2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
45 #include <net/strparser.h>
47 #include <trace/events/sock.h>
51 struct tls_decrypt_arg {
62 struct tls_decrypt_ctx {
64 u8 iv[TLS_MAX_IV_SIZE];
65 u8 aad[TLS_MAX_AAD_SIZE];
68 struct scatterlist sg[];
71 noinline void tls_err_abort(struct sock *sk, int err)
73 WARN_ON_ONCE(err >= 0);
74 /* sk->sk_err should contain a positive error code. */
75 WRITE_ONCE(sk->sk_err, -err);
76 /* Paired with smp_rmb() in tcp_poll() */
81 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
82 unsigned int recursion_level)
84 int start = skb_headlen(skb);
85 int i, chunk = start - offset;
86 struct sk_buff *frag_iter;
89 if (unlikely(recursion_level >= 24))
102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
105 WARN_ON(start > offset + len);
107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
108 chunk = end - offset;
121 if (unlikely(skb_has_frag_list(skb))) {
122 skb_walk_frags(skb, frag_iter) {
125 WARN_ON(start > offset + len);
127 end = start + frag_iter->len;
128 chunk = end - offset;
132 ret = __skb_nsg(frag_iter, offset - start, chunk,
133 recursion_level + 1);
134 if (unlikely(ret < 0))
149 /* Return the number of scatterlist elements required to completely map the
150 * skb, or -EMSGSIZE if the recursion depth is exceeded.
152 static int skb_nsg(struct sk_buff *skb, int offset, int len)
154 return __skb_nsg(skb, offset, len, 0);
157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
158 struct tls_decrypt_arg *darg)
160 struct strp_msg *rxm = strp_msg(skb);
161 struct tls_msg *tlm = tls_msg(skb);
164 /* Determine zero-padding length */
165 if (prot->version == TLS_1_3_VERSION) {
166 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
167 char content_type = darg->zc ? darg->tail : 0;
170 while (content_type == 0) {
171 if (offset < prot->prepend_size)
173 err = skb_copy_bits(skb, rxm->offset + offset,
182 tlm->control = content_type;
187 static void tls_decrypt_done(void *data, int err)
189 struct aead_request *aead_req = data;
190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
191 struct scatterlist *sgout = aead_req->dst;
192 struct tls_sw_context_rx *ctx;
193 struct tls_decrypt_ctx *dctx;
194 struct tls_context *tls_ctx;
195 struct scatterlist *sg;
200 /* If requests get too backlogged crypto API returns -EBUSY and calls
201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0)
202 * to make waiting for backlog to flush with crypto_wait_req() easier.
203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one
205 * We have a single struct crypto_async_request per direction, this
206 * scheme doesn't help us, so just ignore the first ->complete().
208 if (err == -EINPROGRESS)
211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
212 aead_size = ALIGN(aead_size, __alignof__(*dctx));
213 dctx = (void *)((u8 *)aead_req + aead_size);
216 tls_ctx = tls_get_ctx(sk);
217 ctx = tls_sw_ctx_rx(tls_ctx);
219 /* Propagate if there was an err */
222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
223 ctx->async_wait.err = err;
224 tls_err_abort(sk, err);
227 /* Free the destination pages if skb was not decrypted inplace */
228 if (dctx->free_sgout) {
229 /* Skip the first S/G entry as it points to AAD */
230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
233 put_page(sg_page(sg));
239 if (atomic_dec_and_test(&ctx->decrypt_pending))
240 complete(&ctx->async_wait.completion);
243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
245 if (!atomic_dec_and_test(&ctx->decrypt_pending))
246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
247 atomic_inc(&ctx->decrypt_pending);
249 return ctx->async_wait.err;
252 static int tls_do_decryption(struct sock *sk,
253 struct scatterlist *sgin,
254 struct scatterlist *sgout,
257 struct aead_request *aead_req,
258 struct tls_decrypt_arg *darg)
260 struct tls_context *tls_ctx = tls_get_ctx(sk);
261 struct tls_prot_info *prot = &tls_ctx->prot_info;
262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
265 aead_request_set_tfm(aead_req, ctx->aead_recv);
266 aead_request_set_ad(aead_req, prot->aad_size);
267 aead_request_set_crypt(aead_req, sgin, sgout,
268 data_len + prot->tag_size,
272 aead_request_set_callback(aead_req,
273 CRYPTO_TFM_REQ_MAY_BACKLOG,
274 tls_decrypt_done, aead_req);
275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
276 atomic_inc(&ctx->decrypt_pending);
278 DECLARE_CRYPTO_WAIT(wait);
280 aead_request_set_callback(aead_req,
281 CRYPTO_TFM_REQ_MAY_BACKLOG,
282 crypto_req_done, &wait);
283 ret = crypto_aead_decrypt(aead_req);
284 if (ret == -EINPROGRESS || ret == -EBUSY)
285 ret = crypto_wait_req(ret, &wait);
289 ret = crypto_aead_decrypt(aead_req);
290 if (ret == -EINPROGRESS)
294 ret = tls_decrypt_async_wait(ctx);
295 darg->async_done = true;
296 /* all completions have run, we're not doing async anymore */
301 atomic_dec(&ctx->decrypt_pending);
307 static void tls_trim_both_msgs(struct sock *sk, int target_size)
309 struct tls_context *tls_ctx = tls_get_ctx(sk);
310 struct tls_prot_info *prot = &tls_ctx->prot_info;
311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
312 struct tls_rec *rec = ctx->open_rec;
314 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
316 target_size += prot->overhead_size;
317 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
320 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
322 struct tls_context *tls_ctx = tls_get_ctx(sk);
323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
324 struct tls_rec *rec = ctx->open_rec;
325 struct sk_msg *msg_en = &rec->msg_encrypted;
327 return sk_msg_alloc(sk, msg_en, len, 0);
330 static int tls_clone_plaintext_msg(struct sock *sk, int required)
332 struct tls_context *tls_ctx = tls_get_ctx(sk);
333 struct tls_prot_info *prot = &tls_ctx->prot_info;
334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
335 struct tls_rec *rec = ctx->open_rec;
336 struct sk_msg *msg_pl = &rec->msg_plaintext;
337 struct sk_msg *msg_en = &rec->msg_encrypted;
340 /* We add page references worth len bytes from encrypted sg
341 * at the end of plaintext sg. It is guaranteed that msg_en
342 * has enough required room (ensured by caller).
344 len = required - msg_pl->sg.size;
346 /* Skip initial bytes in msg_en's data to be able to use
347 * same offset of both plain and encrypted data.
349 skip = prot->prepend_size + msg_pl->sg.size;
351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
354 static struct tls_rec *tls_get_rec(struct sock *sk)
356 struct tls_context *tls_ctx = tls_get_ctx(sk);
357 struct tls_prot_info *prot = &tls_ctx->prot_info;
358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 struct sk_msg *msg_pl, *msg_en;
363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
365 rec = kzalloc(mem_size, sk->sk_allocation);
369 msg_pl = &rec->msg_plaintext;
370 msg_en = &rec->msg_encrypted;
375 sg_init_table(rec->sg_aead_in, 2);
376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
377 sg_unmark_end(&rec->sg_aead_in[1]);
379 sg_init_table(rec->sg_aead_out, 2);
380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
381 sg_unmark_end(&rec->sg_aead_out[1]);
388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
390 sk_msg_free(sk, &rec->msg_encrypted);
391 sk_msg_free(sk, &rec->msg_plaintext);
395 static void tls_free_open_rec(struct sock *sk)
397 struct tls_context *tls_ctx = tls_get_ctx(sk);
398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
399 struct tls_rec *rec = ctx->open_rec;
402 tls_free_rec(sk, rec);
403 ctx->open_rec = NULL;
407 int tls_tx_records(struct sock *sk, int flags)
409 struct tls_context *tls_ctx = tls_get_ctx(sk);
410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
411 struct tls_rec *rec, *tmp;
412 struct sk_msg *msg_en;
413 int tx_flags, rc = 0;
415 if (tls_is_partially_sent_record(tls_ctx)) {
416 rec = list_first_entry(&ctx->tx_list,
417 struct tls_rec, list);
420 tx_flags = rec->tx_flags;
424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
428 /* Full record has been transmitted.
429 * Remove the head of tx_list
431 list_del(&rec->list);
432 sk_msg_free(sk, &rec->msg_plaintext);
436 /* Tx all ready records */
437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
438 if (READ_ONCE(rec->tx_ready)) {
440 tx_flags = rec->tx_flags;
444 msg_en = &rec->msg_encrypted;
445 rc = tls_push_sg(sk, tls_ctx,
446 &msg_en->sg.data[msg_en->sg.curr],
451 list_del(&rec->list);
452 sk_msg_free(sk, &rec->msg_plaintext);
460 if (rc < 0 && rc != -EAGAIN)
461 tls_err_abort(sk, rc);
466 static void tls_encrypt_done(void *data, int err)
468 struct tls_sw_context_tx *ctx;
469 struct tls_context *tls_ctx;
470 struct tls_prot_info *prot;
471 struct tls_rec *rec = data;
472 struct scatterlist *sge;
473 struct sk_msg *msg_en;
476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */
479 msg_en = &rec->msg_encrypted;
482 tls_ctx = tls_get_ctx(sk);
483 prot = &tls_ctx->prot_info;
484 ctx = tls_sw_ctx_tx(tls_ctx);
486 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
487 sge->offset -= prot->prepend_size;
488 sge->length += prot->prepend_size;
490 /* Check if error is previously set on socket */
491 if (err || sk->sk_err) {
494 /* If err is already set on socket, return the same code */
496 ctx->async_wait.err = -sk->sk_err;
498 ctx->async_wait.err = err;
499 tls_err_abort(sk, err);
504 struct tls_rec *first_rec;
506 /* Mark the record as ready for transmission */
507 smp_store_mb(rec->tx_ready, true);
509 /* If received record is at head of tx_list, schedule tx */
510 first_rec = list_first_entry(&ctx->tx_list,
511 struct tls_rec, list);
512 if (rec == first_rec) {
513 /* Schedule the transmission */
514 if (!test_and_set_bit(BIT_TX_SCHEDULED,
516 schedule_delayed_work(&ctx->tx_work.work, 1);
520 if (atomic_dec_and_test(&ctx->encrypt_pending))
521 complete(&ctx->async_wait.completion);
524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
526 if (!atomic_dec_and_test(&ctx->encrypt_pending))
527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
528 atomic_inc(&ctx->encrypt_pending);
530 return ctx->async_wait.err;
533 static int tls_do_encryption(struct sock *sk,
534 struct tls_context *tls_ctx,
535 struct tls_sw_context_tx *ctx,
536 struct aead_request *aead_req,
537 size_t data_len, u32 start)
539 struct tls_prot_info *prot = &tls_ctx->prot_info;
540 struct tls_rec *rec = ctx->open_rec;
541 struct sk_msg *msg_en = &rec->msg_encrypted;
542 struct scatterlist *sge = sk_msg_elem(msg_en, start);
543 int rc, iv_offset = 0;
545 /* For CCM based ciphers, first byte of IV is a constant */
546 switch (prot->cipher_type) {
547 case TLS_CIPHER_AES_CCM_128:
548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
551 case TLS_CIPHER_SM4_CCM:
552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
558 prot->iv_size + prot->salt_size);
560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
561 tls_ctx->tx.rec_seq);
563 sge->offset += prot->prepend_size;
564 sge->length -= prot->prepend_size;
566 msg_en->sg.curr = start;
568 aead_request_set_tfm(aead_req, ctx->aead_send);
569 aead_request_set_ad(aead_req, prot->aad_size);
570 aead_request_set_crypt(aead_req, rec->sg_aead_in,
572 data_len, rec->iv_data);
574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
575 tls_encrypt_done, rec);
577 /* Add the record in tx_list */
578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
580 atomic_inc(&ctx->encrypt_pending);
582 rc = crypto_aead_encrypt(aead_req);
584 rc = tls_encrypt_async_wait(ctx);
585 rc = rc ?: -EINPROGRESS;
587 if (!rc || rc != -EINPROGRESS) {
588 atomic_dec(&ctx->encrypt_pending);
589 sge->offset -= prot->prepend_size;
590 sge->length += prot->prepend_size;
594 WRITE_ONCE(rec->tx_ready, true);
595 } else if (rc != -EINPROGRESS) {
596 list_del(&rec->list);
600 /* Unhook the record from context if encryption is not failure */
601 ctx->open_rec = NULL;
602 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
607 struct tls_rec **to, struct sk_msg *msg_opl,
608 struct sk_msg *msg_oen, u32 split_point,
609 u32 tx_overhead_size, u32 *orig_end)
611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
612 struct scatterlist *sge, *osge, *nsge;
613 u32 orig_size = msg_opl->sg.size;
614 struct scatterlist tmp = { };
615 struct sk_msg *msg_npl;
619 new = tls_get_rec(sk);
622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
623 tx_overhead_size, 0);
625 tls_free_rec(sk, new);
629 *orig_end = msg_opl->sg.end;
630 i = msg_opl->sg.start;
631 sge = sk_msg_elem(msg_opl, i);
632 while (apply && sge->length) {
633 if (sge->length > apply) {
634 u32 len = sge->length - apply;
636 get_page(sg_page(sge));
637 sg_set_page(&tmp, sg_page(sge), len,
638 sge->offset + apply);
643 apply -= sge->length;
644 bytes += sge->length;
647 sk_msg_iter_var_next(i);
648 if (i == msg_opl->sg.end)
650 sge = sk_msg_elem(msg_opl, i);
654 msg_opl->sg.curr = i;
655 msg_opl->sg.copybreak = 0;
656 msg_opl->apply_bytes = 0;
657 msg_opl->sg.size = bytes;
659 msg_npl = &new->msg_plaintext;
660 msg_npl->apply_bytes = apply;
661 msg_npl->sg.size = orig_size - bytes;
663 j = msg_npl->sg.start;
664 nsge = sk_msg_elem(msg_npl, j);
666 memcpy(nsge, &tmp, sizeof(*nsge));
667 sk_msg_iter_var_next(j);
668 nsge = sk_msg_elem(msg_npl, j);
671 osge = sk_msg_elem(msg_opl, i);
672 while (osge->length) {
673 memcpy(nsge, osge, sizeof(*nsge));
675 sk_msg_iter_var_next(i);
676 sk_msg_iter_var_next(j);
679 osge = sk_msg_elem(msg_opl, i);
680 nsge = sk_msg_elem(msg_npl, j);
684 msg_npl->sg.curr = j;
685 msg_npl->sg.copybreak = 0;
691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
692 struct tls_rec *from, u32 orig_end)
694 struct sk_msg *msg_npl = &from->msg_plaintext;
695 struct sk_msg *msg_opl = &to->msg_plaintext;
696 struct scatterlist *osge, *nsge;
700 sk_msg_iter_var_prev(i);
701 j = msg_npl->sg.start;
703 osge = sk_msg_elem(msg_opl, i);
704 nsge = sk_msg_elem(msg_npl, j);
706 if (sg_page(osge) == sg_page(nsge) &&
707 osge->offset + osge->length == nsge->offset) {
708 osge->length += nsge->length;
709 put_page(sg_page(nsge));
712 msg_opl->sg.end = orig_end;
713 msg_opl->sg.curr = orig_end;
714 msg_opl->sg.copybreak = 0;
715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
716 msg_opl->sg.size += msg_npl->sg.size;
718 sk_msg_free(sk, &to->msg_encrypted);
719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
724 static int tls_push_record(struct sock *sk, int flags,
725 unsigned char record_type)
727 struct tls_context *tls_ctx = tls_get_ctx(sk);
728 struct tls_prot_info *prot = &tls_ctx->prot_info;
729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
731 u32 i, split_point, orig_end;
732 struct sk_msg *msg_pl, *msg_en;
733 struct aead_request *req;
740 msg_pl = &rec->msg_plaintext;
741 msg_en = &rec->msg_encrypted;
743 split_point = msg_pl->apply_bytes;
744 split = split_point && split_point < msg_pl->sg.size;
745 if (unlikely((!split &&
747 prot->overhead_size > msg_en->sg.size) ||
750 prot->overhead_size > msg_en->sg.size))) {
752 split_point = msg_en->sg.size;
755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
756 split_point, prot->overhead_size,
760 /* This can happen if above tls_split_open_record allocates
761 * a single large encryption buffer instead of two smaller
762 * ones. In this case adjust pointers and continue without
765 if (!msg_pl->sg.size) {
766 tls_merge_open_record(sk, rec, tmp, orig_end);
767 msg_pl = &rec->msg_plaintext;
768 msg_en = &rec->msg_encrypted;
771 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
772 prot->overhead_size);
775 rec->tx_flags = flags;
776 req = &rec->aead_req;
779 sk_msg_iter_var_prev(i);
781 rec->content_type = record_type;
782 if (prot->version == TLS_1_3_VERSION) {
783 /* Add content type to end of message. No padding added */
784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
785 sg_mark_end(&rec->sg_content_type);
786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
787 &rec->sg_content_type);
789 sg_mark_end(sk_msg_elem(msg_pl, i));
792 if (msg_pl->sg.end < msg_pl->sg.start) {
793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
794 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
798 i = msg_pl->sg.start;
799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
802 sk_msg_iter_var_prev(i);
803 sg_mark_end(sk_msg_elem(msg_en, i));
805 i = msg_en->sg.start;
806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
809 tls_ctx->tx.rec_seq, record_type, prot);
811 tls_fill_prepend(tls_ctx,
812 page_address(sg_page(&msg_en->sg.data[i])) +
813 msg_en->sg.data[i].offset,
814 msg_pl->sg.size + prot->tail_size,
817 tls_ctx->pending_open_record_frags = false;
819 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
820 msg_pl->sg.size + prot->tail_size, i);
822 if (rc != -EINPROGRESS) {
823 tls_err_abort(sk, -EBADMSG);
825 tls_ctx->pending_open_record_frags = true;
826 tls_merge_open_record(sk, rec, tmp, orig_end);
829 ctx->async_capable = 1;
832 msg_pl = &tmp->msg_plaintext;
833 msg_en = &tmp->msg_encrypted;
834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
835 tls_ctx->pending_open_record_frags = true;
839 return tls_tx_records(sk, flags);
842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
843 bool full_record, u8 record_type,
844 ssize_t *copied, int flags)
846 struct tls_context *tls_ctx = tls_get_ctx(sk);
847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
848 struct sk_msg msg_redir = { };
849 struct sk_psock *psock;
850 struct sock *sk_redir;
852 bool enospc, policy, redir_ingress;
856 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
857 psock = sk_psock_get(sk);
858 if (!psock || !policy) {
859 err = tls_push_record(sk, flags, record_type);
860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
861 *copied -= sk_msg_free(sk, msg);
862 tls_free_open_rec(sk);
866 sk_psock_put(sk, psock);
870 enospc = sk_msg_full(msg);
871 if (psock->eval == __SK_NONE) {
872 delta = msg->sg.size;
873 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
874 delta -= msg->sg.size;
876 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
877 !enospc && !full_record) {
883 if (msg->apply_bytes && msg->apply_bytes < send)
884 send = msg->apply_bytes;
886 switch (psock->eval) {
888 err = tls_push_record(sk, flags, record_type);
889 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
890 *copied -= sk_msg_free(sk, msg);
891 tls_free_open_rec(sk);
897 redir_ingress = psock->redir_ingress;
898 sk_redir = psock->sk_redir;
899 memcpy(&msg_redir, msg, sizeof(*msg));
900 if (msg->apply_bytes < send)
901 msg->apply_bytes = 0;
903 msg->apply_bytes -= send;
904 sk_msg_return_zero(sk, msg, send);
905 msg->sg.size -= send;
907 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
908 &msg_redir, send, flags);
911 /* Regardless of whether the data represented by
912 * msg_redir is sent successfully, we have already
913 * uncharged it via sk_msg_return_zero(). The
914 * msg->sg.size represents the remaining unprocessed
915 * data, which needs to be uncharged here.
917 sk_mem_uncharge(sk, msg->sg.size);
918 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
921 if (msg->sg.size == 0)
922 tls_free_open_rec(sk);
926 sk_msg_free_partial(sk, msg, send);
927 if (msg->apply_bytes < send)
928 msg->apply_bytes = 0;
930 msg->apply_bytes -= send;
931 if (msg->sg.size == 0)
932 tls_free_open_rec(sk);
933 *copied -= (send + delta);
938 bool reset_eval = !ctx->open_rec;
942 msg = &rec->msg_plaintext;
943 if (!msg->apply_bytes)
947 psock->eval = __SK_NONE;
948 if (psock->sk_redir) {
949 sock_put(psock->sk_redir);
950 psock->sk_redir = NULL;
957 sk_psock_put(sk, psock);
961 static int tls_sw_push_pending_record(struct sock *sk, int flags)
963 struct tls_context *tls_ctx = tls_get_ctx(sk);
964 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
965 struct tls_rec *rec = ctx->open_rec;
966 struct sk_msg *msg_pl;
972 msg_pl = &rec->msg_plaintext;
973 copied = msg_pl->sg.size;
977 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
981 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
982 struct sk_msg *msg_pl, size_t try_to_copy,
985 struct page *page = NULL, **pages = &page;
991 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
992 try_to_copy, 1, 0, &off);
996 if (WARN_ON_ONCE(!sendpage_ok(page))) {
997 iov_iter_revert(&msg->msg_iter, part);
1001 sk_msg_page_add(msg_pl, page, part, off);
1002 msg_pl->sg.copybreak = 0;
1003 msg_pl->sg.curr = msg_pl->sg.end;
1004 sk_mem_charge(sk, part);
1006 try_to_copy -= part;
1007 } while (try_to_copy && !sk_msg_full(msg_pl));
1012 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
1015 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1016 struct tls_context *tls_ctx = tls_get_ctx(sk);
1017 struct tls_prot_info *prot = &tls_ctx->prot_info;
1018 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1019 bool async_capable = ctx->async_capable;
1020 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1021 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1022 bool eor = !(msg->msg_flags & MSG_MORE);
1025 struct sk_msg *msg_pl, *msg_en;
1026 struct tls_rec *rec;
1035 if (!eor && (msg->msg_flags & MSG_EOR))
1038 if (unlikely(msg->msg_controllen)) {
1039 ret = tls_process_cmsg(sk, msg, &record_type);
1041 if (ret == -EINPROGRESS)
1043 else if (ret != -EAGAIN)
1048 while (msg_data_left(msg)) {
1055 rec = ctx->open_rec;
1057 rec = ctx->open_rec = tls_get_rec(sk);
1063 msg_pl = &rec->msg_plaintext;
1064 msg_en = &rec->msg_encrypted;
1066 orig_size = msg_pl->sg.size;
1067 full_record = false;
1068 try_to_copy = msg_data_left(msg);
1069 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1070 if (try_to_copy >= record_room) {
1071 try_to_copy = record_room;
1075 required_size = msg_pl->sg.size + try_to_copy +
1076 prot->overhead_size;
1078 if (!sk_stream_memory_free(sk))
1079 goto wait_for_sndbuf;
1082 ret = tls_alloc_encrypted_msg(sk, required_size);
1085 goto wait_for_memory;
1087 /* Adjust try_to_copy according to the amount that was
1088 * actually allocated. The difference is due
1089 * to max sg elements limit
1091 try_to_copy -= required_size - msg_en->sg.size;
1095 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1096 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1097 try_to_copy, &copied);
1100 tls_ctx->pending_open_record_frags = true;
1102 if (sk_msg_full(msg_pl))
1105 if (full_record || eor)
1110 if (!is_kvec && (full_record || eor) && !async_capable) {
1111 u32 first = msg_pl->sg.end;
1113 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1114 msg_pl, try_to_copy);
1116 goto fallback_to_reg_send;
1119 copied += try_to_copy;
1121 sk_msg_sg_copy_set(msg_pl, first);
1122 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1123 record_type, &copied,
1126 if (ret == -EINPROGRESS)
1128 else if (ret == -ENOMEM)
1129 goto wait_for_memory;
1130 else if (ctx->open_rec && ret == -ENOSPC) {
1131 if (msg_pl->cork_bytes) {
1136 } else if (ret != -EAGAIN)
1141 copied -= try_to_copy;
1142 sk_msg_sg_copy_clear(msg_pl, first);
1143 iov_iter_revert(&msg->msg_iter,
1144 msg_pl->sg.size - orig_size);
1145 fallback_to_reg_send:
1146 sk_msg_trim(sk, msg_pl, orig_size);
1149 required_size = msg_pl->sg.size + try_to_copy;
1151 ret = tls_clone_plaintext_msg(sk, required_size);
1156 /* Adjust try_to_copy according to the amount that was
1157 * actually allocated. The difference is due
1158 * to max sg elements limit
1160 try_to_copy -= required_size - msg_pl->sg.size;
1162 sk_msg_trim(sk, msg_en,
1163 msg_pl->sg.size + prot->overhead_size);
1167 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1168 msg_pl, try_to_copy);
1173 /* Open records defined only if successfully copied, otherwise
1174 * we would trim the sg but not reset the open record frags.
1176 tls_ctx->pending_open_record_frags = true;
1177 copied += try_to_copy;
1179 if (full_record || eor) {
1180 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1181 record_type, &copied,
1184 if (ret == -EINPROGRESS)
1186 else if (ret == -ENOMEM)
1187 goto wait_for_memory;
1188 else if (ret != -EAGAIN) {
1199 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1201 ret = sk_stream_wait_memory(sk, &timeo);
1205 tls_trim_both_msgs(sk, orig_size);
1209 if (ctx->open_rec && msg_en->sg.size < required_size)
1210 goto alloc_encrypted;
1215 } else if (num_zc || eor) {
1218 /* Wait for pending encryptions to get completed */
1219 err = tls_encrypt_async_wait(ctx);
1226 /* Transmit if any encryptions have completed */
1227 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1228 cancel_delayed_work(&ctx->tx_work.work);
1229 tls_tx_records(sk, msg->msg_flags);
1233 ret = sk_stream_error(sk, msg->msg_flags, ret);
1234 return copied > 0 ? copied : ret;
1237 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1239 struct tls_context *tls_ctx = tls_get_ctx(sk);
1242 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1243 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1244 MSG_SENDPAGE_NOPOLICY))
1247 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1251 ret = tls_sw_sendmsg_locked(sk, msg, size);
1253 mutex_unlock(&tls_ctx->tx_lock);
1258 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1260 void tls_sw_splice_eof(struct socket *sock)
1262 struct sock *sk = sock->sk;
1263 struct tls_context *tls_ctx = tls_get_ctx(sk);
1264 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1265 struct tls_rec *rec;
1266 struct sk_msg *msg_pl;
1268 bool retrying = false;
1274 mutex_lock(&tls_ctx->tx_lock);
1278 /* same checks as in tls_sw_push_pending_record() */
1279 rec = ctx->open_rec;
1283 msg_pl = &rec->msg_plaintext;
1284 if (msg_pl->sg.size == 0)
1287 /* Check the BPF advisor and perform transmission. */
1288 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1303 /* Wait for pending encryptions to get completed */
1304 if (tls_encrypt_async_wait(ctx))
1307 /* Transmit if any encryptions have completed */
1308 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1309 cancel_delayed_work(&ctx->tx_work.work);
1310 tls_tx_records(sk, 0);
1315 mutex_unlock(&tls_ctx->tx_lock);
1319 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1322 struct tls_context *tls_ctx = tls_get_ctx(sk);
1323 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1324 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1328 /* a rekey is pending, let userspace deal with it */
1329 if (unlikely(ctx->key_update_pending))
1330 return -EKEYEXPIRED;
1332 timeo = sock_rcvtimeo(sk, nonblock);
1334 while (!tls_strp_msg_ready(ctx)) {
1335 if (!sk_psock_queue_empty(psock))
1339 return sock_error(sk);
1344 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1345 tls_strp_check_rcv(&ctx->strp);
1346 if (tls_strp_msg_ready(ctx))
1350 if (sk->sk_shutdown & RCV_SHUTDOWN)
1353 if (sock_flag(sk, SOCK_DONE))
1360 add_wait_queue(sk_sleep(sk), &wait);
1361 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1362 ret = sk_wait_event(sk, &timeo,
1363 tls_strp_msg_ready(ctx) ||
1364 !sk_psock_queue_empty(psock),
1366 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1367 remove_wait_queue(sk_sleep(sk), &wait);
1369 /* Handle signals */
1370 if (signal_pending(current))
1371 return sock_intr_errno(timeo);
1374 tls_strp_msg_load(&ctx->strp, released);
1379 static int tls_setup_from_iter(struct iov_iter *from,
1380 int length, int *pages_used,
1381 struct scatterlist *to,
1384 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1385 struct page *pages[MAX_SKB_FRAGS];
1386 unsigned int size = 0;
1387 ssize_t copied, use;
1390 while (length > 0) {
1392 maxpages = to_max_pages - num_elem;
1393 if (maxpages == 0) {
1397 copied = iov_iter_get_pages2(from, pages,
1408 use = min_t(int, copied, PAGE_SIZE - offset);
1410 sg_set_page(&to[num_elem],
1411 pages[i], use, offset);
1412 sg_unmark_end(&to[num_elem]);
1413 /* We do not uncharge memory from this API */
1422 /* Mark the end in the last sg entry if newly added */
1423 if (num_elem > *pages_used)
1424 sg_mark_end(&to[num_elem - 1]);
1427 iov_iter_revert(from, size);
1428 *pages_used = num_elem;
1433 static struct sk_buff *
1434 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1435 unsigned int full_len)
1437 struct strp_msg *clr_rxm;
1438 struct sk_buff *clr_skb;
1441 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1442 &err, sk->sk_allocation);
1446 skb_copy_header(clr_skb, skb);
1447 clr_skb->len = full_len;
1448 clr_skb->data_len = full_len;
1450 clr_rxm = strp_msg(clr_skb);
1451 clr_rxm->offset = 0;
1458 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1459 * They must transform the darg in/out argument are as follows:
1461 * -------------------------------------------------------------------
1462 * zc | Zero-copy decrypt allowed | Zero-copy performed
1463 * async | Async decrypt allowed | Async crypto used / in progress
1464 * skb | * | Output skb
1466 * If ZC decryption was performed darg.skb will point to the input skb.
1469 /* This function decrypts the input skb into either out_iov or in out_sg
1470 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1471 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1472 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1473 * NULL, then the decryption happens inside skb buffers itself, i.e.
1474 * zero-copy gets disabled and 'darg->zc' is updated.
1476 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1477 struct scatterlist *out_sg,
1478 struct tls_decrypt_arg *darg)
1480 struct tls_context *tls_ctx = tls_get_ctx(sk);
1481 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1482 struct tls_prot_info *prot = &tls_ctx->prot_info;
1483 int n_sgin, n_sgout, aead_size, err, pages = 0;
1484 struct sk_buff *skb = tls_strp_msg(ctx);
1485 const struct strp_msg *rxm = strp_msg(skb);
1486 const struct tls_msg *tlm = tls_msg(skb);
1487 struct aead_request *aead_req;
1488 struct scatterlist *sgin = NULL;
1489 struct scatterlist *sgout = NULL;
1490 const int data_len = rxm->full_len - prot->overhead_size;
1491 int tail_pages = !!prot->tail_size;
1492 struct tls_decrypt_ctx *dctx;
1493 struct sk_buff *clear_skb;
1497 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1498 rxm->full_len - prot->prepend_size);
1500 return n_sgin ?: -EBADMSG;
1502 if (darg->zc && (out_iov || out_sg)) {
1506 n_sgout = 1 + tail_pages +
1507 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1509 n_sgout = sg_nents(out_sg);
1513 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1517 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1520 /* Increment to accommodate AAD */
1521 n_sgin = n_sgin + 1;
1523 /* Allocate a single block of memory which contains
1524 * aead_req || tls_decrypt_ctx.
1525 * Both structs are variable length.
1527 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1528 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1529 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1536 /* Segment the allocated memory */
1537 aead_req = (struct aead_request *)mem;
1538 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1540 sgin = &dctx->sg[0];
1541 sgout = &dctx->sg[n_sgin];
1543 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1544 switch (prot->cipher_type) {
1545 case TLS_CIPHER_AES_CCM_128:
1546 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1549 case TLS_CIPHER_SM4_CCM:
1550 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1556 if (prot->version == TLS_1_3_VERSION ||
1557 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1558 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1559 prot->iv_size + prot->salt_size);
1561 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1562 &dctx->iv[iv_offset] + prot->salt_size,
1566 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1568 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1571 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1573 tls_ctx->rx.rec_seq, tlm->control, prot);
1576 sg_init_table(sgin, n_sgin);
1577 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1578 err = skb_to_sgvec(skb, &sgin[1],
1579 rxm->offset + prot->prepend_size,
1580 rxm->full_len - prot->prepend_size);
1585 sg_init_table(sgout, n_sgout);
1586 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1588 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1589 data_len + prot->tail_size);
1592 } else if (out_iov) {
1593 sg_init_table(sgout, n_sgout);
1594 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1596 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1597 (n_sgout - 1 - tail_pages));
1599 goto exit_free_pages;
1601 if (prot->tail_size) {
1602 sg_unmark_end(&sgout[pages]);
1603 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1605 sg_mark_end(&sgout[pages + 1]);
1607 } else if (out_sg) {
1608 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1610 dctx->free_sgout = !!pages;
1612 /* Prepare and submit AEAD request */
1613 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1614 data_len + prot->tail_size, aead_req, darg);
1616 if (darg->async_done)
1618 goto exit_free_pages;
1621 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1624 if (unlikely(darg->async)) {
1625 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1627 __skb_queue_tail(&ctx->async_hold, darg->skb);
1631 if (unlikely(darg->async_done))
1634 if (prot->tail_size)
1635 darg->tail = dctx->tail;
1638 /* Release the pages in case iov was mapped to pages */
1639 for (; pages > 0; pages--)
1640 put_page(sg_page(&sgout[pages]));
1644 consume_skb(clear_skb);
1649 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1650 struct msghdr *msg, struct tls_decrypt_arg *darg)
1652 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1653 struct tls_prot_info *prot = &tls_ctx->prot_info;
1654 struct strp_msg *rxm;
1657 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1659 if (err == -EBADMSG)
1660 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1663 /* keep going even for ->async, the code below is TLS 1.3 */
1665 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1666 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1667 darg->tail != TLS_RECORD_TYPE_DATA)) {
1670 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1671 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1672 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1675 pad = tls_padding_length(prot, darg->skb, darg);
1677 if (darg->skb != tls_strp_msg(ctx))
1678 consume_skb(darg->skb);
1682 rxm = strp_msg(darg->skb);
1683 rxm->full_len -= pad;
1689 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1690 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1692 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1693 struct tls_prot_info *prot = &tls_ctx->prot_info;
1694 struct strp_msg *rxm;
1697 if (tls_ctx->rx_conf != TLS_HW)
1700 err = tls_device_decrypted(sk, tls_ctx);
1704 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1708 darg->async = false;
1709 darg->skb = tls_strp_msg(ctx);
1710 /* ->zc downgrade check, in case TLS 1.3 gets here */
1711 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1712 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1714 rxm = strp_msg(darg->skb);
1715 rxm->full_len -= pad;
1718 /* Non-ZC case needs a real skb */
1719 darg->skb = tls_strp_msg_detach(ctx);
1723 unsigned int off, len;
1725 /* In ZC case nobody cares about the output skb.
1726 * Just copy the data here. Note the skb is not fully trimmed.
1728 off = rxm->offset + prot->prepend_size;
1729 len = rxm->full_len - prot->overhead_size;
1731 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1738 static int tls_check_pending_rekey(struct sock *sk, struct tls_context *ctx,
1739 struct sk_buff *skb)
1741 const struct strp_msg *rxm = strp_msg(skb);
1742 const struct tls_msg *tlm = tls_msg(skb);
1746 if (likely(tlm->control != TLS_RECORD_TYPE_HANDSHAKE))
1749 if (rxm->full_len < 1)
1752 err = skb_copy_bits(skb, rxm->offset, &hs_type, 1);
1754 DEBUG_NET_WARN_ON_ONCE(1);
1758 if (hs_type == TLS_HANDSHAKE_KEYUPDATE) {
1759 struct tls_sw_context_rx *rx_ctx = ctx->priv_ctx_rx;
1761 WRITE_ONCE(rx_ctx->key_update_pending, true);
1762 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYRECEIVED);
1768 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1769 struct tls_decrypt_arg *darg)
1771 struct tls_context *tls_ctx = tls_get_ctx(sk);
1772 struct tls_prot_info *prot = &tls_ctx->prot_info;
1773 struct strp_msg *rxm;
1776 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1778 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1782 rxm = strp_msg(darg->skb);
1783 rxm->offset += prot->prepend_size;
1784 rxm->full_len -= prot->overhead_size;
1785 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1787 return tls_check_pending_rekey(sk, tls_ctx, darg->skb);
1790 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1792 struct tls_decrypt_arg darg = { .zc = true, };
1794 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1797 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1803 *control = tlm->control;
1807 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1808 sizeof(*control), control);
1809 if (*control != TLS_RECORD_TYPE_DATA) {
1810 if (err || msg->msg_flags & MSG_CTRUNC)
1813 } else if (*control != tlm->control) {
1820 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1822 tls_strp_msg_done(&ctx->strp);
1825 /* This function traverses the rx_list in tls receive context to copies the
1826 * decrypted records into the buffer provided by caller zero copy is not
1827 * true. Further, the records are removed from the rx_list if it is not a peek
1828 * case and the record has been consumed completely.
1830 static int process_rx_list(struct tls_sw_context_rx *ctx,
1838 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1839 struct tls_msg *tlm;
1843 while (skip && skb) {
1844 struct strp_msg *rxm = strp_msg(skb);
1847 err = tls_record_content_type(msg, tlm, control);
1851 if (skip < rxm->full_len)
1854 skip = skip - rxm->full_len;
1855 skb = skb_peek_next(skb, &ctx->rx_list);
1858 while (len && skb) {
1859 struct sk_buff *next_skb;
1860 struct strp_msg *rxm = strp_msg(skb);
1861 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1865 err = tls_record_content_type(msg, tlm, control);
1869 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1875 copied = copied + chunk;
1877 /* Consume the data from record if it is non-peek case*/
1879 rxm->offset = rxm->offset + chunk;
1880 rxm->full_len = rxm->full_len - chunk;
1882 /* Return if there is unconsumed data in the record */
1883 if (rxm->full_len - skip)
1887 /* The remaining skip-bytes must lie in 1st record in rx_list.
1888 * So from the 2nd record, 'skip' should be 0.
1893 msg->msg_flags |= MSG_EOR;
1895 next_skb = skb_peek_next(skb, &ctx->rx_list);
1898 __skb_unlink(skb, &ctx->rx_list);
1907 return copied ? : err;
1915 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1916 size_t len_left, size_t decrypted, ssize_t done,
1921 if (len_left <= decrypted)
1924 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1925 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1929 return sk_flush_backlog(sk);
1932 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1938 timeo = sock_rcvtimeo(sk, nonblock);
1940 while (unlikely(ctx->reader_present)) {
1941 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1943 ctx->reader_contended = 1;
1945 add_wait_queue(&ctx->wq, &wait);
1946 ret = sk_wait_event(sk, &timeo,
1947 !READ_ONCE(ctx->reader_present), &wait);
1948 remove_wait_queue(&ctx->wq, &wait);
1952 if (signal_pending(current))
1953 return sock_intr_errno(timeo);
1958 WRITE_ONCE(ctx->reader_present, 1);
1963 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1969 err = tls_rx_reader_acquire(sk, ctx, nonblock);
1975 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1977 if (unlikely(ctx->reader_contended)) {
1978 if (wq_has_sleeper(&ctx->wq))
1981 ctx->reader_contended = 0;
1983 WARN_ON_ONCE(!ctx->reader_present);
1986 WRITE_ONCE(ctx->reader_present, 0);
1989 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1991 tls_rx_reader_release(sk, ctx);
1995 int tls_sw_recvmsg(struct sock *sk,
2001 struct tls_context *tls_ctx = tls_get_ctx(sk);
2002 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2003 struct tls_prot_info *prot = &tls_ctx->prot_info;
2004 ssize_t decrypted = 0, async_copy_bytes = 0;
2005 struct sk_psock *psock;
2006 unsigned char control = 0;
2007 size_t flushed_at = 0;
2008 struct strp_msg *rxm;
2009 struct tls_msg *tlm;
2014 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
2015 bool is_peek = flags & MSG_PEEK;
2016 bool rx_more = false;
2017 bool released = true;
2018 bool bpf_strp_enabled;
2021 if (unlikely(flags & MSG_ERRQUEUE))
2022 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
2024 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
2027 psock = sk_psock_get(sk);
2028 bpf_strp_enabled = sk_psock_strp_enabled(psock);
2030 /* If crypto failed the connection is broken */
2031 err = ctx->async_wait.err;
2035 /* Process pending decrypted records. It must be non-zero-copy */
2036 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
2041 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more)
2044 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2047 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2050 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2051 struct tls_decrypt_arg darg;
2052 int to_decrypt, chunk;
2054 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2058 chunk = sk_msg_recvmsg(sk, psock, msg, len,
2069 memset(&darg.inargs, 0, sizeof(darg.inargs));
2071 rxm = strp_msg(tls_strp_msg(ctx));
2072 tlm = tls_msg(tls_strp_msg(ctx));
2074 to_decrypt = rxm->full_len - prot->overhead_size;
2076 if (zc_capable && to_decrypt <= len &&
2077 tlm->control == TLS_RECORD_TYPE_DATA)
2080 /* Do not use async mode if record is non-data */
2081 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2082 darg.async = ctx->async_capable;
2086 err = tls_rx_one_record(sk, msg, &darg);
2088 tls_err_abort(sk, -EBADMSG);
2092 async |= darg.async;
2094 /* If the type of records being processed is not known yet,
2095 * set it to record type just dequeued. If it is already known,
2096 * but does not match the record type just dequeued, go to end.
2097 * We always get record type here since for tls1.2, record type
2098 * is known just after record is dequeued from stream parser.
2099 * For tls1.3, we disable async.
2101 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2103 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2104 tls_rx_rec_done(ctx);
2106 __skb_queue_tail(&ctx->rx_list, darg.skb);
2110 /* periodically flush backlog, and feed strparser */
2111 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2115 /* TLS 1.3 may have updated the length by more than overhead */
2116 rxm = strp_msg(darg.skb);
2117 chunk = rxm->full_len;
2118 tls_rx_rec_done(ctx);
2121 bool partially_consumed = chunk > len;
2122 struct sk_buff *skb = darg.skb;
2124 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2127 /* TLS 1.2-only, to_decrypt must be text len */
2128 chunk = min_t(int, to_decrypt, len);
2129 async_copy_bytes += chunk;
2133 __skb_queue_tail(&ctx->rx_list, skb);
2134 if (unlikely(control != TLS_RECORD_TYPE_DATA))
2139 if (bpf_strp_enabled) {
2141 err = sk_psock_tls_strp_read(psock, skb);
2142 if (err != __SK_PASS) {
2143 rxm->offset = rxm->offset + rxm->full_len;
2145 if (err == __SK_DROP)
2151 if (partially_consumed)
2154 err = skb_copy_datagram_msg(skb, rxm->offset,
2157 goto put_on_rx_list_err;
2161 goto put_on_rx_list;
2164 if (partially_consumed) {
2165 rxm->offset += chunk;
2166 rxm->full_len -= chunk;
2167 goto put_on_rx_list;
2176 /* Return full control message to userspace before trying
2177 * to parse another message type
2179 msg->msg_flags |= MSG_EOR;
2180 if (control != TLS_RECORD_TYPE_DATA)
2188 /* Wait for all previously submitted records to be decrypted */
2189 ret = tls_decrypt_async_wait(ctx);
2190 __skb_queue_purge(&ctx->async_hold);
2193 if (err >= 0 || err == -EINPROGRESS)
2198 /* Drain records from the rx_list & copy if required */
2200 err = process_rx_list(ctx, msg, &control, copied + peeked,
2201 decrypted - peeked, is_peek, NULL);
2203 err = process_rx_list(ctx, msg, &control, 0,
2204 async_copy_bytes, is_peek, NULL);
2206 /* we could have copied less than we wanted, and possibly nothing */
2207 decrypted += max(err, 0) - async_copy_bytes;
2210 copied += decrypted;
2213 tls_rx_reader_unlock(sk, ctx);
2215 sk_psock_put(sk, psock);
2216 return copied ? : err;
2219 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2220 struct pipe_inode_info *pipe,
2221 size_t len, unsigned int flags)
2223 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2224 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2225 struct strp_msg *rxm = NULL;
2226 struct sock *sk = sock->sk;
2227 struct tls_msg *tlm;
2228 struct sk_buff *skb;
2233 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2237 if (!skb_queue_empty(&ctx->rx_list)) {
2238 skb = __skb_dequeue(&ctx->rx_list);
2240 struct tls_decrypt_arg darg;
2242 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2245 goto splice_read_end;
2247 memset(&darg.inargs, 0, sizeof(darg.inargs));
2249 err = tls_rx_one_record(sk, NULL, &darg);
2251 tls_err_abort(sk, -EBADMSG);
2252 goto splice_read_end;
2255 tls_rx_rec_done(ctx);
2259 rxm = strp_msg(skb);
2262 /* splice does not support reading control messages */
2263 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2265 goto splice_requeue;
2268 chunk = min_t(unsigned int, rxm->full_len, len);
2269 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2271 goto splice_requeue;
2273 if (chunk < rxm->full_len) {
2275 rxm->full_len -= len;
2276 goto splice_requeue;
2282 tls_rx_reader_unlock(sk, ctx);
2283 return copied ? : err;
2286 __skb_queue_head(&ctx->rx_list, skb);
2287 goto splice_read_end;
2290 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2291 sk_read_actor_t read_actor)
2293 struct tls_context *tls_ctx = tls_get_ctx(sk);
2294 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2295 struct tls_prot_info *prot = &tls_ctx->prot_info;
2296 struct strp_msg *rxm = NULL;
2297 struct sk_buff *skb = NULL;
2298 struct sk_psock *psock;
2299 size_t flushed_at = 0;
2300 bool released = true;
2301 struct tls_msg *tlm;
2306 psock = sk_psock_get(sk);
2308 sk_psock_put(sk, psock);
2311 err = tls_rx_reader_acquire(sk, ctx, true);
2315 /* If crypto failed the connection is broken */
2316 err = ctx->async_wait.err;
2322 if (!skb_queue_empty(&ctx->rx_list)) {
2323 skb = __skb_dequeue(&ctx->rx_list);
2324 rxm = strp_msg(skb);
2327 struct tls_decrypt_arg darg;
2329 err = tls_rx_rec_wait(sk, NULL, true, released);
2333 memset(&darg.inargs, 0, sizeof(darg.inargs));
2335 err = tls_rx_one_record(sk, NULL, &darg);
2337 tls_err_abort(sk, -EBADMSG);
2341 released = tls_read_flush_backlog(sk, prot, INT_MAX,
2345 rxm = strp_msg(skb);
2347 decrypted += rxm->full_len;
2349 tls_rx_rec_done(ctx);
2352 /* read_sock does not support reading control messages */
2353 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2355 goto read_sock_requeue;
2358 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2362 goto read_sock_requeue;
2365 if (used < rxm->full_len) {
2366 rxm->offset += used;
2367 rxm->full_len -= used;
2369 goto read_sock_requeue;
2378 tls_rx_reader_release(sk, ctx);
2379 return copied ? : err;
2382 __skb_queue_head(&ctx->rx_list, skb);
2386 bool tls_sw_sock_is_readable(struct sock *sk)
2388 struct tls_context *tls_ctx = tls_get_ctx(sk);
2389 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2390 bool ingress_empty = true;
2391 struct sk_psock *psock;
2394 psock = sk_psock(sk);
2396 ingress_empty = list_empty(&psock->ingress_msg);
2399 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2400 !skb_queue_empty(&ctx->rx_list);
2403 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2405 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2406 struct tls_prot_info *prot = &tls_ctx->prot_info;
2407 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2408 size_t cipher_overhead;
2409 size_t data_len = 0;
2412 /* Verify that we have a full TLS header, or wait for more data */
2413 if (strp->stm.offset + prot->prepend_size > skb->len)
2416 /* Sanity-check size of on-stack buffer. */
2417 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2422 /* Linearize header to local buffer */
2423 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2427 strp->mark = header[0];
2429 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2431 cipher_overhead = prot->tag_size;
2432 if (prot->version != TLS_1_3_VERSION &&
2433 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2434 cipher_overhead += prot->iv_size;
2436 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2441 if (data_len < cipher_overhead) {
2446 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2447 if (header[1] != TLS_1_2_VERSION_MINOR ||
2448 header[2] != TLS_1_2_VERSION_MAJOR) {
2453 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2454 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2455 return data_len + TLS_HEADER_SIZE;
2458 tls_err_abort(strp->sk, ret);
2463 void tls_rx_msg_ready(struct tls_strparser *strp)
2465 struct tls_sw_context_rx *ctx;
2467 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2468 ctx->saved_data_ready(strp->sk);
2471 static void tls_data_ready(struct sock *sk)
2473 struct tls_context *tls_ctx = tls_get_ctx(sk);
2474 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2475 struct sk_psock *psock;
2478 trace_sk_data_ready(sk);
2480 alloc_save = sk->sk_allocation;
2481 sk->sk_allocation = GFP_ATOMIC;
2482 tls_strp_data_ready(&ctx->strp);
2483 sk->sk_allocation = alloc_save;
2485 psock = sk_psock_get(sk);
2487 if (!list_empty(&psock->ingress_msg))
2488 ctx->saved_data_ready(sk);
2489 sk_psock_put(sk, psock);
2493 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2495 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2497 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2498 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2499 cancel_delayed_work_sync(&ctx->tx_work.work);
2502 void tls_sw_release_resources_tx(struct sock *sk)
2504 struct tls_context *tls_ctx = tls_get_ctx(sk);
2505 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2506 struct tls_rec *rec, *tmp;
2508 /* Wait for any pending async encryptions to complete */
2509 tls_encrypt_async_wait(ctx);
2511 tls_tx_records(sk, -1);
2513 /* Free up un-sent records in tx_list. First, free
2514 * the partially sent record if any at head of tx_list.
2516 if (tls_ctx->partially_sent_record) {
2517 tls_free_partial_record(sk, tls_ctx);
2518 rec = list_first_entry(&ctx->tx_list,
2519 struct tls_rec, list);
2520 list_del(&rec->list);
2521 sk_msg_free(sk, &rec->msg_plaintext);
2525 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2526 list_del(&rec->list);
2527 sk_msg_free(sk, &rec->msg_encrypted);
2528 sk_msg_free(sk, &rec->msg_plaintext);
2532 crypto_free_aead(ctx->aead_send);
2533 tls_free_open_rec(sk);
2536 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2538 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2543 void tls_sw_release_resources_rx(struct sock *sk)
2545 struct tls_context *tls_ctx = tls_get_ctx(sk);
2546 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2548 if (ctx->aead_recv) {
2549 __skb_queue_purge(&ctx->rx_list);
2550 crypto_free_aead(ctx->aead_recv);
2551 tls_strp_stop(&ctx->strp);
2552 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2553 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2556 if (ctx->saved_data_ready) {
2557 write_lock_bh(&sk->sk_callback_lock);
2558 sk->sk_data_ready = ctx->saved_data_ready;
2559 write_unlock_bh(&sk->sk_callback_lock);
2564 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2566 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2568 tls_strp_done(&ctx->strp);
2571 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2573 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2578 void tls_sw_free_resources_rx(struct sock *sk)
2580 struct tls_context *tls_ctx = tls_get_ctx(sk);
2582 tls_sw_release_resources_rx(sk);
2583 tls_sw_free_ctx_rx(tls_ctx);
2586 /* The work handler to transmitt the encrypted records in tx_list */
2587 static void tx_work_handler(struct work_struct *work)
2589 struct delayed_work *delayed_work = to_delayed_work(work);
2590 struct tx_work *tx_work = container_of(delayed_work,
2591 struct tx_work, work);
2592 struct sock *sk = tx_work->sk;
2593 struct tls_context *tls_ctx = tls_get_ctx(sk);
2594 struct tls_sw_context_tx *ctx;
2596 if (unlikely(!tls_ctx))
2599 ctx = tls_sw_ctx_tx(tls_ctx);
2600 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2603 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2606 if (mutex_trylock(&tls_ctx->tx_lock)) {
2608 tls_tx_records(sk, -1);
2610 mutex_unlock(&tls_ctx->tx_lock);
2611 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2612 /* Someone is holding the tx_lock, they will likely run Tx
2613 * and cancel the work on their way out of the lock section.
2614 * Schedule a long delay just in case.
2616 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2620 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2622 struct tls_rec *rec;
2624 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2628 return READ_ONCE(rec->tx_ready);
2631 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2633 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2635 /* Schedule the transmission if tx list is ready */
2636 if (tls_is_tx_ready(tx_ctx) &&
2637 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2638 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2641 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2643 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2645 write_lock_bh(&sk->sk_callback_lock);
2646 rx_ctx->saved_data_ready = sk->sk_data_ready;
2647 sk->sk_data_ready = tls_data_ready;
2648 write_unlock_bh(&sk->sk_callback_lock);
2651 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2653 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2655 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2656 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2659 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2661 struct tls_sw_context_tx *sw_ctx_tx;
2663 if (!ctx->priv_ctx_tx) {
2664 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2668 sw_ctx_tx = ctx->priv_ctx_tx;
2671 crypto_init_wait(&sw_ctx_tx->async_wait);
2672 atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2673 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2674 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2675 sw_ctx_tx->tx_work.sk = sk;
2680 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2682 struct tls_sw_context_rx *sw_ctx_rx;
2684 if (!ctx->priv_ctx_rx) {
2685 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2689 sw_ctx_rx = ctx->priv_ctx_rx;
2692 crypto_init_wait(&sw_ctx_rx->async_wait);
2693 atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2694 init_waitqueue_head(&sw_ctx_rx->wq);
2695 skb_queue_head_init(&sw_ctx_rx->rx_list);
2696 skb_queue_head_init(&sw_ctx_rx->async_hold);
2701 int init_prot_info(struct tls_prot_info *prot,
2702 const struct tls_crypto_info *crypto_info,
2703 const struct tls_cipher_desc *cipher_desc)
2705 u16 nonce_size = cipher_desc->nonce;
2707 if (crypto_info->version == TLS_1_3_VERSION) {
2709 prot->aad_size = TLS_HEADER_SIZE;
2710 prot->tail_size = 1;
2712 prot->aad_size = TLS_AAD_SPACE_SIZE;
2713 prot->tail_size = 0;
2716 /* Sanity-check the sizes for stack allocations. */
2717 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2720 prot->version = crypto_info->version;
2721 prot->cipher_type = crypto_info->cipher_type;
2722 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2723 prot->tag_size = cipher_desc->tag;
2724 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2725 prot->iv_size = cipher_desc->iv;
2726 prot->salt_size = cipher_desc->salt;
2727 prot->rec_seq_size = cipher_desc->rec_seq;
2732 static void tls_finish_key_update(struct sock *sk, struct tls_context *tls_ctx)
2734 struct tls_sw_context_rx *ctx = tls_ctx->priv_ctx_rx;
2736 WRITE_ONCE(ctx->key_update_pending, false);
2737 /* wake-up pre-existing poll() */
2738 ctx->saved_data_ready(sk);
2741 int tls_set_sw_offload(struct sock *sk, int tx,
2742 struct tls_crypto_info *new_crypto_info)
2744 struct tls_crypto_info *crypto_info, *src_crypto_info;
2745 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2746 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2747 const struct tls_cipher_desc *cipher_desc;
2748 char *iv, *rec_seq, *key, *salt;
2749 struct cipher_context *cctx;
2750 struct tls_prot_info *prot;
2751 struct crypto_aead **aead;
2752 struct tls_context *ctx;
2753 struct crypto_tfm *tfm;
2756 ctx = tls_get_ctx(sk);
2757 prot = &ctx->prot_info;
2759 /* new_crypto_info != NULL means rekey */
2760 if (!new_crypto_info) {
2762 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2763 if (!ctx->priv_ctx_tx)
2766 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2767 if (!ctx->priv_ctx_rx)
2773 sw_ctx_tx = ctx->priv_ctx_tx;
2774 crypto_info = &ctx->crypto_send.info;
2776 aead = &sw_ctx_tx->aead_send;
2778 sw_ctx_rx = ctx->priv_ctx_rx;
2779 crypto_info = &ctx->crypto_recv.info;
2781 aead = &sw_ctx_rx->aead_recv;
2784 src_crypto_info = new_crypto_info ?: crypto_info;
2786 cipher_desc = get_cipher_desc(src_crypto_info->cipher_type);
2792 rc = init_prot_info(prot, src_crypto_info, cipher_desc);
2796 iv = crypto_info_iv(src_crypto_info, cipher_desc);
2797 key = crypto_info_key(src_crypto_info, cipher_desc);
2798 salt = crypto_info_salt(src_crypto_info, cipher_desc);
2799 rec_seq = crypto_info_rec_seq(src_crypto_info, cipher_desc);
2802 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2803 if (IS_ERR(*aead)) {
2804 rc = PTR_ERR(*aead);
2810 ctx->push_pending_record = tls_sw_push_pending_record;
2812 /* setkey is the last operation that could fail during a
2813 * rekey. if it succeeds, we can start modifying the
2816 rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2818 if (new_crypto_info)
2824 if (!new_crypto_info) {
2825 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2830 if (!tx && !new_crypto_info) {
2831 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2833 tls_update_rx_zc_capable(ctx);
2834 sw_ctx_rx->async_capable =
2835 src_crypto_info->version != TLS_1_3_VERSION &&
2836 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2838 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2843 memcpy(cctx->iv, salt, cipher_desc->salt);
2844 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2845 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2847 if (new_crypto_info) {
2848 unsafe_memcpy(crypto_info, new_crypto_info,
2849 cipher_desc->crypto_info,
2850 /* size was checked in do_tls_setsockopt_conf */);
2851 memzero_explicit(new_crypto_info, cipher_desc->crypto_info);
2853 tls_finish_key_update(sk, ctx);
2859 crypto_free_aead(*aead);
2862 if (!new_crypto_info) {
2864 kfree(ctx->priv_ctx_tx);
2865 ctx->priv_ctx_tx = NULL;
2867 kfree(ctx->priv_ctx_rx);
2868 ctx->priv_ctx_rx = NULL;