afs: Provide a splice-read wrapper
[linux-block.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48
49 #include "tls.h"
50
51 struct tls_decrypt_arg {
52         struct_group(inargs,
53         bool zc;
54         bool async;
55         u8 tail;
56         );
57
58         struct sk_buff *skb;
59 };
60
61 struct tls_decrypt_ctx {
62         struct sock *sk;
63         u8 iv[MAX_IV_SIZE];
64         u8 aad[TLS_MAX_AAD_SIZE];
65         u8 tail;
66         struct scatterlist sg[];
67 };
68
69 noinline void tls_err_abort(struct sock *sk, int err)
70 {
71         WARN_ON_ONCE(err >= 0);
72         /* sk->sk_err should contain a positive error code. */
73         sk->sk_err = -err;
74         sk_error_report(sk);
75 }
76
77 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
78                      unsigned int recursion_level)
79 {
80         int start = skb_headlen(skb);
81         int i, chunk = start - offset;
82         struct sk_buff *frag_iter;
83         int elt = 0;
84
85         if (unlikely(recursion_level >= 24))
86                 return -EMSGSIZE;
87
88         if (chunk > 0) {
89                 if (chunk > len)
90                         chunk = len;
91                 elt++;
92                 len -= chunk;
93                 if (len == 0)
94                         return elt;
95                 offset += chunk;
96         }
97
98         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
99                 int end;
100
101                 WARN_ON(start > offset + len);
102
103                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
104                 chunk = end - offset;
105                 if (chunk > 0) {
106                         if (chunk > len)
107                                 chunk = len;
108                         elt++;
109                         len -= chunk;
110                         if (len == 0)
111                                 return elt;
112                         offset += chunk;
113                 }
114                 start = end;
115         }
116
117         if (unlikely(skb_has_frag_list(skb))) {
118                 skb_walk_frags(skb, frag_iter) {
119                         int end, ret;
120
121                         WARN_ON(start > offset + len);
122
123                         end = start + frag_iter->len;
124                         chunk = end - offset;
125                         if (chunk > 0) {
126                                 if (chunk > len)
127                                         chunk = len;
128                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
129                                                 recursion_level + 1);
130                                 if (unlikely(ret < 0))
131                                         return ret;
132                                 elt += ret;
133                                 len -= chunk;
134                                 if (len == 0)
135                                         return elt;
136                                 offset += chunk;
137                         }
138                         start = end;
139                 }
140         }
141         BUG_ON(len);
142         return elt;
143 }
144
145 /* Return the number of scatterlist elements required to completely map the
146  * skb, or -EMSGSIZE if the recursion depth is exceeded.
147  */
148 static int skb_nsg(struct sk_buff *skb, int offset, int len)
149 {
150         return __skb_nsg(skb, offset, len, 0);
151 }
152
153 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
154                               struct tls_decrypt_arg *darg)
155 {
156         struct strp_msg *rxm = strp_msg(skb);
157         struct tls_msg *tlm = tls_msg(skb);
158         int sub = 0;
159
160         /* Determine zero-padding length */
161         if (prot->version == TLS_1_3_VERSION) {
162                 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
163                 char content_type = darg->zc ? darg->tail : 0;
164                 int err;
165
166                 while (content_type == 0) {
167                         if (offset < prot->prepend_size)
168                                 return -EBADMSG;
169                         err = skb_copy_bits(skb, rxm->offset + offset,
170                                             &content_type, 1);
171                         if (err)
172                                 return err;
173                         if (content_type)
174                                 break;
175                         sub++;
176                         offset--;
177                 }
178                 tlm->control = content_type;
179         }
180         return sub;
181 }
182
183 static void tls_decrypt_done(void *data, int err)
184 {
185         struct aead_request *aead_req = data;
186         struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
187         struct scatterlist *sgout = aead_req->dst;
188         struct scatterlist *sgin = aead_req->src;
189         struct tls_sw_context_rx *ctx;
190         struct tls_decrypt_ctx *dctx;
191         struct tls_context *tls_ctx;
192         struct scatterlist *sg;
193         unsigned int pages;
194         struct sock *sk;
195         int aead_size;
196
197         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
198         aead_size = ALIGN(aead_size, __alignof__(*dctx));
199         dctx = (void *)((u8 *)aead_req + aead_size);
200
201         sk = dctx->sk;
202         tls_ctx = tls_get_ctx(sk);
203         ctx = tls_sw_ctx_rx(tls_ctx);
204
205         /* Propagate if there was an err */
206         if (err) {
207                 if (err == -EBADMSG)
208                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
209                 ctx->async_wait.err = err;
210                 tls_err_abort(sk, err);
211         }
212
213         /* Free the destination pages if skb was not decrypted inplace */
214         if (sgout != sgin) {
215                 /* Skip the first S/G entry as it points to AAD */
216                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
217                         if (!sg)
218                                 break;
219                         put_page(sg_page(sg));
220                 }
221         }
222
223         kfree(aead_req);
224
225         spin_lock_bh(&ctx->decrypt_compl_lock);
226         if (!atomic_dec_return(&ctx->decrypt_pending))
227                 complete(&ctx->async_wait.completion);
228         spin_unlock_bh(&ctx->decrypt_compl_lock);
229 }
230
231 static int tls_do_decryption(struct sock *sk,
232                              struct scatterlist *sgin,
233                              struct scatterlist *sgout,
234                              char *iv_recv,
235                              size_t data_len,
236                              struct aead_request *aead_req,
237                              struct tls_decrypt_arg *darg)
238 {
239         struct tls_context *tls_ctx = tls_get_ctx(sk);
240         struct tls_prot_info *prot = &tls_ctx->prot_info;
241         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
242         int ret;
243
244         aead_request_set_tfm(aead_req, ctx->aead_recv);
245         aead_request_set_ad(aead_req, prot->aad_size);
246         aead_request_set_crypt(aead_req, sgin, sgout,
247                                data_len + prot->tag_size,
248                                (u8 *)iv_recv);
249
250         if (darg->async) {
251                 aead_request_set_callback(aead_req,
252                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
253                                           tls_decrypt_done, aead_req);
254                 atomic_inc(&ctx->decrypt_pending);
255         } else {
256                 aead_request_set_callback(aead_req,
257                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
258                                           crypto_req_done, &ctx->async_wait);
259         }
260
261         ret = crypto_aead_decrypt(aead_req);
262         if (ret == -EINPROGRESS) {
263                 if (darg->async)
264                         return 0;
265
266                 ret = crypto_wait_req(ret, &ctx->async_wait);
267         }
268         darg->async = false;
269
270         return ret;
271 }
272
273 static void tls_trim_both_msgs(struct sock *sk, int target_size)
274 {
275         struct tls_context *tls_ctx = tls_get_ctx(sk);
276         struct tls_prot_info *prot = &tls_ctx->prot_info;
277         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
278         struct tls_rec *rec = ctx->open_rec;
279
280         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
281         if (target_size > 0)
282                 target_size += prot->overhead_size;
283         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
284 }
285
286 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
287 {
288         struct tls_context *tls_ctx = tls_get_ctx(sk);
289         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
290         struct tls_rec *rec = ctx->open_rec;
291         struct sk_msg *msg_en = &rec->msg_encrypted;
292
293         return sk_msg_alloc(sk, msg_en, len, 0);
294 }
295
296 static int tls_clone_plaintext_msg(struct sock *sk, int required)
297 {
298         struct tls_context *tls_ctx = tls_get_ctx(sk);
299         struct tls_prot_info *prot = &tls_ctx->prot_info;
300         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
301         struct tls_rec *rec = ctx->open_rec;
302         struct sk_msg *msg_pl = &rec->msg_plaintext;
303         struct sk_msg *msg_en = &rec->msg_encrypted;
304         int skip, len;
305
306         /* We add page references worth len bytes from encrypted sg
307          * at the end of plaintext sg. It is guaranteed that msg_en
308          * has enough required room (ensured by caller).
309          */
310         len = required - msg_pl->sg.size;
311
312         /* Skip initial bytes in msg_en's data to be able to use
313          * same offset of both plain and encrypted data.
314          */
315         skip = prot->prepend_size + msg_pl->sg.size;
316
317         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
318 }
319
320 static struct tls_rec *tls_get_rec(struct sock *sk)
321 {
322         struct tls_context *tls_ctx = tls_get_ctx(sk);
323         struct tls_prot_info *prot = &tls_ctx->prot_info;
324         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
325         struct sk_msg *msg_pl, *msg_en;
326         struct tls_rec *rec;
327         int mem_size;
328
329         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
330
331         rec = kzalloc(mem_size, sk->sk_allocation);
332         if (!rec)
333                 return NULL;
334
335         msg_pl = &rec->msg_plaintext;
336         msg_en = &rec->msg_encrypted;
337
338         sk_msg_init(msg_pl);
339         sk_msg_init(msg_en);
340
341         sg_init_table(rec->sg_aead_in, 2);
342         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
343         sg_unmark_end(&rec->sg_aead_in[1]);
344
345         sg_init_table(rec->sg_aead_out, 2);
346         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
347         sg_unmark_end(&rec->sg_aead_out[1]);
348
349         rec->sk = sk;
350
351         return rec;
352 }
353
354 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
355 {
356         sk_msg_free(sk, &rec->msg_encrypted);
357         sk_msg_free(sk, &rec->msg_plaintext);
358         kfree(rec);
359 }
360
361 static void tls_free_open_rec(struct sock *sk)
362 {
363         struct tls_context *tls_ctx = tls_get_ctx(sk);
364         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
365         struct tls_rec *rec = ctx->open_rec;
366
367         if (rec) {
368                 tls_free_rec(sk, rec);
369                 ctx->open_rec = NULL;
370         }
371 }
372
373 int tls_tx_records(struct sock *sk, int flags)
374 {
375         struct tls_context *tls_ctx = tls_get_ctx(sk);
376         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
377         struct tls_rec *rec, *tmp;
378         struct sk_msg *msg_en;
379         int tx_flags, rc = 0;
380
381         if (tls_is_partially_sent_record(tls_ctx)) {
382                 rec = list_first_entry(&ctx->tx_list,
383                                        struct tls_rec, list);
384
385                 if (flags == -1)
386                         tx_flags = rec->tx_flags;
387                 else
388                         tx_flags = flags;
389
390                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
391                 if (rc)
392                         goto tx_err;
393
394                 /* Full record has been transmitted.
395                  * Remove the head of tx_list
396                  */
397                 list_del(&rec->list);
398                 sk_msg_free(sk, &rec->msg_plaintext);
399                 kfree(rec);
400         }
401
402         /* Tx all ready records */
403         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
404                 if (READ_ONCE(rec->tx_ready)) {
405                         if (flags == -1)
406                                 tx_flags = rec->tx_flags;
407                         else
408                                 tx_flags = flags;
409
410                         msg_en = &rec->msg_encrypted;
411                         rc = tls_push_sg(sk, tls_ctx,
412                                          &msg_en->sg.data[msg_en->sg.curr],
413                                          0, tx_flags);
414                         if (rc)
415                                 goto tx_err;
416
417                         list_del(&rec->list);
418                         sk_msg_free(sk, &rec->msg_plaintext);
419                         kfree(rec);
420                 } else {
421                         break;
422                 }
423         }
424
425 tx_err:
426         if (rc < 0 && rc != -EAGAIN)
427                 tls_err_abort(sk, -EBADMSG);
428
429         return rc;
430 }
431
432 static void tls_encrypt_done(void *data, int err)
433 {
434         struct tls_sw_context_tx *ctx;
435         struct tls_context *tls_ctx;
436         struct tls_prot_info *prot;
437         struct tls_rec *rec = data;
438         struct scatterlist *sge;
439         struct sk_msg *msg_en;
440         bool ready = false;
441         struct sock *sk;
442         int pending;
443
444         msg_en = &rec->msg_encrypted;
445
446         sk = rec->sk;
447         tls_ctx = tls_get_ctx(sk);
448         prot = &tls_ctx->prot_info;
449         ctx = tls_sw_ctx_tx(tls_ctx);
450
451         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
452         sge->offset -= prot->prepend_size;
453         sge->length += prot->prepend_size;
454
455         /* Check if error is previously set on socket */
456         if (err || sk->sk_err) {
457                 rec = NULL;
458
459                 /* If err is already set on socket, return the same code */
460                 if (sk->sk_err) {
461                         ctx->async_wait.err = -sk->sk_err;
462                 } else {
463                         ctx->async_wait.err = err;
464                         tls_err_abort(sk, err);
465                 }
466         }
467
468         if (rec) {
469                 struct tls_rec *first_rec;
470
471                 /* Mark the record as ready for transmission */
472                 smp_store_mb(rec->tx_ready, true);
473
474                 /* If received record is at head of tx_list, schedule tx */
475                 first_rec = list_first_entry(&ctx->tx_list,
476                                              struct tls_rec, list);
477                 if (rec == first_rec)
478                         ready = true;
479         }
480
481         spin_lock_bh(&ctx->encrypt_compl_lock);
482         pending = atomic_dec_return(&ctx->encrypt_pending);
483
484         if (!pending && ctx->async_notify)
485                 complete(&ctx->async_wait.completion);
486         spin_unlock_bh(&ctx->encrypt_compl_lock);
487
488         if (!ready)
489                 return;
490
491         /* Schedule the transmission */
492         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
493                 schedule_delayed_work(&ctx->tx_work.work, 1);
494 }
495
496 static int tls_do_encryption(struct sock *sk,
497                              struct tls_context *tls_ctx,
498                              struct tls_sw_context_tx *ctx,
499                              struct aead_request *aead_req,
500                              size_t data_len, u32 start)
501 {
502         struct tls_prot_info *prot = &tls_ctx->prot_info;
503         struct tls_rec *rec = ctx->open_rec;
504         struct sk_msg *msg_en = &rec->msg_encrypted;
505         struct scatterlist *sge = sk_msg_elem(msg_en, start);
506         int rc, iv_offset = 0;
507
508         /* For CCM based ciphers, first byte of IV is a constant */
509         switch (prot->cipher_type) {
510         case TLS_CIPHER_AES_CCM_128:
511                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
512                 iv_offset = 1;
513                 break;
514         case TLS_CIPHER_SM4_CCM:
515                 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
516                 iv_offset = 1;
517                 break;
518         }
519
520         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
521                prot->iv_size + prot->salt_size);
522
523         tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
524                             tls_ctx->tx.rec_seq);
525
526         sge->offset += prot->prepend_size;
527         sge->length -= prot->prepend_size;
528
529         msg_en->sg.curr = start;
530
531         aead_request_set_tfm(aead_req, ctx->aead_send);
532         aead_request_set_ad(aead_req, prot->aad_size);
533         aead_request_set_crypt(aead_req, rec->sg_aead_in,
534                                rec->sg_aead_out,
535                                data_len, rec->iv_data);
536
537         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
538                                   tls_encrypt_done, rec);
539
540         /* Add the record in tx_list */
541         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
542         atomic_inc(&ctx->encrypt_pending);
543
544         rc = crypto_aead_encrypt(aead_req);
545         if (!rc || rc != -EINPROGRESS) {
546                 atomic_dec(&ctx->encrypt_pending);
547                 sge->offset -= prot->prepend_size;
548                 sge->length += prot->prepend_size;
549         }
550
551         if (!rc) {
552                 WRITE_ONCE(rec->tx_ready, true);
553         } else if (rc != -EINPROGRESS) {
554                 list_del(&rec->list);
555                 return rc;
556         }
557
558         /* Unhook the record from context if encryption is not failure */
559         ctx->open_rec = NULL;
560         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
561         return rc;
562 }
563
564 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
565                                  struct tls_rec **to, struct sk_msg *msg_opl,
566                                  struct sk_msg *msg_oen, u32 split_point,
567                                  u32 tx_overhead_size, u32 *orig_end)
568 {
569         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
570         struct scatterlist *sge, *osge, *nsge;
571         u32 orig_size = msg_opl->sg.size;
572         struct scatterlist tmp = { };
573         struct sk_msg *msg_npl;
574         struct tls_rec *new;
575         int ret;
576
577         new = tls_get_rec(sk);
578         if (!new)
579                 return -ENOMEM;
580         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
581                            tx_overhead_size, 0);
582         if (ret < 0) {
583                 tls_free_rec(sk, new);
584                 return ret;
585         }
586
587         *orig_end = msg_opl->sg.end;
588         i = msg_opl->sg.start;
589         sge = sk_msg_elem(msg_opl, i);
590         while (apply && sge->length) {
591                 if (sge->length > apply) {
592                         u32 len = sge->length - apply;
593
594                         get_page(sg_page(sge));
595                         sg_set_page(&tmp, sg_page(sge), len,
596                                     sge->offset + apply);
597                         sge->length = apply;
598                         bytes += apply;
599                         apply = 0;
600                 } else {
601                         apply -= sge->length;
602                         bytes += sge->length;
603                 }
604
605                 sk_msg_iter_var_next(i);
606                 if (i == msg_opl->sg.end)
607                         break;
608                 sge = sk_msg_elem(msg_opl, i);
609         }
610
611         msg_opl->sg.end = i;
612         msg_opl->sg.curr = i;
613         msg_opl->sg.copybreak = 0;
614         msg_opl->apply_bytes = 0;
615         msg_opl->sg.size = bytes;
616
617         msg_npl = &new->msg_plaintext;
618         msg_npl->apply_bytes = apply;
619         msg_npl->sg.size = orig_size - bytes;
620
621         j = msg_npl->sg.start;
622         nsge = sk_msg_elem(msg_npl, j);
623         if (tmp.length) {
624                 memcpy(nsge, &tmp, sizeof(*nsge));
625                 sk_msg_iter_var_next(j);
626                 nsge = sk_msg_elem(msg_npl, j);
627         }
628
629         osge = sk_msg_elem(msg_opl, i);
630         while (osge->length) {
631                 memcpy(nsge, osge, sizeof(*nsge));
632                 sg_unmark_end(nsge);
633                 sk_msg_iter_var_next(i);
634                 sk_msg_iter_var_next(j);
635                 if (i == *orig_end)
636                         break;
637                 osge = sk_msg_elem(msg_opl, i);
638                 nsge = sk_msg_elem(msg_npl, j);
639         }
640
641         msg_npl->sg.end = j;
642         msg_npl->sg.curr = j;
643         msg_npl->sg.copybreak = 0;
644
645         *to = new;
646         return 0;
647 }
648
649 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
650                                   struct tls_rec *from, u32 orig_end)
651 {
652         struct sk_msg *msg_npl = &from->msg_plaintext;
653         struct sk_msg *msg_opl = &to->msg_plaintext;
654         struct scatterlist *osge, *nsge;
655         u32 i, j;
656
657         i = msg_opl->sg.end;
658         sk_msg_iter_var_prev(i);
659         j = msg_npl->sg.start;
660
661         osge = sk_msg_elem(msg_opl, i);
662         nsge = sk_msg_elem(msg_npl, j);
663
664         if (sg_page(osge) == sg_page(nsge) &&
665             osge->offset + osge->length == nsge->offset) {
666                 osge->length += nsge->length;
667                 put_page(sg_page(nsge));
668         }
669
670         msg_opl->sg.end = orig_end;
671         msg_opl->sg.curr = orig_end;
672         msg_opl->sg.copybreak = 0;
673         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
674         msg_opl->sg.size += msg_npl->sg.size;
675
676         sk_msg_free(sk, &to->msg_encrypted);
677         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
678
679         kfree(from);
680 }
681
682 static int tls_push_record(struct sock *sk, int flags,
683                            unsigned char record_type)
684 {
685         struct tls_context *tls_ctx = tls_get_ctx(sk);
686         struct tls_prot_info *prot = &tls_ctx->prot_info;
687         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
688         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
689         u32 i, split_point, orig_end;
690         struct sk_msg *msg_pl, *msg_en;
691         struct aead_request *req;
692         bool split;
693         int rc;
694
695         if (!rec)
696                 return 0;
697
698         msg_pl = &rec->msg_plaintext;
699         msg_en = &rec->msg_encrypted;
700
701         split_point = msg_pl->apply_bytes;
702         split = split_point && split_point < msg_pl->sg.size;
703         if (unlikely((!split &&
704                       msg_pl->sg.size +
705                       prot->overhead_size > msg_en->sg.size) ||
706                      (split &&
707                       split_point +
708                       prot->overhead_size > msg_en->sg.size))) {
709                 split = true;
710                 split_point = msg_en->sg.size;
711         }
712         if (split) {
713                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
714                                            split_point, prot->overhead_size,
715                                            &orig_end);
716                 if (rc < 0)
717                         return rc;
718                 /* This can happen if above tls_split_open_record allocates
719                  * a single large encryption buffer instead of two smaller
720                  * ones. In this case adjust pointers and continue without
721                  * split.
722                  */
723                 if (!msg_pl->sg.size) {
724                         tls_merge_open_record(sk, rec, tmp, orig_end);
725                         msg_pl = &rec->msg_plaintext;
726                         msg_en = &rec->msg_encrypted;
727                         split = false;
728                 }
729                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
730                             prot->overhead_size);
731         }
732
733         rec->tx_flags = flags;
734         req = &rec->aead_req;
735
736         i = msg_pl->sg.end;
737         sk_msg_iter_var_prev(i);
738
739         rec->content_type = record_type;
740         if (prot->version == TLS_1_3_VERSION) {
741                 /* Add content type to end of message.  No padding added */
742                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
743                 sg_mark_end(&rec->sg_content_type);
744                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
745                          &rec->sg_content_type);
746         } else {
747                 sg_mark_end(sk_msg_elem(msg_pl, i));
748         }
749
750         if (msg_pl->sg.end < msg_pl->sg.start) {
751                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
752                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
753                          msg_pl->sg.data);
754         }
755
756         i = msg_pl->sg.start;
757         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
758
759         i = msg_en->sg.end;
760         sk_msg_iter_var_prev(i);
761         sg_mark_end(sk_msg_elem(msg_en, i));
762
763         i = msg_en->sg.start;
764         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
765
766         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
767                      tls_ctx->tx.rec_seq, record_type, prot);
768
769         tls_fill_prepend(tls_ctx,
770                          page_address(sg_page(&msg_en->sg.data[i])) +
771                          msg_en->sg.data[i].offset,
772                          msg_pl->sg.size + prot->tail_size,
773                          record_type);
774
775         tls_ctx->pending_open_record_frags = false;
776
777         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
778                                msg_pl->sg.size + prot->tail_size, i);
779         if (rc < 0) {
780                 if (rc != -EINPROGRESS) {
781                         tls_err_abort(sk, -EBADMSG);
782                         if (split) {
783                                 tls_ctx->pending_open_record_frags = true;
784                                 tls_merge_open_record(sk, rec, tmp, orig_end);
785                         }
786                 }
787                 ctx->async_capable = 1;
788                 return rc;
789         } else if (split) {
790                 msg_pl = &tmp->msg_plaintext;
791                 msg_en = &tmp->msg_encrypted;
792                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
793                 tls_ctx->pending_open_record_frags = true;
794                 ctx->open_rec = tmp;
795         }
796
797         return tls_tx_records(sk, flags);
798 }
799
800 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
801                                bool full_record, u8 record_type,
802                                ssize_t *copied, int flags)
803 {
804         struct tls_context *tls_ctx = tls_get_ctx(sk);
805         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
806         struct sk_msg msg_redir = { };
807         struct sk_psock *psock;
808         struct sock *sk_redir;
809         struct tls_rec *rec;
810         bool enospc, policy, redir_ingress;
811         int err = 0, send;
812         u32 delta = 0;
813
814         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
815         psock = sk_psock_get(sk);
816         if (!psock || !policy) {
817                 err = tls_push_record(sk, flags, record_type);
818                 if (err && sk->sk_err == EBADMSG) {
819                         *copied -= sk_msg_free(sk, msg);
820                         tls_free_open_rec(sk);
821                         err = -sk->sk_err;
822                 }
823                 if (psock)
824                         sk_psock_put(sk, psock);
825                 return err;
826         }
827 more_data:
828         enospc = sk_msg_full(msg);
829         if (psock->eval == __SK_NONE) {
830                 delta = msg->sg.size;
831                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
832                 delta -= msg->sg.size;
833         }
834         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
835             !enospc && !full_record) {
836                 err = -ENOSPC;
837                 goto out_err;
838         }
839         msg->cork_bytes = 0;
840         send = msg->sg.size;
841         if (msg->apply_bytes && msg->apply_bytes < send)
842                 send = msg->apply_bytes;
843
844         switch (psock->eval) {
845         case __SK_PASS:
846                 err = tls_push_record(sk, flags, record_type);
847                 if (err && sk->sk_err == EBADMSG) {
848                         *copied -= sk_msg_free(sk, msg);
849                         tls_free_open_rec(sk);
850                         err = -sk->sk_err;
851                         goto out_err;
852                 }
853                 break;
854         case __SK_REDIRECT:
855                 redir_ingress = psock->redir_ingress;
856                 sk_redir = psock->sk_redir;
857                 memcpy(&msg_redir, msg, sizeof(*msg));
858                 if (msg->apply_bytes < send)
859                         msg->apply_bytes = 0;
860                 else
861                         msg->apply_bytes -= send;
862                 sk_msg_return_zero(sk, msg, send);
863                 msg->sg.size -= send;
864                 release_sock(sk);
865                 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
866                                             &msg_redir, send, flags);
867                 lock_sock(sk);
868                 if (err < 0) {
869                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
870                         msg->sg.size = 0;
871                 }
872                 if (msg->sg.size == 0)
873                         tls_free_open_rec(sk);
874                 break;
875         case __SK_DROP:
876         default:
877                 sk_msg_free_partial(sk, msg, send);
878                 if (msg->apply_bytes < send)
879                         msg->apply_bytes = 0;
880                 else
881                         msg->apply_bytes -= send;
882                 if (msg->sg.size == 0)
883                         tls_free_open_rec(sk);
884                 *copied -= (send + delta);
885                 err = -EACCES;
886         }
887
888         if (likely(!err)) {
889                 bool reset_eval = !ctx->open_rec;
890
891                 rec = ctx->open_rec;
892                 if (rec) {
893                         msg = &rec->msg_plaintext;
894                         if (!msg->apply_bytes)
895                                 reset_eval = true;
896                 }
897                 if (reset_eval) {
898                         psock->eval = __SK_NONE;
899                         if (psock->sk_redir) {
900                                 sock_put(psock->sk_redir);
901                                 psock->sk_redir = NULL;
902                         }
903                 }
904                 if (rec)
905                         goto more_data;
906         }
907  out_err:
908         sk_psock_put(sk, psock);
909         return err;
910 }
911
912 static int tls_sw_push_pending_record(struct sock *sk, int flags)
913 {
914         struct tls_context *tls_ctx = tls_get_ctx(sk);
915         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
916         struct tls_rec *rec = ctx->open_rec;
917         struct sk_msg *msg_pl;
918         size_t copied;
919
920         if (!rec)
921                 return 0;
922
923         msg_pl = &rec->msg_plaintext;
924         copied = msg_pl->sg.size;
925         if (!copied)
926                 return 0;
927
928         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
929                                    &copied, flags);
930 }
931
932 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
933 {
934         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
935         struct tls_context *tls_ctx = tls_get_ctx(sk);
936         struct tls_prot_info *prot = &tls_ctx->prot_info;
937         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
938         bool async_capable = ctx->async_capable;
939         unsigned char record_type = TLS_RECORD_TYPE_DATA;
940         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
941         bool eor = !(msg->msg_flags & MSG_MORE);
942         size_t try_to_copy;
943         ssize_t copied = 0;
944         struct sk_msg *msg_pl, *msg_en;
945         struct tls_rec *rec;
946         int required_size;
947         int num_async = 0;
948         bool full_record;
949         int record_room;
950         int num_zc = 0;
951         int orig_size;
952         int ret = 0;
953         int pending;
954
955         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
956                                MSG_CMSG_COMPAT))
957                 return -EOPNOTSUPP;
958
959         ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
960         if (ret)
961                 return ret;
962         lock_sock(sk);
963
964         if (unlikely(msg->msg_controllen)) {
965                 ret = tls_process_cmsg(sk, msg, &record_type);
966                 if (ret) {
967                         if (ret == -EINPROGRESS)
968                                 num_async++;
969                         else if (ret != -EAGAIN)
970                                 goto send_end;
971                 }
972         }
973
974         while (msg_data_left(msg)) {
975                 if (sk->sk_err) {
976                         ret = -sk->sk_err;
977                         goto send_end;
978                 }
979
980                 if (ctx->open_rec)
981                         rec = ctx->open_rec;
982                 else
983                         rec = ctx->open_rec = tls_get_rec(sk);
984                 if (!rec) {
985                         ret = -ENOMEM;
986                         goto send_end;
987                 }
988
989                 msg_pl = &rec->msg_plaintext;
990                 msg_en = &rec->msg_encrypted;
991
992                 orig_size = msg_pl->sg.size;
993                 full_record = false;
994                 try_to_copy = msg_data_left(msg);
995                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
996                 if (try_to_copy >= record_room) {
997                         try_to_copy = record_room;
998                         full_record = true;
999                 }
1000
1001                 required_size = msg_pl->sg.size + try_to_copy +
1002                                 prot->overhead_size;
1003
1004                 if (!sk_stream_memory_free(sk))
1005                         goto wait_for_sndbuf;
1006
1007 alloc_encrypted:
1008                 ret = tls_alloc_encrypted_msg(sk, required_size);
1009                 if (ret) {
1010                         if (ret != -ENOSPC)
1011                                 goto wait_for_memory;
1012
1013                         /* Adjust try_to_copy according to the amount that was
1014                          * actually allocated. The difference is due
1015                          * to max sg elements limit
1016                          */
1017                         try_to_copy -= required_size - msg_en->sg.size;
1018                         full_record = true;
1019                 }
1020
1021                 if (!is_kvec && (full_record || eor) && !async_capable) {
1022                         u32 first = msg_pl->sg.end;
1023
1024                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1025                                                         msg_pl, try_to_copy);
1026                         if (ret)
1027                                 goto fallback_to_reg_send;
1028
1029                         num_zc++;
1030                         copied += try_to_copy;
1031
1032                         sk_msg_sg_copy_set(msg_pl, first);
1033                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1034                                                   record_type, &copied,
1035                                                   msg->msg_flags);
1036                         if (ret) {
1037                                 if (ret == -EINPROGRESS)
1038                                         num_async++;
1039                                 else if (ret == -ENOMEM)
1040                                         goto wait_for_memory;
1041                                 else if (ctx->open_rec && ret == -ENOSPC)
1042                                         goto rollback_iter;
1043                                 else if (ret != -EAGAIN)
1044                                         goto send_end;
1045                         }
1046                         continue;
1047 rollback_iter:
1048                         copied -= try_to_copy;
1049                         sk_msg_sg_copy_clear(msg_pl, first);
1050                         iov_iter_revert(&msg->msg_iter,
1051                                         msg_pl->sg.size - orig_size);
1052 fallback_to_reg_send:
1053                         sk_msg_trim(sk, msg_pl, orig_size);
1054                 }
1055
1056                 required_size = msg_pl->sg.size + try_to_copy;
1057
1058                 ret = tls_clone_plaintext_msg(sk, required_size);
1059                 if (ret) {
1060                         if (ret != -ENOSPC)
1061                                 goto send_end;
1062
1063                         /* Adjust try_to_copy according to the amount that was
1064                          * actually allocated. The difference is due
1065                          * to max sg elements limit
1066                          */
1067                         try_to_copy -= required_size - msg_pl->sg.size;
1068                         full_record = true;
1069                         sk_msg_trim(sk, msg_en,
1070                                     msg_pl->sg.size + prot->overhead_size);
1071                 }
1072
1073                 if (try_to_copy) {
1074                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1075                                                        msg_pl, try_to_copy);
1076                         if (ret < 0)
1077                                 goto trim_sgl;
1078                 }
1079
1080                 /* Open records defined only if successfully copied, otherwise
1081                  * we would trim the sg but not reset the open record frags.
1082                  */
1083                 tls_ctx->pending_open_record_frags = true;
1084                 copied += try_to_copy;
1085                 if (full_record || eor) {
1086                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1087                                                   record_type, &copied,
1088                                                   msg->msg_flags);
1089                         if (ret) {
1090                                 if (ret == -EINPROGRESS)
1091                                         num_async++;
1092                                 else if (ret == -ENOMEM)
1093                                         goto wait_for_memory;
1094                                 else if (ret != -EAGAIN) {
1095                                         if (ret == -ENOSPC)
1096                                                 ret = 0;
1097                                         goto send_end;
1098                                 }
1099                         }
1100                 }
1101
1102                 continue;
1103
1104 wait_for_sndbuf:
1105                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1106 wait_for_memory:
1107                 ret = sk_stream_wait_memory(sk, &timeo);
1108                 if (ret) {
1109 trim_sgl:
1110                         if (ctx->open_rec)
1111                                 tls_trim_both_msgs(sk, orig_size);
1112                         goto send_end;
1113                 }
1114
1115                 if (ctx->open_rec && msg_en->sg.size < required_size)
1116                         goto alloc_encrypted;
1117         }
1118
1119         if (!num_async) {
1120                 goto send_end;
1121         } else if (num_zc) {
1122                 /* Wait for pending encryptions to get completed */
1123                 spin_lock_bh(&ctx->encrypt_compl_lock);
1124                 ctx->async_notify = true;
1125
1126                 pending = atomic_read(&ctx->encrypt_pending);
1127                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1128                 if (pending)
1129                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1130                 else
1131                         reinit_completion(&ctx->async_wait.completion);
1132
1133                 /* There can be no concurrent accesses, since we have no
1134                  * pending encrypt operations
1135                  */
1136                 WRITE_ONCE(ctx->async_notify, false);
1137
1138                 if (ctx->async_wait.err) {
1139                         ret = ctx->async_wait.err;
1140                         copied = 0;
1141                 }
1142         }
1143
1144         /* Transmit if any encryptions have completed */
1145         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1146                 cancel_delayed_work(&ctx->tx_work.work);
1147                 tls_tx_records(sk, msg->msg_flags);
1148         }
1149
1150 send_end:
1151         ret = sk_stream_error(sk, msg->msg_flags, ret);
1152
1153         release_sock(sk);
1154         mutex_unlock(&tls_ctx->tx_lock);
1155         return copied > 0 ? copied : ret;
1156 }
1157
1158 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1159                               int offset, size_t size, int flags)
1160 {
1161         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1162         struct tls_context *tls_ctx = tls_get_ctx(sk);
1163         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1164         struct tls_prot_info *prot = &tls_ctx->prot_info;
1165         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1166         struct sk_msg *msg_pl;
1167         struct tls_rec *rec;
1168         int num_async = 0;
1169         ssize_t copied = 0;
1170         bool full_record;
1171         int record_room;
1172         int ret = 0;
1173         bool eor;
1174
1175         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1176         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1177
1178         /* Call the sk_stream functions to manage the sndbuf mem. */
1179         while (size > 0) {
1180                 size_t copy, required_size;
1181
1182                 if (sk->sk_err) {
1183                         ret = -sk->sk_err;
1184                         goto sendpage_end;
1185                 }
1186
1187                 if (ctx->open_rec)
1188                         rec = ctx->open_rec;
1189                 else
1190                         rec = ctx->open_rec = tls_get_rec(sk);
1191                 if (!rec) {
1192                         ret = -ENOMEM;
1193                         goto sendpage_end;
1194                 }
1195
1196                 msg_pl = &rec->msg_plaintext;
1197
1198                 full_record = false;
1199                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1200                 copy = size;
1201                 if (copy >= record_room) {
1202                         copy = record_room;
1203                         full_record = true;
1204                 }
1205
1206                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1207
1208                 if (!sk_stream_memory_free(sk))
1209                         goto wait_for_sndbuf;
1210 alloc_payload:
1211                 ret = tls_alloc_encrypted_msg(sk, required_size);
1212                 if (ret) {
1213                         if (ret != -ENOSPC)
1214                                 goto wait_for_memory;
1215
1216                         /* Adjust copy according to the amount that was
1217                          * actually allocated. The difference is due
1218                          * to max sg elements limit
1219                          */
1220                         copy -= required_size - msg_pl->sg.size;
1221                         full_record = true;
1222                 }
1223
1224                 sk_msg_page_add(msg_pl, page, copy, offset);
1225                 sk_mem_charge(sk, copy);
1226
1227                 offset += copy;
1228                 size -= copy;
1229                 copied += copy;
1230
1231                 tls_ctx->pending_open_record_frags = true;
1232                 if (full_record || eor || sk_msg_full(msg_pl)) {
1233                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1234                                                   record_type, &copied, flags);
1235                         if (ret) {
1236                                 if (ret == -EINPROGRESS)
1237                                         num_async++;
1238                                 else if (ret == -ENOMEM)
1239                                         goto wait_for_memory;
1240                                 else if (ret != -EAGAIN) {
1241                                         if (ret == -ENOSPC)
1242                                                 ret = 0;
1243                                         goto sendpage_end;
1244                                 }
1245                         }
1246                 }
1247                 continue;
1248 wait_for_sndbuf:
1249                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1250 wait_for_memory:
1251                 ret = sk_stream_wait_memory(sk, &timeo);
1252                 if (ret) {
1253                         if (ctx->open_rec)
1254                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1255                         goto sendpage_end;
1256                 }
1257
1258                 if (ctx->open_rec)
1259                         goto alloc_payload;
1260         }
1261
1262         if (num_async) {
1263                 /* Transmit if any encryptions have completed */
1264                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1265                         cancel_delayed_work(&ctx->tx_work.work);
1266                         tls_tx_records(sk, flags);
1267                 }
1268         }
1269 sendpage_end:
1270         ret = sk_stream_error(sk, flags, ret);
1271         return copied > 0 ? copied : ret;
1272 }
1273
1274 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1275                            int offset, size_t size, int flags)
1276 {
1277         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1278                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1279                       MSG_NO_SHARED_FRAGS))
1280                 return -EOPNOTSUPP;
1281
1282         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1283 }
1284
1285 int tls_sw_sendpage(struct sock *sk, struct page *page,
1286                     int offset, size_t size, int flags)
1287 {
1288         struct tls_context *tls_ctx = tls_get_ctx(sk);
1289         int ret;
1290
1291         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1292                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1293                 return -EOPNOTSUPP;
1294
1295         ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1296         if (ret)
1297                 return ret;
1298         lock_sock(sk);
1299         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1300         release_sock(sk);
1301         mutex_unlock(&tls_ctx->tx_lock);
1302         return ret;
1303 }
1304
1305 static int
1306 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1307                 bool released)
1308 {
1309         struct tls_context *tls_ctx = tls_get_ctx(sk);
1310         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1311         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1312         long timeo;
1313
1314         timeo = sock_rcvtimeo(sk, nonblock);
1315
1316         while (!tls_strp_msg_ready(ctx)) {
1317                 if (!sk_psock_queue_empty(psock))
1318                         return 0;
1319
1320                 if (sk->sk_err)
1321                         return sock_error(sk);
1322
1323                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1324                         tls_strp_check_rcv(&ctx->strp);
1325                         if (tls_strp_msg_ready(ctx))
1326                                 break;
1327                 }
1328
1329                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1330                         return 0;
1331
1332                 if (sock_flag(sk, SOCK_DONE))
1333                         return 0;
1334
1335                 if (!timeo)
1336                         return -EAGAIN;
1337
1338                 released = true;
1339                 add_wait_queue(sk_sleep(sk), &wait);
1340                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1341                 sk_wait_event(sk, &timeo,
1342                               tls_strp_msg_ready(ctx) ||
1343                               !sk_psock_queue_empty(psock),
1344                               &wait);
1345                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1346                 remove_wait_queue(sk_sleep(sk), &wait);
1347
1348                 /* Handle signals */
1349                 if (signal_pending(current))
1350                         return sock_intr_errno(timeo);
1351         }
1352
1353         tls_strp_msg_load(&ctx->strp, released);
1354
1355         return 1;
1356 }
1357
1358 static int tls_setup_from_iter(struct iov_iter *from,
1359                                int length, int *pages_used,
1360                                struct scatterlist *to,
1361                                int to_max_pages)
1362 {
1363         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1364         struct page *pages[MAX_SKB_FRAGS];
1365         unsigned int size = 0;
1366         ssize_t copied, use;
1367         size_t offset;
1368
1369         while (length > 0) {
1370                 i = 0;
1371                 maxpages = to_max_pages - num_elem;
1372                 if (maxpages == 0) {
1373                         rc = -EFAULT;
1374                         goto out;
1375                 }
1376                 copied = iov_iter_get_pages2(from, pages,
1377                                             length,
1378                                             maxpages, &offset);
1379                 if (copied <= 0) {
1380                         rc = -EFAULT;
1381                         goto out;
1382                 }
1383
1384                 length -= copied;
1385                 size += copied;
1386                 while (copied) {
1387                         use = min_t(int, copied, PAGE_SIZE - offset);
1388
1389                         sg_set_page(&to[num_elem],
1390                                     pages[i], use, offset);
1391                         sg_unmark_end(&to[num_elem]);
1392                         /* We do not uncharge memory from this API */
1393
1394                         offset = 0;
1395                         copied -= use;
1396
1397                         i++;
1398                         num_elem++;
1399                 }
1400         }
1401         /* Mark the end in the last sg entry if newly added */
1402         if (num_elem > *pages_used)
1403                 sg_mark_end(&to[num_elem - 1]);
1404 out:
1405         if (rc)
1406                 iov_iter_revert(from, size);
1407         *pages_used = num_elem;
1408
1409         return rc;
1410 }
1411
1412 static struct sk_buff *
1413 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1414                      unsigned int full_len)
1415 {
1416         struct strp_msg *clr_rxm;
1417         struct sk_buff *clr_skb;
1418         int err;
1419
1420         clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1421                                        &err, sk->sk_allocation);
1422         if (!clr_skb)
1423                 return NULL;
1424
1425         skb_copy_header(clr_skb, skb);
1426         clr_skb->len = full_len;
1427         clr_skb->data_len = full_len;
1428
1429         clr_rxm = strp_msg(clr_skb);
1430         clr_rxm->offset = 0;
1431
1432         return clr_skb;
1433 }
1434
1435 /* Decrypt handlers
1436  *
1437  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1438  * They must transform the darg in/out argument are as follows:
1439  *       |          Input            |         Output
1440  * -------------------------------------------------------------------
1441  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1442  * async | Async decrypt allowed     | Async crypto used / in progress
1443  *   skb |            *              | Output skb
1444  *
1445  * If ZC decryption was performed darg.skb will point to the input skb.
1446  */
1447
1448 /* This function decrypts the input skb into either out_iov or in out_sg
1449  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1450  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1451  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1452  * NULL, then the decryption happens inside skb buffers itself, i.e.
1453  * zero-copy gets disabled and 'darg->zc' is updated.
1454  */
1455 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1456                           struct scatterlist *out_sg,
1457                           struct tls_decrypt_arg *darg)
1458 {
1459         struct tls_context *tls_ctx = tls_get_ctx(sk);
1460         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1461         struct tls_prot_info *prot = &tls_ctx->prot_info;
1462         int n_sgin, n_sgout, aead_size, err, pages = 0;
1463         struct sk_buff *skb = tls_strp_msg(ctx);
1464         const struct strp_msg *rxm = strp_msg(skb);
1465         const struct tls_msg *tlm = tls_msg(skb);
1466         struct aead_request *aead_req;
1467         struct scatterlist *sgin = NULL;
1468         struct scatterlist *sgout = NULL;
1469         const int data_len = rxm->full_len - prot->overhead_size;
1470         int tail_pages = !!prot->tail_size;
1471         struct tls_decrypt_ctx *dctx;
1472         struct sk_buff *clear_skb;
1473         int iv_offset = 0;
1474         u8 *mem;
1475
1476         n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1477                          rxm->full_len - prot->prepend_size);
1478         if (n_sgin < 1)
1479                 return n_sgin ?: -EBADMSG;
1480
1481         if (darg->zc && (out_iov || out_sg)) {
1482                 clear_skb = NULL;
1483
1484                 if (out_iov)
1485                         n_sgout = 1 + tail_pages +
1486                                 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1487                 else
1488                         n_sgout = sg_nents(out_sg);
1489         } else {
1490                 darg->zc = false;
1491
1492                 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1493                 if (!clear_skb)
1494                         return -ENOMEM;
1495
1496                 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1497         }
1498
1499         /* Increment to accommodate AAD */
1500         n_sgin = n_sgin + 1;
1501
1502         /* Allocate a single block of memory which contains
1503          *   aead_req || tls_decrypt_ctx.
1504          * Both structs are variable length.
1505          */
1506         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1507         aead_size = ALIGN(aead_size, __alignof__(*dctx));
1508         mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1509                       sk->sk_allocation);
1510         if (!mem) {
1511                 err = -ENOMEM;
1512                 goto exit_free_skb;
1513         }
1514
1515         /* Segment the allocated memory */
1516         aead_req = (struct aead_request *)mem;
1517         dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1518         dctx->sk = sk;
1519         sgin = &dctx->sg[0];
1520         sgout = &dctx->sg[n_sgin];
1521
1522         /* For CCM based ciphers, first byte of nonce+iv is a constant */
1523         switch (prot->cipher_type) {
1524         case TLS_CIPHER_AES_CCM_128:
1525                 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1526                 iv_offset = 1;
1527                 break;
1528         case TLS_CIPHER_SM4_CCM:
1529                 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1530                 iv_offset = 1;
1531                 break;
1532         }
1533
1534         /* Prepare IV */
1535         if (prot->version == TLS_1_3_VERSION ||
1536             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1537                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1538                        prot->iv_size + prot->salt_size);
1539         } else {
1540                 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1541                                     &dctx->iv[iv_offset] + prot->salt_size,
1542                                     prot->iv_size);
1543                 if (err < 0)
1544                         goto exit_free;
1545                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1546         }
1547         tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1548
1549         /* Prepare AAD */
1550         tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1551                      prot->tail_size,
1552                      tls_ctx->rx.rec_seq, tlm->control, prot);
1553
1554         /* Prepare sgin */
1555         sg_init_table(sgin, n_sgin);
1556         sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1557         err = skb_to_sgvec(skb, &sgin[1],
1558                            rxm->offset + prot->prepend_size,
1559                            rxm->full_len - prot->prepend_size);
1560         if (err < 0)
1561                 goto exit_free;
1562
1563         if (clear_skb) {
1564                 sg_init_table(sgout, n_sgout);
1565                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1566
1567                 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1568                                    data_len + prot->tail_size);
1569                 if (err < 0)
1570                         goto exit_free;
1571         } else if (out_iov) {
1572                 sg_init_table(sgout, n_sgout);
1573                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1574
1575                 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1576                                           (n_sgout - 1 - tail_pages));
1577                 if (err < 0)
1578                         goto exit_free_pages;
1579
1580                 if (prot->tail_size) {
1581                         sg_unmark_end(&sgout[pages]);
1582                         sg_set_buf(&sgout[pages + 1], &dctx->tail,
1583                                    prot->tail_size);
1584                         sg_mark_end(&sgout[pages + 1]);
1585                 }
1586         } else if (out_sg) {
1587                 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1588         }
1589
1590         /* Prepare and submit AEAD request */
1591         err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1592                                 data_len + prot->tail_size, aead_req, darg);
1593         if (err)
1594                 goto exit_free_pages;
1595
1596         darg->skb = clear_skb ?: tls_strp_msg(ctx);
1597         clear_skb = NULL;
1598
1599         if (unlikely(darg->async)) {
1600                 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1601                 if (err)
1602                         __skb_queue_tail(&ctx->async_hold, darg->skb);
1603                 return err;
1604         }
1605
1606         if (prot->tail_size)
1607                 darg->tail = dctx->tail;
1608
1609 exit_free_pages:
1610         /* Release the pages in case iov was mapped to pages */
1611         for (; pages > 0; pages--)
1612                 put_page(sg_page(&sgout[pages]));
1613 exit_free:
1614         kfree(mem);
1615 exit_free_skb:
1616         consume_skb(clear_skb);
1617         return err;
1618 }
1619
1620 static int
1621 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1622                struct msghdr *msg, struct tls_decrypt_arg *darg)
1623 {
1624         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1625         struct tls_prot_info *prot = &tls_ctx->prot_info;
1626         struct strp_msg *rxm;
1627         int pad, err;
1628
1629         err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1630         if (err < 0) {
1631                 if (err == -EBADMSG)
1632                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1633                 return err;
1634         }
1635         /* keep going even for ->async, the code below is TLS 1.3 */
1636
1637         /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1638         if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1639                      darg->tail != TLS_RECORD_TYPE_DATA)) {
1640                 darg->zc = false;
1641                 if (!darg->tail)
1642                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1643                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1644                 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1645         }
1646
1647         pad = tls_padding_length(prot, darg->skb, darg);
1648         if (pad < 0) {
1649                 if (darg->skb != tls_strp_msg(ctx))
1650                         consume_skb(darg->skb);
1651                 return pad;
1652         }
1653
1654         rxm = strp_msg(darg->skb);
1655         rxm->full_len -= pad;
1656
1657         return 0;
1658 }
1659
1660 static int
1661 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1662                    struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1663 {
1664         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1665         struct tls_prot_info *prot = &tls_ctx->prot_info;
1666         struct strp_msg *rxm;
1667         int pad, err;
1668
1669         if (tls_ctx->rx_conf != TLS_HW)
1670                 return 0;
1671
1672         err = tls_device_decrypted(sk, tls_ctx);
1673         if (err <= 0)
1674                 return err;
1675
1676         pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1677         if (pad < 0)
1678                 return pad;
1679
1680         darg->async = false;
1681         darg->skb = tls_strp_msg(ctx);
1682         /* ->zc downgrade check, in case TLS 1.3 gets here */
1683         darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1684                       tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1685
1686         rxm = strp_msg(darg->skb);
1687         rxm->full_len -= pad;
1688
1689         if (!darg->zc) {
1690                 /* Non-ZC case needs a real skb */
1691                 darg->skb = tls_strp_msg_detach(ctx);
1692                 if (!darg->skb)
1693                         return -ENOMEM;
1694         } else {
1695                 unsigned int off, len;
1696
1697                 /* In ZC case nobody cares about the output skb.
1698                  * Just copy the data here. Note the skb is not fully trimmed.
1699                  */
1700                 off = rxm->offset + prot->prepend_size;
1701                 len = rxm->full_len - prot->overhead_size;
1702
1703                 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1704                 if (err)
1705                         return err;
1706         }
1707         return 1;
1708 }
1709
1710 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1711                              struct tls_decrypt_arg *darg)
1712 {
1713         struct tls_context *tls_ctx = tls_get_ctx(sk);
1714         struct tls_prot_info *prot = &tls_ctx->prot_info;
1715         struct strp_msg *rxm;
1716         int err;
1717
1718         err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1719         if (!err)
1720                 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1721         if (err < 0)
1722                 return err;
1723
1724         rxm = strp_msg(darg->skb);
1725         rxm->offset += prot->prepend_size;
1726         rxm->full_len -= prot->overhead_size;
1727         tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1728
1729         return 0;
1730 }
1731
1732 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1733 {
1734         struct tls_decrypt_arg darg = { .zc = true, };
1735
1736         return tls_decrypt_sg(sk, NULL, sgout, &darg);
1737 }
1738
1739 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1740                                    u8 *control)
1741 {
1742         int err;
1743
1744         if (!*control) {
1745                 *control = tlm->control;
1746                 if (!*control)
1747                         return -EBADMSG;
1748
1749                 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1750                                sizeof(*control), control);
1751                 if (*control != TLS_RECORD_TYPE_DATA) {
1752                         if (err || msg->msg_flags & MSG_CTRUNC)
1753                                 return -EIO;
1754                 }
1755         } else if (*control != tlm->control) {
1756                 return 0;
1757         }
1758
1759         return 1;
1760 }
1761
1762 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1763 {
1764         tls_strp_msg_done(&ctx->strp);
1765 }
1766
1767 /* This function traverses the rx_list in tls receive context to copies the
1768  * decrypted records into the buffer provided by caller zero copy is not
1769  * true. Further, the records are removed from the rx_list if it is not a peek
1770  * case and the record has been consumed completely.
1771  */
1772 static int process_rx_list(struct tls_sw_context_rx *ctx,
1773                            struct msghdr *msg,
1774                            u8 *control,
1775                            size_t skip,
1776                            size_t len,
1777                            bool is_peek)
1778 {
1779         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1780         struct tls_msg *tlm;
1781         ssize_t copied = 0;
1782         int err;
1783
1784         while (skip && skb) {
1785                 struct strp_msg *rxm = strp_msg(skb);
1786                 tlm = tls_msg(skb);
1787
1788                 err = tls_record_content_type(msg, tlm, control);
1789                 if (err <= 0)
1790                         goto out;
1791
1792                 if (skip < rxm->full_len)
1793                         break;
1794
1795                 skip = skip - rxm->full_len;
1796                 skb = skb_peek_next(skb, &ctx->rx_list);
1797         }
1798
1799         while (len && skb) {
1800                 struct sk_buff *next_skb;
1801                 struct strp_msg *rxm = strp_msg(skb);
1802                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1803
1804                 tlm = tls_msg(skb);
1805
1806                 err = tls_record_content_type(msg, tlm, control);
1807                 if (err <= 0)
1808                         goto out;
1809
1810                 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1811                                             msg, chunk);
1812                 if (err < 0)
1813                         goto out;
1814
1815                 len = len - chunk;
1816                 copied = copied + chunk;
1817
1818                 /* Consume the data from record if it is non-peek case*/
1819                 if (!is_peek) {
1820                         rxm->offset = rxm->offset + chunk;
1821                         rxm->full_len = rxm->full_len - chunk;
1822
1823                         /* Return if there is unconsumed data in the record */
1824                         if (rxm->full_len - skip)
1825                                 break;
1826                 }
1827
1828                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1829                  * So from the 2nd record, 'skip' should be 0.
1830                  */
1831                 skip = 0;
1832
1833                 if (msg)
1834                         msg->msg_flags |= MSG_EOR;
1835
1836                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1837
1838                 if (!is_peek) {
1839                         __skb_unlink(skb, &ctx->rx_list);
1840                         consume_skb(skb);
1841                 }
1842
1843                 skb = next_skb;
1844         }
1845         err = 0;
1846
1847 out:
1848         return copied ? : err;
1849 }
1850
1851 static bool
1852 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1853                        size_t len_left, size_t decrypted, ssize_t done,
1854                        size_t *flushed_at)
1855 {
1856         size_t max_rec;
1857
1858         if (len_left <= decrypted)
1859                 return false;
1860
1861         max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1862         if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1863                 return false;
1864
1865         *flushed_at = done;
1866         return sk_flush_backlog(sk);
1867 }
1868
1869 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1870                               bool nonblock)
1871 {
1872         long timeo;
1873         int err;
1874
1875         lock_sock(sk);
1876
1877         timeo = sock_rcvtimeo(sk, nonblock);
1878
1879         while (unlikely(ctx->reader_present)) {
1880                 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1881
1882                 ctx->reader_contended = 1;
1883
1884                 add_wait_queue(&ctx->wq, &wait);
1885                 sk_wait_event(sk, &timeo,
1886                               !READ_ONCE(ctx->reader_present), &wait);
1887                 remove_wait_queue(&ctx->wq, &wait);
1888
1889                 if (timeo <= 0) {
1890                         err = -EAGAIN;
1891                         goto err_unlock;
1892                 }
1893                 if (signal_pending(current)) {
1894                         err = sock_intr_errno(timeo);
1895                         goto err_unlock;
1896                 }
1897         }
1898
1899         WRITE_ONCE(ctx->reader_present, 1);
1900
1901         return 0;
1902
1903 err_unlock:
1904         release_sock(sk);
1905         return err;
1906 }
1907
1908 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1909 {
1910         if (unlikely(ctx->reader_contended)) {
1911                 if (wq_has_sleeper(&ctx->wq))
1912                         wake_up(&ctx->wq);
1913                 else
1914                         ctx->reader_contended = 0;
1915
1916                 WARN_ON_ONCE(!ctx->reader_present);
1917         }
1918
1919         WRITE_ONCE(ctx->reader_present, 0);
1920         release_sock(sk);
1921 }
1922
1923 int tls_sw_recvmsg(struct sock *sk,
1924                    struct msghdr *msg,
1925                    size_t len,
1926                    int flags,
1927                    int *addr_len)
1928 {
1929         struct tls_context *tls_ctx = tls_get_ctx(sk);
1930         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1931         struct tls_prot_info *prot = &tls_ctx->prot_info;
1932         ssize_t decrypted = 0, async_copy_bytes = 0;
1933         struct sk_psock *psock;
1934         unsigned char control = 0;
1935         size_t flushed_at = 0;
1936         struct strp_msg *rxm;
1937         struct tls_msg *tlm;
1938         ssize_t copied = 0;
1939         bool async = false;
1940         int target, err;
1941         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1942         bool is_peek = flags & MSG_PEEK;
1943         bool released = true;
1944         bool bpf_strp_enabled;
1945         bool zc_capable;
1946
1947         if (unlikely(flags & MSG_ERRQUEUE))
1948                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1949
1950         psock = sk_psock_get(sk);
1951         err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1952         if (err < 0)
1953                 return err;
1954         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1955
1956         /* If crypto failed the connection is broken */
1957         err = ctx->async_wait.err;
1958         if (err)
1959                 goto end;
1960
1961         /* Process pending decrypted records. It must be non-zero-copy */
1962         err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1963         if (err < 0)
1964                 goto end;
1965
1966         copied = err;
1967         if (len <= copied)
1968                 goto end;
1969
1970         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1971         len = len - copied;
1972
1973         zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1974                 ctx->zc_capable;
1975         decrypted = 0;
1976         while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1977                 struct tls_decrypt_arg darg;
1978                 int to_decrypt, chunk;
1979
1980                 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1981                                       released);
1982                 if (err <= 0) {
1983                         if (psock) {
1984                                 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1985                                                        flags);
1986                                 if (chunk > 0) {
1987                                         decrypted += chunk;
1988                                         len -= chunk;
1989                                         continue;
1990                                 }
1991                         }
1992                         goto recv_end;
1993                 }
1994
1995                 memset(&darg.inargs, 0, sizeof(darg.inargs));
1996
1997                 rxm = strp_msg(tls_strp_msg(ctx));
1998                 tlm = tls_msg(tls_strp_msg(ctx));
1999
2000                 to_decrypt = rxm->full_len - prot->overhead_size;
2001
2002                 if (zc_capable && to_decrypt <= len &&
2003                     tlm->control == TLS_RECORD_TYPE_DATA)
2004                         darg.zc = true;
2005
2006                 /* Do not use async mode if record is non-data */
2007                 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2008                         darg.async = ctx->async_capable;
2009                 else
2010                         darg.async = false;
2011
2012                 err = tls_rx_one_record(sk, msg, &darg);
2013                 if (err < 0) {
2014                         tls_err_abort(sk, -EBADMSG);
2015                         goto recv_end;
2016                 }
2017
2018                 async |= darg.async;
2019
2020                 /* If the type of records being processed is not known yet,
2021                  * set it to record type just dequeued. If it is already known,
2022                  * but does not match the record type just dequeued, go to end.
2023                  * We always get record type here since for tls1.2, record type
2024                  * is known just after record is dequeued from stream parser.
2025                  * For tls1.3, we disable async.
2026                  */
2027                 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2028                 if (err <= 0) {
2029                         DEBUG_NET_WARN_ON_ONCE(darg.zc);
2030                         tls_rx_rec_done(ctx);
2031 put_on_rx_list_err:
2032                         __skb_queue_tail(&ctx->rx_list, darg.skb);
2033                         goto recv_end;
2034                 }
2035
2036                 /* periodically flush backlog, and feed strparser */
2037                 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2038                                                   decrypted + copied,
2039                                                   &flushed_at);
2040
2041                 /* TLS 1.3 may have updated the length by more than overhead */
2042                 rxm = strp_msg(darg.skb);
2043                 chunk = rxm->full_len;
2044                 tls_rx_rec_done(ctx);
2045
2046                 if (!darg.zc) {
2047                         bool partially_consumed = chunk > len;
2048                         struct sk_buff *skb = darg.skb;
2049
2050                         DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2051
2052                         if (async) {
2053                                 /* TLS 1.2-only, to_decrypt must be text len */
2054                                 chunk = min_t(int, to_decrypt, len);
2055                                 async_copy_bytes += chunk;
2056 put_on_rx_list:
2057                                 decrypted += chunk;
2058                                 len -= chunk;
2059                                 __skb_queue_tail(&ctx->rx_list, skb);
2060                                 continue;
2061                         }
2062
2063                         if (bpf_strp_enabled) {
2064                                 released = true;
2065                                 err = sk_psock_tls_strp_read(psock, skb);
2066                                 if (err != __SK_PASS) {
2067                                         rxm->offset = rxm->offset + rxm->full_len;
2068                                         rxm->full_len = 0;
2069                                         if (err == __SK_DROP)
2070                                                 consume_skb(skb);
2071                                         continue;
2072                                 }
2073                         }
2074
2075                         if (partially_consumed)
2076                                 chunk = len;
2077
2078                         err = skb_copy_datagram_msg(skb, rxm->offset,
2079                                                     msg, chunk);
2080                         if (err < 0)
2081                                 goto put_on_rx_list_err;
2082
2083                         if (is_peek)
2084                                 goto put_on_rx_list;
2085
2086                         if (partially_consumed) {
2087                                 rxm->offset += chunk;
2088                                 rxm->full_len -= chunk;
2089                                 goto put_on_rx_list;
2090                         }
2091
2092                         consume_skb(skb);
2093                 }
2094
2095                 decrypted += chunk;
2096                 len -= chunk;
2097
2098                 /* Return full control message to userspace before trying
2099                  * to parse another message type
2100                  */
2101                 msg->msg_flags |= MSG_EOR;
2102                 if (control != TLS_RECORD_TYPE_DATA)
2103                         break;
2104         }
2105
2106 recv_end:
2107         if (async) {
2108                 int ret, pending;
2109
2110                 /* Wait for all previously submitted records to be decrypted */
2111                 spin_lock_bh(&ctx->decrypt_compl_lock);
2112                 reinit_completion(&ctx->async_wait.completion);
2113                 pending = atomic_read(&ctx->decrypt_pending);
2114                 spin_unlock_bh(&ctx->decrypt_compl_lock);
2115                 ret = 0;
2116                 if (pending)
2117                         ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2118                 __skb_queue_purge(&ctx->async_hold);
2119
2120                 if (ret) {
2121                         if (err >= 0 || err == -EINPROGRESS)
2122                                 err = ret;
2123                         decrypted = 0;
2124                         goto end;
2125                 }
2126
2127                 /* Drain records from the rx_list & copy if required */
2128                 if (is_peek || is_kvec)
2129                         err = process_rx_list(ctx, msg, &control, copied,
2130                                               decrypted, is_peek);
2131                 else
2132                         err = process_rx_list(ctx, msg, &control, 0,
2133                                               async_copy_bytes, is_peek);
2134                 decrypted += max(err, 0);
2135         }
2136
2137         copied += decrypted;
2138
2139 end:
2140         tls_rx_reader_unlock(sk, ctx);
2141         if (psock)
2142                 sk_psock_put(sk, psock);
2143         return copied ? : err;
2144 }
2145
2146 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2147                            struct pipe_inode_info *pipe,
2148                            size_t len, unsigned int flags)
2149 {
2150         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2151         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2152         struct strp_msg *rxm = NULL;
2153         struct sock *sk = sock->sk;
2154         struct tls_msg *tlm;
2155         struct sk_buff *skb;
2156         ssize_t copied = 0;
2157         int chunk;
2158         int err;
2159
2160         err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2161         if (err < 0)
2162                 return err;
2163
2164         if (!skb_queue_empty(&ctx->rx_list)) {
2165                 skb = __skb_dequeue(&ctx->rx_list);
2166         } else {
2167                 struct tls_decrypt_arg darg;
2168
2169                 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2170                                       true);
2171                 if (err <= 0)
2172                         goto splice_read_end;
2173
2174                 memset(&darg.inargs, 0, sizeof(darg.inargs));
2175
2176                 err = tls_rx_one_record(sk, NULL, &darg);
2177                 if (err < 0) {
2178                         tls_err_abort(sk, -EBADMSG);
2179                         goto splice_read_end;
2180                 }
2181
2182                 tls_rx_rec_done(ctx);
2183                 skb = darg.skb;
2184         }
2185
2186         rxm = strp_msg(skb);
2187         tlm = tls_msg(skb);
2188
2189         /* splice does not support reading control messages */
2190         if (tlm->control != TLS_RECORD_TYPE_DATA) {
2191                 err = -EINVAL;
2192                 goto splice_requeue;
2193         }
2194
2195         chunk = min_t(unsigned int, rxm->full_len, len);
2196         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2197         if (copied < 0)
2198                 goto splice_requeue;
2199
2200         if (chunk < rxm->full_len) {
2201                 rxm->offset += len;
2202                 rxm->full_len -= len;
2203                 goto splice_requeue;
2204         }
2205
2206         consume_skb(skb);
2207
2208 splice_read_end:
2209         tls_rx_reader_unlock(sk, ctx);
2210         return copied ? : err;
2211
2212 splice_requeue:
2213         __skb_queue_head(&ctx->rx_list, skb);
2214         goto splice_read_end;
2215 }
2216
2217 bool tls_sw_sock_is_readable(struct sock *sk)
2218 {
2219         struct tls_context *tls_ctx = tls_get_ctx(sk);
2220         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2221         bool ingress_empty = true;
2222         struct sk_psock *psock;
2223
2224         rcu_read_lock();
2225         psock = sk_psock(sk);
2226         if (psock)
2227                 ingress_empty = list_empty(&psock->ingress_msg);
2228         rcu_read_unlock();
2229
2230         return !ingress_empty || tls_strp_msg_ready(ctx) ||
2231                 !skb_queue_empty(&ctx->rx_list);
2232 }
2233
2234 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2235 {
2236         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2237         struct tls_prot_info *prot = &tls_ctx->prot_info;
2238         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2239         size_t cipher_overhead;
2240         size_t data_len = 0;
2241         int ret;
2242
2243         /* Verify that we have a full TLS header, or wait for more data */
2244         if (strp->stm.offset + prot->prepend_size > skb->len)
2245                 return 0;
2246
2247         /* Sanity-check size of on-stack buffer. */
2248         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2249                 ret = -EINVAL;
2250                 goto read_failure;
2251         }
2252
2253         /* Linearize header to local buffer */
2254         ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2255         if (ret < 0)
2256                 goto read_failure;
2257
2258         strp->mark = header[0];
2259
2260         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2261
2262         cipher_overhead = prot->tag_size;
2263         if (prot->version != TLS_1_3_VERSION &&
2264             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2265                 cipher_overhead += prot->iv_size;
2266
2267         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2268             prot->tail_size) {
2269                 ret = -EMSGSIZE;
2270                 goto read_failure;
2271         }
2272         if (data_len < cipher_overhead) {
2273                 ret = -EBADMSG;
2274                 goto read_failure;
2275         }
2276
2277         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2278         if (header[1] != TLS_1_2_VERSION_MINOR ||
2279             header[2] != TLS_1_2_VERSION_MAJOR) {
2280                 ret = -EINVAL;
2281                 goto read_failure;
2282         }
2283
2284         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2285                                      TCP_SKB_CB(skb)->seq + strp->stm.offset);
2286         return data_len + TLS_HEADER_SIZE;
2287
2288 read_failure:
2289         tls_err_abort(strp->sk, ret);
2290
2291         return ret;
2292 }
2293
2294 void tls_rx_msg_ready(struct tls_strparser *strp)
2295 {
2296         struct tls_sw_context_rx *ctx;
2297
2298         ctx = container_of(strp, struct tls_sw_context_rx, strp);
2299         ctx->saved_data_ready(strp->sk);
2300 }
2301
2302 static void tls_data_ready(struct sock *sk)
2303 {
2304         struct tls_context *tls_ctx = tls_get_ctx(sk);
2305         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2306         struct sk_psock *psock;
2307
2308         trace_sk_data_ready(sk);
2309
2310         tls_strp_data_ready(&ctx->strp);
2311
2312         psock = sk_psock_get(sk);
2313         if (psock) {
2314                 if (!list_empty(&psock->ingress_msg))
2315                         ctx->saved_data_ready(sk);
2316                 sk_psock_put(sk, psock);
2317         }
2318 }
2319
2320 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2321 {
2322         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2323
2324         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2325         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2326         cancel_delayed_work_sync(&ctx->tx_work.work);
2327 }
2328
2329 void tls_sw_release_resources_tx(struct sock *sk)
2330 {
2331         struct tls_context *tls_ctx = tls_get_ctx(sk);
2332         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2333         struct tls_rec *rec, *tmp;
2334         int pending;
2335
2336         /* Wait for any pending async encryptions to complete */
2337         spin_lock_bh(&ctx->encrypt_compl_lock);
2338         ctx->async_notify = true;
2339         pending = atomic_read(&ctx->encrypt_pending);
2340         spin_unlock_bh(&ctx->encrypt_compl_lock);
2341
2342         if (pending)
2343                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2344
2345         tls_tx_records(sk, -1);
2346
2347         /* Free up un-sent records in tx_list. First, free
2348          * the partially sent record if any at head of tx_list.
2349          */
2350         if (tls_ctx->partially_sent_record) {
2351                 tls_free_partial_record(sk, tls_ctx);
2352                 rec = list_first_entry(&ctx->tx_list,
2353                                        struct tls_rec, list);
2354                 list_del(&rec->list);
2355                 sk_msg_free(sk, &rec->msg_plaintext);
2356                 kfree(rec);
2357         }
2358
2359         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2360                 list_del(&rec->list);
2361                 sk_msg_free(sk, &rec->msg_encrypted);
2362                 sk_msg_free(sk, &rec->msg_plaintext);
2363                 kfree(rec);
2364         }
2365
2366         crypto_free_aead(ctx->aead_send);
2367         tls_free_open_rec(sk);
2368 }
2369
2370 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2371 {
2372         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2373
2374         kfree(ctx);
2375 }
2376
2377 void tls_sw_release_resources_rx(struct sock *sk)
2378 {
2379         struct tls_context *tls_ctx = tls_get_ctx(sk);
2380         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2381
2382         kfree(tls_ctx->rx.rec_seq);
2383         kfree(tls_ctx->rx.iv);
2384
2385         if (ctx->aead_recv) {
2386                 __skb_queue_purge(&ctx->rx_list);
2387                 crypto_free_aead(ctx->aead_recv);
2388                 tls_strp_stop(&ctx->strp);
2389                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2390                  * we still want to tls_strp_stop(), but sk->sk_data_ready was
2391                  * never swapped.
2392                  */
2393                 if (ctx->saved_data_ready) {
2394                         write_lock_bh(&sk->sk_callback_lock);
2395                         sk->sk_data_ready = ctx->saved_data_ready;
2396                         write_unlock_bh(&sk->sk_callback_lock);
2397                 }
2398         }
2399 }
2400
2401 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2402 {
2403         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2404
2405         tls_strp_done(&ctx->strp);
2406 }
2407
2408 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2409 {
2410         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2411
2412         kfree(ctx);
2413 }
2414
2415 void tls_sw_free_resources_rx(struct sock *sk)
2416 {
2417         struct tls_context *tls_ctx = tls_get_ctx(sk);
2418
2419         tls_sw_release_resources_rx(sk);
2420         tls_sw_free_ctx_rx(tls_ctx);
2421 }
2422
2423 /* The work handler to transmitt the encrypted records in tx_list */
2424 static void tx_work_handler(struct work_struct *work)
2425 {
2426         struct delayed_work *delayed_work = to_delayed_work(work);
2427         struct tx_work *tx_work = container_of(delayed_work,
2428                                                struct tx_work, work);
2429         struct sock *sk = tx_work->sk;
2430         struct tls_context *tls_ctx = tls_get_ctx(sk);
2431         struct tls_sw_context_tx *ctx;
2432
2433         if (unlikely(!tls_ctx))
2434                 return;
2435
2436         ctx = tls_sw_ctx_tx(tls_ctx);
2437         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2438                 return;
2439
2440         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2441                 return;
2442
2443         if (mutex_trylock(&tls_ctx->tx_lock)) {
2444                 lock_sock(sk);
2445                 tls_tx_records(sk, -1);
2446                 release_sock(sk);
2447                 mutex_unlock(&tls_ctx->tx_lock);
2448         } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2449                 /* Someone is holding the tx_lock, they will likely run Tx
2450                  * and cancel the work on their way out of the lock section.
2451                  * Schedule a long delay just in case.
2452                  */
2453                 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2454         }
2455 }
2456
2457 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2458 {
2459         struct tls_rec *rec;
2460
2461         rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2462         if (!rec)
2463                 return false;
2464
2465         return READ_ONCE(rec->tx_ready);
2466 }
2467
2468 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2469 {
2470         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2471
2472         /* Schedule the transmission if tx list is ready */
2473         if (tls_is_tx_ready(tx_ctx) &&
2474             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2475                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2476 }
2477
2478 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2479 {
2480         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2481
2482         write_lock_bh(&sk->sk_callback_lock);
2483         rx_ctx->saved_data_ready = sk->sk_data_ready;
2484         sk->sk_data_ready = tls_data_ready;
2485         write_unlock_bh(&sk->sk_callback_lock);
2486 }
2487
2488 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2489 {
2490         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2491
2492         rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2493                 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2494 }
2495
2496 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2497 {
2498         struct tls_context *tls_ctx = tls_get_ctx(sk);
2499         struct tls_prot_info *prot = &tls_ctx->prot_info;
2500         struct tls_crypto_info *crypto_info;
2501         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2502         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2503         struct cipher_context *cctx;
2504         struct crypto_aead **aead;
2505         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2506         struct crypto_tfm *tfm;
2507         char *iv, *rec_seq, *key, *salt, *cipher_name;
2508         size_t keysize;
2509         int rc = 0;
2510
2511         if (!ctx) {
2512                 rc = -EINVAL;
2513                 goto out;
2514         }
2515
2516         if (tx) {
2517                 if (!ctx->priv_ctx_tx) {
2518                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2519                         if (!sw_ctx_tx) {
2520                                 rc = -ENOMEM;
2521                                 goto out;
2522                         }
2523                         ctx->priv_ctx_tx = sw_ctx_tx;
2524                 } else {
2525                         sw_ctx_tx =
2526                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2527                 }
2528         } else {
2529                 if (!ctx->priv_ctx_rx) {
2530                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2531                         if (!sw_ctx_rx) {
2532                                 rc = -ENOMEM;
2533                                 goto out;
2534                         }
2535                         ctx->priv_ctx_rx = sw_ctx_rx;
2536                 } else {
2537                         sw_ctx_rx =
2538                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2539                 }
2540         }
2541
2542         if (tx) {
2543                 crypto_init_wait(&sw_ctx_tx->async_wait);
2544                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2545                 crypto_info = &ctx->crypto_send.info;
2546                 cctx = &ctx->tx;
2547                 aead = &sw_ctx_tx->aead_send;
2548                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2549                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2550                 sw_ctx_tx->tx_work.sk = sk;
2551         } else {
2552                 crypto_init_wait(&sw_ctx_rx->async_wait);
2553                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2554                 init_waitqueue_head(&sw_ctx_rx->wq);
2555                 crypto_info = &ctx->crypto_recv.info;
2556                 cctx = &ctx->rx;
2557                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2558                 skb_queue_head_init(&sw_ctx_rx->async_hold);
2559                 aead = &sw_ctx_rx->aead_recv;
2560         }
2561
2562         switch (crypto_info->cipher_type) {
2563         case TLS_CIPHER_AES_GCM_128: {
2564                 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2565
2566                 gcm_128_info = (void *)crypto_info;
2567                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2568                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2569                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2570                 iv = gcm_128_info->iv;
2571                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2572                 rec_seq = gcm_128_info->rec_seq;
2573                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2574                 key = gcm_128_info->key;
2575                 salt = gcm_128_info->salt;
2576                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2577                 cipher_name = "gcm(aes)";
2578                 break;
2579         }
2580         case TLS_CIPHER_AES_GCM_256: {
2581                 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2582
2583                 gcm_256_info = (void *)crypto_info;
2584                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2585                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2586                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2587                 iv = gcm_256_info->iv;
2588                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2589                 rec_seq = gcm_256_info->rec_seq;
2590                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2591                 key = gcm_256_info->key;
2592                 salt = gcm_256_info->salt;
2593                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2594                 cipher_name = "gcm(aes)";
2595                 break;
2596         }
2597         case TLS_CIPHER_AES_CCM_128: {
2598                 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2599
2600                 ccm_128_info = (void *)crypto_info;
2601                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2602                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2603                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2604                 iv = ccm_128_info->iv;
2605                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2606                 rec_seq = ccm_128_info->rec_seq;
2607                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2608                 key = ccm_128_info->key;
2609                 salt = ccm_128_info->salt;
2610                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2611                 cipher_name = "ccm(aes)";
2612                 break;
2613         }
2614         case TLS_CIPHER_CHACHA20_POLY1305: {
2615                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2616
2617                 chacha20_poly1305_info = (void *)crypto_info;
2618                 nonce_size = 0;
2619                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2620                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2621                 iv = chacha20_poly1305_info->iv;
2622                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2623                 rec_seq = chacha20_poly1305_info->rec_seq;
2624                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2625                 key = chacha20_poly1305_info->key;
2626                 salt = chacha20_poly1305_info->salt;
2627                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2628                 cipher_name = "rfc7539(chacha20,poly1305)";
2629                 break;
2630         }
2631         case TLS_CIPHER_SM4_GCM: {
2632                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2633
2634                 sm4_gcm_info = (void *)crypto_info;
2635                 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2636                 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2637                 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2638                 iv = sm4_gcm_info->iv;
2639                 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2640                 rec_seq = sm4_gcm_info->rec_seq;
2641                 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2642                 key = sm4_gcm_info->key;
2643                 salt = sm4_gcm_info->salt;
2644                 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2645                 cipher_name = "gcm(sm4)";
2646                 break;
2647         }
2648         case TLS_CIPHER_SM4_CCM: {
2649                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2650
2651                 sm4_ccm_info = (void *)crypto_info;
2652                 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2653                 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2654                 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2655                 iv = sm4_ccm_info->iv;
2656                 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2657                 rec_seq = sm4_ccm_info->rec_seq;
2658                 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2659                 key = sm4_ccm_info->key;
2660                 salt = sm4_ccm_info->salt;
2661                 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2662                 cipher_name = "ccm(sm4)";
2663                 break;
2664         }
2665         case TLS_CIPHER_ARIA_GCM_128: {
2666                 struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2667
2668                 aria_gcm_128_info = (void *)crypto_info;
2669                 nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2670                 tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2671                 iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2672                 iv = aria_gcm_128_info->iv;
2673                 rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2674                 rec_seq = aria_gcm_128_info->rec_seq;
2675                 keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2676                 key = aria_gcm_128_info->key;
2677                 salt = aria_gcm_128_info->salt;
2678                 salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2679                 cipher_name = "gcm(aria)";
2680                 break;
2681         }
2682         case TLS_CIPHER_ARIA_GCM_256: {
2683                 struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2684
2685                 gcm_256_info = (void *)crypto_info;
2686                 nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2687                 tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2688                 iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2689                 iv = gcm_256_info->iv;
2690                 rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2691                 rec_seq = gcm_256_info->rec_seq;
2692                 keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2693                 key = gcm_256_info->key;
2694                 salt = gcm_256_info->salt;
2695                 salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2696                 cipher_name = "gcm(aria)";
2697                 break;
2698         }
2699         default:
2700                 rc = -EINVAL;
2701                 goto free_priv;
2702         }
2703
2704         if (crypto_info->version == TLS_1_3_VERSION) {
2705                 nonce_size = 0;
2706                 prot->aad_size = TLS_HEADER_SIZE;
2707                 prot->tail_size = 1;
2708         } else {
2709                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2710                 prot->tail_size = 0;
2711         }
2712
2713         /* Sanity-check the sizes for stack allocations. */
2714         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2715             rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2716             prot->aad_size > TLS_MAX_AAD_SIZE) {
2717                 rc = -EINVAL;
2718                 goto free_priv;
2719         }
2720
2721         prot->version = crypto_info->version;
2722         prot->cipher_type = crypto_info->cipher_type;
2723         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2724         prot->tag_size = tag_size;
2725         prot->overhead_size = prot->prepend_size +
2726                               prot->tag_size + prot->tail_size;
2727         prot->iv_size = iv_size;
2728         prot->salt_size = salt_size;
2729         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2730         if (!cctx->iv) {
2731                 rc = -ENOMEM;
2732                 goto free_priv;
2733         }
2734         /* Note: 128 & 256 bit salt are the same size */
2735         prot->rec_seq_size = rec_seq_size;
2736         memcpy(cctx->iv, salt, salt_size);
2737         memcpy(cctx->iv + salt_size, iv, iv_size);
2738         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2739         if (!cctx->rec_seq) {
2740                 rc = -ENOMEM;
2741                 goto free_iv;
2742         }
2743
2744         if (!*aead) {
2745                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2746                 if (IS_ERR(*aead)) {
2747                         rc = PTR_ERR(*aead);
2748                         *aead = NULL;
2749                         goto free_rec_seq;
2750                 }
2751         }
2752
2753         ctx->push_pending_record = tls_sw_push_pending_record;
2754
2755         rc = crypto_aead_setkey(*aead, key, keysize);
2756
2757         if (rc)
2758                 goto free_aead;
2759
2760         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2761         if (rc)
2762                 goto free_aead;
2763
2764         if (sw_ctx_rx) {
2765                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2766
2767                 tls_update_rx_zc_capable(ctx);
2768                 sw_ctx_rx->async_capable =
2769                         crypto_info->version != TLS_1_3_VERSION &&
2770                         !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2771
2772                 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2773                 if (rc)
2774                         goto free_aead;
2775         }
2776
2777         goto out;
2778
2779 free_aead:
2780         crypto_free_aead(*aead);
2781         *aead = NULL;
2782 free_rec_seq:
2783         kfree(cctx->rec_seq);
2784         cctx->rec_seq = NULL;
2785 free_iv:
2786         kfree(cctx->iv);
2787         cctx->iv = NULL;
2788 free_priv:
2789         if (tx) {
2790                 kfree(ctx->priv_ctx_tx);
2791                 ctx->priv_ctx_tx = NULL;
2792         } else {
2793                 kfree(ctx->priv_ctx_rx);
2794                 ctx->priv_ctx_rx = NULL;
2795         }
2796 out:
2797         return rc;
2798 }