
1171                         break;
1172
1173         if (idx == rd->n_reg_rules)
1174                 return 0;
1175
1176         /* get start_freq */
1177         no = idx;
1178
1179         while (no) {
1180                 tmp = &rd->reg_rules[--no];
1181                 freq_range_tmp = &tmp->freq_range;
1182
1183                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1184                         break;
1185
1186                 freq_range = freq_range_tmp;
1187         }
1188
1189         start_freq = freq_range->start_freq_khz;
1190
1191         /* get end_freq */
1192         freq_range = &rule->freq_range;
1193         no = idx;
1194
1195         while (no < rd->n_reg_rules - 1) {
1196                 tmp = &rd->reg_rules[++no];
1197                 freq_range_tmp = &tmp->freq_range;
1198
1199                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1200                         break;
1201
1202                 freq_range = freq_range_tmp;
1203         }
1204
1205         end_freq = freq_range->end_freq_khz;
1206
1207         return end_freq - start_freq;
1208 }
1209
1210 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1211                                    const struct ieee80211_reg_rule *rule)
1212 {
1213         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1214
1215         if (rule->flags & NL80211_RRF_NO_320MHZ)
1216                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1217         if (rule->flags & NL80211_RRF_NO_160MHZ)
1218                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1219         if (rule->flags & NL80211_RRF_NO_80MHZ)
1220                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1221
1222         /*
1223          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1224          * are not allowed.
1225          */
1226         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1227             rule->flags & NL80211_RRF_NO_HT40PLUS)
1228                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1229
1230         return bw;
1231 }
1232
1233 /* Sanity check on a regulatory rule */
1234 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1235 {
1236         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1237         u32 freq_diff;
1238
1239         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1240                 return false;
1241
1242         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1243                 return false;
1244
1245         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1246
1247         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1248             freq_range->max_bandwidth_khz > freq_diff)
1249                 return false;
1250
1251         return true;
1252 }
1253
1254 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1255 {
1256         const struct ieee80211_reg_rule *reg_rule = NULL;
1257         unsigned int i;
1258
1259         if (!rd->n_reg_rules)
1260                 return false;
1261
1262         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1263                 return false;
1264
1265         for (i = 0; i < rd->n_reg_rules; i++) {
1266                 reg_rule = &rd->reg_rules[i];
1267                 if (!is_valid_reg_rule(reg_rule))
1268                         return false;
1269         }
1270
1271         return true;
1272 }
1273
1274 /**
1275  * freq_in_rule_band - tells us if a frequency is in a frequency band
1276  * @freq_range: frequency rule we want to query
1277  * @freq_khz: frequency we are inquiring about
1278  *
1279  * This lets us know if a specific frequency rule is or is not relevant to
1280  * a specific frequency's band. Bands are device specific and artificial
1281  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1282  * however it is safe for now to assume that a frequency rule should not be
1283  * part of a frequency's band if the start freq or end freq are off by more
1284  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1285  * 60 GHz band.
1286  * This resolution can be lowered and should be considered as we add
1287  * regulatory rule support for other "bands".
1288  *
1289  * Returns: whether or not the frequency is in the range
1290  */
1291 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1292                               u32 freq_khz)
1293 {
1294         /*
1295          * From 802.11ad: directional multi-gigabit (DMG):
1296          * Pertaining to operation in a frequency band containing a channel
1297          * with the Channel starting frequency above 45 GHz.
1298          */
1299         u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1300         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301                 return true;
1302         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303                 return true;
1304         return false;
1305 }
1306
1307 /*
1308  * Later on we can perhaps use the more restrictive DFS
1309  * region but we don't have information for that yet so
1310  * for now simply disallow conflicts.
1311  */
1312 static enum nl80211_dfs_regions
1313 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1314                          const enum nl80211_dfs_regions dfs_region2)
1315 {
1316         if (dfs_region1 != dfs_region2)
1317                 return NL80211_DFS_UNSET;
1318         return dfs_region1;
1319 }
1320
1321 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1322                                     const struct ieee80211_wmm_ac *wmm_ac2,
1323                                     struct ieee80211_wmm_ac *intersect)
1324 {
1325         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1326         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1327         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1328         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1329 }
1330
1331 /*
1332  * Helper for regdom_intersect(), this does the real
1333  * mathematical intersection fun
1334  */
1335 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1336                                const struct ieee80211_regdomain *rd2,
1337                                const struct ieee80211_reg_rule *rule1,
1338                                const struct ieee80211_reg_rule *rule2,
1339                                struct ieee80211_reg_rule *intersected_rule)
1340 {
1341         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1342         struct ieee80211_freq_range *freq_range;
1343         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1344         struct ieee80211_power_rule *power_rule;
1345         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1346         struct ieee80211_wmm_rule *wmm_rule;
1347         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1348
1349         freq_range1 = &rule1->freq_range;
1350         freq_range2 = &rule2->freq_range;
1351         freq_range = &intersected_rule->freq_range;
1352
1353         power_rule1 = &rule1->power_rule;
1354         power_rule2 = &rule2->power_rule;
1355         power_rule = &intersected_rule->power_rule;
1356
1357         wmm_rule1 = &rule1->wmm_rule;
1358         wmm_rule2 = &rule2->wmm_rule;
1359         wmm_rule = &intersected_rule->wmm_rule;
1360
1361         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1362                                          freq_range2->start_freq_khz);
1363         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1364                                        freq_range2->end_freq_khz);
1365
1366         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1367         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1368
1369         if (rule1->flags & NL80211_RRF_AUTO_BW)
1370                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1371         if (rule2->flags & NL80211_RRF_AUTO_BW)
1372                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1373
1374         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1375
1376         intersected_rule->flags = rule1->flags | rule2->flags;
1377
1378         /*
1379          * In case NL80211_RRF_AUTO_BW requested for both rules
1380          * set AUTO_BW in intersected rule also. Next we will
1381          * calculate BW correctly in handle_channel function.
1382          * In other case remove AUTO_BW flag while we calculate
1383          * maximum bandwidth correctly and auto calculation is
1384          * not required.
1385          */
1386         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1387             (rule2->flags & NL80211_RRF_AUTO_BW))
1388                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1389         else
1390                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1391
1392         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1393         if (freq_range->max_bandwidth_khz > freq_diff)
1394                 freq_range->max_bandwidth_khz = freq_diff;
1395
1396         power_rule->max_eirp = min(power_rule1->max_eirp,
1397                 power_rule2->max_eirp);
1398         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1399                 power_rule2->max_antenna_gain);
1400
1401         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1402                                            rule2->dfs_cac_ms);
1403
1404         if (rule1->has_wmm && rule2->has_wmm) {
1405                 u8 ac;
1406
1407                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1408                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1409                                                 &wmm_rule2->client[ac],
1410                                                 &wmm_rule->client[ac]);
1411                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1412                                                 &wmm_rule2->ap[ac],
1413                                                 &wmm_rule->ap[ac]);
1414                 }
1415
1416                 intersected_rule->has_wmm = true;
1417         } else if (rule1->has_wmm) {
1418                 *wmm_rule = *wmm_rule1;
1419                 intersected_rule->has_wmm = true;
1420         } else if (rule2->has_wmm) {
1421                 *wmm_rule = *wmm_rule2;
1422                 intersected_rule->has_wmm = true;
1423         } else {
1424                 intersected_rule->has_wmm = false;
1425         }
1426
1427         if (!is_valid_reg_rule(intersected_rule))
1428                 return -EINVAL;
1429
1430         return 0;
1431 }
1432
1433 /* check whether old rule contains new rule */
1434 static bool rule_contains(struct ieee80211_reg_rule *r1,
1435                           struct ieee80211_reg_rule *r2)
1436 {
1437         /* for simplicity, currently consider only same flags */
1438         if (r1->flags != r2->flags)
1439                 return false;
1440
1441         /* verify r1 is more restrictive */
1442         if ((r1->power_rule.max_antenna_gain >
1443              r2->power_rule.max_antenna_gain) ||
1444             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1445                 return false;
1446
1447         /* make sure r2's range is contained within r1 */
1448         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1449             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1450                 return false;
1451
1452         /* and finally verify that r1.max_bw >= r2.max_bw */
1453         if (r1->freq_range.max_bandwidth_khz <
1454             r2->freq_range.max_bandwidth_khz)
1455                 return false;
1456
1457         return true;
1458 }
1459
1460 /* add or extend current rules. do nothing if rule is already contained */
1461 static void add_rule(struct ieee80211_reg_rule *rule,
1462                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1463 {
1464         struct ieee80211_reg_rule *tmp_rule;
1465         int i;
1466
1467         for (i = 0; i < *n_rules; i++) {
1468                 tmp_rule = &reg_rules[i];
1469                 /* rule is already contained - do nothing */
1470                 if (rule_contains(tmp_rule, rule))
1471                         return;
1472
1473                 /* extend rule if possible */
1474                 if (rule_contains(rule, tmp_rule)) {
1475                         memcpy(tmp_rule, rule, sizeof(*rule));
1476                         return;
1477                 }
1478         }
1479
1480         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1481         (*n_rules)++;
1482 }
1483
1484 /**
1485  * regdom_intersect - do the intersection between two regulatory domains
1486  * @rd1: first regulatory domain
1487  * @rd2: second regulatory domain
1488  *
1489  * Use this function to get the intersection between two regulatory domains.
1490  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1491  * as no one single alpha2 can represent this regulatory domain.
1492  *
1493  * Returns a pointer to the regulatory domain structure which will hold the
1494  * resulting intersection of rules between rd1 and rd2. We will
1495  * kzalloc() this structure for you.
1496  *
1497  * Returns: the intersected regdomain
1498  */
1499 static struct ieee80211_regdomain *
1500 regdom_intersect(const struct ieee80211_regdomain *rd1,
1501                  const struct ieee80211_regdomain *rd2)
1502 {
1503         int r;
1504         unsigned int x, y;
1505         unsigned int num_rules = 0;
1506         const struct ieee80211_reg_rule *rule1, *rule2;
1507         struct ieee80211_reg_rule intersected_rule;
1508         struct ieee80211_regdomain *rd;
1509
1510         if (!rd1 || !rd2)
1511                 return NULL;
1512
1513         /*
1514          * First we get a count of the rules we'll need, then we actually
1515          * build them. This is to so we can malloc() and free() a
1516          * regdomain once. The reason we use reg_rules_intersect() here
1517          * is it will return -EINVAL if the rule computed makes no sense.
1518          * All rules that do check out OK are valid.
1519          */
1520
1521         for (x = 0; x < rd1->n_reg_rules; x++) {
1522                 rule1 = &rd1->reg_rules[x];
1523                 for (y = 0; y < rd2->n_reg_rules; y++) {
1524                         rule2 = &rd2->reg_rules[y];
1525                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1526                                                  &intersected_rule))
1527                                 num_rules++;
1528                 }
1529         }
1530
1531         if (!num_rules)
1532                 return NULL;
1533
1534         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1535         if (!rd)
1536                 return NULL;
1537
1538         for (x = 0; x < rd1->n_reg_rules; x++) {
1539                 rule1 = &rd1->reg_rules[x];
1540                 for (y = 0; y < rd2->n_reg_rules; y++) {
1541                         rule2 = &rd2->reg_rules[y];
1542                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1543                                                 &intersected_rule);
1544                         /*
1545                          * No need to memset here the intersected rule here as
1546                          * we're not using the stack anymore
1547                          */
1548                         if (r)
1549                                 continue;
1550
1551                         add_rule(&intersected_rule, rd->reg_rules,
1552                                  &rd->n_reg_rules);
1553                 }
1554         }
1555
1556         rd->alpha2[0] = '9';
1557         rd->alpha2[1] = '8';
1558         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1559                                                   rd2->dfs_region);
1560
1561         return rd;
1562 }
1563
1564 /*
1565  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1566  * want to just have the channel structure use these
1567  */
1568 static u32 map_regdom_flags(u32 rd_flags)
1569 {
1570         u32 channel_flags = 0;
1571         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1572                 channel_flags |= IEEE80211_CHAN_NO_IR;
1573         if (rd_flags & NL80211_RRF_DFS)
1574                 channel_flags |= IEEE80211_CHAN_RADAR;
1575         if (rd_flags & NL80211_RRF_NO_OFDM)
1576                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1577         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1578                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1579         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1580                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1581         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1582                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1583         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1584                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1585         if (rd_flags & NL80211_RRF_NO_80MHZ)
1586                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1587         if (rd_flags & NL80211_RRF_NO_160MHZ)
1588                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1589         if (rd_flags & NL80211_RRF_NO_HE)
1590                 channel_flags |= IEEE80211_CHAN_NO_HE;
1591         if (rd_flags & NL80211_RRF_NO_320MHZ)
1592                 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1593         if (rd_flags & NL80211_RRF_NO_EHT)
1594                 channel_flags |= IEEE80211_CHAN_NO_EHT;
1595         if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1596                 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1597         if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1598                 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1599         if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1600                 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1601         if (rd_flags & NL80211_RRF_PSD)
1602                 channel_flags |= IEEE80211_CHAN_PSD;
1603         if (rd_flags & NL80211_RRF_ALLOW_6GHZ_VLP_AP)
1604                 channel_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1605         return channel_flags;
1606 }
1607
1608 static const struct ieee80211_reg_rule *
1609 freq_reg_info_regd(u32 center_freq,
1610                    const struct ieee80211_regdomain *regd, u32 bw)
1611 {
1612         int i;
1613         bool band_rule_found = false;
1614         bool bw_fits = false;
1615
1616         if (!regd)
1617                 return ERR_PTR(-EINVAL);
1618
1619         for (i = 0; i < regd->n_reg_rules; i++) {
1620                 const struct ieee80211_reg_rule *rr;
1621                 const struct ieee80211_freq_range *fr = NULL;
1622
1623                 rr = &regd->reg_rules[i];
1624                 fr = &rr->freq_range;
1625
1626                 /*
1627                  * We only need to know if one frequency rule was
1628                  * in center_freq's band, that's enough, so let's
1629                  * not overwrite it once found
1630                  */
1631                 if (!band_rule_found)
1632                         band_rule_found = freq_in_rule_band(fr, center_freq);
1633
1634                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1635
1636                 if (band_rule_found && bw_fits)
1637                         return rr;
1638         }
1639
1640         if (!band_rule_found)
1641                 return ERR_PTR(-ERANGE);
1642
1643         return ERR_PTR(-EINVAL);
1644 }
1645
1646 static const struct ieee80211_reg_rule *
1647 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1648 {
1649         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1650         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1651         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1652         int i = ARRAY_SIZE(bws) - 1;
1653         u32 bw;
1654
1655         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1656                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1657                 if (!IS_ERR(reg_rule))
1658                         return reg_rule;
1659         }
1660
1661         return reg_rule;
1662 }
1663
1664 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1665                                                u32 center_freq)
1666 {
1667         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1668
1669         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1670 }
1671 EXPORT_SYMBOL(freq_reg_info);
1672
1673 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1674 {
1675         switch (initiator) {
1676         case NL80211_REGDOM_SET_BY_CORE:
1677                 return "core";
1678         case NL80211_REGDOM_SET_BY_USER:
1679                 return "user";
1680         case NL80211_REGDOM_SET_BY_DRIVER:
1681                 return "driver";
1682         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1683                 return "country element";
1684         default:
1685                 WARN_ON(1);
1686                 return "bug";
1687         }
1688 }
1689 EXPORT_SYMBOL(reg_initiator_name);
1690
1691 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1692                                           const struct ieee80211_reg_rule *reg_rule,
1693                                           const struct ieee80211_channel *chan)
1694 {
1695         const struct ieee80211_freq_range *freq_range = NULL;
1696         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1697         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1698
1699         freq_range = &reg_rule->freq_range;
1700
1701         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1702         center_freq_khz = ieee80211_channel_to_khz(chan);
1703         /* Check if auto calculation requested */
1704         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1705                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1706
1707         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1708         if (!cfg80211_does_bw_fit_range(freq_range,
1709                                         center_freq_khz,
1710                                         MHZ_TO_KHZ(10)))
1711                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1712         if (!cfg80211_does_bw_fit_range(freq_range,
1713                                         center_freq_khz,
1714                                         MHZ_TO_KHZ(20)))
1715                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1716
1717         if (is_s1g) {
1718                 /* S1G is strict about non overlapping channels. We can
1719                  * calculate which bandwidth is allowed per channel by finding
1720                  * the largest bandwidth which cleanly divides the freq_range.
1721                  */
1722                 int edge_offset;
1723                 int ch_bw = max_bandwidth_khz;
1724
1725                 while (ch_bw) {
1726                         edge_offset = (center_freq_khz - ch_bw / 2) -
1727                                       freq_range->start_freq_khz;
1728                         if (edge_offset % ch_bw == 0) {
1729                                 switch (KHZ_TO_MHZ(ch_bw)) {
1730                                 case 1:
1731                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1732                                         break;
1733                                 case 2:
1734                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1735                                         break;
1736                                 case 4:
1737                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1738                                         break;
1739                                 case 8:
1740                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1741                                         break;
1742                                 case 16:
1743                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1744                                         break;
1745                                 default:
1746                                         /* If we got here, no bandwidths fit on
1747                                          * this frequency, ie. band edge.
1748                                          */
1749                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1750                                         break;
1751                                 }
1752                                 break;
1753                         }
1754                         ch_bw /= 2;
1755                 }
1756         } else {
1757                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1758                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1759                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1760                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1761                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1762                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1763                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1764                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1765                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1766                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1767                 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1768                         bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1769         }
1770         return bw_flags;
1771 }
1772
1773 static void handle_channel_single_rule(struct wiphy *wiphy,
1774                                        enum nl80211_reg_initiator initiator,
1775                                        struct ieee80211_channel *chan,
1776                                        u32 flags,
1777                                        struct regulatory_request *lr,
1778                                        struct wiphy *request_wiphy,
1779                                        const struct ieee80211_reg_rule *reg_rule)
1780 {
1781         u32 bw_flags = 0;
1782         const struct ieee80211_power_rule *power_rule = NULL;
1783         const struct ieee80211_regdomain *regd;
1784
1785         regd = reg_get_regdomain(wiphy);
1786
1787         power_rule = &reg_rule->power_rule;
1788         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1789
1790         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1791             request_wiphy && request_wiphy == wiphy &&
1792             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1793                 /*
1794                  * This guarantees the driver's requested regulatory domain
1795                  * will always be used as a base for further regulatory
1796                  * settings
1797                  */
1798                 chan->flags = chan->orig_flags =
1799                         map_regdom_flags(reg_rule->flags) | bw_flags;
1800                 chan->max_antenna_gain = chan->orig_mag =
1801                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1802                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1803                         (int) MBM_TO_DBM(power_rule->max_eirp);
1804
1805                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1806                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1807                         if (reg_rule->dfs_cac_ms)
1808                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1809                 }
1810
1811                 if (chan->flags & IEEE80211_CHAN_PSD)
1812                         chan->psd = reg_rule->psd;
1813
1814                 return;
1815         }
1816
1817         chan->dfs_state = NL80211_DFS_USABLE;
1818         chan->dfs_state_entered = jiffies;
1819
1820         chan->beacon_found = false;
1821         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1822         chan->max_antenna_gain =
1823                 min_t(int, chan->orig_mag,
1824                       MBI_TO_DBI(power_rule->max_antenna_gain));
1825         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1826
1827         if (chan->flags & IEEE80211_CHAN_RADAR) {
1828                 if (reg_rule->dfs_cac_ms)
1829                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1830                 else
1831                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1832         }
1833
1834         if (chan->flags & IEEE80211_CHAN_PSD)
1835                 chan->psd = reg_rule->psd;
1836
1837         if (chan->orig_mpwr) {
1838                 /*
1839                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1840                  * will always follow the passed country IE power settings.
1841                  */
1842                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1843                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1844                         chan->max_power = chan->max_reg_power;
1845                 else
1846                         chan->max_power = min(chan->orig_mpwr,
1847                                               chan->max_reg_power);
1848         } else
1849                 chan->max_power = chan->max_reg_power;
1850 }
1851
1852 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1853                                           enum nl80211_reg_initiator initiator,
1854                                           struct ieee80211_channel *chan,
1855                                           u32 flags,
1856                                           struct regulatory_request *lr,
1857                                           struct wiphy *request_wiphy,
1858                                           const struct ieee80211_reg_rule *rrule1,
1859                                           const struct ieee80211_reg_rule *rrule2,
1860                                           struct ieee80211_freq_range *comb_range)
1861 {
1862         u32 bw_flags1 = 0;
1863         u32 bw_flags2 = 0;
1864         const struct ieee80211_power_rule *power_rule1 = NULL;
1865         const struct ieee80211_power_rule *power_rule2 = NULL;
1866         const struct ieee80211_regdomain *regd;
1867
1868         regd = reg_get_regdomain(wiphy);
1869
1870         power_rule1 = &rrule1->power_rule;
1871         power_rule2 = &rrule2->power_rule;
1872         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1873         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1874
1875         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1876             request_wiphy && request_wiphy == wiphy &&
1877             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1878                 /* This guarantees the driver's requested regulatory domain
1879                  * will always be used as a base for further regulatory
1880                  * settings
1881                  */
1882                 chan->flags =
1883                         map_regdom_flags(rrule1->flags) |
1884                         map_regdom_flags(rrule2->flags) |
1885                         bw_flags1 |
1886                         bw_flags2;
1887                 chan->orig_flags = chan->flags;
1888                 chan->max_antenna_gain =
1889                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1890                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1891                 chan->orig_mag = chan->max_antenna_gain;
1892                 chan->max_reg_power =
1893                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1894                               MBM_TO_DBM(power_rule2->max_eirp));
1895                 chan->max_power = chan->max_reg_power;
1896                 chan->orig_mpwr = chan->max_reg_power;
1897
1898                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1899                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1900                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1901                                 chan->dfs_cac_ms = max_t(unsigned int,
1902                                                          rrule1->dfs_cac_ms,
1903                                                          rrule2->dfs_cac_ms);
1904                 }
1905
1906                 if ((rrule1->flags & NL80211_RRF_PSD) &&
1907                     (rrule2->flags & NL80211_RRF_PSD))
1908                         chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1909                 else
1910                         chan->flags &= ~NL80211_RRF_PSD;
1911
1912                 return;
1913         }
1914
1915         chan->dfs_state = NL80211_DFS_USABLE;
1916         chan->dfs_state_entered = jiffies;
1917
1918         chan->beacon_found = false;
1919         chan->flags = flags | bw_flags1 | bw_flags2 |
1920                       map_regdom_flags(rrule1->flags) |
1921                       map_regdom_flags(rrule2->flags);
1922
1923         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1924          * (otherwise no adj. rule case), recheck therefore
1925          */
1926         if (cfg80211_does_bw_fit_range(comb_range,
1927                                        ieee80211_channel_to_khz(chan),
1928                                        MHZ_TO_KHZ(10)))
1929                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1930         if (cfg80211_does_bw_fit_range(comb_range,
1931                                        ieee80211_channel_to_khz(chan),
1932                                        MHZ_TO_KHZ(20)))
1933                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1934
1935         chan->max_antenna_gain =
1936                 min_t(int, chan->orig_mag,
1937                       min_t(int,
1938                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1939                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1940         chan->max_reg_power = min_t(int,
1941                                     MBM_TO_DBM(power_rule1->max_eirp),
1942                                     MBM_TO_DBM(power_rule2->max_eirp));
1943
1944         if (chan->flags & IEEE80211_CHAN_RADAR) {
1945                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1946                         chan->dfs_cac_ms = max_t(unsigned int,
1947                                                  rrule1->dfs_cac_ms,
1948                                                  rrule2->dfs_cac_ms);
1949                 else
1950                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1951         }
1952
1953         if (chan->orig_mpwr) {
1954                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1955                  * will always follow the passed country IE power settings.
1956                  */
1957                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1958                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1959                         chan->max_power = chan->max_reg_power;
1960                 else
1961                         chan->max_power = min(chan->orig_mpwr,
1962                                               chan->max_reg_power);
1963         } else {
1964                 chan->max_power = chan->max_reg_power;
1965         }
1966 }
1967
1968 /* Note that right now we assume the desired channel bandwidth
1969  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1970  * per channel, the primary and the extension channel).
1971  */
1972 static void handle_channel(struct wiphy *wiphy,
1973                            enum nl80211_reg_initiator initiator,
1974                            struct ieee80211_channel *chan)
1975 {
1976         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1977         struct regulatory_request *lr = get_last_request();
1978         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1979         const struct ieee80211_reg_rule *rrule = NULL;
1980         const struct ieee80211_reg_rule *rrule1 = NULL;
1981         const struct ieee80211_reg_rule *rrule2 = NULL;
1982
1983         u32 flags = chan->orig_flags;
1984
1985         rrule = freq_reg_info(wiphy, orig_chan_freq);
1986         if (IS_ERR(rrule)) {
1987                 /* check for adjacent match, therefore get rules for
1988                  * chan - 20 MHz and chan + 20 MHz and test
1989                  * if reg rules are adjacent
1990                  */
1991                 rrule1 = freq_reg_info(wiphy,
1992                                        orig_chan_freq - MHZ_TO_KHZ(20));
1993                 rrule2 = freq_reg_info(wiphy,
1994                                        orig_chan_freq + MHZ_TO_KHZ(20));
1995                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1996                         struct ieee80211_freq_range comb_range;
1997
1998                         if (rrule1->freq_range.end_freq_khz !=
1999                             rrule2->freq_range.start_freq_khz)
2000                                 goto disable_chan;
2001
2002                         comb_range.start_freq_khz =
2003                                 rrule1->freq_range.start_freq_khz;
2004                         comb_range.end_freq_khz =
2005                                 rrule2->freq_range.end_freq_khz;
2006                         comb_range.max_bandwidth_khz =
2007                                 min_t(u32,
2008                                       rrule1->freq_range.max_bandwidth_khz,
2009                                       rrule2->freq_range.max_bandwidth_khz);
2010
2011                         if (!cfg80211_does_bw_fit_range(&comb_range,
2012                                                         orig_chan_freq,
2013                                                         MHZ_TO_KHZ(20)))
2014                                 goto disable_chan;
2015
2016                         handle_channel_adjacent_rules(wiphy, initiator, chan,
2017                                                       flags, lr, request_wiphy,
2018                                                       rrule1, rrule2,
2019                                                       &comb_range);
2020                         return;
2021                 }
2022
2023 disable_chan:
2024                 /* We will disable all channels that do not match our
2025                  * received regulatory rule unless the hint is coming
2026                  * from a Country IE and the Country IE had no information
2027                  * about a band. The IEEE 802.11 spec allows for an AP
2028                  * to send only a subset of the regulatory rules allowed,
2029                  * so an AP in the US that only supports 2.4 GHz may only send
2030                  * a country IE with information for the 2.4 GHz band
2031                  * while 5 GHz is still supported.
2032                  */
2033                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2034                     PTR_ERR(rrule) == -ERANGE)
2035                         return;
2036
2037                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2038                     request_wiphy && request_wiphy == wiphy &&
2039                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2040                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2041                                  chan->center_freq, chan->freq_offset);
2042                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2043                         chan->flags = chan->orig_flags;
2044                 } else {
2045                         pr_debug("Disabling freq %d.%03d MHz\n",
2046                                  chan->center_freq, chan->freq_offset);
2047                         chan->flags |= IEEE80211_CHAN_DISABLED;
2048                 }
2049                 return;
2050         }
2051
2052         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2053                                    request_wiphy, rrule);
2054 }
2055
2056 static void handle_band(struct wiphy *wiphy,
2057                         enum nl80211_reg_initiator initiator,
2058                         struct ieee80211_supported_band *sband)
2059 {
2060         unsigned int i;
2061
2062         if (!sband)
2063                 return;
2064
2065         for (i = 0; i < sband->n_channels; i++)
2066                 handle_channel(wiphy, initiator, &sband->channels[i]);
2067 }
2068
2069 static bool reg_request_cell_base(struct regulatory_request *request)
2070 {
2071         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2072                 return false;
2073         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2074 }
2075
2076 bool reg_last_request_cell_base(void)
2077 {
2078         return reg_request_cell_base(get_last_request());
2079 }
2080
2081 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2082 /* Core specific check */
2083 static enum reg_request_treatment
2084 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2085 {
2086         struct regulatory_request *lr = get_last_request();
2087
2088         if (!reg_num_devs_support_basehint)
2089                 return REG_REQ_IGNORE;
2090
2091         if (reg_request_cell_base(lr) &&
2092             !regdom_changes(pending_request->alpha2))
2093                 return REG_REQ_ALREADY_SET;
2094
2095         return REG_REQ_OK;
2096 }
2097
2098 /* Device specific check */
2099 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2100 {
2101         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2102 }
2103 #else
2104 static enum reg_request_treatment
2105 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2106 {
2107         return REG_REQ_IGNORE;
2108 }
2109
2110 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2111 {
2112         return true;
2113 }
2114 #endif
2115
2116 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2117 {
2118         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2119             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2120                 return true;
2121         return false;
2122 }
2123
2124 static bool ignore_reg_update(struct wiphy *wiphy,
2125                               enum nl80211_reg_initiator initiator)
2126 {
2127         struct regulatory_request *lr = get_last_request();
2128
2129         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2130                 return true;
2131
2132         if (!lr) {
2133                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2134                          reg_initiator_name(initiator));
2135                 return true;
2136         }
2137
2138         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2139             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2140                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2141                          reg_initiator_name(initiator));
2142                 return true;
2143         }
2144
2145         /*
2146          * wiphy->regd will be set once the device has its own
2147          * desired regulatory domain set
2148          */
2149         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2150             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2151             !is_world_regdom(lr->alpha2)) {
2152                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2153                          reg_initiator_name(initiator));
2154                 return true;
2155         }
2156
2157         if (reg_request_cell_base(lr))
2158                 return reg_dev_ignore_cell_hint(wiphy);
2159
2160         return false;
2161 }
2162
2163 static bool reg_is_world_roaming(struct wiphy *wiphy)
2164 {
2165         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2166         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2167         struct regulatory_request *lr = get_last_request();
2168
2169         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2170                 return true;
2171
2172         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2173             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2174                 return true;
2175
2176         return false;
2177 }
2178
2179 static void reg_call_notifier(struct wiphy *wiphy,
2180                               struct regulatory_request *request)
2181 {
2182         if (wiphy->reg_notifier)
2183                 wiphy->reg_notifier(wiphy, request);
2184 }
2185
2186 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2187                               struct reg_beacon *reg_beacon)
2188 {
2189         struct ieee80211_supported_band *sband;
2190         struct ieee80211_channel *chan;
2191         bool channel_changed = false;
2192         struct ieee80211_channel chan_before;
2193         struct regulatory_request *lr = get_last_request();
2194
2195         sband = wiphy->bands[reg_beacon->chan.band];
2196         chan = &sband->channels[chan_idx];
2197
2198         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2199                 return;
2200
2201         if (chan->beacon_found)
2202                 return;
2203
2204         chan->beacon_found = true;
2205
2206         if (!reg_is_world_roaming(wiphy))
2207                 return;
2208
2209         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2210                 return;
2211
2212         chan_before = *chan;
2213
2214         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2215                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2216                 channel_changed = true;
2217         }
2218
2219         if (channel_changed) {
2220                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2221                 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2222                         reg_call_notifier(wiphy, lr);
2223         }
2224 }
2225
2226 /*
2227  * Called when a scan on a wiphy finds a beacon on
2228  * new channel
2229  */
2230 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2231                                     struct reg_beacon *reg_beacon)
2232 {
2233         unsigned int i;
2234         struct ieee80211_supported_band *sband;
2235
2236         if (!wiphy->bands[reg_beacon->chan.band])
2237                 return;
2238
2239         sband = wiphy->bands[reg_beacon->chan.band];
2240
2241         for (i = 0; i < sband->n_channels; i++)
2242                 handle_reg_beacon(wiphy, i, reg_beacon);
2243 }
2244
2245 /*
2246  * Called upon reg changes or a new wiphy is added
2247  */
2248 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2249 {
2250         unsigned int i;
2251         struct ieee80211_supported_band *sband;
2252         struct reg_beacon *reg_beacon;
2253
2254         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2255                 if (!wiphy->bands[reg_beacon->chan.band])
2256                         continue;
2257                 sband = wiphy->bands[reg_beacon->chan.band];
2258                 for (i = 0; i < sband->n_channels; i++)
2259                         handle_reg_beacon(wiphy, i, reg_beacon);
2260         }
2261 }
2262
2263 /* Reap the advantages of previously found beacons */
2264 static void reg_process_beacons(struct wiphy *wiphy)
2265 {
2266         /*
2267          * Means we are just firing up cfg80211, so no beacons would
2268          * have been processed yet.
2269          */
2270         if (!last_request)
2271                 return;
2272         wiphy_update_beacon_reg(wiphy);
2273 }
2274
2275 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2276 {
2277         if (!chan)
2278                 return false;
2279         if (chan->flags & IEEE80211_CHAN_DISABLED)
2280                 return false;
2281         /* This would happen when regulatory rules disallow HT40 completely */
2282         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2283                 return false;
2284         return true;
2285 }
2286
2287 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2288                                          struct ieee80211_channel *channel)
2289 {
2290         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2291         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2292         const struct ieee80211_regdomain *regd;
2293         unsigned int i;
2294         u32 flags;
2295
2296         if (!is_ht40_allowed(channel)) {
2297                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2298                 return;
2299         }
2300
2301         /*
2302          * We need to ensure the extension channels exist to
2303          * be able to use HT40- or HT40+, this finds them (or not)
2304          */
2305         for (i = 0; i < sband->n_channels; i++) {
2306                 struct ieee80211_channel *c = &sband->channels[i];
2307
2308                 if (c->center_freq == (channel->center_freq - 20))
2309                         channel_before = c;
2310                 if (c->center_freq == (channel->center_freq + 20))
2311                         channel_after = c;
2312         }
2313
2314         flags = 0;
2315         regd = get_wiphy_regdom(wiphy);
2316         if (regd) {
2317                 const struct ieee80211_reg_rule *reg_rule =
2318                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2319                                            regd, MHZ_TO_KHZ(20));
2320
2321                 if (!IS_ERR(reg_rule))
2322                         flags = reg_rule->flags;
2323         }
2324
2325         /*
2326          * Please note that this assumes target bandwidth is 20 MHz,
2327          * if that ever changes we also need to change the below logic
2328          * to include that as well.
2329          */
2330         if (!is_ht40_allowed(channel_before) ||
2331             flags & NL80211_RRF_NO_HT40MINUS)
2332                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2333         else
2334                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2335
2336         if (!is_ht40_allowed(channel_after) ||
2337             flags & NL80211_RRF_NO_HT40PLUS)
2338                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2339         else
2340                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2341 }
2342
2343 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2344                                       struct ieee80211_supported_band *sband)
2345 {
2346         unsigned int i;
2347
2348         if (!sband)
2349                 return;
2350
2351         for (i = 0; i < sband->n_channels; i++)
2352                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2353 }
2354
2355 static void reg_process_ht_flags(struct wiphy *wiphy)
2356 {
2357         enum nl80211_band band;
2358
2359         if (!wiphy)
2360                 return;
2361
2362         for (band = 0; band < NUM_NL80211_BANDS; band++)
2363                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2364 }
2365
2366 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2367 {
2368         struct cfg80211_chan_def chandef = {};
2369         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2370         enum nl80211_iftype iftype;
2371         bool ret;
2372         int link;
2373
2374         iftype = wdev->iftype;
2375
2376         /* make sure the interface is active */
2377         if (!wdev->netdev || !netif_running(wdev->netdev))
2378                 return true;
2379
2380         for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2381                 struct ieee80211_channel *chan;
2382
2383                 if (!wdev->valid_links && link > 0)
2384                         break;
2385                 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2386                         continue;
2387                 switch (iftype) {
2388                 case NL80211_IFTYPE_AP:
2389                 case NL80211_IFTYPE_P2P_GO:
2390                         if (!wdev->links[link].ap.beacon_interval)
2391                                 continue;
2392                         chandef = wdev->links[link].ap.chandef;
2393                         break;
2394                 case NL80211_IFTYPE_MESH_POINT:
2395                         if (!wdev->u.mesh.beacon_interval)
2396                                 continue;
2397                         chandef = wdev->u.mesh.chandef;
2398                         break;
2399                 case NL80211_IFTYPE_ADHOC:
2400                         if (!wdev->u.ibss.ssid_len)
2401                                 continue;
2402                         chandef = wdev->u.ibss.chandef;
2403                         break;
2404                 case NL80211_IFTYPE_STATION:
2405                 case NL80211_IFTYPE_P2P_CLIENT:
2406                         /* Maybe we could consider disabling that link only? */
2407                         if (!wdev->links[link].client.current_bss)
2408                                 continue;
2409
2410                         chan = wdev->links[link].client.current_bss->pub.channel;
2411                         if (!chan)
2412                                 continue;
2413
2414                         if (!rdev->ops->get_channel ||
2415                             rdev_get_channel(rdev, wdev, link, &chandef))
2416                                 cfg80211_chandef_create(&chandef, chan,
2417                                                         NL80211_CHAN_NO_HT);
2418                         break;
2419                 case NL80211_IFTYPE_MONITOR:
2420                 case NL80211_IFTYPE_AP_VLAN:
2421                 case NL80211_IFTYPE_P2P_DEVICE:
2422                         /* no enforcement required */
2423                         break;
2424                 case NL80211_IFTYPE_OCB:
2425                         if (!wdev->u.ocb.chandef.chan)
2426                                 continue;
2427                         chandef = wdev->u.ocb.chandef;
2428                         break;
2429                 case NL80211_IFTYPE_NAN:
2430                         /* we have no info, but NAN is also pretty universal */
2431                         continue;
2432                 default:
2433                         /* others not implemented for now */
2434                         WARN_ON_ONCE(1);
2435                         break;
2436                 }
2437
2438                 switch (iftype) {
2439                 case NL80211_IFTYPE_AP:
2440                 case NL80211_IFTYPE_P2P_GO:
2441                 case NL80211_IFTYPE_ADHOC:
2442                 case NL80211_IFTYPE_MESH_POINT:
2443                         ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2444                                                             iftype);
2445                         if (!ret)
2446                                 return ret;
2447                         break;
2448                 case NL80211_IFTYPE_STATION:
2449                 case NL80211_IFTYPE_P2P_CLIENT:
2450                         ret = cfg80211_chandef_usable(wiphy, &chandef,
2451                                                       IEEE80211_CHAN_DISABLED);
2452                         if (!ret)
2453                                 return ret;
2454                         break;
2455                 default:
2456                         break;
2457                 }
2458         }
2459
2460         return true;
2461 }
2462
2463 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2464 {
2465         struct wireless_dev *wdev;
2466         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2467
2468         wiphy_lock(wiphy);
2469         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2470                 if (!reg_wdev_chan_valid(wiphy, wdev))
2471                         cfg80211_leave(rdev, wdev);
2472         wiphy_unlock(wiphy);
2473 }
2474
2475 static void reg_check_chans_work(struct work_struct *work)
2476 {
2477         struct cfg80211_registered_device *rdev;
2478
2479         pr_debug("Verifying active interfaces after reg change\n");
2480         rtnl_lock();
2481
2482         for_each_rdev(rdev)
2483                 reg_leave_invalid_chans(&rdev->wiphy);
2484
2485         rtnl_unlock();
2486 }
2487
2488 void reg_check_channels(void)
2489 {
2490         /*
2491          * Give usermode a chance to do something nicer (move to another
2492          * channel, orderly disconnection), before forcing a disconnection.
2493          */
2494         mod_delayed_work(system_power_efficient_wq,
2495                          &reg_check_chans,
2496                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2497 }
2498
2499 static void wiphy_update_regulatory(struct wiphy *wiphy,
2500                                     enum nl80211_reg_initiator initiator)
2501 {
2502         enum nl80211_band band;
2503         struct regulatory_request *lr = get_last_request();
2504
2505         if (ignore_reg_update(wiphy, initiator)) {
2506                 /*
2507                  * Regulatory updates set by CORE are ignored for custom
2508                  * regulatory cards. Let us notify the changes to the driver,
2509                  * as some drivers used this to restore its orig_* reg domain.
2510                  */
2511                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2512                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2513                     !(wiphy->regulatory_flags &
2514                       REGULATORY_WIPHY_SELF_MANAGED))
2515                         reg_call_notifier(wiphy, lr);
2516                 return;
2517         }
2518
2519         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2520
2521         for (band = 0; band < NUM_NL80211_BANDS; band++)
2522                 handle_band(wiphy, initiator, wiphy->bands[band]);
2523
2524         reg_process_beacons(wiphy);
2525         reg_process_ht_flags(wiphy);
2526         reg_call_notifier(wiphy, lr);
2527 }
2528
2529 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2530 {
2531         struct cfg80211_registered_device *rdev;
2532         struct wiphy *wiphy;
2533
2534         ASSERT_RTNL();
2535
2536         for_each_rdev(rdev) {
2537                 wiphy = &rdev->wiphy;
2538                 wiphy_update_regulatory(wiphy, initiator);
2539         }
2540
2541         reg_check_channels();
2542 }
2543
2544 static void handle_channel_custom(struct wiphy *wiphy,
2545                                   struct ieee80211_channel *chan,
2546                                   const struct ieee80211_regdomain *regd,
2547                                   u32 min_bw)
2548 {
2549         u32 bw_flags = 0;
2550         const struct ieee80211_reg_rule *reg_rule = NULL;
2551         const struct ieee80211_power_rule *power_rule = NULL;
2552         u32 bw, center_freq_khz;
2553
2554         center_freq_khz = ieee80211_channel_to_khz(chan);
2555         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2556                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2557                 if (!IS_ERR(reg_rule))
2558                         break;
2559         }
2560
2561         if (IS_ERR_OR_NULL(reg_rule)) {
2562                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2563                          chan->center_freq, chan->freq_offset);
2564                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2565                         chan->flags |= IEEE80211_CHAN_DISABLED;
2566                 } else {
2567                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2568                         chan->flags = chan->orig_flags;
2569                 }
2570                 return;
2571         }
2572
2573         power_rule = &reg_rule->power_rule;
2574         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2575
2576         chan->dfs_state_entered = jiffies;
2577         chan->dfs_state = NL80211_DFS_USABLE;
2578
2579         chan->beacon_found = false;
2580
2581         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2582                 chan->flags = chan->orig_flags | bw_flags |
2583                               map_regdom_flags(reg_rule->flags);
2584         else
2585                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2586
2587         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2588         chan->max_reg_power = chan->max_power =
2589                 (int) MBM_TO_DBM(power_rule->max_eirp);
2590
2591         if (chan->flags & IEEE80211_CHAN_RADAR) {
2592                 if (reg_rule->dfs_cac_ms)
2593                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2594                 else
2595                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2596         }
2597
2598         if (chan->flags & IEEE80211_CHAN_PSD)
2599                 chan->psd = reg_rule->psd;
2600
2601         chan->max_power = chan->max_reg_power;
2602 }
2603
2604 static void handle_band_custom(struct wiphy *wiphy,
2605                                struct ieee80211_supported_band *sband,
2606                                const struct ieee80211_regdomain *regd)
2607 {
2608         unsigned int i;
2609
2610         if (!sband)
2611                 return;
2612
2613         /*
2614          * We currently assume that you always want at least 20 MHz,
2615          * otherwise channel 12 might get enabled if this rule is
2616          * compatible to US, which permits 2402 - 2472 MHz.
2617          */
2618         for (i = 0; i < sband->n_channels; i++)
2619                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2620                                       MHZ_TO_KHZ(20));
2621 }
2622
2623 /* Used by drivers prior to wiphy registration */
2624 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2625                                    const struct ieee80211_regdomain *regd)
2626 {
2627         const struct ieee80211_regdomain *new_regd, *tmp;
2628         enum nl80211_band band;
2629         unsigned int bands_set = 0;
2630
2631         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2632              "wiphy should have REGULATORY_CUSTOM_REG\n");
2633         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2634
2635         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2636                 if (!wiphy->bands[band])
2637                         continue;
2638                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2639                 bands_set++;
2640         }
2641
2642         /*
2643          * no point in calling this if it won't have any effect
2644          * on your device's supported bands.
2645          */
2646         WARN_ON(!bands_set);
2647         new_regd = reg_copy_regd(regd);
2648         if (IS_ERR(new_regd))
2649                 return;
2650
2651         rtnl_lock();
2652         wiphy_lock(wiphy);
2653
2654         tmp = get_wiphy_regdom(wiphy);
2655         rcu_assign_pointer(wiphy->regd, new_regd);
2656         rcu_free_regdom(tmp);
2657
2658         wiphy_unlock(wiphy);
2659         rtnl_unlock();
2660 }
2661 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2662
2663 static void reg_set_request_processed(void)
2664 {
2665         bool need_more_processing = false;
2666         struct regulatory_request *lr = get_last_request();
2667
2668         lr->processed = true;
2669
2670         spin_lock(&reg_requests_lock);
2671         if (!list_empty(&reg_requests_list))
2672                 need_more_processing = true;
2673         spin_unlock(&reg_requests_lock);
2674
2675         cancel_crda_timeout();
2676
2677         if (need_more_processing)
2678                 schedule_work(&reg_work);
2679 }
2680
2681 /**
2682  * reg_process_hint_core - process core regulatory requests
2683  * @core_request: a pending core regulatory request
2684  *
2685  * The wireless subsystem can use this function to process
2686  * a regulatory request issued by the regulatory core.
2687  *
2688  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2689  *      hint was processed or ignored
2690  */
2691 static enum reg_request_treatment
2692 reg_process_hint_core(struct regulatory_request *core_request)
2693 {
2694         if (reg_query_database(core_request)) {
2695                 core_request->intersect = false;
2696                 core_request->processed = false;
2697                 reg_update_last_request(core_request);
2698                 return REG_REQ_OK;
2699         }
2700
2701         return REG_REQ_IGNORE;
2702 }
2703
2704 static enum reg_request_treatment
2705 __reg_process_hint_user(struct regulatory_request *user_request)
2706 {
2707         struct regulatory_request *lr = get_last_request();
2708
2709         if (reg_request_cell_base(user_request))
2710                 return reg_ignore_cell_hint(user_request);
2711
2712         if (reg_request_cell_base(lr))
2713                 return REG_REQ_IGNORE;
2714
2715         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2716                 return REG_REQ_INTERSECT;
2717         /*
2718          * If the user knows better the user should set the regdom
2719          * to their country before the IE is picked up
2720          */
2721         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2722             lr->intersect)
2723                 return REG_REQ_IGNORE;
2724         /*
2725          * Process user requests only after previous user/driver/core
2726          * requests have been processed
2727          */
2728         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2729              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2730              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2731             regdom_changes(lr->alpha2))
2732                 return REG_REQ_IGNORE;
2733
2734         if (!regdom_changes(user_request->alpha2))
2735                 return REG_REQ_ALREADY_SET;
2736
2737         return REG_REQ_OK;
2738 }
2739
2740 /**
2741  * reg_process_hint_user - process user regulatory requests
2742  * @user_request: a pending user regulatory request
2743  *
2744  * The wireless subsystem can use this function to process
2745  * a regulatory request initiated by userspace.
2746  *
2747  * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2748  *      hint was processed or ignored
2749  */
2750 static enum reg_request_treatment
2751 reg_process_hint_user(struct regulatory_request *user_request)
2752 {
2753         enum reg_request_treatment treatment;
2754
2755         treatment = __reg_process_hint_user(user_request);
2756         if (treatment == REG_REQ_IGNORE ||
2757             treatment == REG_REQ_ALREADY_SET)
2758                 return REG_REQ_IGNORE;
2759
2760         user_request->intersect = treatment == REG_REQ_INTERSECT;
2761         user_request->processed = false;
2762
2763         if (reg_query_database(user_request)) {
2764                 reg_update_last_request(user_request);
2765                 user_alpha2[0] = user_request->alpha2[0];
2766                 user_alpha2[1] = user_request->alpha2[1];
2767                 return REG_REQ_OK;
2768         }
2769
2770         return REG_REQ_IGNORE;
2771 }
2772
2773 static enum reg_request_treatment
2774 __reg_process_hint_driver(struct regulatory_request *driver_request)
2775 {
2776         struct regulatory_request *lr = get_last_request();
2777
2778         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2779                 if (regdom_changes(driver_request->alpha2))
2780                         return REG_REQ_OK;
2781                 return REG_REQ_ALREADY_SET;
2782         }
2783
2784         /*
2785          * This would happen if you unplug and plug your card
2786          * back in or if you add a new device for which the previously
2787          * loaded card also agrees on the regulatory domain.
2788          */
2789         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2790             !regdom_changes(driver_request->alpha2))
2791                 return REG_REQ_ALREADY_SET;
2792
2793         return REG_REQ_INTERSECT;
2794 }
2795
2796 /**
2797  * reg_process_hint_driver - process driver regulatory requests
2798  * @wiphy: the wireless device for the regulatory request
2799  * @driver_request: a pending driver regulatory request
2800  *
2801  * The wireless subsystem can use this function to process
2802  * a regulatory request issued by an 802.11 driver.
2803  *
2804  * Returns: one of the different reg request treatment values.
2805  */
2806 static enum reg_request_treatment
2807 reg_process_hint_driver(struct wiphy *wiphy,
2808                         struct regulatory_request *driver_request)
2809 {
2810         const struct ieee80211_regdomain *regd, *tmp;
2811         enum reg_request_treatment treatment;
2812
2813         treatment = __reg_process_hint_driver(driver_request);
2814
2815         switch (treatment) {
2816         case REG_REQ_OK:
2817                 break;
2818         case REG_REQ_IGNORE:
2819                 return REG_REQ_IGNORE;
2820         case REG_REQ_INTERSECT:
2821         case REG_REQ_ALREADY_SET:
2822                 regd = reg_copy_regd(get_cfg80211_regdom());
2823                 if (IS_ERR(regd))
2824                         return REG_REQ_IGNORE;
2825
2826                 tmp = get_wiphy_regdom(wiphy);
2827                 ASSERT_RTNL();
2828                 wiphy_lock(wiphy);
2829                 rcu_assign_pointer(wiphy->regd, regd);
2830                 wiphy_unlock(wiphy);
2831                 rcu_free_regdom(tmp);
2832         }
2833
2834
2835         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2836         driver_request->processed = false;
2837
2838         /*
2839          * Since CRDA will not be called in this case as we already
2840          * have applied the requested regulatory domain before we just
2841          * inform userspace we have processed the request
2842          */
2843         if (treatment == REG_REQ_ALREADY_SET) {
2844                 nl80211_send_reg_change_event(driver_request);
2845                 reg_update_last_request(driver_request);
2846                 reg_set_request_processed();
2847                 return REG_REQ_ALREADY_SET;
2848         }
2849
2850         if (reg_query_database(driver_request)) {
2851                 reg_update_last_request(driver_request);
2852                 return REG_REQ_OK;
2853         }
2854
2855         return REG_REQ_IGNORE;
2856 }
2857
2858 static enum reg_request_treatment
2859 __reg_process_hint_country_ie(struct wiphy *wiphy,
2860                               struct regulatory_request *country_ie_request)
2861 {
2862         struct wiphy *last_wiphy = NULL;
2863         struct regulatory_request *lr = get_last_request();
2864
2865         if (reg_request_cell_base(lr)) {
2866                 /* Trust a Cell base station over the AP's country IE */
2867                 if (regdom_changes(country_ie_request->alpha2))
2868                         return REG_REQ_IGNORE;
2869                 return REG_REQ_ALREADY_SET;
2870         } else {
2871                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2872                         return REG_REQ_IGNORE;
2873         }
2874
2875         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2876                 return -EINVAL;
2877
2878         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2879                 return REG_REQ_OK;
2880
2881         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2882
2883         if (last_wiphy != wiphy) {
2884                 /*
2885                  * Two cards with two APs claiming different
2886                  * Country IE alpha2s. We could
2887                  * intersect them, but that seems unlikely
2888                  * to be correct. Reject second one for now.
2889                  */
2890                 if (regdom_changes(country_ie_request->alpha2))
2891                         return REG_REQ_IGNORE;
2892                 return REG_REQ_ALREADY_SET;
2893         }
2894
2895         if (regdom_changes(country_ie_request->alpha2))
2896                 return REG_REQ_OK;
2897         return REG_REQ_ALREADY_SET;
2898 }
2899
2900 /**
2901  * reg_process_hint_country_ie - process regulatory requests from country IEs
2902  * @wiphy: the wireless device for the regulatory request
2903  * @country_ie_request: a regulatory request from a country IE
2904  *
2905  * The wireless subsystem can use this function to process
2906  * a regulatory request issued by a country Information Element.
2907  *
2908  * Returns: one of the different reg request treatment values.
2909  */
2910 static enum reg_request_treatment
2911 reg_process_hint_country_ie(struct wiphy *wiphy,
2912                             struct regulatory_request *country_ie_request)
2913 {
2914         enum reg_request_treatment treatment;
2915
2916         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2917
2918         switch (treatment) {
2919         case REG_REQ_OK:
2920                 break;
2921         case REG_REQ_IGNORE:
2922                 return REG_REQ_IGNORE;
2923         case REG_REQ_ALREADY_SET:
2924                 reg_free_request(country_ie_request);
2925                 return REG_REQ_ALREADY_SET;
2926         case REG_REQ_INTERSECT:
2927                 /*
2928                  * This doesn't happen yet, not sure we
2929                  * ever want to support it for this case.
2930                  */
2931                 WARN_ONCE(1, "Unexpected intersection for country elements");
2932                 return REG_REQ_IGNORE;
2933         }
2934
2935         country_ie_request->intersect = false;
2936         country_ie_request->processed = false;
2937
2938         if (reg_query_database(country_ie_request)) {
2939                 reg_update_last_request(country_ie_request);
2940                 return REG_REQ_OK;
2941         }
2942
2943         return REG_REQ_IGNORE;
2944 }
2945
2946 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2947 {
2948         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2949         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2950         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2951         bool dfs_domain_same;
2952
2953         rcu_read_lock();
2954
2955         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2956         wiphy1_regd = rcu_dereference(wiphy1->regd);
2957         if (!wiphy1_regd)
2958                 wiphy1_regd = cfg80211_regd;
2959
2960         wiphy2_regd = rcu_dereference(wiphy2->regd);
2961         if (!wiphy2_regd)
2962                 wiphy2_regd = cfg80211_regd;
2963
2964         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2965
2966         rcu_read_unlock();
2967
2968         return dfs_domain_same;
2969 }
2970
2971 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2972                                     struct ieee80211_channel *src_chan)
2973 {
2974         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2975             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2976                 return;
2977
2978         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2979             src_chan->flags & IEEE80211_CHAN_DISABLED)
2980                 return;
2981
2982         if (src_chan->center_freq == dst_chan->center_freq &&
2983             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2984                 dst_chan->dfs_state = src_chan->dfs_state;
2985                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2986         }
2987 }
2988
2989 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2990                                        struct wiphy *src_wiphy)
2991 {
2992         struct ieee80211_supported_band *src_sband, *dst_sband;
2993         struct ieee80211_channel *src_chan, *dst_chan;
2994         int i, j, band;
2995
2996         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2997                 return;
2998
2999         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3000                 dst_sband = dst_wiphy->bands[band];
3001                 src_sband = src_wiphy->bands[band];
3002                 if (!dst_sband || !src_sband)
3003                         continue;
3004
3005                 for (i = 0; i < dst_sband->n_channels; i++) {
3006                         dst_chan = &dst_sband->channels[i];
3007                         for (j = 0; j < src_sband->n_channels; j++) {
3008                                 src_chan = &src_sband->channels[j];
3009                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
3010                         }
3011                 }
3012         }
3013 }
3014
3015 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3016 {
3017         struct cfg80211_registered_device *rdev;
3018
3019         ASSERT_RTNL();
3020
3021         for_each_rdev(rdev) {
3022                 if (wiphy == &rdev->wiphy)
3023                         continue;
3024                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3025         }
3026 }
3027
3028 /* This processes *all* regulatory hints */
3029 static void reg_process_hint(struct regulatory_request *reg_request)
3030 {
3031         struct wiphy *wiphy = NULL;
3032         enum reg_request_treatment treatment;
3033         enum nl80211_reg_initiator initiator = reg_request->initiator;
3034
3035         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3036                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3037
3038         switch (initiator) {
3039         case NL80211_REGDOM_SET_BY_CORE:
3040                 treatment = reg_process_hint_core(reg_request);
3041                 break;
3042         case NL80211_REGDOM_SET_BY_USER:
3043                 treatment = reg_process_hint_user(reg_request);
3044                 break;
3045         case NL80211_REGDOM_SET_BY_DRIVER:
3046                 if (!wiphy)
3047                         goto out_free;
3048                 treatment = reg_process_hint_driver(wiphy, reg_request);
3049                 break;
3050         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3051                 if (!wiphy)
3052                         goto out_free;
3053                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3054                 break;
3055         default:
3056                 WARN(1, "invalid initiator %d\n", initiator);
3057                 goto out_free;
3058         }
3059
3060         if (treatment == REG_REQ_IGNORE)
3061                 goto out_free;
3062
3063         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3064              "unexpected treatment value %d\n", treatment);
3065
3066         /* This is required so that the orig_* parameters are saved.
3067          * NOTE: treatment must be set for any case that reaches here!
3068          */
3069         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3070             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3071                 wiphy_update_regulatory(wiphy, initiator);
3072                 wiphy_all_share_dfs_chan_state(wiphy);
3073                 reg_check_channels();
3074         }
3075
3076         return;
3077
3078 out_free:
3079         reg_free_request(reg_request);
3080 }
3081
3082 static void notify_self_managed_wiphys(struct regulatory_request *request)
3083 {
3084         struct cfg80211_registered_device *rdev;
3085         struct wiphy *wiphy;
3086
3087         for_each_rdev(rdev) {
3088                 wiphy = &rdev->wiphy;
3089                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3090                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3091                         reg_call_notifier(wiphy, request);
3092         }
3093 }
3094
3095 /*
3096  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3097  * Regulatory hints come on a first come first serve basis and we
3098  * must process each one atomically.
3099  */
3100 static void reg_process_pending_hints(void)
3101 {
3102         struct regulatory_request *reg_request, *lr;
3103
3104         lr = get_last_request();
3105
3106         /* When last_request->processed becomes true this will be rescheduled */
3107         if (lr && !lr->processed) {
3108                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3109                 return;
3110         }
3111
3112         spin_lock(&reg_requests_lock);
3113
3114         if (list_empty(&reg_requests_list)) {
3115                 spin_unlock(&reg_requests_lock);
3116                 return;
3117         }
3118
3119         reg_request = list_first_entry(&reg_requests_list,
3120                                        struct regulatory_request,
3121                                        list);
3122         list_del_init(&reg_request->list);
3123
3124         spin_unlock(&reg_requests_lock);
3125
3126         notify_self_managed_wiphys(reg_request);
3127
3128         reg_process_hint(reg_request);
3129
3130         lr = get_last_request();
3131
3132         spin_lock(&reg_requests_lock);
3133         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3134                 schedule_work(&reg_work);
3135         spin_unlock(&reg_requests_lock);
3136 }
3137
3138 /* Processes beacon hints -- this has nothing to do with country IEs */
3139 static void reg_process_pending_beacon_hints(void)
3140 {
3141         struct cfg80211_registered_device *rdev;
3142         struct reg_beacon *pending_beacon, *tmp;
3143
3144         /* This goes through the _pending_ beacon list */
3145         spin_lock_bh(&reg_pending_beacons_lock);
3146
3147         list_for_each_entry_safe(pending_beacon, tmp,
3148                                  &reg_pending_beacons, list) {
3149                 list_del_init(&pending_beacon->list);
3150
3151                 /* Applies the beacon hint to current wiphys */
3152                 for_each_rdev(rdev)
3153                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3154
3155                 /* Remembers the beacon hint for new wiphys or reg changes */
3156                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3157         }
3158
3159         spin_unlock_bh(&reg_pending_beacons_lock);
3160 }
3161
3162 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3163 {
3164         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3165         const struct ieee80211_regdomain *tmp;
3166         const struct ieee80211_regdomain *regd;
3167         enum nl80211_band band;
3168         struct regulatory_request request = {};
3169
3170         ASSERT_RTNL();
3171         lockdep_assert_wiphy(wiphy);
3172
3173         spin_lock(&reg_requests_lock);
3174         regd = rdev->requested_regd;
3175         rdev->requested_regd = NULL;
3176         spin_unlock(&reg_requests_lock);
3177
3178         if (!regd)
3179                 return;
3180
3181         tmp = get_wiphy_regdom(wiphy);
3182         rcu_assign_pointer(wiphy->regd, regd);
3183         rcu_free_regdom(tmp);
3184
3185         for (band = 0; band < NUM_NL80211_BANDS; band++)
3186                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3187
3188         reg_process_ht_flags(wiphy);
3189
3190         request.wiphy_idx = get_wiphy_idx(wiphy);
3191         request.alpha2[0] = regd->alpha2[0];
3192         request.alpha2[1] = regd->alpha2[1];
3193         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3194
3195         if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3196                 reg_call_notifier(wiphy, &request);
3197
3198         nl80211_send_wiphy_reg_change_event(&request);
3199 }
3200
3201 static void reg_process_self_managed_hints(void)
3202 {
3203         struct cfg80211_registered_device *rdev;
3204
3205         ASSERT_RTNL();
3206
3207         for_each_rdev(rdev) {
3208                 wiphy_lock(&rdev->wiphy);
3209                 reg_process_self_managed_hint(&rdev->wiphy);
3210                 wiphy_unlock(&rdev->wiphy);
3211         }
3212
3213         reg_check_channels();
3214 }
3215
3216 static void reg_todo(struct work_struct *work)
3217 {
3218         rtnl_lock();
3219         reg_process_pending_hints();
3220         reg_process_pending_beacon_hints();
3221         reg_process_self_managed_hints();
3222         rtnl_unlock();
3223 }
3224
3225 static void queue_regulatory_request(struct regulatory_request *request)
3226 {
3227         request->alpha2[0] = toupper(request->alpha2[0]);
3228         request->alpha2[1] = toupper(request->alpha2[1]);
3229
3230         spin_lock(&reg_requests_lock);
3231         list_add_tail(&request->list, &reg_requests_list);
3232         spin_unlock(&reg_requests_lock);
3233
3234         schedule_work(&reg_work);
3235 }
3236
3237 /*
3238  * Core regulatory hint -- happens during cfg80211_init()
3239  * and when we restore regulatory settings.
3240  */
3241 static int regulatory_hint_core(const char *alpha2)
3242 {
3243         struct regulatory_request *request;
3244
3245         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3246         if (!request)
3247                 return -ENOMEM;
3248
3249         request->alpha2[0] = alpha2[0];
3250         request->alpha2[1] = alpha2[1];
3251         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3252         request->wiphy_idx = WIPHY_IDX_INVALID;
3253
3254         queue_regulatory_request(request);
3255
3256         return 0;
3257 }
3258
3259 /* User hints */
3260 int regulatory_hint_user(const char *alpha2,
3261                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3262 {
3263         struct regulatory_request *request;
3264
3265         if (WARN_ON(!alpha2))
3266                 return -EINVAL;
3267
3268         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3269                 return -EINVAL;
3270
3271         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3272         if (!request)
3273                 return -ENOMEM;
3274
3275         request->wiphy_idx = WIPHY_IDX_INVALID;
3276         request->alpha2[0] = alpha2[0];
3277         request->alpha2[1] = alpha2[1];
3278         request->initiator = NL80211_REGDOM_SET_BY_USER;
3279         request->user_reg_hint_type = user_reg_hint_type;
3280
3281         /* Allow calling CRDA again */
3282         reset_crda_timeouts();
3283
3284         queue_regulatory_request(request);
3285
3286         return 0;
3287 }
3288
3289 void regulatory_hint_indoor(bool is_indoor, u32 portid)
3290 {
3291         spin_lock(&reg_indoor_lock);
3292
3293         /* It is possible that more than one user space process is trying to
3294          * configure the indoor setting. To handle such cases, clear the indoor
3295          * setting in case that some process does not think that the device
3296          * is operating in an indoor environment. In addition, if a user space
3297          * process indicates that it is controlling the indoor setting, save its
3298          * portid, i.e., make it the owner.
3299          */
3300         reg_is_indoor = is_indoor;
3301         if (reg_is_indoor) {
3302                 if (!reg_is_indoor_portid)
3303                         reg_is_indoor_portid = portid;
3304         } else {
3305                 reg_is_indoor_portid = 0;
3306         }
3307
3308         spin_unlock(&reg_indoor_lock);
3309
3310         if (!is_indoor)
3311                 reg_check_channels();
3312 }
3313
3314 void regulatory_netlink_notify(u32 portid)
3315 {
3316         spin_lock(&reg_indoor_lock);
3317
3318         if (reg_is_indoor_portid != portid) {
3319                 spin_unlock(&reg_indoor_lock);
3320                 return;
3321         }
3322
3323         reg_is_indoor = false;
3324         reg_is_indoor_portid = 0;
3325
3326         spin_unlock(&reg_indoor_lock);
3327
3328         reg_check_channels();
3329 }
3330
3331 /* Driver hints */
3332 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3333 {
3334         struct regulatory_request *request;
3335
3336         if (WARN_ON(!alpha2 || !wiphy))
3337                 return -EINVAL;
3338
3339         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3340
3341         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3342         if (!request)
3343                 return -ENOMEM;
3344
3345         request->wiphy_idx = get_wiphy_idx(wiphy);
3346
3347         request->alpha2[0] = alpha2[0];
3348         request->alpha2[1] = alpha2[1];
3349         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3350
3351         /* Allow calling CRDA again */
3352         reset_crda_timeouts();
3353
3354         queue_regulatory_request(request);
3355
3356         return 0;
3357 }
3358 EXPORT_SYMBOL(regulatory_hint);
3359
3360 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3361                                 const u8 *country_ie, u8 country_ie_len)
3362 {
3363         char alpha2[2];
3364         enum environment_cap env = ENVIRON_ANY;
3365         struct regulatory_request *request = NULL, *lr;
3366
3367         /* IE len must be evenly divisible by 2 */
3368         if (country_ie_len & 0x01)
3369                 return;
3370
3371         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3372                 return;
3373
3374         request = kzalloc(sizeof(*request), GFP_KERNEL);
3375         if (!request)
3376                 return;
3377
3378         alpha2[0] = country_ie[0];
3379         alpha2[1] = country_ie[1];
3380
3381         if (country_ie[2] == 'I')
3382                 env = ENVIRON_INDOOR;
3383         else if (country_ie[2] == 'O')
3384                 env = ENVIRON_OUTDOOR;
3385
3386         rcu_read_lock();
3387         lr = get_last_request();
3388
3389         if (unlikely(!lr))
3390                 goto out;
3391
3392         /*
3393          * We will run this only upon a successful connection on cfg80211.
3394          * We leave conflict resolution to the workqueue, where can hold
3395          * the RTNL.
3396          */
3397         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3398             lr->wiphy_idx != WIPHY_IDX_INVALID)
3399                 goto out;
3400
3401         request->wiphy_idx = get_wiphy_idx(wiphy);
3402         request->alpha2[0] = alpha2[0];
3403         request->alpha2[1] = alpha2[1];
3404         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3405         request->country_ie_env = env;
3406
3407         /* Allow calling CRDA again */
3408         reset_crda_timeouts();
3409
3410         queue_regulatory_request(request);
3411         request = NULL;
3412 out:
3413         kfree(request);
3414         rcu_read_unlock();
3415 }
3416
3417 static void restore_alpha2(char *alpha2, bool reset_user)
3418 {
3419         /* indicates there is no alpha2 to consider for restoration */
3420         alpha2[0] = '9';
3421         alpha2[1] = '7';
3422
3423         /* The user setting has precedence over the module parameter */
3424         if (is_user_regdom_saved()) {
3425                 /* Unless we're asked to ignore it and reset it */
3426                 if (reset_user) {
3427                         pr_debug("Restoring regulatory settings including user preference\n");
3428                         user_alpha2[0] = '9';
3429                         user_alpha2[1] = '7';
3430
3431                         /*
3432                          * If we're ignoring user settings, we still need to
3433                          * check the module parameter to ensure we put things
3434                          * back as they were for a full restore.
3435                          */
3436                         if (!is_world_regdom(ieee80211_regdom)) {
3437                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3438                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3439                                 alpha2[0] = ieee80211_regdom[0];
3440                                 alpha2[1] = ieee80211_regdom[1];
3441                         }
3442                 } else {
3443                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3444                                  user_alpha2[0], user_alpha2[1]);
3445                         alpha2[0] = user_alpha2[0];
3446                         alpha2[1] = user_alpha2[1];
3447                 }
3448         } else if (!is_world_regdom(ieee80211_regdom)) {
3449                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3450                          ieee80211_regdom[0], ieee80211_regdom[1]);
3451                 alpha2[0] = ieee80211_regdom[0];
3452                 alpha2[1] = ieee80211_regdom[1];
3453         } else
3454                 pr_debug("Restoring regulatory settings\n");
3455 }
3456
3457 static void restore_custom_reg_settings(struct wiphy *wiphy)
3458 {
3459         struct ieee80211_supported_band *sband;
3460         enum nl80211_band band;
3461         struct ieee80211_channel *chan;
3462         int i;
3463
3464         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3465                 sband = wiphy->bands[band];
3466                 if (!sband)
3467                         continue;
3468                 for (i = 0; i < sband->n_channels; i++) {
3469                         chan = &sband->channels[i];
3470                         chan->flags = chan->orig_flags;
3471                         chan->max_antenna_gain = chan->orig_mag;
3472                         chan->max_power = chan->orig_mpwr;
3473                         chan->beacon_found = false;
3474                 }
3475         }
3476 }
3477
3478 /*
3479  * Restoring regulatory settings involves ignoring any
3480  * possibly stale country IE information and user regulatory
3481  * settings if so desired, this includes any beacon hints
3482  * learned as we could have traveled outside to another country
3483  * after disconnection. To restore regulatory settings we do
3484  * exactly what we did at bootup:
3485  *
3486  *   - send a core regulatory hint
3487  *   - send a user regulatory hint if applicable
3488  *
3489  * Device drivers that send a regulatory hint for a specific country
3490  * keep their own regulatory domain on wiphy->regd so that does
3491  * not need to be remembered.
3492  */
3493 static void restore_regulatory_settings(bool reset_user, bool cached)
3494 {
3495         char alpha2[2];
3496         char world_alpha2[2];
3497         struct reg_beacon *reg_beacon, *btmp;
3498         LIST_HEAD(tmp_reg_req_list);
3499         struct cfg80211_registered_device *rdev;
3500
3501         ASSERT_RTNL();
3502
3503         /*
3504          * Clear the indoor setting in case that it is not controlled by user
3505          * space, as otherwise there is no guarantee that the device is still
3506          * operating in an indoor environment.
3507          */
3508         spin_lock(&reg_indoor_lock);
3509         if (reg_is_indoor && !reg_is_indoor_portid) {
3510                 reg_is_indoor = false;
3511                 reg_check_channels();
3512         }
3513         spin_unlock(&reg_indoor_lock);
3514
3515         reset_regdomains(true, &world_regdom);
3516         restore_alpha2(alpha2, reset_user);
3517
3518         /*
3519          * If there's any pending requests we simply
3520          * stash them to a temporary pending queue and
3521          * add then after we've restored regulatory
3522          * settings.
3523          */
3524         spin_lock(&reg_requests_lock);
3525         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3526         spin_unlock(&reg_requests_lock);
3527
3528         /* Clear beacon hints */
3529         spin_lock_bh(&reg_pending_beacons_lock);
3530         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3531                 list_del(&reg_beacon->list);
3532                 kfree(reg_beacon);
3533         }
3534         spin_unlock_bh(&reg_pending_beacons_lock);
3535
3536         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3537                 list_del(&reg_beacon->list);
3538                 kfree(reg_beacon);
3539         }
3540
3541         /* First restore to the basic regulatory settings */
3542         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3543         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3544
3545         for_each_rdev(rdev) {
3546                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3547                         continue;
3548                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3549                         restore_custom_reg_settings(&rdev->wiphy);
3550         }
3551
3552         if (cached && (!is_an_alpha2(alpha2) ||
3553                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3554                 reset_regdomains(false, cfg80211_world_regdom);
3555                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3556                 print_regdomain(get_cfg80211_regdom());
3557                 nl80211_send_reg_change_event(&core_request_world);
3558                 reg_set_request_processed();
3559
3560                 if (is_an_alpha2(alpha2) &&
3561                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3562                         struct regulatory_request *ureq;
3563
3564                         spin_lock(&reg_requests_lock);
3565                         ureq = list_last_entry(&reg_requests_list,
3566                                                struct regulatory_request,
3567                                                list);
3568                         list_del(&ureq->list);
3569                         spin_unlock(&reg_requests_lock);
3570
3571                         notify_self_managed_wiphys(ureq);
3572                         reg_update_last_request(ureq);
3573                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3574                                    REGD_SOURCE_CACHED);
3575                 }
3576         } else {
3577                 regulatory_hint_core(world_alpha2);
3578
3579                 /*
3580                  * This restores the ieee80211_regdom module parameter
3581                  * preference or the last user requested regulatory
3582                  * settings, user regulatory settings takes precedence.
3583                  */
3584                 if (is_an_alpha2(alpha2))
3585                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3586         }
3587
3588         spin_lock(&reg_requests_lock);
3589         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3590         spin_unlock(&reg_requests_lock);
3591
3592         pr_debug("Kicking the queue\n");
3593
3594         schedule_work(&reg_work);
3595 }
3596
3597 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3598 {
3599         struct cfg80211_registered_device *rdev;
3600         struct wireless_dev *wdev;
3601
3602         for_each_rdev(rdev) {
3603                 wiphy_lock(&rdev->wiphy);
3604                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3605                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3606                                 wiphy_unlock(&rdev->wiphy);
3607                                 return false;
3608                         }
3609                 }
3610                 wiphy_unlock(&rdev->wiphy);
3611         }
3612
3613         return true;
3614 }
3615
3616 void regulatory_hint_disconnect(void)
3617 {
3618         /* Restore of regulatory settings is not required when wiphy(s)
3619          * ignore IE from connected access point but clearance of beacon hints
3620          * is required when wiphy(s) supports beacon hints.
3621          */
3622         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3623                 struct reg_beacon *reg_beacon, *btmp;
3624
3625                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3626                         return;
3627
3628                 spin_lock_bh(&reg_pending_beacons_lock);
3629                 list_for_each_entry_safe(reg_beacon, btmp,
3630                                          &reg_pending_beacons, list) {
3631                         list_del(&reg_beacon->list);
3632                         kfree(reg_beacon);
3633                 }
3634                 spin_unlock_bh(&reg_pending_beacons_lock);
3635
3636                 list_for_each_entry_safe(reg_beacon, btmp,
3637                                          &reg_beacon_list, list) {
3638                         list_del(&reg_beacon->list);
3639                         kfree(reg_beacon);
3640                 }
3641
3642                 return;
3643         }
3644
3645         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3646         restore_regulatory_settings(false, true);
3647 }
3648
3649 static bool freq_is_chan_12_13_14(u32 freq)
3650 {
3651         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3652             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3653             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3654                 return true;
3655         return false;
3656 }
3657
3658 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3659 {
3660         struct reg_beacon *pending_beacon;
3661
3662         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3663                 if (ieee80211_channel_equal(beacon_chan,
3664                                             &pending_beacon->chan))
3665                         return true;
3666         return false;
3667 }
3668
3669 void regulatory_hint_found_beacon(struct wiphy *wiphy,
3670                                   struct ieee80211_channel *beacon_chan,
3671                                   gfp_t gfp)
3672 {
3673         struct reg_beacon *reg_beacon;
3674         bool processing;
3675
3676         if (beacon_chan->beacon_found ||
3677             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3678             (beacon_chan->band == NL80211_BAND_2GHZ &&
3679              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3680                 return;
3681
3682         spin_lock_bh(&reg_pending_beacons_lock);
3683         processing = pending_reg_beacon(beacon_chan);
3684         spin_unlock_bh(&reg_pending_beacons_lock);
3685
3686         if (processing)
3687                 return;
3688
3689         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3690         if (!reg_beacon)
3691                 return;
3692
3693         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3694                  beacon_chan->center_freq, beacon_chan->freq_offset,
3695                  ieee80211_freq_khz_to_channel(
3696                          ieee80211_channel_to_khz(beacon_chan)),
3697                  wiphy_name(wiphy));
3698
3699         memcpy(&reg_beacon->chan, beacon_chan,
3700                sizeof(struct ieee80211_channel));
3701
3702         /*
3703          * Since we can be called from BH or and non-BH context
3704          * we must use spin_lock_bh()
3705          */
3706         spin_lock_bh(&reg_pending_beacons_lock);
3707         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3708         spin_unlock_bh(&reg_pending_beacons_lock);
3709
3710         schedule_work(&reg_work);
3711 }
3712
3713 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3714 {
3715         unsigned int i;
3716         const struct ieee80211_reg_rule *reg_rule = NULL;
3717         const struct ieee80211_freq_range *freq_range = NULL;
3718         const struct ieee80211_power_rule *power_rule = NULL;
3719         char bw[32], cac_time[32];
3720
3721         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3722
3723         for (i = 0; i < rd->n_reg_rules; i++) {
3724                 reg_rule = &rd->reg_rules[i];
3725                 freq_range = &reg_rule->freq_range;
3726                 power_rule = &reg_rule->power_rule;
3727
3728                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3729                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3730                                  freq_range->max_bandwidth_khz,
3731                                  reg_get_max_bandwidth(rd, reg_rule));
3732                 else
3733                         snprintf(bw, sizeof(bw), "%d KHz",
3734                                  freq_range->max_bandwidth_khz);
3735
3736                 if (reg_rule->flags & NL80211_RRF_DFS)
3737                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3738                                   reg_rule->dfs_cac_ms/1000);
3739                 else
3740                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3741
3742
3743                 /*
3744                  * There may not be documentation for max antenna gain
3745                  * in certain regions
3746                  */
3747                 if (power_rule->max_antenna_gain)
3748                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3749                                 freq_range->start_freq_khz,
3750                                 freq_range->end_freq_khz,
3751                                 bw,
3752                                 power_rule->max_antenna_gain,
3753                                 power_rule->max_eirp,
3754                                 cac_time);
3755                 else
3756                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3757                                 freq_range->start_freq_khz,
3758                                 freq_range->end_freq_khz,
3759                                 bw,
3760                                 power_rule->max_eirp,
3761                                 cac_time);
3762         }
3763 }
3764
3765 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3766 {
3767         switch (dfs_region) {
3768         case NL80211_DFS_UNSET:
3769         case NL80211_DFS_FCC:
3770         case NL80211_DFS_ETSI:
3771         case NL80211_DFS_JP:
3772                 return true;
3773         default:
3774                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3775                 return false;
3776         }
3777 }
3778
3779 static void print_regdomain(const struct ieee80211_regdomain *rd)
3780 {
3781         struct regulatory_request *lr = get_last_request();
3782
3783         if (is_intersected_alpha2(rd->alpha2)) {
3784                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3785                         struct cfg80211_registered_device *rdev;
3786                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3787                         if (rdev) {
3788                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3789                                         rdev->country_ie_alpha2[0],
3790                                         rdev->country_ie_alpha2[1]);
3791                         } else
3792                                 pr_debug("Current regulatory domain intersected:\n");
3793                 } else
3794                         pr_debug("Current regulatory domain intersected:\n");
3795         } else if (is_world_regdom(rd->alpha2)) {
3796                 pr_debug("World regulatory domain updated:\n");
3797         } else {
3798                 if (is_unknown_alpha2(rd->alpha2))
3799                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3800                 else {
3801                         if (reg_request_cell_base(lr))
3802                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3803                                         rd->alpha2[0], rd->alpha2[1]);
3804                         else
3805                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3806                                         rd->alpha2[0], rd->alpha2[1]);
3807                 }
3808         }
3809
3810         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3811         print_rd_rules(rd);
3812 }
3813
3814 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3815 {
3816         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3817         print_rd_rules(rd);
3818 }
3819
3820 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3821 {
3822         if (!is_world_regdom(rd->alpha2))
3823                 return -EINVAL;
3824         update_world_regdomain(rd);
3825         return 0;
3826 }
3827
3828 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3829                            struct regulatory_request *user_request)
3830 {
3831         const struct ieee80211_regdomain *intersected_rd = NULL;
3832
3833         if (!regdom_changes(rd->alpha2))
3834                 return -EALREADY;
3835
3836         if (!is_valid_rd(rd)) {
3837                 pr_err("Invalid regulatory domain detected: %c%c\n",
3838                        rd->alpha2[0], rd->alpha2[1]);
3839                 print_regdomain_info(rd);
3840                 return -EINVAL;
3841         }
3842
3843         if (!user_request->intersect) {
3844                 reset_regdomains(false, rd);
3845                 return 0;
3846         }
3847
3848         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3849         if (!intersected_rd)
3850                 return -EINVAL;
3851
3852         kfree(rd);
3853         rd = NULL;
3854         reset_regdomains(false, intersected_rd);
3855
3856         return 0;
3857 }
3858
3859 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3860                              struct regulatory_request *driver_request)
3861 {
3862         const struct ieee80211_regdomain *regd;
3863         const struct ieee80211_regdomain *intersected_rd = NULL;
3864         const struct ieee80211_regdomain *tmp = NULL;
3865         struct wiphy *request_wiphy;
3866
3867         if (is_world_regdom(rd->alpha2))
3868                 return -EINVAL;
3869
3870         if (!regdom_changes(rd->alpha2))
3871                 return -EALREADY;
3872
3873         if (!is_valid_rd(rd)) {
3874                 pr_err("Invalid regulatory domain detected: %c%c\n",
3875                        rd->alpha2[0], rd->alpha2[1]);
3876                 print_regdomain_info(rd);
3877                 return -EINVAL;
3878         }
3879
3880         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3881         if (!request_wiphy)
3882                 return -ENODEV;
3883
3884         if (!driver_request->intersect) {
3885                 ASSERT_RTNL();
3886                 wiphy_lock(request_wiphy);
3887                 if (request_wiphy->regd)
3888                         tmp = get_wiphy_regdom(request_wiphy);
3889
3890                 regd = reg_copy_regd(rd);
3891                 if (IS_ERR(regd)) {
3892                         wiphy_unlock(request_wiphy);
3893                         return PTR_ERR(regd);
3894                 }
3895
3896                 rcu_assign_pointer(request_wiphy->regd, regd);
3897                 rcu_free_regdom(tmp);
3898                 wiphy_unlock(request_wiphy);
3899                 reset_regdomains(false, rd);
3900                 return 0;
3901         }
3902
3903         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3904         if (!intersected_rd)
3905                 return -EINVAL;
3906
3907         /*
3908          * We can trash what CRDA provided now.
3909          * However if a driver requested this specific regulatory
3910          * domain we keep it for its private use
3911          */
3912         tmp = get_wiphy_regdom(request_wiphy);
3913         rcu_assign_pointer(request_wiphy->regd, rd);
3914         rcu_free_regdom(tmp);
3915
3916         rd = NULL;
3917
3918         reset_regdomains(false, intersected_rd);
3919
3920         return 0;
3921 }
3922
3923 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3924                                  struct regulatory_request *country_ie_request)
3925 {
3926         struct wiphy *request_wiphy;
3927
3928         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3929             !is_unknown_alpha2(rd->alpha2))
3930                 return -EINVAL;
3931
3932         /*
3933          * Lets only bother proceeding on the same alpha2 if the current
3934          * rd is non static (it means CRDA was present and was used last)
3935          * and the pending request came in from a country IE
3936          */
3937
3938         if (!is_valid_rd(rd)) {
3939                 pr_err("Invalid regulatory domain detected: %c%c\n",
3940                        rd->alpha2[0], rd->alpha2[1]);
3941                 print_regdomain_info(rd);
3942                 return -EINVAL;
3943         }
3944
3945         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3946         if (!request_wiphy)
3947                 return -ENODEV;
3948
3949         if (country_ie_request->intersect)
3950                 return -EINVAL;
3951
3952         reset_regdomains(false, rd);
3953         return 0;
3954 }
3955
3956 /*
3957  * Use this call to set the current regulatory domain. Conflicts with
3958  * multiple drivers can be ironed out later. Caller must've already
3959  * kmalloc'd the rd structure.
3960  */
3961 int set_regdom(const struct ieee80211_regdomain *rd,
3962                enum ieee80211_regd_source regd_src)
3963 {
3964         struct regulatory_request *lr;
3965         bool user_reset = false;
3966         int r;
3967
3968         if (IS_ERR_OR_NULL(rd))
3969                 return -ENODATA;
3970
3971         if (!reg_is_valid_request(rd->alpha2)) {
3972                 kfree(rd);
3973                 return -EINVAL;
3974         }
3975
3976         if (regd_src == REGD_SOURCE_CRDA)
3977                 reset_crda_timeouts();
3978
3979         lr = get_last_request();
3980
3981         /* Note that this doesn't update the wiphys, this is done below */
3982         switch (lr->initiator) {
3983         case NL80211_REGDOM_SET_BY_CORE:
3984                 r = reg_set_rd_core(rd);
3985                 break;
3986         case NL80211_REGDOM_SET_BY_USER:
3987                 cfg80211_save_user_regdom(rd);
3988                 r = reg_set_rd_user(rd, lr);
3989                 user_reset = true;
3990                 break;
3991         case NL80211_REGDOM_SET_BY_DRIVER:
3992                 r = reg_set_rd_driver(rd, lr);
3993                 break;
3994         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3995                 r = reg_set_rd_country_ie(rd, lr);
3996                 break;
3997         default:
3998                 WARN(1, "invalid initiator %d\n", lr->initiator);
3999                 kfree(rd);
4000                 return -EINVAL;
4001         }
4002
4003         if (r) {
4004                 switch (r) {
4005                 case -EALREADY:
4006                         reg_set_request_processed();
4007                         break;
4008                 default:
4009                         /* Back to world regulatory in case of errors */
4010                         restore_regulatory_settings(user_reset, false);
4011                 }
4012
4013                 kfree(rd);
4014                 return r;
4015         }
4016
4017         /* This would make this whole thing pointless */
4018         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4019                 return -EINVAL;
4020
4021         /* update all wiphys now with the new established regulatory domain */
4022         update_all_wiphy_regulatory(lr->initiator);
4023
4024         print_regdomain(get_cfg80211_regdom());
4025
4026         nl80211_send_reg_change_event(lr);
4027
4028         reg_set_request_processed();
4029
4030         return 0;
4031 }
4032
4033 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4034                                        struct ieee80211_regdomain *rd)
4035 {
4036         const struct ieee80211_regdomain *regd;
4037         const struct ieee80211_regdomain *prev_regd;
4038         struct cfg80211_registered_device *rdev;
4039
4040         if (WARN_ON(!wiphy || !rd))
4041                 return -EINVAL;
4042
4043         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4044                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4045                 return -EPERM;
4046
4047         if (WARN(!is_valid_rd(rd),
4048                  "Invalid regulatory domain detected: %c%c\n",
4049                  rd->alpha2[0], rd->alpha2[1])) {
4050                 print_regdomain_info(rd);
4051                 return -EINVAL;
4052         }
4053
4054         regd = reg_copy_regd(rd);
4055         if (IS_ERR(regd))
4056                 return PTR_ERR(regd);
4057
4058         rdev = wiphy_to_rdev(wiphy);
4059
4060         spin_lock(&reg_requests_lock);
4061         prev_regd = rdev->requested_regd;
4062         rdev->requested_regd = regd;
4063         spin_unlock(&reg_requests_lock);
4064
4065         kfree(prev_regd);
4066         return 0;
4067 }
4068
4069 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4070                               struct ieee80211_regdomain *rd)
4071 {
4072         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4073
4074         if (ret)
4075                 return ret;
4076
4077         schedule_work(&reg_work);
4078         return 0;
4079 }
4080 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4081
4082 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4083                                    struct ieee80211_regdomain *rd)
4084 {
4085         int ret;
4086
4087         ASSERT_RTNL();
4088
4089         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4090         if (ret)
4091                 return ret;
4092
4093         /* process the request immediately */
4094         reg_process_self_managed_hint(wiphy);
4095         reg_check_channels();
4096         return 0;
4097 }
4098 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4099
4100 void wiphy_regulatory_register(struct wiphy *wiphy)
4101 {
4102         struct regulatory_request *lr = get_last_request();
4103
4104         /* self-managed devices ignore beacon hints and country IE */
4105         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4106                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4107                                            REGULATORY_COUNTRY_IE_IGNORE;
4108
4109                 /*
4110                  * The last request may have been received before this
4111                  * registration call. Call the driver notifier if
4112                  * initiator is USER.
4113                  */
4114                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4115                         reg_call_notifier(wiphy, lr);
4116         }
4117
4118         if (!reg_dev_ignore_cell_hint(wiphy))
4119                 reg_num_devs_support_basehint++;
4120
4121         wiphy_update_regulatory(wiphy, lr->initiator);
4122         wiphy_all_share_dfs_chan_state(wiphy);
4123         reg_process_self_managed_hints();
4124 }
4125
4126 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4127 {
4128         struct wiphy *request_wiphy = NULL;
4129         struct regulatory_request *lr;
4130
4131         lr = get_last_request();
4132
4133         if (!reg_dev_ignore_cell_hint(wiphy))
4134                 reg_num_devs_support_basehint--;
4135
4136         rcu_free_regdom(get_wiphy_regdom(wiphy));
4137         RCU_INIT_POINTER(wiphy->regd, NULL);
4138
4139         if (lr)
4140                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4141
4142         if (!request_wiphy || request_wiphy != wiphy)
4143                 return;
4144
4145         lr->wiphy_idx = WIPHY_IDX_INVALID;
4146         lr->country_ie_env = ENVIRON_ANY;
4147 }
4148
4149 /*
4150  * See FCC notices for UNII band definitions
4151  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4152  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4153  */
4154 int cfg80211_get_unii(int freq)
4155 {
4156         /* UNII-1 */
4157         if (freq >= 5150 && freq <= 5250)
4158                 return 0;
4159
4160         /* UNII-2A */
4161         if (freq > 5250 && freq <= 5350)
4162                 return 1;
4163
4164         /* UNII-2B */
4165         if (freq > 5350 && freq <= 5470)
4166                 return 2;
4167
4168         /* UNII-2C */
4169         if (freq > 5470 && freq <= 5725)
4170                 return 3;
4171
4172         /* UNII-3 */
4173         if (freq > 5725 && freq <= 5825)
4174                 return 4;
4175
4176         /* UNII-5 */
4177         if (freq > 5925 && freq <= 6425)
4178                 return 5;
4179
4180         /* UNII-6 */
4181         if (freq > 6425 && freq <= 6525)
4182                 return 6;
4183
4184         /* UNII-7 */
4185         if (freq > 6525 && freq <= 6875)
4186                 return 7;
4187
4188         /* UNII-8 */
4189         if (freq > 6875 && freq <= 7125)
4190                 return 8;
4191
4192         return -EINVAL;
4193 }
4194
4195 bool regulatory_indoor_allowed(void)
4196 {
4197         return reg_is_indoor;
4198 }
4199
4200 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4201 {
4202         const struct ieee80211_regdomain *regd = NULL;
4203         const struct ieee80211_regdomain *wiphy_regd = NULL;
4204         bool pre_cac_allowed = false;
4205
4206         rcu_read_lock();
4207
4208         regd = rcu_dereference(cfg80211_regdomain);
4209         wiphy_regd = rcu_dereference(wiphy->regd);
4210         if (!wiphy_regd) {
4211                 if (regd->dfs_region == NL80211_DFS_ETSI)
4212                         pre_cac_allowed = true;
4213
4214                 rcu_read_unlock();
4215
4216                 return pre_cac_allowed;
4217         }
4218
4219         if (regd->dfs_region == wiphy_regd->dfs_region &&
4220             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4221                 pre_cac_allowed = true;
4222
4223         rcu_read_unlock();
4224
4225         return pre_cac_allowed;
4226 }
4227 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4228
4229 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4230 {
4231         struct wireless_dev *wdev;
4232         unsigned int link_id;
4233
4234         /* If we finished CAC or received radar, we should end any
4235          * CAC running on the same channels.
4236          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4237          * either all channels are available - those the CAC_FINISHED
4238          * event has effected another wdev state, or there is a channel
4239          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4240          * event has effected another wdev state.
4241          * In both cases we should end the CAC on the wdev.
4242          */
4243         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4244                 struct cfg80211_chan_def *chandef;
4245
4246                 for_each_valid_link(wdev, link_id) {
4247                         if (!wdev->links[link_id].cac_started)
4248                                 continue;
4249
4250                         chandef = wdev_chandef(wdev, link_id);
4251                         if (!chandef)
4252                                 continue;
4253
4254                         if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4255                                 rdev_end_cac(rdev, wdev->netdev, link_id);
4256                 }
4257         }
4258 }
4259
4260 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4261                                     struct cfg80211_chan_def *chandef,
4262                                     enum nl80211_dfs_state dfs_state,
4263                                     enum nl80211_radar_event event)
4264 {
4265         struct cfg80211_registered_device *rdev;
4266
4267         ASSERT_RTNL();
4268
4269         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4270                 return;
4271
4272         for_each_rdev(rdev) {
4273                 if (wiphy == &rdev->wiphy)
4274                         continue;
4275
4276                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4277                         continue;
4278
4279                 if (!ieee80211_get_channel(&rdev->wiphy,
4280                                            chandef->chan->center_freq))
4281                         continue;
4282
4283                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4284
4285                 if (event == NL80211_RADAR_DETECTED ||
4286                     event == NL80211_RADAR_CAC_FINISHED) {
4287                         cfg80211_sched_dfs_chan_update(rdev);
4288                         cfg80211_check_and_end_cac(rdev);
4289                 }
4290
4291                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4292         }
4293 }
4294
4295 static int __init regulatory_init_db(void)
4296 {
4297         int err;
4298
4299         /*
4300          * It's possible that - due to other bugs/issues - cfg80211
4301          * never called regulatory_init() below, or that it failed;
4302          * in that case, don't try to do any further work here as
4303          * it's doomed to lead to crashes.
4304          */
4305         if (IS_ERR_OR_NULL(reg_pdev))
4306                 return -EINVAL;
4307
4308         err = load_builtin_regdb_keys();
4309         if (err) {
4310                 platform_device_unregister(reg_pdev);
4311                 return err;
4312         }
4313
4314         /* We always try to get an update for the static regdomain */
4315         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4316         if (err) {
4317                 if (err == -ENOMEM) {
4318                         platform_device_unregister(reg_pdev);
4319                         return err;
4320                 }
4321                 /*
4322                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4323                  * memory which is handled and propagated appropriately above
4324                  * but it can also fail during a netlink_broadcast() or during
4325                  * early boot for call_usermodehelper(). For now treat these
4326                  * errors as non-fatal.
4327                  */
4328                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4329         }
4330
4331         /*
4332          * Finally, if the user set the module parameter treat it
4333          * as a user hint.
4334          */
4335         if (!is_world_regdom(ieee80211_regdom))
4336                 regulatory_hint_user(ieee80211_regdom,
4337                                      NL80211_USER_REG_HINT_USER);
4338
4339         return 0;
4340 }
4341 #ifndef MODULE
4342 late_initcall(regulatory_init_db);
4343 #endif
4344
4345 int __init regulatory_init(void)
4346 {
4347         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4348         if (IS_ERR(reg_pdev))
4349                 return PTR_ERR(reg_pdev);
4350
4351         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4352
4353         user_alpha2[0] = '9';
4354         user_alpha2[1] = '7';
4355
4356 #ifdef MODULE
4357         return regulatory_init_db();
4358 #else
4359         return 0;
4360 #endif
4361 }
4362
4363 void regulatory_exit(void)
4364 {
4365         struct regulatory_request *reg_request, *tmp;
4366         struct reg_beacon *reg_beacon, *btmp;
4367
4368         cancel_work_sync(&reg_work);
4369         cancel_crda_timeout_sync();
4370         cancel_delayed_work_sync(&reg_check_chans);
4371
4372         /* Lock to suppress warnings */
4373         rtnl_lock();
4374         reset_regdomains(true, NULL);
4375         rtnl_unlock();
4376
4377         dev_set_uevent_suppress(&reg_pdev->dev, true);
4378
4379         platform_device_unregister(reg_pdev);
4380
4381         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4382                 list_del(&reg_beacon->list);
4383                 kfree(reg_beacon);
4384         }
4385
4386         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4387                 list_del(&reg_beacon->list);
4388                 kfree(reg_beacon);
4389         }
4390
4391         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4392                 list_del(&reg_request->list);
4393                 kfree(reg_request);
4394         }
4395
4396         if (!IS_ERR_OR_NULL(regdb))
4397                 kfree(regdb);
4398         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4399                 kfree(cfg80211_user_regdom);
4400
4401         free_regdb_keyring();
4402 }