cfg80211: allow wiphy specific regdomain management
[linux-2.6-block.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)                  \
65         printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *      be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *      regulatory settings, and no further processing is required.
85  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
86  *      further processing is required, i.e., not need to update last_request
87  *      etc. This should be used for user hints that do not provide an alpha2
88  *      but some other type of regulatory hint, i.e., indoor operation.
89  */
90 enum reg_request_treatment {
91         REG_REQ_OK,
92         REG_REQ_IGNORE,
93         REG_REQ_INTERSECT,
94         REG_REQ_ALREADY_SET,
95         REG_REQ_USER_HINT_HANDLED,
96 };
97
98 static struct regulatory_request core_request_world = {
99         .initiator = NL80211_REGDOM_SET_BY_CORE,
100         .alpha2[0] = '0',
101         .alpha2[1] = '0',
102         .intersect = false,
103         .processed = true,
104         .country_ie_env = ENVIRON_ANY,
105 };
106
107 /*
108  * Receipt of information from last regulatory request,
109  * protected by RTNL (and can be accessed with RCU protection)
110  */
111 static struct regulatory_request __rcu *last_request =
112         (void __force __rcu *)&core_request_world;
113
114 /* To trigger userspace events */
115 static struct platform_device *reg_pdev;
116
117 /*
118  * Central wireless core regulatory domains, we only need two,
119  * the current one and a world regulatory domain in case we have no
120  * information to give us an alpha2.
121  * (protected by RTNL, can be read under RCU)
122  */
123 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
124
125 /*
126  * Number of devices that registered to the core
127  * that support cellular base station regulatory hints
128  * (protected by RTNL)
129  */
130 static int reg_num_devs_support_basehint;
131
132 /*
133  * State variable indicating if the platform on which the devices
134  * are attached is operating in an indoor environment. The state variable
135  * is relevant for all registered devices.
136  * (protected by RTNL)
137  */
138 static bool reg_is_indoor;
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142         return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147         return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152         switch (dfs_region) {
153         case NL80211_DFS_UNSET:
154                 return "unset";
155         case NL80211_DFS_FCC:
156                 return "FCC";
157         case NL80211_DFS_ETSI:
158                 return "ETSI";
159         case NL80211_DFS_JP:
160                 return "JP";
161         }
162         return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167         const struct ieee80211_regdomain *regd = NULL;
168         const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170         regd = get_cfg80211_regdom();
171         if (!wiphy)
172                 goto out;
173
174         wiphy_regd = get_wiphy_regdom(wiphy);
175         if (!wiphy_regd)
176                 goto out;
177
178         if (wiphy_regd->dfs_region == regd->dfs_region)
179                 goto out;
180
181         REG_DBG_PRINT("%s: device specific dfs_region "
182                       "(%s) disagrees with cfg80211's "
183                       "central dfs_region (%s)\n",
184                       dev_name(&wiphy->dev),
185                       reg_dfs_region_str(wiphy_regd->dfs_region),
186                       reg_dfs_region_str(regd->dfs_region));
187
188 out:
189         return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194         if (!r)
195                 return;
196         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201         return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216         struct list_head list;
217         struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 static void reg_timeout_work(struct work_struct *work);
227 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
228
229 /* We keep a static world regulatory domain in case of the absence of CRDA */
230 static const struct ieee80211_regdomain world_regdom = {
231         .n_reg_rules = 6,
232         .alpha2 =  "00",
233         .reg_rules = {
234                 /* IEEE 802.11b/g, channels 1..11 */
235                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
236                 /* IEEE 802.11b/g, channels 12..13. */
237                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
238                         NL80211_RRF_NO_IR),
239                 /* IEEE 802.11 channel 14 - Only JP enables
240                  * this and for 802.11b only */
241                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
242                         NL80211_RRF_NO_IR |
243                         NL80211_RRF_NO_OFDM),
244                 /* IEEE 802.11a, channel 36..48 */
245                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
246                         NL80211_RRF_NO_IR),
247
248                 /* IEEE 802.11a, channel 52..64 - DFS required */
249                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
250                         NL80211_RRF_NO_IR |
251                         NL80211_RRF_DFS),
252
253                 /* IEEE 802.11a, channel 100..144 - DFS required */
254                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
255                         NL80211_RRF_NO_IR |
256                         NL80211_RRF_DFS),
257
258                 /* IEEE 802.11a, channel 149..165 */
259                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
260                         NL80211_RRF_NO_IR),
261
262                 /* IEEE 802.11ad (60gHz), channels 1..3 */
263                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
264         }
265 };
266
267 /* protected by RTNL */
268 static const struct ieee80211_regdomain *cfg80211_world_regdom =
269         &world_regdom;
270
271 static char *ieee80211_regdom = "00";
272 static char user_alpha2[2];
273
274 module_param(ieee80211_regdom, charp, 0444);
275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276
277 static void reg_free_request(struct regulatory_request *request)
278 {
279         if (request != get_last_request())
280                 kfree(request);
281 }
282
283 static void reg_free_last_request(void)
284 {
285         struct regulatory_request *lr = get_last_request();
286
287         if (lr != &core_request_world && lr)
288                 kfree_rcu(lr, rcu_head);
289 }
290
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293         struct regulatory_request *lr;
294
295         lr = get_last_request();
296         if (lr == request)
297                 return;
298
299         reg_free_last_request();
300         rcu_assign_pointer(last_request, request);
301 }
302
303 static void reset_regdomains(bool full_reset,
304                              const struct ieee80211_regdomain *new_regdom)
305 {
306         const struct ieee80211_regdomain *r;
307
308         ASSERT_RTNL();
309
310         r = get_cfg80211_regdom();
311
312         /* avoid freeing static information or freeing something twice */
313         if (r == cfg80211_world_regdom)
314                 r = NULL;
315         if (cfg80211_world_regdom == &world_regdom)
316                 cfg80211_world_regdom = NULL;
317         if (r == &world_regdom)
318                 r = NULL;
319
320         rcu_free_regdom(r);
321         rcu_free_regdom(cfg80211_world_regdom);
322
323         cfg80211_world_regdom = &world_regdom;
324         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326         if (!full_reset)
327                 return;
328
329         reg_update_last_request(&core_request_world);
330 }
331
332 /*
333  * Dynamic world regulatory domain requested by the wireless
334  * core upon initialization
335  */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338         struct regulatory_request *lr;
339
340         lr = get_last_request();
341
342         WARN_ON(!lr);
343
344         reset_regdomains(false, rd);
345
346         cfg80211_world_regdom = rd;
347 }
348
349 bool is_world_regdom(const char *alpha2)
350 {
351         if (!alpha2)
352                 return false;
353         return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355
356 static bool is_alpha2_set(const char *alpha2)
357 {
358         if (!alpha2)
359                 return false;
360         return alpha2[0] && alpha2[1];
361 }
362
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365         if (!alpha2)
366                 return false;
367         /*
368          * Special case where regulatory domain was built by driver
369          * but a specific alpha2 cannot be determined
370          */
371         return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         /*
379          * Special case where regulatory domain is the
380          * result of an intersection between two regulatory domain
381          * structures
382          */
383         return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385
386 static bool is_an_alpha2(const char *alpha2)
387 {
388         if (!alpha2)
389                 return false;
390         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395         if (!alpha2_x || !alpha2_y)
396                 return false;
397         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399
400 static bool regdom_changes(const char *alpha2)
401 {
402         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404         if (!r)
405                 return true;
406         return !alpha2_equal(r->alpha2, alpha2);
407 }
408
409 /*
410  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412  * has ever been issued.
413  */
414 static bool is_user_regdom_saved(void)
415 {
416         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417                 return false;
418
419         /* This would indicate a mistake on the design */
420         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421                  "Unexpected user alpha2: %c%c\n",
422                  user_alpha2[0], user_alpha2[1]))
423                 return false;
424
425         return true;
426 }
427
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431         struct ieee80211_regdomain *regd;
432         int size_of_regd;
433         unsigned int i;
434
435         size_of_regd =
436                 sizeof(struct ieee80211_regdomain) +
437                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439         regd = kzalloc(size_of_regd, GFP_KERNEL);
440         if (!regd)
441                 return ERR_PTR(-ENOMEM);
442
443         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445         for (i = 0; i < src_regd->n_reg_rules; i++)
446                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447                        sizeof(struct ieee80211_reg_rule));
448
449         return regd;
450 }
451
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_search_request {
454         char alpha2[2];
455         struct list_head list;
456 };
457
458 static LIST_HEAD(reg_regdb_search_list);
459 static DEFINE_MUTEX(reg_regdb_search_mutex);
460
461 static void reg_regdb_search(struct work_struct *work)
462 {
463         struct reg_regdb_search_request *request;
464         const struct ieee80211_regdomain *curdom, *regdom = NULL;
465         int i;
466
467         rtnl_lock();
468
469         mutex_lock(&reg_regdb_search_mutex);
470         while (!list_empty(&reg_regdb_search_list)) {
471                 request = list_first_entry(&reg_regdb_search_list,
472                                            struct reg_regdb_search_request,
473                                            list);
474                 list_del(&request->list);
475
476                 for (i = 0; i < reg_regdb_size; i++) {
477                         curdom = reg_regdb[i];
478
479                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
480                                 regdom = reg_copy_regd(curdom);
481                                 break;
482                         }
483                 }
484
485                 kfree(request);
486         }
487         mutex_unlock(&reg_regdb_search_mutex);
488
489         if (!IS_ERR_OR_NULL(regdom))
490                 set_regdom(regdom);
491
492         rtnl_unlock();
493 }
494
495 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
496
497 static void reg_regdb_query(const char *alpha2)
498 {
499         struct reg_regdb_search_request *request;
500
501         if (!alpha2)
502                 return;
503
504         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505         if (!request)
506                 return;
507
508         memcpy(request->alpha2, alpha2, 2);
509
510         mutex_lock(&reg_regdb_search_mutex);
511         list_add_tail(&request->list, &reg_regdb_search_list);
512         mutex_unlock(&reg_regdb_search_mutex);
513
514         schedule_work(&reg_regdb_work);
515 }
516
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
521         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527
528 /*
529  * This lets us keep regulatory code which is updated on a regulatory
530  * basis in userspace.
531  */
532 static int call_crda(const char *alpha2)
533 {
534         char country[12];
535         char *env[] = { country, NULL };
536
537         snprintf(country, sizeof(country), "COUNTRY=%c%c",
538                  alpha2[0], alpha2[1]);
539
540         if (!is_world_regdom((char *) alpha2))
541                 pr_info("Calling CRDA for country: %c%c\n",
542                         alpha2[0], alpha2[1]);
543         else
544                 pr_info("Calling CRDA to update world regulatory domain\n");
545
546         /* query internal regulatory database (if it exists) */
547         reg_regdb_query(alpha2);
548
549         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
550 }
551
552 static enum reg_request_treatment
553 reg_call_crda(struct regulatory_request *request)
554 {
555         if (call_crda(request->alpha2))
556                 return REG_REQ_IGNORE;
557         return REG_REQ_OK;
558 }
559
560 bool reg_is_valid_request(const char *alpha2)
561 {
562         struct regulatory_request *lr = get_last_request();
563
564         if (!lr || lr->processed)
565                 return false;
566
567         return alpha2_equal(lr->alpha2, alpha2);
568 }
569
570 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
571 {
572         struct regulatory_request *lr = get_last_request();
573
574         /*
575          * Follow the driver's regulatory domain, if present, unless a country
576          * IE has been processed or a user wants to help complaince further
577          */
578         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
579             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
580             wiphy->regd)
581                 return get_wiphy_regdom(wiphy);
582
583         return get_cfg80211_regdom();
584 }
585
586 static unsigned int
587 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
588                                  const struct ieee80211_reg_rule *rule)
589 {
590         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
591         const struct ieee80211_freq_range *freq_range_tmp;
592         const struct ieee80211_reg_rule *tmp;
593         u32 start_freq, end_freq, idx, no;
594
595         for (idx = 0; idx < rd->n_reg_rules; idx++)
596                 if (rule == &rd->reg_rules[idx])
597                         break;
598
599         if (idx == rd->n_reg_rules)
600                 return 0;
601
602         /* get start_freq */
603         no = idx;
604
605         while (no) {
606                 tmp = &rd->reg_rules[--no];
607                 freq_range_tmp = &tmp->freq_range;
608
609                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
610                         break;
611
612                 freq_range = freq_range_tmp;
613         }
614
615         start_freq = freq_range->start_freq_khz;
616
617         /* get end_freq */
618         freq_range = &rule->freq_range;
619         no = idx;
620
621         while (no < rd->n_reg_rules - 1) {
622                 tmp = &rd->reg_rules[++no];
623                 freq_range_tmp = &tmp->freq_range;
624
625                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
626                         break;
627
628                 freq_range = freq_range_tmp;
629         }
630
631         end_freq = freq_range->end_freq_khz;
632
633         return end_freq - start_freq;
634 }
635
636 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
637                                    const struct ieee80211_reg_rule *rule)
638 {
639         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
640
641         if (rule->flags & NL80211_RRF_NO_160MHZ)
642                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
643         if (rule->flags & NL80211_RRF_NO_80MHZ)
644                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
645
646         /*
647          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
648          * are not allowed.
649          */
650         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
651             rule->flags & NL80211_RRF_NO_HT40PLUS)
652                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
653
654         return bw;
655 }
656
657 /* Sanity check on a regulatory rule */
658 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
659 {
660         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
661         u32 freq_diff;
662
663         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
664                 return false;
665
666         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
667                 return false;
668
669         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
670
671         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
672             freq_range->max_bandwidth_khz > freq_diff)
673                 return false;
674
675         return true;
676 }
677
678 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
679 {
680         const struct ieee80211_reg_rule *reg_rule = NULL;
681         unsigned int i;
682
683         if (!rd->n_reg_rules)
684                 return false;
685
686         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
687                 return false;
688
689         for (i = 0; i < rd->n_reg_rules; i++) {
690                 reg_rule = &rd->reg_rules[i];
691                 if (!is_valid_reg_rule(reg_rule))
692                         return false;
693         }
694
695         return true;
696 }
697
698 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
699                             u32 center_freq_khz, u32 bw_khz)
700 {
701         u32 start_freq_khz, end_freq_khz;
702
703         start_freq_khz = center_freq_khz - (bw_khz/2);
704         end_freq_khz = center_freq_khz + (bw_khz/2);
705
706         if (start_freq_khz >= freq_range->start_freq_khz &&
707             end_freq_khz <= freq_range->end_freq_khz)
708                 return true;
709
710         return false;
711 }
712
713 /**
714  * freq_in_rule_band - tells us if a frequency is in a frequency band
715  * @freq_range: frequency rule we want to query
716  * @freq_khz: frequency we are inquiring about
717  *
718  * This lets us know if a specific frequency rule is or is not relevant to
719  * a specific frequency's band. Bands are device specific and artificial
720  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
721  * however it is safe for now to assume that a frequency rule should not be
722  * part of a frequency's band if the start freq or end freq are off by more
723  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
724  * 60 GHz band.
725  * This resolution can be lowered and should be considered as we add
726  * regulatory rule support for other "bands".
727  **/
728 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
729                               u32 freq_khz)
730 {
731 #define ONE_GHZ_IN_KHZ  1000000
732         /*
733          * From 802.11ad: directional multi-gigabit (DMG):
734          * Pertaining to operation in a frequency band containing a channel
735          * with the Channel starting frequency above 45 GHz.
736          */
737         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
738                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
739         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
740                 return true;
741         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
742                 return true;
743         return false;
744 #undef ONE_GHZ_IN_KHZ
745 }
746
747 /*
748  * Later on we can perhaps use the more restrictive DFS
749  * region but we don't have information for that yet so
750  * for now simply disallow conflicts.
751  */
752 static enum nl80211_dfs_regions
753 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
754                          const enum nl80211_dfs_regions dfs_region2)
755 {
756         if (dfs_region1 != dfs_region2)
757                 return NL80211_DFS_UNSET;
758         return dfs_region1;
759 }
760
761 /*
762  * Helper for regdom_intersect(), this does the real
763  * mathematical intersection fun
764  */
765 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
766                                const struct ieee80211_regdomain *rd2,
767                                const struct ieee80211_reg_rule *rule1,
768                                const struct ieee80211_reg_rule *rule2,
769                                struct ieee80211_reg_rule *intersected_rule)
770 {
771         const struct ieee80211_freq_range *freq_range1, *freq_range2;
772         struct ieee80211_freq_range *freq_range;
773         const struct ieee80211_power_rule *power_rule1, *power_rule2;
774         struct ieee80211_power_rule *power_rule;
775         u32 freq_diff, max_bandwidth1, max_bandwidth2;
776
777         freq_range1 = &rule1->freq_range;
778         freq_range2 = &rule2->freq_range;
779         freq_range = &intersected_rule->freq_range;
780
781         power_rule1 = &rule1->power_rule;
782         power_rule2 = &rule2->power_rule;
783         power_rule = &intersected_rule->power_rule;
784
785         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
786                                          freq_range2->start_freq_khz);
787         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
788                                        freq_range2->end_freq_khz);
789
790         max_bandwidth1 = freq_range1->max_bandwidth_khz;
791         max_bandwidth2 = freq_range2->max_bandwidth_khz;
792
793         if (rule1->flags & NL80211_RRF_AUTO_BW)
794                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
795         if (rule2->flags & NL80211_RRF_AUTO_BW)
796                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
797
798         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
799
800         intersected_rule->flags = rule1->flags | rule2->flags;
801
802         /*
803          * In case NL80211_RRF_AUTO_BW requested for both rules
804          * set AUTO_BW in intersected rule also. Next we will
805          * calculate BW correctly in handle_channel function.
806          * In other case remove AUTO_BW flag while we calculate
807          * maximum bandwidth correctly and auto calculation is
808          * not required.
809          */
810         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
811             (rule2->flags & NL80211_RRF_AUTO_BW))
812                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
813         else
814                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
815
816         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
817         if (freq_range->max_bandwidth_khz > freq_diff)
818                 freq_range->max_bandwidth_khz = freq_diff;
819
820         power_rule->max_eirp = min(power_rule1->max_eirp,
821                 power_rule2->max_eirp);
822         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
823                 power_rule2->max_antenna_gain);
824
825         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
826                                            rule2->dfs_cac_ms);
827
828         if (!is_valid_reg_rule(intersected_rule))
829                 return -EINVAL;
830
831         return 0;
832 }
833
834 /* check whether old rule contains new rule */
835 static bool rule_contains(struct ieee80211_reg_rule *r1,
836                           struct ieee80211_reg_rule *r2)
837 {
838         /* for simplicity, currently consider only same flags */
839         if (r1->flags != r2->flags)
840                 return false;
841
842         /* verify r1 is more restrictive */
843         if ((r1->power_rule.max_antenna_gain >
844              r2->power_rule.max_antenna_gain) ||
845             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
846                 return false;
847
848         /* make sure r2's range is contained within r1 */
849         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
850             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
851                 return false;
852
853         /* and finally verify that r1.max_bw >= r2.max_bw */
854         if (r1->freq_range.max_bandwidth_khz <
855             r2->freq_range.max_bandwidth_khz)
856                 return false;
857
858         return true;
859 }
860
861 /* add or extend current rules. do nothing if rule is already contained */
862 static void add_rule(struct ieee80211_reg_rule *rule,
863                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
864 {
865         struct ieee80211_reg_rule *tmp_rule;
866         int i;
867
868         for (i = 0; i < *n_rules; i++) {
869                 tmp_rule = &reg_rules[i];
870                 /* rule is already contained - do nothing */
871                 if (rule_contains(tmp_rule, rule))
872                         return;
873
874                 /* extend rule if possible */
875                 if (rule_contains(rule, tmp_rule)) {
876                         memcpy(tmp_rule, rule, sizeof(*rule));
877                         return;
878                 }
879         }
880
881         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
882         (*n_rules)++;
883 }
884
885 /**
886  * regdom_intersect - do the intersection between two regulatory domains
887  * @rd1: first regulatory domain
888  * @rd2: second regulatory domain
889  *
890  * Use this function to get the intersection between two regulatory domains.
891  * Once completed we will mark the alpha2 for the rd as intersected, "98",
892  * as no one single alpha2 can represent this regulatory domain.
893  *
894  * Returns a pointer to the regulatory domain structure which will hold the
895  * resulting intersection of rules between rd1 and rd2. We will
896  * kzalloc() this structure for you.
897  */
898 static struct ieee80211_regdomain *
899 regdom_intersect(const struct ieee80211_regdomain *rd1,
900                  const struct ieee80211_regdomain *rd2)
901 {
902         int r, size_of_regd;
903         unsigned int x, y;
904         unsigned int num_rules = 0;
905         const struct ieee80211_reg_rule *rule1, *rule2;
906         struct ieee80211_reg_rule intersected_rule;
907         struct ieee80211_regdomain *rd;
908
909         if (!rd1 || !rd2)
910                 return NULL;
911
912         /*
913          * First we get a count of the rules we'll need, then we actually
914          * build them. This is to so we can malloc() and free() a
915          * regdomain once. The reason we use reg_rules_intersect() here
916          * is it will return -EINVAL if the rule computed makes no sense.
917          * All rules that do check out OK are valid.
918          */
919
920         for (x = 0; x < rd1->n_reg_rules; x++) {
921                 rule1 = &rd1->reg_rules[x];
922                 for (y = 0; y < rd2->n_reg_rules; y++) {
923                         rule2 = &rd2->reg_rules[y];
924                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
925                                                  &intersected_rule))
926                                 num_rules++;
927                 }
928         }
929
930         if (!num_rules)
931                 return NULL;
932
933         size_of_regd = sizeof(struct ieee80211_regdomain) +
934                        num_rules * sizeof(struct ieee80211_reg_rule);
935
936         rd = kzalloc(size_of_regd, GFP_KERNEL);
937         if (!rd)
938                 return NULL;
939
940         for (x = 0; x < rd1->n_reg_rules; x++) {
941                 rule1 = &rd1->reg_rules[x];
942                 for (y = 0; y < rd2->n_reg_rules; y++) {
943                         rule2 = &rd2->reg_rules[y];
944                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
945                                                 &intersected_rule);
946                         /*
947                          * No need to memset here the intersected rule here as
948                          * we're not using the stack anymore
949                          */
950                         if (r)
951                                 continue;
952
953                         add_rule(&intersected_rule, rd->reg_rules,
954                                  &rd->n_reg_rules);
955                 }
956         }
957
958         rd->alpha2[0] = '9';
959         rd->alpha2[1] = '8';
960         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
961                                                   rd2->dfs_region);
962
963         return rd;
964 }
965
966 /*
967  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
968  * want to just have the channel structure use these
969  */
970 static u32 map_regdom_flags(u32 rd_flags)
971 {
972         u32 channel_flags = 0;
973         if (rd_flags & NL80211_RRF_NO_IR_ALL)
974                 channel_flags |= IEEE80211_CHAN_NO_IR;
975         if (rd_flags & NL80211_RRF_DFS)
976                 channel_flags |= IEEE80211_CHAN_RADAR;
977         if (rd_flags & NL80211_RRF_NO_OFDM)
978                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
979         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
980                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
981         if (rd_flags & NL80211_RRF_GO_CONCURRENT)
982                 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
983         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
984                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
985         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
986                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
987         if (rd_flags & NL80211_RRF_NO_80MHZ)
988                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
989         if (rd_flags & NL80211_RRF_NO_160MHZ)
990                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
991         return channel_flags;
992 }
993
994 static const struct ieee80211_reg_rule *
995 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
996                    const struct ieee80211_regdomain *regd)
997 {
998         int i;
999         bool band_rule_found = false;
1000         bool bw_fits = false;
1001
1002         if (!regd)
1003                 return ERR_PTR(-EINVAL);
1004
1005         for (i = 0; i < regd->n_reg_rules; i++) {
1006                 const struct ieee80211_reg_rule *rr;
1007                 const struct ieee80211_freq_range *fr = NULL;
1008
1009                 rr = &regd->reg_rules[i];
1010                 fr = &rr->freq_range;
1011
1012                 /*
1013                  * We only need to know if one frequency rule was
1014                  * was in center_freq's band, that's enough, so lets
1015                  * not overwrite it once found
1016                  */
1017                 if (!band_rule_found)
1018                         band_rule_found = freq_in_rule_band(fr, center_freq);
1019
1020                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1021
1022                 if (band_rule_found && bw_fits)
1023                         return rr;
1024         }
1025
1026         if (!band_rule_found)
1027                 return ERR_PTR(-ERANGE);
1028
1029         return ERR_PTR(-EINVAL);
1030 }
1031
1032 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1033                                                u32 center_freq)
1034 {
1035         const struct ieee80211_regdomain *regd;
1036
1037         regd = reg_get_regdomain(wiphy);
1038
1039         return freq_reg_info_regd(wiphy, center_freq, regd);
1040 }
1041 EXPORT_SYMBOL(freq_reg_info);
1042
1043 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1044 {
1045         switch (initiator) {
1046         case NL80211_REGDOM_SET_BY_CORE:
1047                 return "core";
1048         case NL80211_REGDOM_SET_BY_USER:
1049                 return "user";
1050         case NL80211_REGDOM_SET_BY_DRIVER:
1051                 return "driver";
1052         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1053                 return "country IE";
1054         default:
1055                 WARN_ON(1);
1056                 return "bug";
1057         }
1058 }
1059 EXPORT_SYMBOL(reg_initiator_name);
1060
1061 #ifdef CONFIG_CFG80211_REG_DEBUG
1062 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1063                                     struct ieee80211_channel *chan,
1064                                     const struct ieee80211_reg_rule *reg_rule)
1065 {
1066         const struct ieee80211_power_rule *power_rule;
1067         const struct ieee80211_freq_range *freq_range;
1068         char max_antenna_gain[32], bw[32];
1069
1070         power_rule = &reg_rule->power_rule;
1071         freq_range = &reg_rule->freq_range;
1072
1073         if (!power_rule->max_antenna_gain)
1074                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1075         else
1076                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1077                          power_rule->max_antenna_gain);
1078
1079         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1080                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1081                          freq_range->max_bandwidth_khz,
1082                          reg_get_max_bandwidth(regd, reg_rule));
1083         else
1084                 snprintf(bw, sizeof(bw), "%d KHz",
1085                          freq_range->max_bandwidth_khz);
1086
1087         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1088                       chan->center_freq);
1089
1090         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1091                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1092                       bw, max_antenna_gain,
1093                       power_rule->max_eirp);
1094 }
1095 #else
1096 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1097                                     struct ieee80211_channel *chan,
1098                                     const struct ieee80211_reg_rule *reg_rule)
1099 {
1100         return;
1101 }
1102 #endif
1103
1104 /*
1105  * Note that right now we assume the desired channel bandwidth
1106  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1107  * per channel, the primary and the extension channel).
1108  */
1109 static void handle_channel(struct wiphy *wiphy,
1110                            enum nl80211_reg_initiator initiator,
1111                            struct ieee80211_channel *chan)
1112 {
1113         u32 flags, bw_flags = 0;
1114         const struct ieee80211_reg_rule *reg_rule = NULL;
1115         const struct ieee80211_power_rule *power_rule = NULL;
1116         const struct ieee80211_freq_range *freq_range = NULL;
1117         struct wiphy *request_wiphy = NULL;
1118         struct regulatory_request *lr = get_last_request();
1119         const struct ieee80211_regdomain *regd;
1120         u32 max_bandwidth_khz;
1121
1122         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1123
1124         flags = chan->orig_flags;
1125
1126         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1127         if (IS_ERR(reg_rule)) {
1128                 /*
1129                  * We will disable all channels that do not match our
1130                  * received regulatory rule unless the hint is coming
1131                  * from a Country IE and the Country IE had no information
1132                  * about a band. The IEEE 802.11 spec allows for an AP
1133                  * to send only a subset of the regulatory rules allowed,
1134                  * so an AP in the US that only supports 2.4 GHz may only send
1135                  * a country IE with information for the 2.4 GHz band
1136                  * while 5 GHz is still supported.
1137                  */
1138                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139                     PTR_ERR(reg_rule) == -ERANGE)
1140                         return;
1141
1142                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1143                     request_wiphy && request_wiphy == wiphy &&
1144                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1145                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1146                                       chan->center_freq);
1147                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1148                         chan->flags = chan->orig_flags;
1149                 } else {
1150                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1151                                       chan->center_freq);
1152                         chan->flags |= IEEE80211_CHAN_DISABLED;
1153                 }
1154                 return;
1155         }
1156
1157         regd = reg_get_regdomain(wiphy);
1158         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1159
1160         power_rule = &reg_rule->power_rule;
1161         freq_range = &reg_rule->freq_range;
1162
1163         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1164         /* Check if auto calculation requested */
1165         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1166                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1167
1168         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1169                 bw_flags = IEEE80211_CHAN_NO_HT40;
1170         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1171                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1172         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1173                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1174
1175         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176             request_wiphy && request_wiphy == wiphy &&
1177             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178                 /*
1179                  * This guarantees the driver's requested regulatory domain
1180                  * will always be used as a base for further regulatory
1181                  * settings
1182                  */
1183                 chan->flags = chan->orig_flags =
1184                         map_regdom_flags(reg_rule->flags) | bw_flags;
1185                 chan->max_antenna_gain = chan->orig_mag =
1186                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1188                         (int) MBM_TO_DBM(power_rule->max_eirp);
1189
1190                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1191                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1192                         if (reg_rule->dfs_cac_ms)
1193                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1194                 }
1195
1196                 return;
1197         }
1198
1199         chan->dfs_state = NL80211_DFS_USABLE;
1200         chan->dfs_state_entered = jiffies;
1201
1202         chan->beacon_found = false;
1203         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1204         chan->max_antenna_gain =
1205                 min_t(int, chan->orig_mag,
1206                       MBI_TO_DBI(power_rule->max_antenna_gain));
1207         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1208
1209         if (chan->flags & IEEE80211_CHAN_RADAR) {
1210                 if (reg_rule->dfs_cac_ms)
1211                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1212                 else
1213                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1214         }
1215
1216         if (chan->orig_mpwr) {
1217                 /*
1218                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1219                  * will always follow the passed country IE power settings.
1220                  */
1221                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1222                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1223                         chan->max_power = chan->max_reg_power;
1224                 else
1225                         chan->max_power = min(chan->orig_mpwr,
1226                                               chan->max_reg_power);
1227         } else
1228                 chan->max_power = chan->max_reg_power;
1229 }
1230
1231 static void handle_band(struct wiphy *wiphy,
1232                         enum nl80211_reg_initiator initiator,
1233                         struct ieee80211_supported_band *sband)
1234 {
1235         unsigned int i;
1236
1237         if (!sband)
1238                 return;
1239
1240         for (i = 0; i < sband->n_channels; i++)
1241                 handle_channel(wiphy, initiator, &sband->channels[i]);
1242 }
1243
1244 static bool reg_request_cell_base(struct regulatory_request *request)
1245 {
1246         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1247                 return false;
1248         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1249 }
1250
1251 static bool reg_request_indoor(struct regulatory_request *request)
1252 {
1253         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1254                 return false;
1255         return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1256 }
1257
1258 bool reg_last_request_cell_base(void)
1259 {
1260         return reg_request_cell_base(get_last_request());
1261 }
1262
1263 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1264 /* Core specific check */
1265 static enum reg_request_treatment
1266 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1267 {
1268         struct regulatory_request *lr = get_last_request();
1269
1270         if (!reg_num_devs_support_basehint)
1271                 return REG_REQ_IGNORE;
1272
1273         if (reg_request_cell_base(lr) &&
1274             !regdom_changes(pending_request->alpha2))
1275                 return REG_REQ_ALREADY_SET;
1276
1277         return REG_REQ_OK;
1278 }
1279
1280 /* Device specific check */
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1284 }
1285 #else
1286 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1287 {
1288         return REG_REQ_IGNORE;
1289 }
1290
1291 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1292 {
1293         return true;
1294 }
1295 #endif
1296
1297 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1298 {
1299         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1300             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1301                 return true;
1302         return false;
1303 }
1304
1305 static bool ignore_reg_update(struct wiphy *wiphy,
1306                               enum nl80211_reg_initiator initiator)
1307 {
1308         struct regulatory_request *lr = get_last_request();
1309
1310         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1311                 return true;
1312
1313         if (!lr) {
1314                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1315                               "since last_request is not set\n",
1316                               reg_initiator_name(initiator));
1317                 return true;
1318         }
1319
1320         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1321             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1322                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1323                               "since the driver uses its own custom "
1324                               "regulatory domain\n",
1325                               reg_initiator_name(initiator));
1326                 return true;
1327         }
1328
1329         /*
1330          * wiphy->regd will be set once the device has its own
1331          * desired regulatory domain set
1332          */
1333         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1334             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1335             !is_world_regdom(lr->alpha2)) {
1336                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1337                               "since the driver requires its own regulatory "
1338                               "domain to be set first\n",
1339                               reg_initiator_name(initiator));
1340                 return true;
1341         }
1342
1343         if (reg_request_cell_base(lr))
1344                 return reg_dev_ignore_cell_hint(wiphy);
1345
1346         return false;
1347 }
1348
1349 static bool reg_is_world_roaming(struct wiphy *wiphy)
1350 {
1351         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1352         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1353         struct regulatory_request *lr = get_last_request();
1354
1355         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1356                 return true;
1357
1358         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1359             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1360                 return true;
1361
1362         return false;
1363 }
1364
1365 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1366                               struct reg_beacon *reg_beacon)
1367 {
1368         struct ieee80211_supported_band *sband;
1369         struct ieee80211_channel *chan;
1370         bool channel_changed = false;
1371         struct ieee80211_channel chan_before;
1372
1373         sband = wiphy->bands[reg_beacon->chan.band];
1374         chan = &sband->channels[chan_idx];
1375
1376         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1377                 return;
1378
1379         if (chan->beacon_found)
1380                 return;
1381
1382         chan->beacon_found = true;
1383
1384         if (!reg_is_world_roaming(wiphy))
1385                 return;
1386
1387         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1388                 return;
1389
1390         chan_before.center_freq = chan->center_freq;
1391         chan_before.flags = chan->flags;
1392
1393         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1394                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1395                 channel_changed = true;
1396         }
1397
1398         if (channel_changed)
1399                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1400 }
1401
1402 /*
1403  * Called when a scan on a wiphy finds a beacon on
1404  * new channel
1405  */
1406 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1407                                     struct reg_beacon *reg_beacon)
1408 {
1409         unsigned int i;
1410         struct ieee80211_supported_band *sband;
1411
1412         if (!wiphy->bands[reg_beacon->chan.band])
1413                 return;
1414
1415         sband = wiphy->bands[reg_beacon->chan.band];
1416
1417         for (i = 0; i < sband->n_channels; i++)
1418                 handle_reg_beacon(wiphy, i, reg_beacon);
1419 }
1420
1421 /*
1422  * Called upon reg changes or a new wiphy is added
1423  */
1424 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1425 {
1426         unsigned int i;
1427         struct ieee80211_supported_band *sband;
1428         struct reg_beacon *reg_beacon;
1429
1430         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1431                 if (!wiphy->bands[reg_beacon->chan.band])
1432                         continue;
1433                 sband = wiphy->bands[reg_beacon->chan.band];
1434                 for (i = 0; i < sband->n_channels; i++)
1435                         handle_reg_beacon(wiphy, i, reg_beacon);
1436         }
1437 }
1438
1439 /* Reap the advantages of previously found beacons */
1440 static void reg_process_beacons(struct wiphy *wiphy)
1441 {
1442         /*
1443          * Means we are just firing up cfg80211, so no beacons would
1444          * have been processed yet.
1445          */
1446         if (!last_request)
1447                 return;
1448         wiphy_update_beacon_reg(wiphy);
1449 }
1450
1451 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1452 {
1453         if (!chan)
1454                 return false;
1455         if (chan->flags & IEEE80211_CHAN_DISABLED)
1456                 return false;
1457         /* This would happen when regulatory rules disallow HT40 completely */
1458         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1459                 return false;
1460         return true;
1461 }
1462
1463 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1464                                          struct ieee80211_channel *channel)
1465 {
1466         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1467         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1468         unsigned int i;
1469
1470         if (!is_ht40_allowed(channel)) {
1471                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1472                 return;
1473         }
1474
1475         /*
1476          * We need to ensure the extension channels exist to
1477          * be able to use HT40- or HT40+, this finds them (or not)
1478          */
1479         for (i = 0; i < sband->n_channels; i++) {
1480                 struct ieee80211_channel *c = &sband->channels[i];
1481
1482                 if (c->center_freq == (channel->center_freq - 20))
1483                         channel_before = c;
1484                 if (c->center_freq == (channel->center_freq + 20))
1485                         channel_after = c;
1486         }
1487
1488         /*
1489          * Please note that this assumes target bandwidth is 20 MHz,
1490          * if that ever changes we also need to change the below logic
1491          * to include that as well.
1492          */
1493         if (!is_ht40_allowed(channel_before))
1494                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1495         else
1496                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1497
1498         if (!is_ht40_allowed(channel_after))
1499                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1500         else
1501                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1502 }
1503
1504 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1505                                       struct ieee80211_supported_band *sband)
1506 {
1507         unsigned int i;
1508
1509         if (!sband)
1510                 return;
1511
1512         for (i = 0; i < sband->n_channels; i++)
1513                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1514 }
1515
1516 static void reg_process_ht_flags(struct wiphy *wiphy)
1517 {
1518         enum ieee80211_band band;
1519
1520         if (!wiphy)
1521                 return;
1522
1523         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1524                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1525 }
1526
1527 static void reg_call_notifier(struct wiphy *wiphy,
1528                               struct regulatory_request *request)
1529 {
1530         if (wiphy->reg_notifier)
1531                 wiphy->reg_notifier(wiphy, request);
1532 }
1533
1534 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1535 {
1536         struct ieee80211_channel *ch;
1537         struct cfg80211_chan_def chandef;
1538         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1539         bool ret = true;
1540
1541         wdev_lock(wdev);
1542
1543         if (!wdev->netdev || !netif_running(wdev->netdev))
1544                 goto out;
1545
1546         switch (wdev->iftype) {
1547         case NL80211_IFTYPE_AP:
1548         case NL80211_IFTYPE_P2P_GO:
1549                 if (!wdev->beacon_interval)
1550                         goto out;
1551
1552                 ret = cfg80211_reg_can_beacon(wiphy,
1553                                               &wdev->chandef, wdev->iftype);
1554                 break;
1555         case NL80211_IFTYPE_STATION:
1556         case NL80211_IFTYPE_P2P_CLIENT:
1557         case NL80211_IFTYPE_ADHOC:
1558                 if (!wdev->current_bss ||
1559                     !wdev->current_bss->pub.channel)
1560                         goto out;
1561
1562                 ch = wdev->current_bss->pub.channel;
1563                 if (rdev->ops->get_channel &&
1564                     !rdev_get_channel(rdev, wdev, &chandef))
1565                         ret = cfg80211_chandef_usable(wiphy, &chandef,
1566                                                       IEEE80211_CHAN_DISABLED);
1567                 else
1568                         ret = !(ch->flags & IEEE80211_CHAN_DISABLED);
1569                 break;
1570         case NL80211_IFTYPE_MONITOR:
1571         case NL80211_IFTYPE_AP_VLAN:
1572         case NL80211_IFTYPE_P2P_DEVICE:
1573                 /* no enforcement required */
1574                 break;
1575         default:
1576                 /* others not implemented for now */
1577                 WARN_ON(1);
1578                 break;
1579         }
1580
1581 out:
1582         wdev_unlock(wdev);
1583         return ret;
1584 }
1585
1586 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1587 {
1588         struct wireless_dev *wdev;
1589         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1590
1591         ASSERT_RTNL();
1592
1593         list_for_each_entry(wdev, &rdev->wdev_list, list)
1594                 if (!reg_wdev_chan_valid(wiphy, wdev))
1595                         cfg80211_leave(rdev, wdev);
1596 }
1597
1598 static void reg_check_chans_work(struct work_struct *work)
1599 {
1600         struct cfg80211_registered_device *rdev;
1601
1602         REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1603         rtnl_lock();
1604
1605         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1606                 if (!(rdev->wiphy.regulatory_flags &
1607                       REGULATORY_IGNORE_STALE_KICKOFF))
1608                         reg_leave_invalid_chans(&rdev->wiphy);
1609
1610         rtnl_unlock();
1611 }
1612
1613 static void reg_check_channels(void)
1614 {
1615         /*
1616          * Give usermode a chance to do something nicer (move to another
1617          * channel, orderly disconnection), before forcing a disconnection.
1618          */
1619         mod_delayed_work(system_power_efficient_wq,
1620                          &reg_check_chans,
1621                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1622 }
1623
1624 static void wiphy_update_regulatory(struct wiphy *wiphy,
1625                                     enum nl80211_reg_initiator initiator)
1626 {
1627         enum ieee80211_band band;
1628         struct regulatory_request *lr = get_last_request();
1629
1630         if (ignore_reg_update(wiphy, initiator)) {
1631                 /*
1632                  * Regulatory updates set by CORE are ignored for custom
1633                  * regulatory cards. Let us notify the changes to the driver,
1634                  * as some drivers used this to restore its orig_* reg domain.
1635                  */
1636                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1637                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1638                         reg_call_notifier(wiphy, lr);
1639                 return;
1640         }
1641
1642         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1643
1644         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1645                 handle_band(wiphy, initiator, wiphy->bands[band]);
1646
1647         reg_process_beacons(wiphy);
1648         reg_process_ht_flags(wiphy);
1649         reg_call_notifier(wiphy, lr);
1650 }
1651
1652 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1653 {
1654         struct cfg80211_registered_device *rdev;
1655         struct wiphy *wiphy;
1656
1657         ASSERT_RTNL();
1658
1659         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1660                 wiphy = &rdev->wiphy;
1661                 wiphy_update_regulatory(wiphy, initiator);
1662         }
1663
1664         reg_check_channels();
1665 }
1666
1667 static void handle_channel_custom(struct wiphy *wiphy,
1668                                   struct ieee80211_channel *chan,
1669                                   const struct ieee80211_regdomain *regd)
1670 {
1671         u32 bw_flags = 0;
1672         const struct ieee80211_reg_rule *reg_rule = NULL;
1673         const struct ieee80211_power_rule *power_rule = NULL;
1674         const struct ieee80211_freq_range *freq_range = NULL;
1675         u32 max_bandwidth_khz;
1676
1677         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1678                                       regd);
1679
1680         if (IS_ERR(reg_rule)) {
1681                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1682                               chan->center_freq);
1683                 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1684                 chan->flags = chan->orig_flags;
1685                 return;
1686         }
1687
1688         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1689
1690         power_rule = &reg_rule->power_rule;
1691         freq_range = &reg_rule->freq_range;
1692
1693         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1694         /* Check if auto calculation requested */
1695         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1696                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1697
1698         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1699                 bw_flags = IEEE80211_CHAN_NO_HT40;
1700         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1701                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1702         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1703                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1704
1705         chan->dfs_state_entered = jiffies;
1706         chan->dfs_state = NL80211_DFS_USABLE;
1707
1708         chan->beacon_found = false;
1709         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1710         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1711         chan->max_reg_power = chan->max_power =
1712                 (int) MBM_TO_DBM(power_rule->max_eirp);
1713
1714         if (chan->flags & IEEE80211_CHAN_RADAR) {
1715                 if (reg_rule->dfs_cac_ms)
1716                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1717                 else
1718                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1719         }
1720
1721         chan->max_power = chan->max_reg_power;
1722 }
1723
1724 static void handle_band_custom(struct wiphy *wiphy,
1725                                struct ieee80211_supported_band *sband,
1726                                const struct ieee80211_regdomain *regd)
1727 {
1728         unsigned int i;
1729
1730         if (!sband)
1731                 return;
1732
1733         for (i = 0; i < sband->n_channels; i++)
1734                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1735 }
1736
1737 /* Used by drivers prior to wiphy registration */
1738 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1739                                    const struct ieee80211_regdomain *regd)
1740 {
1741         enum ieee80211_band band;
1742         unsigned int bands_set = 0;
1743
1744         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1745              "wiphy should have REGULATORY_CUSTOM_REG\n");
1746         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1747
1748         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1749                 if (!wiphy->bands[band])
1750                         continue;
1751                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1752                 bands_set++;
1753         }
1754
1755         /*
1756          * no point in calling this if it won't have any effect
1757          * on your device's supported bands.
1758          */
1759         WARN_ON(!bands_set);
1760 }
1761 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1762
1763 static void reg_set_request_processed(void)
1764 {
1765         bool need_more_processing = false;
1766         struct regulatory_request *lr = get_last_request();
1767
1768         lr->processed = true;
1769
1770         spin_lock(&reg_requests_lock);
1771         if (!list_empty(&reg_requests_list))
1772                 need_more_processing = true;
1773         spin_unlock(&reg_requests_lock);
1774
1775         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1776                 cancel_delayed_work(&reg_timeout);
1777
1778         if (need_more_processing)
1779                 schedule_work(&reg_work);
1780 }
1781
1782 /**
1783  * reg_process_hint_core - process core regulatory requests
1784  * @pending_request: a pending core regulatory request
1785  *
1786  * The wireless subsystem can use this function to process
1787  * a regulatory request issued by the regulatory core.
1788  *
1789  * Returns one of the different reg request treatment values.
1790  */
1791 static enum reg_request_treatment
1792 reg_process_hint_core(struct regulatory_request *core_request)
1793 {
1794
1795         core_request->intersect = false;
1796         core_request->processed = false;
1797
1798         reg_update_last_request(core_request);
1799
1800         return reg_call_crda(core_request);
1801 }
1802
1803 static enum reg_request_treatment
1804 __reg_process_hint_user(struct regulatory_request *user_request)
1805 {
1806         struct regulatory_request *lr = get_last_request();
1807
1808         if (reg_request_indoor(user_request)) {
1809                 reg_is_indoor = true;
1810                 return REG_REQ_USER_HINT_HANDLED;
1811         }
1812
1813         if (reg_request_cell_base(user_request))
1814                 return reg_ignore_cell_hint(user_request);
1815
1816         if (reg_request_cell_base(lr))
1817                 return REG_REQ_IGNORE;
1818
1819         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1820                 return REG_REQ_INTERSECT;
1821         /*
1822          * If the user knows better the user should set the regdom
1823          * to their country before the IE is picked up
1824          */
1825         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1826             lr->intersect)
1827                 return REG_REQ_IGNORE;
1828         /*
1829          * Process user requests only after previous user/driver/core
1830          * requests have been processed
1831          */
1832         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1833              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1834              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1835             regdom_changes(lr->alpha2))
1836                 return REG_REQ_IGNORE;
1837
1838         if (!regdom_changes(user_request->alpha2))
1839                 return REG_REQ_ALREADY_SET;
1840
1841         return REG_REQ_OK;
1842 }
1843
1844 /**
1845  * reg_process_hint_user - process user regulatory requests
1846  * @user_request: a pending user regulatory request
1847  *
1848  * The wireless subsystem can use this function to process
1849  * a regulatory request initiated by userspace.
1850  *
1851  * Returns one of the different reg request treatment values.
1852  */
1853 static enum reg_request_treatment
1854 reg_process_hint_user(struct regulatory_request *user_request)
1855 {
1856         enum reg_request_treatment treatment;
1857
1858         treatment = __reg_process_hint_user(user_request);
1859         if (treatment == REG_REQ_IGNORE ||
1860             treatment == REG_REQ_ALREADY_SET ||
1861             treatment == REG_REQ_USER_HINT_HANDLED) {
1862                 reg_free_request(user_request);
1863                 return treatment;
1864         }
1865
1866         user_request->intersect = treatment == REG_REQ_INTERSECT;
1867         user_request->processed = false;
1868
1869         reg_update_last_request(user_request);
1870
1871         user_alpha2[0] = user_request->alpha2[0];
1872         user_alpha2[1] = user_request->alpha2[1];
1873
1874         return reg_call_crda(user_request);
1875 }
1876
1877 static enum reg_request_treatment
1878 __reg_process_hint_driver(struct regulatory_request *driver_request)
1879 {
1880         struct regulatory_request *lr = get_last_request();
1881
1882         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1883                 if (regdom_changes(driver_request->alpha2))
1884                         return REG_REQ_OK;
1885                 return REG_REQ_ALREADY_SET;
1886         }
1887
1888         /*
1889          * This would happen if you unplug and plug your card
1890          * back in or if you add a new device for which the previously
1891          * loaded card also agrees on the regulatory domain.
1892          */
1893         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1894             !regdom_changes(driver_request->alpha2))
1895                 return REG_REQ_ALREADY_SET;
1896
1897         return REG_REQ_INTERSECT;
1898 }
1899
1900 /**
1901  * reg_process_hint_driver - process driver regulatory requests
1902  * @driver_request: a pending driver regulatory request
1903  *
1904  * The wireless subsystem can use this function to process
1905  * a regulatory request issued by an 802.11 driver.
1906  *
1907  * Returns one of the different reg request treatment values.
1908  */
1909 static enum reg_request_treatment
1910 reg_process_hint_driver(struct wiphy *wiphy,
1911                         struct regulatory_request *driver_request)
1912 {
1913         const struct ieee80211_regdomain *regd;
1914         enum reg_request_treatment treatment;
1915
1916         treatment = __reg_process_hint_driver(driver_request);
1917
1918         switch (treatment) {
1919         case REG_REQ_OK:
1920                 break;
1921         case REG_REQ_IGNORE:
1922         case REG_REQ_USER_HINT_HANDLED:
1923                 reg_free_request(driver_request);
1924                 return treatment;
1925         case REG_REQ_INTERSECT:
1926                 /* fall through */
1927         case REG_REQ_ALREADY_SET:
1928                 regd = reg_copy_regd(get_cfg80211_regdom());
1929                 if (IS_ERR(regd)) {
1930                         reg_free_request(driver_request);
1931                         return REG_REQ_IGNORE;
1932                 }
1933                 rcu_assign_pointer(wiphy->regd, regd);
1934         }
1935
1936
1937         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1938         driver_request->processed = false;
1939
1940         reg_update_last_request(driver_request);
1941
1942         /*
1943          * Since CRDA will not be called in this case as we already
1944          * have applied the requested regulatory domain before we just
1945          * inform userspace we have processed the request
1946          */
1947         if (treatment == REG_REQ_ALREADY_SET) {
1948                 nl80211_send_reg_change_event(driver_request);
1949                 reg_set_request_processed();
1950                 return treatment;
1951         }
1952
1953         return reg_call_crda(driver_request);
1954 }
1955
1956 static enum reg_request_treatment
1957 __reg_process_hint_country_ie(struct wiphy *wiphy,
1958                               struct regulatory_request *country_ie_request)
1959 {
1960         struct wiphy *last_wiphy = NULL;
1961         struct regulatory_request *lr = get_last_request();
1962
1963         if (reg_request_cell_base(lr)) {
1964                 /* Trust a Cell base station over the AP's country IE */
1965                 if (regdom_changes(country_ie_request->alpha2))
1966                         return REG_REQ_IGNORE;
1967                 return REG_REQ_ALREADY_SET;
1968         } else {
1969                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1970                         return REG_REQ_IGNORE;
1971         }
1972
1973         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1974                 return -EINVAL;
1975
1976         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1977                 return REG_REQ_OK;
1978
1979         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1980
1981         if (last_wiphy != wiphy) {
1982                 /*
1983                  * Two cards with two APs claiming different
1984                  * Country IE alpha2s. We could
1985                  * intersect them, but that seems unlikely
1986                  * to be correct. Reject second one for now.
1987                  */
1988                 if (regdom_changes(country_ie_request->alpha2))
1989                         return REG_REQ_IGNORE;
1990                 return REG_REQ_ALREADY_SET;
1991         }
1992         /*
1993          * Two consecutive Country IE hints on the same wiphy.
1994          * This should be picked up early by the driver/stack
1995          */
1996         if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1997                 return REG_REQ_OK;
1998         return REG_REQ_ALREADY_SET;
1999 }
2000
2001 /**
2002  * reg_process_hint_country_ie - process regulatory requests from country IEs
2003  * @country_ie_request: a regulatory request from a country IE
2004  *
2005  * The wireless subsystem can use this function to process
2006  * a regulatory request issued by a country Information Element.
2007  *
2008  * Returns one of the different reg request treatment values.
2009  */
2010 static enum reg_request_treatment
2011 reg_process_hint_country_ie(struct wiphy *wiphy,
2012                             struct regulatory_request *country_ie_request)
2013 {
2014         enum reg_request_treatment treatment;
2015
2016         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2017
2018         switch (treatment) {
2019         case REG_REQ_OK:
2020                 break;
2021         case REG_REQ_IGNORE:
2022         case REG_REQ_USER_HINT_HANDLED:
2023                 /* fall through */
2024         case REG_REQ_ALREADY_SET:
2025                 reg_free_request(country_ie_request);
2026                 return treatment;
2027         case REG_REQ_INTERSECT:
2028                 reg_free_request(country_ie_request);
2029                 /*
2030                  * This doesn't happen yet, not sure we
2031                  * ever want to support it for this case.
2032                  */
2033                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2034                 return REG_REQ_IGNORE;
2035         }
2036
2037         country_ie_request->intersect = false;
2038         country_ie_request->processed = false;
2039
2040         reg_update_last_request(country_ie_request);
2041
2042         return reg_call_crda(country_ie_request);
2043 }
2044
2045 /* This processes *all* regulatory hints */
2046 static void reg_process_hint(struct regulatory_request *reg_request)
2047 {
2048         struct wiphy *wiphy = NULL;
2049         enum reg_request_treatment treatment;
2050
2051         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2052                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2053
2054         switch (reg_request->initiator) {
2055         case NL80211_REGDOM_SET_BY_CORE:
2056                 reg_process_hint_core(reg_request);
2057                 return;
2058         case NL80211_REGDOM_SET_BY_USER:
2059                 treatment = reg_process_hint_user(reg_request);
2060                 if (treatment == REG_REQ_IGNORE ||
2061                     treatment == REG_REQ_ALREADY_SET ||
2062                     treatment == REG_REQ_USER_HINT_HANDLED)
2063                         return;
2064                 queue_delayed_work(system_power_efficient_wq,
2065                                    &reg_timeout, msecs_to_jiffies(3142));
2066                 return;
2067         case NL80211_REGDOM_SET_BY_DRIVER:
2068                 if (!wiphy)
2069                         goto out_free;
2070                 treatment = reg_process_hint_driver(wiphy, reg_request);
2071                 break;
2072         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2073                 if (!wiphy)
2074                         goto out_free;
2075                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2076                 break;
2077         default:
2078                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2079                 goto out_free;
2080         }
2081
2082         /* This is required so that the orig_* parameters are saved */
2083         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2084             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2085                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2086                 reg_check_channels();
2087         }
2088
2089         return;
2090
2091 out_free:
2092         reg_free_request(reg_request);
2093 }
2094
2095 /*
2096  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2097  * Regulatory hints come on a first come first serve basis and we
2098  * must process each one atomically.
2099  */
2100 static void reg_process_pending_hints(void)
2101 {
2102         struct regulatory_request *reg_request, *lr;
2103
2104         lr = get_last_request();
2105
2106         /* When last_request->processed becomes true this will be rescheduled */
2107         if (lr && !lr->processed) {
2108                 reg_process_hint(lr);
2109                 return;
2110         }
2111
2112         spin_lock(&reg_requests_lock);
2113
2114         if (list_empty(&reg_requests_list)) {
2115                 spin_unlock(&reg_requests_lock);
2116                 return;
2117         }
2118
2119         reg_request = list_first_entry(&reg_requests_list,
2120                                        struct regulatory_request,
2121                                        list);
2122         list_del_init(&reg_request->list);
2123
2124         spin_unlock(&reg_requests_lock);
2125
2126         reg_process_hint(reg_request);
2127 }
2128
2129 /* Processes beacon hints -- this has nothing to do with country IEs */
2130 static void reg_process_pending_beacon_hints(void)
2131 {
2132         struct cfg80211_registered_device *rdev;
2133         struct reg_beacon *pending_beacon, *tmp;
2134
2135         /* This goes through the _pending_ beacon list */
2136         spin_lock_bh(&reg_pending_beacons_lock);
2137
2138         list_for_each_entry_safe(pending_beacon, tmp,
2139                                  &reg_pending_beacons, list) {
2140                 list_del_init(&pending_beacon->list);
2141
2142                 /* Applies the beacon hint to current wiphys */
2143                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2144                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2145
2146                 /* Remembers the beacon hint for new wiphys or reg changes */
2147                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2148         }
2149
2150         spin_unlock_bh(&reg_pending_beacons_lock);
2151 }
2152
2153 static void reg_process_self_managed_hints(void)
2154 {
2155         struct cfg80211_registered_device *rdev;
2156         struct wiphy *wiphy;
2157         const struct ieee80211_regdomain *tmp;
2158         const struct ieee80211_regdomain *regd;
2159         enum ieee80211_band band;
2160         struct regulatory_request request = {};
2161
2162         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2163                 wiphy = &rdev->wiphy;
2164
2165                 spin_lock(&reg_requests_lock);
2166                 regd = rdev->requested_regd;
2167                 rdev->requested_regd = NULL;
2168                 spin_unlock(&reg_requests_lock);
2169
2170                 if (regd == NULL)
2171                         continue;
2172
2173                 tmp = get_wiphy_regdom(wiphy);
2174                 rcu_assign_pointer(wiphy->regd, regd);
2175                 rcu_free_regdom(tmp);
2176
2177                 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2178                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2179
2180                 reg_process_ht_flags(wiphy);
2181
2182                 request.wiphy_idx = get_wiphy_idx(wiphy);
2183                 request.alpha2[0] = regd->alpha2[0];
2184                 request.alpha2[1] = regd->alpha2[1];
2185                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2186
2187                 nl80211_send_wiphy_reg_change_event(&request);
2188         }
2189
2190         reg_check_channels();
2191 }
2192
2193 static void reg_todo(struct work_struct *work)
2194 {
2195         rtnl_lock();
2196         reg_process_pending_hints();
2197         reg_process_pending_beacon_hints();
2198         reg_process_self_managed_hints();
2199         rtnl_unlock();
2200 }
2201
2202 static void queue_regulatory_request(struct regulatory_request *request)
2203 {
2204         request->alpha2[0] = toupper(request->alpha2[0]);
2205         request->alpha2[1] = toupper(request->alpha2[1]);
2206
2207         spin_lock(&reg_requests_lock);
2208         list_add_tail(&request->list, &reg_requests_list);
2209         spin_unlock(&reg_requests_lock);
2210
2211         schedule_work(&reg_work);
2212 }
2213
2214 /*
2215  * Core regulatory hint -- happens during cfg80211_init()
2216  * and when we restore regulatory settings.
2217  */
2218 static int regulatory_hint_core(const char *alpha2)
2219 {
2220         struct regulatory_request *request;
2221
2222         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2223         if (!request)
2224                 return -ENOMEM;
2225
2226         request->alpha2[0] = alpha2[0];
2227         request->alpha2[1] = alpha2[1];
2228         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2229
2230         queue_regulatory_request(request);
2231
2232         return 0;
2233 }
2234
2235 /* User hints */
2236 int regulatory_hint_user(const char *alpha2,
2237                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2238 {
2239         struct regulatory_request *request;
2240
2241         if (WARN_ON(!alpha2))
2242                 return -EINVAL;
2243
2244         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2245         if (!request)
2246                 return -ENOMEM;
2247
2248         request->wiphy_idx = WIPHY_IDX_INVALID;
2249         request->alpha2[0] = alpha2[0];
2250         request->alpha2[1] = alpha2[1];
2251         request->initiator = NL80211_REGDOM_SET_BY_USER;
2252         request->user_reg_hint_type = user_reg_hint_type;
2253
2254         queue_regulatory_request(request);
2255
2256         return 0;
2257 }
2258
2259 int regulatory_hint_indoor_user(void)
2260 {
2261         struct regulatory_request *request;
2262
2263         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2264         if (!request)
2265                 return -ENOMEM;
2266
2267         request->wiphy_idx = WIPHY_IDX_INVALID;
2268         request->initiator = NL80211_REGDOM_SET_BY_USER;
2269         request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2270         queue_regulatory_request(request);
2271
2272         return 0;
2273 }
2274
2275 /* Driver hints */
2276 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2277 {
2278         struct regulatory_request *request;
2279
2280         if (WARN_ON(!alpha2 || !wiphy))
2281                 return -EINVAL;
2282
2283         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2284
2285         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2286         if (!request)
2287                 return -ENOMEM;
2288
2289         request->wiphy_idx = get_wiphy_idx(wiphy);
2290
2291         request->alpha2[0] = alpha2[0];
2292         request->alpha2[1] = alpha2[1];
2293         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2294
2295         queue_regulatory_request(request);
2296
2297         return 0;
2298 }
2299 EXPORT_SYMBOL(regulatory_hint);
2300
2301 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2302                                 const u8 *country_ie, u8 country_ie_len)
2303 {
2304         char alpha2[2];
2305         enum environment_cap env = ENVIRON_ANY;
2306         struct regulatory_request *request = NULL, *lr;
2307
2308         /* IE len must be evenly divisible by 2 */
2309         if (country_ie_len & 0x01)
2310                 return;
2311
2312         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2313                 return;
2314
2315         request = kzalloc(sizeof(*request), GFP_KERNEL);
2316         if (!request)
2317                 return;
2318
2319         alpha2[0] = country_ie[0];
2320         alpha2[1] = country_ie[1];
2321
2322         if (country_ie[2] == 'I')
2323                 env = ENVIRON_INDOOR;
2324         else if (country_ie[2] == 'O')
2325                 env = ENVIRON_OUTDOOR;
2326
2327         rcu_read_lock();
2328         lr = get_last_request();
2329
2330         if (unlikely(!lr))
2331                 goto out;
2332
2333         /*
2334          * We will run this only upon a successful connection on cfg80211.
2335          * We leave conflict resolution to the workqueue, where can hold
2336          * the RTNL.
2337          */
2338         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2339             lr->wiphy_idx != WIPHY_IDX_INVALID)
2340                 goto out;
2341
2342         request->wiphy_idx = get_wiphy_idx(wiphy);
2343         request->alpha2[0] = alpha2[0];
2344         request->alpha2[1] = alpha2[1];
2345         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2346         request->country_ie_env = env;
2347
2348         queue_regulatory_request(request);
2349         request = NULL;
2350 out:
2351         kfree(request);
2352         rcu_read_unlock();
2353 }
2354
2355 static void restore_alpha2(char *alpha2, bool reset_user)
2356 {
2357         /* indicates there is no alpha2 to consider for restoration */
2358         alpha2[0] = '9';
2359         alpha2[1] = '7';
2360
2361         /* The user setting has precedence over the module parameter */
2362         if (is_user_regdom_saved()) {
2363                 /* Unless we're asked to ignore it and reset it */
2364                 if (reset_user) {
2365                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2366                         user_alpha2[0] = '9';
2367                         user_alpha2[1] = '7';
2368
2369                         /*
2370                          * If we're ignoring user settings, we still need to
2371                          * check the module parameter to ensure we put things
2372                          * back as they were for a full restore.
2373                          */
2374                         if (!is_world_regdom(ieee80211_regdom)) {
2375                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2376                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2377                                 alpha2[0] = ieee80211_regdom[0];
2378                                 alpha2[1] = ieee80211_regdom[1];
2379                         }
2380                 } else {
2381                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2382                                       user_alpha2[0], user_alpha2[1]);
2383                         alpha2[0] = user_alpha2[0];
2384                         alpha2[1] = user_alpha2[1];
2385                 }
2386         } else if (!is_world_regdom(ieee80211_regdom)) {
2387                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2388                               ieee80211_regdom[0], ieee80211_regdom[1]);
2389                 alpha2[0] = ieee80211_regdom[0];
2390                 alpha2[1] = ieee80211_regdom[1];
2391         } else
2392                 REG_DBG_PRINT("Restoring regulatory settings\n");
2393 }
2394
2395 static void restore_custom_reg_settings(struct wiphy *wiphy)
2396 {
2397         struct ieee80211_supported_band *sband;
2398         enum ieee80211_band band;
2399         struct ieee80211_channel *chan;
2400         int i;
2401
2402         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2403                 sband = wiphy->bands[band];
2404                 if (!sband)
2405                         continue;
2406                 for (i = 0; i < sband->n_channels; i++) {
2407                         chan = &sband->channels[i];
2408                         chan->flags = chan->orig_flags;
2409                         chan->max_antenna_gain = chan->orig_mag;
2410                         chan->max_power = chan->orig_mpwr;
2411                         chan->beacon_found = false;
2412                 }
2413         }
2414 }
2415
2416 /*
2417  * Restoring regulatory settings involves ingoring any
2418  * possibly stale country IE information and user regulatory
2419  * settings if so desired, this includes any beacon hints
2420  * learned as we could have traveled outside to another country
2421  * after disconnection. To restore regulatory settings we do
2422  * exactly what we did at bootup:
2423  *
2424  *   - send a core regulatory hint
2425  *   - send a user regulatory hint if applicable
2426  *
2427  * Device drivers that send a regulatory hint for a specific country
2428  * keep their own regulatory domain on wiphy->regd so that does does
2429  * not need to be remembered.
2430  */
2431 static void restore_regulatory_settings(bool reset_user)
2432 {
2433         char alpha2[2];
2434         char world_alpha2[2];
2435         struct reg_beacon *reg_beacon, *btmp;
2436         struct regulatory_request *reg_request, *tmp;
2437         LIST_HEAD(tmp_reg_req_list);
2438         struct cfg80211_registered_device *rdev;
2439
2440         ASSERT_RTNL();
2441
2442         reg_is_indoor = false;
2443
2444         reset_regdomains(true, &world_regdom);
2445         restore_alpha2(alpha2, reset_user);
2446
2447         /*
2448          * If there's any pending requests we simply
2449          * stash them to a temporary pending queue and
2450          * add then after we've restored regulatory
2451          * settings.
2452          */
2453         spin_lock(&reg_requests_lock);
2454         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2455                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2456                         continue;
2457                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2458         }
2459         spin_unlock(&reg_requests_lock);
2460
2461         /* Clear beacon hints */
2462         spin_lock_bh(&reg_pending_beacons_lock);
2463         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2464                 list_del(&reg_beacon->list);
2465                 kfree(reg_beacon);
2466         }
2467         spin_unlock_bh(&reg_pending_beacons_lock);
2468
2469         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2470                 list_del(&reg_beacon->list);
2471                 kfree(reg_beacon);
2472         }
2473
2474         /* First restore to the basic regulatory settings */
2475         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2476         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2477
2478         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2479                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2480                         continue;
2481                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2482                         restore_custom_reg_settings(&rdev->wiphy);
2483         }
2484
2485         regulatory_hint_core(world_alpha2);
2486
2487         /*
2488          * This restores the ieee80211_regdom module parameter
2489          * preference or the last user requested regulatory
2490          * settings, user regulatory settings takes precedence.
2491          */
2492         if (is_an_alpha2(alpha2))
2493                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2494
2495         spin_lock(&reg_requests_lock);
2496         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2497         spin_unlock(&reg_requests_lock);
2498
2499         REG_DBG_PRINT("Kicking the queue\n");
2500
2501         schedule_work(&reg_work);
2502 }
2503
2504 void regulatory_hint_disconnect(void)
2505 {
2506         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2507         restore_regulatory_settings(false);
2508 }
2509
2510 static bool freq_is_chan_12_13_14(u16 freq)
2511 {
2512         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2513             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2514             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2515                 return true;
2516         return false;
2517 }
2518
2519 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2520 {
2521         struct reg_beacon *pending_beacon;
2522
2523         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2524                 if (beacon_chan->center_freq ==
2525                     pending_beacon->chan.center_freq)
2526                         return true;
2527         return false;
2528 }
2529
2530 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2531                                  struct ieee80211_channel *beacon_chan,
2532                                  gfp_t gfp)
2533 {
2534         struct reg_beacon *reg_beacon;
2535         bool processing;
2536
2537         if (beacon_chan->beacon_found ||
2538             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2539             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2540              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2541                 return 0;
2542
2543         spin_lock_bh(&reg_pending_beacons_lock);
2544         processing = pending_reg_beacon(beacon_chan);
2545         spin_unlock_bh(&reg_pending_beacons_lock);
2546
2547         if (processing)
2548                 return 0;
2549
2550         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2551         if (!reg_beacon)
2552                 return -ENOMEM;
2553
2554         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2555                       beacon_chan->center_freq,
2556                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2557                       wiphy_name(wiphy));
2558
2559         memcpy(&reg_beacon->chan, beacon_chan,
2560                sizeof(struct ieee80211_channel));
2561
2562         /*
2563          * Since we can be called from BH or and non-BH context
2564          * we must use spin_lock_bh()
2565          */
2566         spin_lock_bh(&reg_pending_beacons_lock);
2567         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2568         spin_unlock_bh(&reg_pending_beacons_lock);
2569
2570         schedule_work(&reg_work);
2571
2572         return 0;
2573 }
2574
2575 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2576 {
2577         unsigned int i;
2578         const struct ieee80211_reg_rule *reg_rule = NULL;
2579         const struct ieee80211_freq_range *freq_range = NULL;
2580         const struct ieee80211_power_rule *power_rule = NULL;
2581         char bw[32], cac_time[32];
2582
2583         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2584
2585         for (i = 0; i < rd->n_reg_rules; i++) {
2586                 reg_rule = &rd->reg_rules[i];
2587                 freq_range = &reg_rule->freq_range;
2588                 power_rule = &reg_rule->power_rule;
2589
2590                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2591                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2592                                  freq_range->max_bandwidth_khz,
2593                                  reg_get_max_bandwidth(rd, reg_rule));
2594                 else
2595                         snprintf(bw, sizeof(bw), "%d KHz",
2596                                  freq_range->max_bandwidth_khz);
2597
2598                 if (reg_rule->flags & NL80211_RRF_DFS)
2599                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2600                                   reg_rule->dfs_cac_ms/1000);
2601                 else
2602                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2603
2604
2605                 /*
2606                  * There may not be documentation for max antenna gain
2607                  * in certain regions
2608                  */
2609                 if (power_rule->max_antenna_gain)
2610                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2611                                 freq_range->start_freq_khz,
2612                                 freq_range->end_freq_khz,
2613                                 bw,
2614                                 power_rule->max_antenna_gain,
2615                                 power_rule->max_eirp,
2616                                 cac_time);
2617                 else
2618                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2619                                 freq_range->start_freq_khz,
2620                                 freq_range->end_freq_khz,
2621                                 bw,
2622                                 power_rule->max_eirp,
2623                                 cac_time);
2624         }
2625 }
2626
2627 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2628 {
2629         switch (dfs_region) {
2630         case NL80211_DFS_UNSET:
2631         case NL80211_DFS_FCC:
2632         case NL80211_DFS_ETSI:
2633         case NL80211_DFS_JP:
2634                 return true;
2635         default:
2636                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2637                               dfs_region);
2638                 return false;
2639         }
2640 }
2641
2642 static void print_regdomain(const struct ieee80211_regdomain *rd)
2643 {
2644         struct regulatory_request *lr = get_last_request();
2645
2646         if (is_intersected_alpha2(rd->alpha2)) {
2647                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2648                         struct cfg80211_registered_device *rdev;
2649                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2650                         if (rdev) {
2651                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2652                                         rdev->country_ie_alpha2[0],
2653                                         rdev->country_ie_alpha2[1]);
2654                         } else
2655                                 pr_info("Current regulatory domain intersected:\n");
2656                 } else
2657                         pr_info("Current regulatory domain intersected:\n");
2658         } else if (is_world_regdom(rd->alpha2)) {
2659                 pr_info("World regulatory domain updated:\n");
2660         } else {
2661                 if (is_unknown_alpha2(rd->alpha2))
2662                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2663                 else {
2664                         if (reg_request_cell_base(lr))
2665                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2666                                         rd->alpha2[0], rd->alpha2[1]);
2667                         else
2668                                 pr_info("Regulatory domain changed to country: %c%c\n",
2669                                         rd->alpha2[0], rd->alpha2[1]);
2670                 }
2671         }
2672
2673         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2674         print_rd_rules(rd);
2675 }
2676
2677 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2678 {
2679         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2680         print_rd_rules(rd);
2681 }
2682
2683 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2684 {
2685         if (!is_world_regdom(rd->alpha2))
2686                 return -EINVAL;
2687         update_world_regdomain(rd);
2688         return 0;
2689 }
2690
2691 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2692                            struct regulatory_request *user_request)
2693 {
2694         const struct ieee80211_regdomain *intersected_rd = NULL;
2695
2696         if (!regdom_changes(rd->alpha2))
2697                 return -EALREADY;
2698
2699         if (!is_valid_rd(rd)) {
2700                 pr_err("Invalid regulatory domain detected:\n");
2701                 print_regdomain_info(rd);
2702                 return -EINVAL;
2703         }
2704
2705         if (!user_request->intersect) {
2706                 reset_regdomains(false, rd);
2707                 return 0;
2708         }
2709
2710         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2711         if (!intersected_rd)
2712                 return -EINVAL;
2713
2714         kfree(rd);
2715         rd = NULL;
2716         reset_regdomains(false, intersected_rd);
2717
2718         return 0;
2719 }
2720
2721 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2722                              struct regulatory_request *driver_request)
2723 {
2724         const struct ieee80211_regdomain *regd;
2725         const struct ieee80211_regdomain *intersected_rd = NULL;
2726         const struct ieee80211_regdomain *tmp;
2727         struct wiphy *request_wiphy;
2728
2729         if (is_world_regdom(rd->alpha2))
2730                 return -EINVAL;
2731
2732         if (!regdom_changes(rd->alpha2))
2733                 return -EALREADY;
2734
2735         if (!is_valid_rd(rd)) {
2736                 pr_err("Invalid regulatory domain detected:\n");
2737                 print_regdomain_info(rd);
2738                 return -EINVAL;
2739         }
2740
2741         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2742         if (!request_wiphy) {
2743                 queue_delayed_work(system_power_efficient_wq,
2744                                    &reg_timeout, 0);
2745                 return -ENODEV;
2746         }
2747
2748         if (!driver_request->intersect) {
2749                 if (request_wiphy->regd)
2750                         return -EALREADY;
2751
2752                 regd = reg_copy_regd(rd);
2753                 if (IS_ERR(regd))
2754                         return PTR_ERR(regd);
2755
2756                 rcu_assign_pointer(request_wiphy->regd, regd);
2757                 reset_regdomains(false, rd);
2758                 return 0;
2759         }
2760
2761         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2762         if (!intersected_rd)
2763                 return -EINVAL;
2764
2765         /*
2766          * We can trash what CRDA provided now.
2767          * However if a driver requested this specific regulatory
2768          * domain we keep it for its private use
2769          */
2770         tmp = get_wiphy_regdom(request_wiphy);
2771         rcu_assign_pointer(request_wiphy->regd, rd);
2772         rcu_free_regdom(tmp);
2773
2774         rd = NULL;
2775
2776         reset_regdomains(false, intersected_rd);
2777
2778         return 0;
2779 }
2780
2781 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2782                                  struct regulatory_request *country_ie_request)
2783 {
2784         struct wiphy *request_wiphy;
2785
2786         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2787             !is_unknown_alpha2(rd->alpha2))
2788                 return -EINVAL;
2789
2790         /*
2791          * Lets only bother proceeding on the same alpha2 if the current
2792          * rd is non static (it means CRDA was present and was used last)
2793          * and the pending request came in from a country IE
2794          */
2795
2796         if (!is_valid_rd(rd)) {
2797                 pr_err("Invalid regulatory domain detected:\n");
2798                 print_regdomain_info(rd);
2799                 return -EINVAL;
2800         }
2801
2802         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2803         if (!request_wiphy) {
2804                 queue_delayed_work(system_power_efficient_wq,
2805                                    &reg_timeout, 0);
2806                 return -ENODEV;
2807         }
2808
2809         if (country_ie_request->intersect)
2810                 return -EINVAL;
2811
2812         reset_regdomains(false, rd);
2813         return 0;
2814 }
2815
2816 /*
2817  * Use this call to set the current regulatory domain. Conflicts with
2818  * multiple drivers can be ironed out later. Caller must've already
2819  * kmalloc'd the rd structure.
2820  */
2821 int set_regdom(const struct ieee80211_regdomain *rd)
2822 {
2823         struct regulatory_request *lr;
2824         bool user_reset = false;
2825         int r;
2826
2827         if (!reg_is_valid_request(rd->alpha2)) {
2828                 kfree(rd);
2829                 return -EINVAL;
2830         }
2831
2832         lr = get_last_request();
2833
2834         /* Note that this doesn't update the wiphys, this is done below */
2835         switch (lr->initiator) {
2836         case NL80211_REGDOM_SET_BY_CORE:
2837                 r = reg_set_rd_core(rd);
2838                 break;
2839         case NL80211_REGDOM_SET_BY_USER:
2840                 r = reg_set_rd_user(rd, lr);
2841                 user_reset = true;
2842                 break;
2843         case NL80211_REGDOM_SET_BY_DRIVER:
2844                 r = reg_set_rd_driver(rd, lr);
2845                 break;
2846         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2847                 r = reg_set_rd_country_ie(rd, lr);
2848                 break;
2849         default:
2850                 WARN(1, "invalid initiator %d\n", lr->initiator);
2851                 return -EINVAL;
2852         }
2853
2854         if (r) {
2855                 switch (r) {
2856                 case -EALREADY:
2857                         reg_set_request_processed();
2858                         break;
2859                 default:
2860                         /* Back to world regulatory in case of errors */
2861                         restore_regulatory_settings(user_reset);
2862                 }
2863
2864                 kfree(rd);
2865                 return r;
2866         }
2867
2868         /* This would make this whole thing pointless */
2869         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2870                 return -EINVAL;
2871
2872         /* update all wiphys now with the new established regulatory domain */
2873         update_all_wiphy_regulatory(lr->initiator);
2874
2875         print_regdomain(get_cfg80211_regdom());
2876
2877         nl80211_send_reg_change_event(lr);
2878
2879         reg_set_request_processed();
2880
2881         return 0;
2882 }
2883
2884 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
2885                               struct ieee80211_regdomain *rd)
2886 {
2887         const struct ieee80211_regdomain *regd;
2888         const struct ieee80211_regdomain *prev_regd;
2889         struct cfg80211_registered_device *rdev;
2890
2891         if (WARN_ON(!wiphy || !rd))
2892                 return -EINVAL;
2893
2894         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
2895                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2896                 return -EPERM;
2897
2898         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
2899                 print_regdomain_info(rd);
2900                 return -EINVAL;
2901         }
2902
2903         regd = reg_copy_regd(rd);
2904         if (IS_ERR(regd))
2905                 return PTR_ERR(regd);
2906
2907         rdev = wiphy_to_rdev(wiphy);
2908
2909         spin_lock(&reg_requests_lock);
2910         prev_regd = rdev->requested_regd;
2911         rdev->requested_regd = regd;
2912         spin_unlock(&reg_requests_lock);
2913
2914         kfree(prev_regd);
2915
2916         schedule_work(&reg_work);
2917         return 0;
2918 }
2919 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
2920
2921 void wiphy_regulatory_register(struct wiphy *wiphy)
2922 {
2923         struct regulatory_request *lr;
2924
2925         /* self-managed devices ignore external hints */
2926         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2927                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
2928                                            REGULATORY_COUNTRY_IE_IGNORE;
2929
2930         if (!reg_dev_ignore_cell_hint(wiphy))
2931                 reg_num_devs_support_basehint++;
2932
2933         lr = get_last_request();
2934         wiphy_update_regulatory(wiphy, lr->initiator);
2935 }
2936
2937 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2938 {
2939         struct wiphy *request_wiphy = NULL;
2940         struct regulatory_request *lr;
2941
2942         lr = get_last_request();
2943
2944         if (!reg_dev_ignore_cell_hint(wiphy))
2945                 reg_num_devs_support_basehint--;
2946
2947         rcu_free_regdom(get_wiphy_regdom(wiphy));
2948         RCU_INIT_POINTER(wiphy->regd, NULL);
2949
2950         if (lr)
2951                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2952
2953         if (!request_wiphy || request_wiphy != wiphy)
2954                 return;
2955
2956         lr->wiphy_idx = WIPHY_IDX_INVALID;
2957         lr->country_ie_env = ENVIRON_ANY;
2958 }
2959
2960 static void reg_timeout_work(struct work_struct *work)
2961 {
2962         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2963         rtnl_lock();
2964         restore_regulatory_settings(true);
2965         rtnl_unlock();
2966 }
2967
2968 /*
2969  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2970  * UNII band definitions
2971  */
2972 int cfg80211_get_unii(int freq)
2973 {
2974         /* UNII-1 */
2975         if (freq >= 5150 && freq <= 5250)
2976                 return 0;
2977
2978         /* UNII-2A */
2979         if (freq > 5250 && freq <= 5350)
2980                 return 1;
2981
2982         /* UNII-2B */
2983         if (freq > 5350 && freq <= 5470)
2984                 return 2;
2985
2986         /* UNII-2C */
2987         if (freq > 5470 && freq <= 5725)
2988                 return 3;
2989
2990         /* UNII-3 */
2991         if (freq > 5725 && freq <= 5825)
2992                 return 4;
2993
2994         return -EINVAL;
2995 }
2996
2997 bool regulatory_indoor_allowed(void)
2998 {
2999         return reg_is_indoor;
3000 }
3001
3002 int __init regulatory_init(void)
3003 {
3004         int err = 0;
3005
3006         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3007         if (IS_ERR(reg_pdev))
3008                 return PTR_ERR(reg_pdev);
3009
3010         spin_lock_init(&reg_requests_lock);
3011         spin_lock_init(&reg_pending_beacons_lock);
3012
3013         reg_regdb_size_check();
3014
3015         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3016
3017         user_alpha2[0] = '9';
3018         user_alpha2[1] = '7';
3019
3020         /* We always try to get an update for the static regdomain */
3021         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3022         if (err) {
3023                 if (err == -ENOMEM)
3024                         return err;
3025                 /*
3026                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3027                  * memory which is handled and propagated appropriately above
3028                  * but it can also fail during a netlink_broadcast() or during
3029                  * early boot for call_usermodehelper(). For now treat these
3030                  * errors as non-fatal.
3031                  */
3032                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3033         }
3034
3035         /*
3036          * Finally, if the user set the module parameter treat it
3037          * as a user hint.
3038          */
3039         if (!is_world_regdom(ieee80211_regdom))
3040                 regulatory_hint_user(ieee80211_regdom,
3041                                      NL80211_USER_REG_HINT_USER);
3042
3043         return 0;
3044 }
3045
3046 void regulatory_exit(void)
3047 {
3048         struct regulatory_request *reg_request, *tmp;
3049         struct reg_beacon *reg_beacon, *btmp;
3050
3051         cancel_work_sync(&reg_work);
3052         cancel_delayed_work_sync(&reg_timeout);
3053         cancel_delayed_work_sync(&reg_check_chans);
3054
3055         /* Lock to suppress warnings */
3056         rtnl_lock();
3057         reset_regdomains(true, NULL);
3058         rtnl_unlock();
3059
3060         dev_set_uevent_suppress(&reg_pdev->dev, true);
3061
3062         platform_device_unregister(reg_pdev);
3063
3064         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3065                 list_del(&reg_beacon->list);
3066                 kfree(reg_beacon);
3067         }
3068
3069         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3070                 list_del(&reg_beacon->list);
3071                 kfree(reg_beacon);
3072         }
3073
3074         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3075                 list_del(&reg_request->list);
3076                 kfree(reg_request);
3077         }
3078 }