Merge tag 'perf-urgent-2023-11-26' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
44
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
48
49 #include "tls.h"
50
51 struct tls_decrypt_arg {
52         struct_group(inargs,
53         bool zc;
54         bool async;
55         u8 tail;
56         );
57
58         struct sk_buff *skb;
59 };
60
61 struct tls_decrypt_ctx {
62         struct sock *sk;
63         u8 iv[TLS_MAX_IV_SIZE];
64         u8 aad[TLS_MAX_AAD_SIZE];
65         u8 tail;
66         struct scatterlist sg[];
67 };
68
69 noinline void tls_err_abort(struct sock *sk, int err)
70 {
71         WARN_ON_ONCE(err >= 0);
72         /* sk->sk_err should contain a positive error code. */
73         WRITE_ONCE(sk->sk_err, -err);
74         /* Paired with smp_rmb() in tcp_poll() */
75         smp_wmb();
76         sk_error_report(sk);
77 }
78
79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80                      unsigned int recursion_level)
81 {
82         int start = skb_headlen(skb);
83         int i, chunk = start - offset;
84         struct sk_buff *frag_iter;
85         int elt = 0;
86
87         if (unlikely(recursion_level >= 24))
88                 return -EMSGSIZE;
89
90         if (chunk > 0) {
91                 if (chunk > len)
92                         chunk = len;
93                 elt++;
94                 len -= chunk;
95                 if (len == 0)
96                         return elt;
97                 offset += chunk;
98         }
99
100         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
101                 int end;
102
103                 WARN_ON(start > offset + len);
104
105                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106                 chunk = end - offset;
107                 if (chunk > 0) {
108                         if (chunk > len)
109                                 chunk = len;
110                         elt++;
111                         len -= chunk;
112                         if (len == 0)
113                                 return elt;
114                         offset += chunk;
115                 }
116                 start = end;
117         }
118
119         if (unlikely(skb_has_frag_list(skb))) {
120                 skb_walk_frags(skb, frag_iter) {
121                         int end, ret;
122
123                         WARN_ON(start > offset + len);
124
125                         end = start + frag_iter->len;
126                         chunk = end - offset;
127                         if (chunk > 0) {
128                                 if (chunk > len)
129                                         chunk = len;
130                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
131                                                 recursion_level + 1);
132                                 if (unlikely(ret < 0))
133                                         return ret;
134                                 elt += ret;
135                                 len -= chunk;
136                                 if (len == 0)
137                                         return elt;
138                                 offset += chunk;
139                         }
140                         start = end;
141                 }
142         }
143         BUG_ON(len);
144         return elt;
145 }
146
147 /* Return the number of scatterlist elements required to completely map the
148  * skb, or -EMSGSIZE if the recursion depth is exceeded.
149  */
150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
151 {
152         return __skb_nsg(skb, offset, len, 0);
153 }
154
155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156                               struct tls_decrypt_arg *darg)
157 {
158         struct strp_msg *rxm = strp_msg(skb);
159         struct tls_msg *tlm = tls_msg(skb);
160         int sub = 0;
161
162         /* Determine zero-padding length */
163         if (prot->version == TLS_1_3_VERSION) {
164                 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165                 char content_type = darg->zc ? darg->tail : 0;
166                 int err;
167
168                 while (content_type == 0) {
169                         if (offset < prot->prepend_size)
170                                 return -EBADMSG;
171                         err = skb_copy_bits(skb, rxm->offset + offset,
172                                             &content_type, 1);
173                         if (err)
174                                 return err;
175                         if (content_type)
176                                 break;
177                         sub++;
178                         offset--;
179                 }
180                 tlm->control = content_type;
181         }
182         return sub;
183 }
184
185 static void tls_decrypt_done(void *data, int err)
186 {
187         struct aead_request *aead_req = data;
188         struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189         struct scatterlist *sgout = aead_req->dst;
190         struct scatterlist *sgin = aead_req->src;
191         struct tls_sw_context_rx *ctx;
192         struct tls_decrypt_ctx *dctx;
193         struct tls_context *tls_ctx;
194         struct scatterlist *sg;
195         unsigned int pages;
196         struct sock *sk;
197         int aead_size;
198
199         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200         aead_size = ALIGN(aead_size, __alignof__(*dctx));
201         dctx = (void *)((u8 *)aead_req + aead_size);
202
203         sk = dctx->sk;
204         tls_ctx = tls_get_ctx(sk);
205         ctx = tls_sw_ctx_rx(tls_ctx);
206
207         /* Propagate if there was an err */
208         if (err) {
209                 if (err == -EBADMSG)
210                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
211                 ctx->async_wait.err = err;
212                 tls_err_abort(sk, err);
213         }
214
215         /* Free the destination pages if skb was not decrypted inplace */
216         if (sgout != sgin) {
217                 /* Skip the first S/G entry as it points to AAD */
218                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
219                         if (!sg)
220                                 break;
221                         put_page(sg_page(sg));
222                 }
223         }
224
225         kfree(aead_req);
226
227         spin_lock_bh(&ctx->decrypt_compl_lock);
228         if (!atomic_dec_return(&ctx->decrypt_pending))
229                 complete(&ctx->async_wait.completion);
230         spin_unlock_bh(&ctx->decrypt_compl_lock);
231 }
232
233 static int tls_do_decryption(struct sock *sk,
234                              struct scatterlist *sgin,
235                              struct scatterlist *sgout,
236                              char *iv_recv,
237                              size_t data_len,
238                              struct aead_request *aead_req,
239                              struct tls_decrypt_arg *darg)
240 {
241         struct tls_context *tls_ctx = tls_get_ctx(sk);
242         struct tls_prot_info *prot = &tls_ctx->prot_info;
243         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
244         int ret;
245
246         aead_request_set_tfm(aead_req, ctx->aead_recv);
247         aead_request_set_ad(aead_req, prot->aad_size);
248         aead_request_set_crypt(aead_req, sgin, sgout,
249                                data_len + prot->tag_size,
250                                (u8 *)iv_recv);
251
252         if (darg->async) {
253                 aead_request_set_callback(aead_req,
254                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
255                                           tls_decrypt_done, aead_req);
256                 atomic_inc(&ctx->decrypt_pending);
257         } else {
258                 aead_request_set_callback(aead_req,
259                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
260                                           crypto_req_done, &ctx->async_wait);
261         }
262
263         ret = crypto_aead_decrypt(aead_req);
264         if (ret == -EINPROGRESS) {
265                 if (darg->async)
266                         return 0;
267
268                 ret = crypto_wait_req(ret, &ctx->async_wait);
269         }
270         darg->async = false;
271
272         return ret;
273 }
274
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
276 {
277         struct tls_context *tls_ctx = tls_get_ctx(sk);
278         struct tls_prot_info *prot = &tls_ctx->prot_info;
279         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280         struct tls_rec *rec = ctx->open_rec;
281
282         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
283         if (target_size > 0)
284                 target_size += prot->overhead_size;
285         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
286 }
287
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
289 {
290         struct tls_context *tls_ctx = tls_get_ctx(sk);
291         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292         struct tls_rec *rec = ctx->open_rec;
293         struct sk_msg *msg_en = &rec->msg_encrypted;
294
295         return sk_msg_alloc(sk, msg_en, len, 0);
296 }
297
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
299 {
300         struct tls_context *tls_ctx = tls_get_ctx(sk);
301         struct tls_prot_info *prot = &tls_ctx->prot_info;
302         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303         struct tls_rec *rec = ctx->open_rec;
304         struct sk_msg *msg_pl = &rec->msg_plaintext;
305         struct sk_msg *msg_en = &rec->msg_encrypted;
306         int skip, len;
307
308         /* We add page references worth len bytes from encrypted sg
309          * at the end of plaintext sg. It is guaranteed that msg_en
310          * has enough required room (ensured by caller).
311          */
312         len = required - msg_pl->sg.size;
313
314         /* Skip initial bytes in msg_en's data to be able to use
315          * same offset of both plain and encrypted data.
316          */
317         skip = prot->prepend_size + msg_pl->sg.size;
318
319         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
320 }
321
322 static struct tls_rec *tls_get_rec(struct sock *sk)
323 {
324         struct tls_context *tls_ctx = tls_get_ctx(sk);
325         struct tls_prot_info *prot = &tls_ctx->prot_info;
326         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327         struct sk_msg *msg_pl, *msg_en;
328         struct tls_rec *rec;
329         int mem_size;
330
331         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
332
333         rec = kzalloc(mem_size, sk->sk_allocation);
334         if (!rec)
335                 return NULL;
336
337         msg_pl = &rec->msg_plaintext;
338         msg_en = &rec->msg_encrypted;
339
340         sk_msg_init(msg_pl);
341         sk_msg_init(msg_en);
342
343         sg_init_table(rec->sg_aead_in, 2);
344         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345         sg_unmark_end(&rec->sg_aead_in[1]);
346
347         sg_init_table(rec->sg_aead_out, 2);
348         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349         sg_unmark_end(&rec->sg_aead_out[1]);
350
351         rec->sk = sk;
352
353         return rec;
354 }
355
356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
357 {
358         sk_msg_free(sk, &rec->msg_encrypted);
359         sk_msg_free(sk, &rec->msg_plaintext);
360         kfree(rec);
361 }
362
363 static void tls_free_open_rec(struct sock *sk)
364 {
365         struct tls_context *tls_ctx = tls_get_ctx(sk);
366         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367         struct tls_rec *rec = ctx->open_rec;
368
369         if (rec) {
370                 tls_free_rec(sk, rec);
371                 ctx->open_rec = NULL;
372         }
373 }
374
375 int tls_tx_records(struct sock *sk, int flags)
376 {
377         struct tls_context *tls_ctx = tls_get_ctx(sk);
378         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379         struct tls_rec *rec, *tmp;
380         struct sk_msg *msg_en;
381         int tx_flags, rc = 0;
382
383         if (tls_is_partially_sent_record(tls_ctx)) {
384                 rec = list_first_entry(&ctx->tx_list,
385                                        struct tls_rec, list);
386
387                 if (flags == -1)
388                         tx_flags = rec->tx_flags;
389                 else
390                         tx_flags = flags;
391
392                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
393                 if (rc)
394                         goto tx_err;
395
396                 /* Full record has been transmitted.
397                  * Remove the head of tx_list
398                  */
399                 list_del(&rec->list);
400                 sk_msg_free(sk, &rec->msg_plaintext);
401                 kfree(rec);
402         }
403
404         /* Tx all ready records */
405         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406                 if (READ_ONCE(rec->tx_ready)) {
407                         if (flags == -1)
408                                 tx_flags = rec->tx_flags;
409                         else
410                                 tx_flags = flags;
411
412                         msg_en = &rec->msg_encrypted;
413                         rc = tls_push_sg(sk, tls_ctx,
414                                          &msg_en->sg.data[msg_en->sg.curr],
415                                          0, tx_flags);
416                         if (rc)
417                                 goto tx_err;
418
419                         list_del(&rec->list);
420                         sk_msg_free(sk, &rec->msg_plaintext);
421                         kfree(rec);
422                 } else {
423                         break;
424                 }
425         }
426
427 tx_err:
428         if (rc < 0 && rc != -EAGAIN)
429                 tls_err_abort(sk, -EBADMSG);
430
431         return rc;
432 }
433
434 static void tls_encrypt_done(void *data, int err)
435 {
436         struct tls_sw_context_tx *ctx;
437         struct tls_context *tls_ctx;
438         struct tls_prot_info *prot;
439         struct tls_rec *rec = data;
440         struct scatterlist *sge;
441         struct sk_msg *msg_en;
442         bool ready = false;
443         struct sock *sk;
444         int pending;
445
446         msg_en = &rec->msg_encrypted;
447
448         sk = rec->sk;
449         tls_ctx = tls_get_ctx(sk);
450         prot = &tls_ctx->prot_info;
451         ctx = tls_sw_ctx_tx(tls_ctx);
452
453         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
454         sge->offset -= prot->prepend_size;
455         sge->length += prot->prepend_size;
456
457         /* Check if error is previously set on socket */
458         if (err || sk->sk_err) {
459                 rec = NULL;
460
461                 /* If err is already set on socket, return the same code */
462                 if (sk->sk_err) {
463                         ctx->async_wait.err = -sk->sk_err;
464                 } else {
465                         ctx->async_wait.err = err;
466                         tls_err_abort(sk, err);
467                 }
468         }
469
470         if (rec) {
471                 struct tls_rec *first_rec;
472
473                 /* Mark the record as ready for transmission */
474                 smp_store_mb(rec->tx_ready, true);
475
476                 /* If received record is at head of tx_list, schedule tx */
477                 first_rec = list_first_entry(&ctx->tx_list,
478                                              struct tls_rec, list);
479                 if (rec == first_rec)
480                         ready = true;
481         }
482
483         spin_lock_bh(&ctx->encrypt_compl_lock);
484         pending = atomic_dec_return(&ctx->encrypt_pending);
485
486         if (!pending && ctx->async_notify)
487                 complete(&ctx->async_wait.completion);
488         spin_unlock_bh(&ctx->encrypt_compl_lock);
489
490         if (!ready)
491                 return;
492
493         /* Schedule the transmission */
494         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
495                 schedule_delayed_work(&ctx->tx_work.work, 1);
496 }
497
498 static int tls_do_encryption(struct sock *sk,
499                              struct tls_context *tls_ctx,
500                              struct tls_sw_context_tx *ctx,
501                              struct aead_request *aead_req,
502                              size_t data_len, u32 start)
503 {
504         struct tls_prot_info *prot = &tls_ctx->prot_info;
505         struct tls_rec *rec = ctx->open_rec;
506         struct sk_msg *msg_en = &rec->msg_encrypted;
507         struct scatterlist *sge = sk_msg_elem(msg_en, start);
508         int rc, iv_offset = 0;
509
510         /* For CCM based ciphers, first byte of IV is a constant */
511         switch (prot->cipher_type) {
512         case TLS_CIPHER_AES_CCM_128:
513                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
514                 iv_offset = 1;
515                 break;
516         case TLS_CIPHER_SM4_CCM:
517                 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
518                 iv_offset = 1;
519                 break;
520         }
521
522         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523                prot->iv_size + prot->salt_size);
524
525         tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526                             tls_ctx->tx.rec_seq);
527
528         sge->offset += prot->prepend_size;
529         sge->length -= prot->prepend_size;
530
531         msg_en->sg.curr = start;
532
533         aead_request_set_tfm(aead_req, ctx->aead_send);
534         aead_request_set_ad(aead_req, prot->aad_size);
535         aead_request_set_crypt(aead_req, rec->sg_aead_in,
536                                rec->sg_aead_out,
537                                data_len, rec->iv_data);
538
539         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
540                                   tls_encrypt_done, rec);
541
542         /* Add the record in tx_list */
543         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
544         atomic_inc(&ctx->encrypt_pending);
545
546         rc = crypto_aead_encrypt(aead_req);
547         if (!rc || rc != -EINPROGRESS) {
548                 atomic_dec(&ctx->encrypt_pending);
549                 sge->offset -= prot->prepend_size;
550                 sge->length += prot->prepend_size;
551         }
552
553         if (!rc) {
554                 WRITE_ONCE(rec->tx_ready, true);
555         } else if (rc != -EINPROGRESS) {
556                 list_del(&rec->list);
557                 return rc;
558         }
559
560         /* Unhook the record from context if encryption is not failure */
561         ctx->open_rec = NULL;
562         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
563         return rc;
564 }
565
566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567                                  struct tls_rec **to, struct sk_msg *msg_opl,
568                                  struct sk_msg *msg_oen, u32 split_point,
569                                  u32 tx_overhead_size, u32 *orig_end)
570 {
571         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572         struct scatterlist *sge, *osge, *nsge;
573         u32 orig_size = msg_opl->sg.size;
574         struct scatterlist tmp = { };
575         struct sk_msg *msg_npl;
576         struct tls_rec *new;
577         int ret;
578
579         new = tls_get_rec(sk);
580         if (!new)
581                 return -ENOMEM;
582         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583                            tx_overhead_size, 0);
584         if (ret < 0) {
585                 tls_free_rec(sk, new);
586                 return ret;
587         }
588
589         *orig_end = msg_opl->sg.end;
590         i = msg_opl->sg.start;
591         sge = sk_msg_elem(msg_opl, i);
592         while (apply && sge->length) {
593                 if (sge->length > apply) {
594                         u32 len = sge->length - apply;
595
596                         get_page(sg_page(sge));
597                         sg_set_page(&tmp, sg_page(sge), len,
598                                     sge->offset + apply);
599                         sge->length = apply;
600                         bytes += apply;
601                         apply = 0;
602                 } else {
603                         apply -= sge->length;
604                         bytes += sge->length;
605                 }
606
607                 sk_msg_iter_var_next(i);
608                 if (i == msg_opl->sg.end)
609                         break;
610                 sge = sk_msg_elem(msg_opl, i);
611         }
612
613         msg_opl->sg.end = i;
614         msg_opl->sg.curr = i;
615         msg_opl->sg.copybreak = 0;
616         msg_opl->apply_bytes = 0;
617         msg_opl->sg.size = bytes;
618
619         msg_npl = &new->msg_plaintext;
620         msg_npl->apply_bytes = apply;
621         msg_npl->sg.size = orig_size - bytes;
622
623         j = msg_npl->sg.start;
624         nsge = sk_msg_elem(msg_npl, j);
625         if (tmp.length) {
626                 memcpy(nsge, &tmp, sizeof(*nsge));
627                 sk_msg_iter_var_next(j);
628                 nsge = sk_msg_elem(msg_npl, j);
629         }
630
631         osge = sk_msg_elem(msg_opl, i);
632         while (osge->length) {
633                 memcpy(nsge, osge, sizeof(*nsge));
634                 sg_unmark_end(nsge);
635                 sk_msg_iter_var_next(i);
636                 sk_msg_iter_var_next(j);
637                 if (i == *orig_end)
638                         break;
639                 osge = sk_msg_elem(msg_opl, i);
640                 nsge = sk_msg_elem(msg_npl, j);
641         }
642
643         msg_npl->sg.end = j;
644         msg_npl->sg.curr = j;
645         msg_npl->sg.copybreak = 0;
646
647         *to = new;
648         return 0;
649 }
650
651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652                                   struct tls_rec *from, u32 orig_end)
653 {
654         struct sk_msg *msg_npl = &from->msg_plaintext;
655         struct sk_msg *msg_opl = &to->msg_plaintext;
656         struct scatterlist *osge, *nsge;
657         u32 i, j;
658
659         i = msg_opl->sg.end;
660         sk_msg_iter_var_prev(i);
661         j = msg_npl->sg.start;
662
663         osge = sk_msg_elem(msg_opl, i);
664         nsge = sk_msg_elem(msg_npl, j);
665
666         if (sg_page(osge) == sg_page(nsge) &&
667             osge->offset + osge->length == nsge->offset) {
668                 osge->length += nsge->length;
669                 put_page(sg_page(nsge));
670         }
671
672         msg_opl->sg.end = orig_end;
673         msg_opl->sg.curr = orig_end;
674         msg_opl->sg.copybreak = 0;
675         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676         msg_opl->sg.size += msg_npl->sg.size;
677
678         sk_msg_free(sk, &to->msg_encrypted);
679         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
680
681         kfree(from);
682 }
683
684 static int tls_push_record(struct sock *sk, int flags,
685                            unsigned char record_type)
686 {
687         struct tls_context *tls_ctx = tls_get_ctx(sk);
688         struct tls_prot_info *prot = &tls_ctx->prot_info;
689         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
690         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
691         u32 i, split_point, orig_end;
692         struct sk_msg *msg_pl, *msg_en;
693         struct aead_request *req;
694         bool split;
695         int rc;
696
697         if (!rec)
698                 return 0;
699
700         msg_pl = &rec->msg_plaintext;
701         msg_en = &rec->msg_encrypted;
702
703         split_point = msg_pl->apply_bytes;
704         split = split_point && split_point < msg_pl->sg.size;
705         if (unlikely((!split &&
706                       msg_pl->sg.size +
707                       prot->overhead_size > msg_en->sg.size) ||
708                      (split &&
709                       split_point +
710                       prot->overhead_size > msg_en->sg.size))) {
711                 split = true;
712                 split_point = msg_en->sg.size;
713         }
714         if (split) {
715                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
716                                            split_point, prot->overhead_size,
717                                            &orig_end);
718                 if (rc < 0)
719                         return rc;
720                 /* This can happen if above tls_split_open_record allocates
721                  * a single large encryption buffer instead of two smaller
722                  * ones. In this case adjust pointers and continue without
723                  * split.
724                  */
725                 if (!msg_pl->sg.size) {
726                         tls_merge_open_record(sk, rec, tmp, orig_end);
727                         msg_pl = &rec->msg_plaintext;
728                         msg_en = &rec->msg_encrypted;
729                         split = false;
730                 }
731                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
732                             prot->overhead_size);
733         }
734
735         rec->tx_flags = flags;
736         req = &rec->aead_req;
737
738         i = msg_pl->sg.end;
739         sk_msg_iter_var_prev(i);
740
741         rec->content_type = record_type;
742         if (prot->version == TLS_1_3_VERSION) {
743                 /* Add content type to end of message.  No padding added */
744                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745                 sg_mark_end(&rec->sg_content_type);
746                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747                          &rec->sg_content_type);
748         } else {
749                 sg_mark_end(sk_msg_elem(msg_pl, i));
750         }
751
752         if (msg_pl->sg.end < msg_pl->sg.start) {
753                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
755                          msg_pl->sg.data);
756         }
757
758         i = msg_pl->sg.start;
759         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
760
761         i = msg_en->sg.end;
762         sk_msg_iter_var_prev(i);
763         sg_mark_end(sk_msg_elem(msg_en, i));
764
765         i = msg_en->sg.start;
766         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
767
768         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
769                      tls_ctx->tx.rec_seq, record_type, prot);
770
771         tls_fill_prepend(tls_ctx,
772                          page_address(sg_page(&msg_en->sg.data[i])) +
773                          msg_en->sg.data[i].offset,
774                          msg_pl->sg.size + prot->tail_size,
775                          record_type);
776
777         tls_ctx->pending_open_record_frags = false;
778
779         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
780                                msg_pl->sg.size + prot->tail_size, i);
781         if (rc < 0) {
782                 if (rc != -EINPROGRESS) {
783                         tls_err_abort(sk, -EBADMSG);
784                         if (split) {
785                                 tls_ctx->pending_open_record_frags = true;
786                                 tls_merge_open_record(sk, rec, tmp, orig_end);
787                         }
788                 }
789                 ctx->async_capable = 1;
790                 return rc;
791         } else if (split) {
792                 msg_pl = &tmp->msg_plaintext;
793                 msg_en = &tmp->msg_encrypted;
794                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
795                 tls_ctx->pending_open_record_frags = true;
796                 ctx->open_rec = tmp;
797         }
798
799         return tls_tx_records(sk, flags);
800 }
801
802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803                                bool full_record, u8 record_type,
804                                ssize_t *copied, int flags)
805 {
806         struct tls_context *tls_ctx = tls_get_ctx(sk);
807         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
808         struct sk_msg msg_redir = { };
809         struct sk_psock *psock;
810         struct sock *sk_redir;
811         struct tls_rec *rec;
812         bool enospc, policy, redir_ingress;
813         int err = 0, send;
814         u32 delta = 0;
815
816         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
817         psock = sk_psock_get(sk);
818         if (!psock || !policy) {
819                 err = tls_push_record(sk, flags, record_type);
820                 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
821                         *copied -= sk_msg_free(sk, msg);
822                         tls_free_open_rec(sk);
823                         err = -sk->sk_err;
824                 }
825                 if (psock)
826                         sk_psock_put(sk, psock);
827                 return err;
828         }
829 more_data:
830         enospc = sk_msg_full(msg);
831         if (psock->eval == __SK_NONE) {
832                 delta = msg->sg.size;
833                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
834                 delta -= msg->sg.size;
835         }
836         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837             !enospc && !full_record) {
838                 err = -ENOSPC;
839                 goto out_err;
840         }
841         msg->cork_bytes = 0;
842         send = msg->sg.size;
843         if (msg->apply_bytes && msg->apply_bytes < send)
844                 send = msg->apply_bytes;
845
846         switch (psock->eval) {
847         case __SK_PASS:
848                 err = tls_push_record(sk, flags, record_type);
849                 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
850                         *copied -= sk_msg_free(sk, msg);
851                         tls_free_open_rec(sk);
852                         err = -sk->sk_err;
853                         goto out_err;
854                 }
855                 break;
856         case __SK_REDIRECT:
857                 redir_ingress = psock->redir_ingress;
858                 sk_redir = psock->sk_redir;
859                 memcpy(&msg_redir, msg, sizeof(*msg));
860                 if (msg->apply_bytes < send)
861                         msg->apply_bytes = 0;
862                 else
863                         msg->apply_bytes -= send;
864                 sk_msg_return_zero(sk, msg, send);
865                 msg->sg.size -= send;
866                 release_sock(sk);
867                 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868                                             &msg_redir, send, flags);
869                 lock_sock(sk);
870                 if (err < 0) {
871                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
872                         msg->sg.size = 0;
873                 }
874                 if (msg->sg.size == 0)
875                         tls_free_open_rec(sk);
876                 break;
877         case __SK_DROP:
878         default:
879                 sk_msg_free_partial(sk, msg, send);
880                 if (msg->apply_bytes < send)
881                         msg->apply_bytes = 0;
882                 else
883                         msg->apply_bytes -= send;
884                 if (msg->sg.size == 0)
885                         tls_free_open_rec(sk);
886                 *copied -= (send + delta);
887                 err = -EACCES;
888         }
889
890         if (likely(!err)) {
891                 bool reset_eval = !ctx->open_rec;
892
893                 rec = ctx->open_rec;
894                 if (rec) {
895                         msg = &rec->msg_plaintext;
896                         if (!msg->apply_bytes)
897                                 reset_eval = true;
898                 }
899                 if (reset_eval) {
900                         psock->eval = __SK_NONE;
901                         if (psock->sk_redir) {
902                                 sock_put(psock->sk_redir);
903                                 psock->sk_redir = NULL;
904                         }
905                 }
906                 if (rec)
907                         goto more_data;
908         }
909  out_err:
910         sk_psock_put(sk, psock);
911         return err;
912 }
913
914 static int tls_sw_push_pending_record(struct sock *sk, int flags)
915 {
916         struct tls_context *tls_ctx = tls_get_ctx(sk);
917         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918         struct tls_rec *rec = ctx->open_rec;
919         struct sk_msg *msg_pl;
920         size_t copied;
921
922         if (!rec)
923                 return 0;
924
925         msg_pl = &rec->msg_plaintext;
926         copied = msg_pl->sg.size;
927         if (!copied)
928                 return 0;
929
930         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
931                                    &copied, flags);
932 }
933
934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
935                                  struct sk_msg *msg_pl, size_t try_to_copy,
936                                  ssize_t *copied)
937 {
938         struct page *page = NULL, **pages = &page;
939
940         do {
941                 ssize_t part;
942                 size_t off;
943
944                 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
945                                               try_to_copy, 1, 0, &off);
946                 if (part <= 0)
947                         return part ?: -EIO;
948
949                 if (WARN_ON_ONCE(!sendpage_ok(page))) {
950                         iov_iter_revert(&msg->msg_iter, part);
951                         return -EIO;
952                 }
953
954                 sk_msg_page_add(msg_pl, page, part, off);
955                 sk_mem_charge(sk, part);
956                 *copied += part;
957                 try_to_copy -= part;
958         } while (try_to_copy && !sk_msg_full(msg_pl));
959
960         return 0;
961 }
962
963 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
964                                  size_t size)
965 {
966         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
967         struct tls_context *tls_ctx = tls_get_ctx(sk);
968         struct tls_prot_info *prot = &tls_ctx->prot_info;
969         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
970         bool async_capable = ctx->async_capable;
971         unsigned char record_type = TLS_RECORD_TYPE_DATA;
972         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
973         bool eor = !(msg->msg_flags & MSG_MORE);
974         size_t try_to_copy;
975         ssize_t copied = 0;
976         struct sk_msg *msg_pl, *msg_en;
977         struct tls_rec *rec;
978         int required_size;
979         int num_async = 0;
980         bool full_record;
981         int record_room;
982         int num_zc = 0;
983         int orig_size;
984         int ret = 0;
985         int pending;
986
987         if (!eor && (msg->msg_flags & MSG_EOR))
988                 return -EINVAL;
989
990         if (unlikely(msg->msg_controllen)) {
991                 ret = tls_process_cmsg(sk, msg, &record_type);
992                 if (ret) {
993                         if (ret == -EINPROGRESS)
994                                 num_async++;
995                         else if (ret != -EAGAIN)
996                                 goto send_end;
997                 }
998         }
999
1000         while (msg_data_left(msg)) {
1001                 if (sk->sk_err) {
1002                         ret = -sk->sk_err;
1003                         goto send_end;
1004                 }
1005
1006                 if (ctx->open_rec)
1007                         rec = ctx->open_rec;
1008                 else
1009                         rec = ctx->open_rec = tls_get_rec(sk);
1010                 if (!rec) {
1011                         ret = -ENOMEM;
1012                         goto send_end;
1013                 }
1014
1015                 msg_pl = &rec->msg_plaintext;
1016                 msg_en = &rec->msg_encrypted;
1017
1018                 orig_size = msg_pl->sg.size;
1019                 full_record = false;
1020                 try_to_copy = msg_data_left(msg);
1021                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1022                 if (try_to_copy >= record_room) {
1023                         try_to_copy = record_room;
1024                         full_record = true;
1025                 }
1026
1027                 required_size = msg_pl->sg.size + try_to_copy +
1028                                 prot->overhead_size;
1029
1030                 if (!sk_stream_memory_free(sk))
1031                         goto wait_for_sndbuf;
1032
1033 alloc_encrypted:
1034                 ret = tls_alloc_encrypted_msg(sk, required_size);
1035                 if (ret) {
1036                         if (ret != -ENOSPC)
1037                                 goto wait_for_memory;
1038
1039                         /* Adjust try_to_copy according to the amount that was
1040                          * actually allocated. The difference is due
1041                          * to max sg elements limit
1042                          */
1043                         try_to_copy -= required_size - msg_en->sg.size;
1044                         full_record = true;
1045                 }
1046
1047                 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1048                         ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1049                                                     try_to_copy, &copied);
1050                         if (ret < 0)
1051                                 goto send_end;
1052                         tls_ctx->pending_open_record_frags = true;
1053                         if (full_record || eor || sk_msg_full(msg_pl))
1054                                 goto copied;
1055                         continue;
1056                 }
1057
1058                 if (!is_kvec && (full_record || eor) && !async_capable) {
1059                         u32 first = msg_pl->sg.end;
1060
1061                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1062                                                         msg_pl, try_to_copy);
1063                         if (ret)
1064                                 goto fallback_to_reg_send;
1065
1066                         num_zc++;
1067                         copied += try_to_copy;
1068
1069                         sk_msg_sg_copy_set(msg_pl, first);
1070                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1071                                                   record_type, &copied,
1072                                                   msg->msg_flags);
1073                         if (ret) {
1074                                 if (ret == -EINPROGRESS)
1075                                         num_async++;
1076                                 else if (ret == -ENOMEM)
1077                                         goto wait_for_memory;
1078                                 else if (ctx->open_rec && ret == -ENOSPC)
1079                                         goto rollback_iter;
1080                                 else if (ret != -EAGAIN)
1081                                         goto send_end;
1082                         }
1083                         continue;
1084 rollback_iter:
1085                         copied -= try_to_copy;
1086                         sk_msg_sg_copy_clear(msg_pl, first);
1087                         iov_iter_revert(&msg->msg_iter,
1088                                         msg_pl->sg.size - orig_size);
1089 fallback_to_reg_send:
1090                         sk_msg_trim(sk, msg_pl, orig_size);
1091                 }
1092
1093                 required_size = msg_pl->sg.size + try_to_copy;
1094
1095                 ret = tls_clone_plaintext_msg(sk, required_size);
1096                 if (ret) {
1097                         if (ret != -ENOSPC)
1098                                 goto send_end;
1099
1100                         /* Adjust try_to_copy according to the amount that was
1101                          * actually allocated. The difference is due
1102                          * to max sg elements limit
1103                          */
1104                         try_to_copy -= required_size - msg_pl->sg.size;
1105                         full_record = true;
1106                         sk_msg_trim(sk, msg_en,
1107                                     msg_pl->sg.size + prot->overhead_size);
1108                 }
1109
1110                 if (try_to_copy) {
1111                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1112                                                        msg_pl, try_to_copy);
1113                         if (ret < 0)
1114                                 goto trim_sgl;
1115                 }
1116
1117                 /* Open records defined only if successfully copied, otherwise
1118                  * we would trim the sg but not reset the open record frags.
1119                  */
1120                 tls_ctx->pending_open_record_frags = true;
1121                 copied += try_to_copy;
1122 copied:
1123                 if (full_record || eor) {
1124                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1125                                                   record_type, &copied,
1126                                                   msg->msg_flags);
1127                         if (ret) {
1128                                 if (ret == -EINPROGRESS)
1129                                         num_async++;
1130                                 else if (ret == -ENOMEM)
1131                                         goto wait_for_memory;
1132                                 else if (ret != -EAGAIN) {
1133                                         if (ret == -ENOSPC)
1134                                                 ret = 0;
1135                                         goto send_end;
1136                                 }
1137                         }
1138                 }
1139
1140                 continue;
1141
1142 wait_for_sndbuf:
1143                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1144 wait_for_memory:
1145                 ret = sk_stream_wait_memory(sk, &timeo);
1146                 if (ret) {
1147 trim_sgl:
1148                         if (ctx->open_rec)
1149                                 tls_trim_both_msgs(sk, orig_size);
1150                         goto send_end;
1151                 }
1152
1153                 if (ctx->open_rec && msg_en->sg.size < required_size)
1154                         goto alloc_encrypted;
1155         }
1156
1157         if (!num_async) {
1158                 goto send_end;
1159         } else if (num_zc) {
1160                 /* Wait for pending encryptions to get completed */
1161                 spin_lock_bh(&ctx->encrypt_compl_lock);
1162                 ctx->async_notify = true;
1163
1164                 pending = atomic_read(&ctx->encrypt_pending);
1165                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1166                 if (pending)
1167                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1168                 else
1169                         reinit_completion(&ctx->async_wait.completion);
1170
1171                 /* There can be no concurrent accesses, since we have no
1172                  * pending encrypt operations
1173                  */
1174                 WRITE_ONCE(ctx->async_notify, false);
1175
1176                 if (ctx->async_wait.err) {
1177                         ret = ctx->async_wait.err;
1178                         copied = 0;
1179                 }
1180         }
1181
1182         /* Transmit if any encryptions have completed */
1183         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1184                 cancel_delayed_work(&ctx->tx_work.work);
1185                 tls_tx_records(sk, msg->msg_flags);
1186         }
1187
1188 send_end:
1189         ret = sk_stream_error(sk, msg->msg_flags, ret);
1190         return copied > 0 ? copied : ret;
1191 }
1192
1193 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1194 {
1195         struct tls_context *tls_ctx = tls_get_ctx(sk);
1196         int ret;
1197
1198         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1199                                MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1200                                MSG_SENDPAGE_NOPOLICY))
1201                 return -EOPNOTSUPP;
1202
1203         ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1204         if (ret)
1205                 return ret;
1206         lock_sock(sk);
1207         ret = tls_sw_sendmsg_locked(sk, msg, size);
1208         release_sock(sk);
1209         mutex_unlock(&tls_ctx->tx_lock);
1210         return ret;
1211 }
1212
1213 /*
1214  * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1215  */
1216 void tls_sw_splice_eof(struct socket *sock)
1217 {
1218         struct sock *sk = sock->sk;
1219         struct tls_context *tls_ctx = tls_get_ctx(sk);
1220         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1221         struct tls_rec *rec;
1222         struct sk_msg *msg_pl;
1223         ssize_t copied = 0;
1224         bool retrying = false;
1225         int ret = 0;
1226         int pending;
1227
1228         if (!ctx->open_rec)
1229                 return;
1230
1231         mutex_lock(&tls_ctx->tx_lock);
1232         lock_sock(sk);
1233
1234 retry:
1235         /* same checks as in tls_sw_push_pending_record() */
1236         rec = ctx->open_rec;
1237         if (!rec)
1238                 goto unlock;
1239
1240         msg_pl = &rec->msg_plaintext;
1241         if (msg_pl->sg.size == 0)
1242                 goto unlock;
1243
1244         /* Check the BPF advisor and perform transmission. */
1245         ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1246                                   &copied, 0);
1247         switch (ret) {
1248         case 0:
1249         case -EAGAIN:
1250                 if (retrying)
1251                         goto unlock;
1252                 retrying = true;
1253                 goto retry;
1254         case -EINPROGRESS:
1255                 break;
1256         default:
1257                 goto unlock;
1258         }
1259
1260         /* Wait for pending encryptions to get completed */
1261         spin_lock_bh(&ctx->encrypt_compl_lock);
1262         ctx->async_notify = true;
1263
1264         pending = atomic_read(&ctx->encrypt_pending);
1265         spin_unlock_bh(&ctx->encrypt_compl_lock);
1266         if (pending)
1267                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1268         else
1269                 reinit_completion(&ctx->async_wait.completion);
1270
1271         /* There can be no concurrent accesses, since we have no pending
1272          * encrypt operations
1273          */
1274         WRITE_ONCE(ctx->async_notify, false);
1275
1276         if (ctx->async_wait.err)
1277                 goto unlock;
1278
1279         /* Transmit if any encryptions have completed */
1280         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1281                 cancel_delayed_work(&ctx->tx_work.work);
1282                 tls_tx_records(sk, 0);
1283         }
1284
1285 unlock:
1286         release_sock(sk);
1287         mutex_unlock(&tls_ctx->tx_lock);
1288 }
1289
1290 static int
1291 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1292                 bool released)
1293 {
1294         struct tls_context *tls_ctx = tls_get_ctx(sk);
1295         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1296         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1297         int ret = 0;
1298         long timeo;
1299
1300         timeo = sock_rcvtimeo(sk, nonblock);
1301
1302         while (!tls_strp_msg_ready(ctx)) {
1303                 if (!sk_psock_queue_empty(psock))
1304                         return 0;
1305
1306                 if (sk->sk_err)
1307                         return sock_error(sk);
1308
1309                 if (ret < 0)
1310                         return ret;
1311
1312                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1313                         tls_strp_check_rcv(&ctx->strp);
1314                         if (tls_strp_msg_ready(ctx))
1315                                 break;
1316                 }
1317
1318                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1319                         return 0;
1320
1321                 if (sock_flag(sk, SOCK_DONE))
1322                         return 0;
1323
1324                 if (!timeo)
1325                         return -EAGAIN;
1326
1327                 released = true;
1328                 add_wait_queue(sk_sleep(sk), &wait);
1329                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1330                 ret = sk_wait_event(sk, &timeo,
1331                                     tls_strp_msg_ready(ctx) ||
1332                                     !sk_psock_queue_empty(psock),
1333                                     &wait);
1334                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1335                 remove_wait_queue(sk_sleep(sk), &wait);
1336
1337                 /* Handle signals */
1338                 if (signal_pending(current))
1339                         return sock_intr_errno(timeo);
1340         }
1341
1342         tls_strp_msg_load(&ctx->strp, released);
1343
1344         return 1;
1345 }
1346
1347 static int tls_setup_from_iter(struct iov_iter *from,
1348                                int length, int *pages_used,
1349                                struct scatterlist *to,
1350                                int to_max_pages)
1351 {
1352         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1353         struct page *pages[MAX_SKB_FRAGS];
1354         unsigned int size = 0;
1355         ssize_t copied, use;
1356         size_t offset;
1357
1358         while (length > 0) {
1359                 i = 0;
1360                 maxpages = to_max_pages - num_elem;
1361                 if (maxpages == 0) {
1362                         rc = -EFAULT;
1363                         goto out;
1364                 }
1365                 copied = iov_iter_get_pages2(from, pages,
1366                                             length,
1367                                             maxpages, &offset);
1368                 if (copied <= 0) {
1369                         rc = -EFAULT;
1370                         goto out;
1371                 }
1372
1373                 length -= copied;
1374                 size += copied;
1375                 while (copied) {
1376                         use = min_t(int, copied, PAGE_SIZE - offset);
1377
1378                         sg_set_page(&to[num_elem],
1379                                     pages[i], use, offset);
1380                         sg_unmark_end(&to[num_elem]);
1381                         /* We do not uncharge memory from this API */
1382
1383                         offset = 0;
1384                         copied -= use;
1385
1386                         i++;
1387                         num_elem++;
1388                 }
1389         }
1390         /* Mark the end in the last sg entry if newly added */
1391         if (num_elem > *pages_used)
1392                 sg_mark_end(&to[num_elem - 1]);
1393 out:
1394         if (rc)
1395                 iov_iter_revert(from, size);
1396         *pages_used = num_elem;
1397
1398         return rc;
1399 }
1400
1401 static struct sk_buff *
1402 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1403                      unsigned int full_len)
1404 {
1405         struct strp_msg *clr_rxm;
1406         struct sk_buff *clr_skb;
1407         int err;
1408
1409         clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1410                                        &err, sk->sk_allocation);
1411         if (!clr_skb)
1412                 return NULL;
1413
1414         skb_copy_header(clr_skb, skb);
1415         clr_skb->len = full_len;
1416         clr_skb->data_len = full_len;
1417
1418         clr_rxm = strp_msg(clr_skb);
1419         clr_rxm->offset = 0;
1420
1421         return clr_skb;
1422 }
1423
1424 /* Decrypt handlers
1425  *
1426  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1427  * They must transform the darg in/out argument are as follows:
1428  *       |          Input            |         Output
1429  * -------------------------------------------------------------------
1430  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1431  * async | Async decrypt allowed     | Async crypto used / in progress
1432  *   skb |            *              | Output skb
1433  *
1434  * If ZC decryption was performed darg.skb will point to the input skb.
1435  */
1436
1437 /* This function decrypts the input skb into either out_iov or in out_sg
1438  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1439  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1440  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1441  * NULL, then the decryption happens inside skb buffers itself, i.e.
1442  * zero-copy gets disabled and 'darg->zc' is updated.
1443  */
1444 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1445                           struct scatterlist *out_sg,
1446                           struct tls_decrypt_arg *darg)
1447 {
1448         struct tls_context *tls_ctx = tls_get_ctx(sk);
1449         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1450         struct tls_prot_info *prot = &tls_ctx->prot_info;
1451         int n_sgin, n_sgout, aead_size, err, pages = 0;
1452         struct sk_buff *skb = tls_strp_msg(ctx);
1453         const struct strp_msg *rxm = strp_msg(skb);
1454         const struct tls_msg *tlm = tls_msg(skb);
1455         struct aead_request *aead_req;
1456         struct scatterlist *sgin = NULL;
1457         struct scatterlist *sgout = NULL;
1458         const int data_len = rxm->full_len - prot->overhead_size;
1459         int tail_pages = !!prot->tail_size;
1460         struct tls_decrypt_ctx *dctx;
1461         struct sk_buff *clear_skb;
1462         int iv_offset = 0;
1463         u8 *mem;
1464
1465         n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1466                          rxm->full_len - prot->prepend_size);
1467         if (n_sgin < 1)
1468                 return n_sgin ?: -EBADMSG;
1469
1470         if (darg->zc && (out_iov || out_sg)) {
1471                 clear_skb = NULL;
1472
1473                 if (out_iov)
1474                         n_sgout = 1 + tail_pages +
1475                                 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1476                 else
1477                         n_sgout = sg_nents(out_sg);
1478         } else {
1479                 darg->zc = false;
1480
1481                 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1482                 if (!clear_skb)
1483                         return -ENOMEM;
1484
1485                 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1486         }
1487
1488         /* Increment to accommodate AAD */
1489         n_sgin = n_sgin + 1;
1490
1491         /* Allocate a single block of memory which contains
1492          *   aead_req || tls_decrypt_ctx.
1493          * Both structs are variable length.
1494          */
1495         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1496         aead_size = ALIGN(aead_size, __alignof__(*dctx));
1497         mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1498                       sk->sk_allocation);
1499         if (!mem) {
1500                 err = -ENOMEM;
1501                 goto exit_free_skb;
1502         }
1503
1504         /* Segment the allocated memory */
1505         aead_req = (struct aead_request *)mem;
1506         dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1507         dctx->sk = sk;
1508         sgin = &dctx->sg[0];
1509         sgout = &dctx->sg[n_sgin];
1510
1511         /* For CCM based ciphers, first byte of nonce+iv is a constant */
1512         switch (prot->cipher_type) {
1513         case TLS_CIPHER_AES_CCM_128:
1514                 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1515                 iv_offset = 1;
1516                 break;
1517         case TLS_CIPHER_SM4_CCM:
1518                 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1519                 iv_offset = 1;
1520                 break;
1521         }
1522
1523         /* Prepare IV */
1524         if (prot->version == TLS_1_3_VERSION ||
1525             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1526                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1527                        prot->iv_size + prot->salt_size);
1528         } else {
1529                 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1530                                     &dctx->iv[iv_offset] + prot->salt_size,
1531                                     prot->iv_size);
1532                 if (err < 0)
1533                         goto exit_free;
1534                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1535         }
1536         tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1537
1538         /* Prepare AAD */
1539         tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1540                      prot->tail_size,
1541                      tls_ctx->rx.rec_seq, tlm->control, prot);
1542
1543         /* Prepare sgin */
1544         sg_init_table(sgin, n_sgin);
1545         sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1546         err = skb_to_sgvec(skb, &sgin[1],
1547                            rxm->offset + prot->prepend_size,
1548                            rxm->full_len - prot->prepend_size);
1549         if (err < 0)
1550                 goto exit_free;
1551
1552         if (clear_skb) {
1553                 sg_init_table(sgout, n_sgout);
1554                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1555
1556                 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1557                                    data_len + prot->tail_size);
1558                 if (err < 0)
1559                         goto exit_free;
1560         } else if (out_iov) {
1561                 sg_init_table(sgout, n_sgout);
1562                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1563
1564                 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1565                                           (n_sgout - 1 - tail_pages));
1566                 if (err < 0)
1567                         goto exit_free_pages;
1568
1569                 if (prot->tail_size) {
1570                         sg_unmark_end(&sgout[pages]);
1571                         sg_set_buf(&sgout[pages + 1], &dctx->tail,
1572                                    prot->tail_size);
1573                         sg_mark_end(&sgout[pages + 1]);
1574                 }
1575         } else if (out_sg) {
1576                 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1577         }
1578
1579         /* Prepare and submit AEAD request */
1580         err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1581                                 data_len + prot->tail_size, aead_req, darg);
1582         if (err)
1583                 goto exit_free_pages;
1584
1585         darg->skb = clear_skb ?: tls_strp_msg(ctx);
1586         clear_skb = NULL;
1587
1588         if (unlikely(darg->async)) {
1589                 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1590                 if (err)
1591                         __skb_queue_tail(&ctx->async_hold, darg->skb);
1592                 return err;
1593         }
1594
1595         if (prot->tail_size)
1596                 darg->tail = dctx->tail;
1597
1598 exit_free_pages:
1599         /* Release the pages in case iov was mapped to pages */
1600         for (; pages > 0; pages--)
1601                 put_page(sg_page(&sgout[pages]));
1602 exit_free:
1603         kfree(mem);
1604 exit_free_skb:
1605         consume_skb(clear_skb);
1606         return err;
1607 }
1608
1609 static int
1610 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1611                struct msghdr *msg, struct tls_decrypt_arg *darg)
1612 {
1613         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1614         struct tls_prot_info *prot = &tls_ctx->prot_info;
1615         struct strp_msg *rxm;
1616         int pad, err;
1617
1618         err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1619         if (err < 0) {
1620                 if (err == -EBADMSG)
1621                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1622                 return err;
1623         }
1624         /* keep going even for ->async, the code below is TLS 1.3 */
1625
1626         /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1627         if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1628                      darg->tail != TLS_RECORD_TYPE_DATA)) {
1629                 darg->zc = false;
1630                 if (!darg->tail)
1631                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1632                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1633                 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1634         }
1635
1636         pad = tls_padding_length(prot, darg->skb, darg);
1637         if (pad < 0) {
1638                 if (darg->skb != tls_strp_msg(ctx))
1639                         consume_skb(darg->skb);
1640                 return pad;
1641         }
1642
1643         rxm = strp_msg(darg->skb);
1644         rxm->full_len -= pad;
1645
1646         return 0;
1647 }
1648
1649 static int
1650 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1651                    struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1652 {
1653         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1654         struct tls_prot_info *prot = &tls_ctx->prot_info;
1655         struct strp_msg *rxm;
1656         int pad, err;
1657
1658         if (tls_ctx->rx_conf != TLS_HW)
1659                 return 0;
1660
1661         err = tls_device_decrypted(sk, tls_ctx);
1662         if (err <= 0)
1663                 return err;
1664
1665         pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1666         if (pad < 0)
1667                 return pad;
1668
1669         darg->async = false;
1670         darg->skb = tls_strp_msg(ctx);
1671         /* ->zc downgrade check, in case TLS 1.3 gets here */
1672         darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1673                       tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1674
1675         rxm = strp_msg(darg->skb);
1676         rxm->full_len -= pad;
1677
1678         if (!darg->zc) {
1679                 /* Non-ZC case needs a real skb */
1680                 darg->skb = tls_strp_msg_detach(ctx);
1681                 if (!darg->skb)
1682                         return -ENOMEM;
1683         } else {
1684                 unsigned int off, len;
1685
1686                 /* In ZC case nobody cares about the output skb.
1687                  * Just copy the data here. Note the skb is not fully trimmed.
1688                  */
1689                 off = rxm->offset + prot->prepend_size;
1690                 len = rxm->full_len - prot->overhead_size;
1691
1692                 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1693                 if (err)
1694                         return err;
1695         }
1696         return 1;
1697 }
1698
1699 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1700                              struct tls_decrypt_arg *darg)
1701 {
1702         struct tls_context *tls_ctx = tls_get_ctx(sk);
1703         struct tls_prot_info *prot = &tls_ctx->prot_info;
1704         struct strp_msg *rxm;
1705         int err;
1706
1707         err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1708         if (!err)
1709                 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1710         if (err < 0)
1711                 return err;
1712
1713         rxm = strp_msg(darg->skb);
1714         rxm->offset += prot->prepend_size;
1715         rxm->full_len -= prot->overhead_size;
1716         tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1717
1718         return 0;
1719 }
1720
1721 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1722 {
1723         struct tls_decrypt_arg darg = { .zc = true, };
1724
1725         return tls_decrypt_sg(sk, NULL, sgout, &darg);
1726 }
1727
1728 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1729                                    u8 *control)
1730 {
1731         int err;
1732
1733         if (!*control) {
1734                 *control = tlm->control;
1735                 if (!*control)
1736                         return -EBADMSG;
1737
1738                 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1739                                sizeof(*control), control);
1740                 if (*control != TLS_RECORD_TYPE_DATA) {
1741                         if (err || msg->msg_flags & MSG_CTRUNC)
1742                                 return -EIO;
1743                 }
1744         } else if (*control != tlm->control) {
1745                 return 0;
1746         }
1747
1748         return 1;
1749 }
1750
1751 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1752 {
1753         tls_strp_msg_done(&ctx->strp);
1754 }
1755
1756 /* This function traverses the rx_list in tls receive context to copies the
1757  * decrypted records into the buffer provided by caller zero copy is not
1758  * true. Further, the records are removed from the rx_list if it is not a peek
1759  * case and the record has been consumed completely.
1760  */
1761 static int process_rx_list(struct tls_sw_context_rx *ctx,
1762                            struct msghdr *msg,
1763                            u8 *control,
1764                            size_t skip,
1765                            size_t len,
1766                            bool is_peek)
1767 {
1768         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1769         struct tls_msg *tlm;
1770         ssize_t copied = 0;
1771         int err;
1772
1773         while (skip && skb) {
1774                 struct strp_msg *rxm = strp_msg(skb);
1775                 tlm = tls_msg(skb);
1776
1777                 err = tls_record_content_type(msg, tlm, control);
1778                 if (err <= 0)
1779                         goto out;
1780
1781                 if (skip < rxm->full_len)
1782                         break;
1783
1784                 skip = skip - rxm->full_len;
1785                 skb = skb_peek_next(skb, &ctx->rx_list);
1786         }
1787
1788         while (len && skb) {
1789                 struct sk_buff *next_skb;
1790                 struct strp_msg *rxm = strp_msg(skb);
1791                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1792
1793                 tlm = tls_msg(skb);
1794
1795                 err = tls_record_content_type(msg, tlm, control);
1796                 if (err <= 0)
1797                         goto out;
1798
1799                 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1800                                             msg, chunk);
1801                 if (err < 0)
1802                         goto out;
1803
1804                 len = len - chunk;
1805                 copied = copied + chunk;
1806
1807                 /* Consume the data from record if it is non-peek case*/
1808                 if (!is_peek) {
1809                         rxm->offset = rxm->offset + chunk;
1810                         rxm->full_len = rxm->full_len - chunk;
1811
1812                         /* Return if there is unconsumed data in the record */
1813                         if (rxm->full_len - skip)
1814                                 break;
1815                 }
1816
1817                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1818                  * So from the 2nd record, 'skip' should be 0.
1819                  */
1820                 skip = 0;
1821
1822                 if (msg)
1823                         msg->msg_flags |= MSG_EOR;
1824
1825                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1826
1827                 if (!is_peek) {
1828                         __skb_unlink(skb, &ctx->rx_list);
1829                         consume_skb(skb);
1830                 }
1831
1832                 skb = next_skb;
1833         }
1834         err = 0;
1835
1836 out:
1837         return copied ? : err;
1838 }
1839
1840 static bool
1841 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1842                        size_t len_left, size_t decrypted, ssize_t done,
1843                        size_t *flushed_at)
1844 {
1845         size_t max_rec;
1846
1847         if (len_left <= decrypted)
1848                 return false;
1849
1850         max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1851         if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1852                 return false;
1853
1854         *flushed_at = done;
1855         return sk_flush_backlog(sk);
1856 }
1857
1858 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1859                                  bool nonblock)
1860 {
1861         long timeo;
1862         int ret;
1863
1864         timeo = sock_rcvtimeo(sk, nonblock);
1865
1866         while (unlikely(ctx->reader_present)) {
1867                 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1868
1869                 ctx->reader_contended = 1;
1870
1871                 add_wait_queue(&ctx->wq, &wait);
1872                 ret = sk_wait_event(sk, &timeo,
1873                                     !READ_ONCE(ctx->reader_present), &wait);
1874                 remove_wait_queue(&ctx->wq, &wait);
1875
1876                 if (timeo <= 0)
1877                         return -EAGAIN;
1878                 if (signal_pending(current))
1879                         return sock_intr_errno(timeo);
1880                 if (ret < 0)
1881                         return ret;
1882         }
1883
1884         WRITE_ONCE(ctx->reader_present, 1);
1885
1886         return 0;
1887 }
1888
1889 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1890                               bool nonblock)
1891 {
1892         int err;
1893
1894         lock_sock(sk);
1895         err = tls_rx_reader_acquire(sk, ctx, nonblock);
1896         if (err)
1897                 release_sock(sk);
1898         return err;
1899 }
1900
1901 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1902 {
1903         if (unlikely(ctx->reader_contended)) {
1904                 if (wq_has_sleeper(&ctx->wq))
1905                         wake_up(&ctx->wq);
1906                 else
1907                         ctx->reader_contended = 0;
1908
1909                 WARN_ON_ONCE(!ctx->reader_present);
1910         }
1911
1912         WRITE_ONCE(ctx->reader_present, 0);
1913 }
1914
1915 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1916 {
1917         tls_rx_reader_release(sk, ctx);
1918         release_sock(sk);
1919 }
1920
1921 int tls_sw_recvmsg(struct sock *sk,
1922                    struct msghdr *msg,
1923                    size_t len,
1924                    int flags,
1925                    int *addr_len)
1926 {
1927         struct tls_context *tls_ctx = tls_get_ctx(sk);
1928         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1929         struct tls_prot_info *prot = &tls_ctx->prot_info;
1930         ssize_t decrypted = 0, async_copy_bytes = 0;
1931         struct sk_psock *psock;
1932         unsigned char control = 0;
1933         size_t flushed_at = 0;
1934         struct strp_msg *rxm;
1935         struct tls_msg *tlm;
1936         ssize_t copied = 0;
1937         bool async = false;
1938         int target, err;
1939         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1940         bool is_peek = flags & MSG_PEEK;
1941         bool released = true;
1942         bool bpf_strp_enabled;
1943         bool zc_capable;
1944
1945         if (unlikely(flags & MSG_ERRQUEUE))
1946                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1947
1948         psock = sk_psock_get(sk);
1949         err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1950         if (err < 0)
1951                 return err;
1952         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1953
1954         /* If crypto failed the connection is broken */
1955         err = ctx->async_wait.err;
1956         if (err)
1957                 goto end;
1958
1959         /* Process pending decrypted records. It must be non-zero-copy */
1960         err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1961         if (err < 0)
1962                 goto end;
1963
1964         copied = err;
1965         if (len <= copied)
1966                 goto end;
1967
1968         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1969         len = len - copied;
1970
1971         zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1972                 ctx->zc_capable;
1973         decrypted = 0;
1974         while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1975                 struct tls_decrypt_arg darg;
1976                 int to_decrypt, chunk;
1977
1978                 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1979                                       released);
1980                 if (err <= 0) {
1981                         if (psock) {
1982                                 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1983                                                        flags);
1984                                 if (chunk > 0) {
1985                                         decrypted += chunk;
1986                                         len -= chunk;
1987                                         continue;
1988                                 }
1989                         }
1990                         goto recv_end;
1991                 }
1992
1993                 memset(&darg.inargs, 0, sizeof(darg.inargs));
1994
1995                 rxm = strp_msg(tls_strp_msg(ctx));
1996                 tlm = tls_msg(tls_strp_msg(ctx));
1997
1998                 to_decrypt = rxm->full_len - prot->overhead_size;
1999
2000                 if (zc_capable && to_decrypt <= len &&
2001                     tlm->control == TLS_RECORD_TYPE_DATA)
2002                         darg.zc = true;
2003
2004                 /* Do not use async mode if record is non-data */
2005                 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2006                         darg.async = ctx->async_capable;
2007                 else
2008                         darg.async = false;
2009
2010                 err = tls_rx_one_record(sk, msg, &darg);
2011                 if (err < 0) {
2012                         tls_err_abort(sk, -EBADMSG);
2013                         goto recv_end;
2014                 }
2015
2016                 async |= darg.async;
2017
2018                 /* If the type of records being processed is not known yet,
2019                  * set it to record type just dequeued. If it is already known,
2020                  * but does not match the record type just dequeued, go to end.
2021                  * We always get record type here since for tls1.2, record type
2022                  * is known just after record is dequeued from stream parser.
2023                  * For tls1.3, we disable async.
2024                  */
2025                 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2026                 if (err <= 0) {
2027                         DEBUG_NET_WARN_ON_ONCE(darg.zc);
2028                         tls_rx_rec_done(ctx);
2029 put_on_rx_list_err:
2030                         __skb_queue_tail(&ctx->rx_list, darg.skb);
2031                         goto recv_end;
2032                 }
2033
2034                 /* periodically flush backlog, and feed strparser */
2035                 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2036                                                   decrypted + copied,
2037                                                   &flushed_at);
2038
2039                 /* TLS 1.3 may have updated the length by more than overhead */
2040                 rxm = strp_msg(darg.skb);
2041                 chunk = rxm->full_len;
2042                 tls_rx_rec_done(ctx);
2043
2044                 if (!darg.zc) {
2045                         bool partially_consumed = chunk > len;
2046                         struct sk_buff *skb = darg.skb;
2047
2048                         DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2049
2050                         if (async) {
2051                                 /* TLS 1.2-only, to_decrypt must be text len */
2052                                 chunk = min_t(int, to_decrypt, len);
2053                                 async_copy_bytes += chunk;
2054 put_on_rx_list:
2055                                 decrypted += chunk;
2056                                 len -= chunk;
2057                                 __skb_queue_tail(&ctx->rx_list, skb);
2058                                 continue;
2059                         }
2060
2061                         if (bpf_strp_enabled) {
2062                                 released = true;
2063                                 err = sk_psock_tls_strp_read(psock, skb);
2064                                 if (err != __SK_PASS) {
2065                                         rxm->offset = rxm->offset + rxm->full_len;
2066                                         rxm->full_len = 0;
2067                                         if (err == __SK_DROP)
2068                                                 consume_skb(skb);
2069                                         continue;
2070                                 }
2071                         }
2072
2073                         if (partially_consumed)
2074                                 chunk = len;
2075
2076                         err = skb_copy_datagram_msg(skb, rxm->offset,
2077                                                     msg, chunk);
2078                         if (err < 0)
2079                                 goto put_on_rx_list_err;
2080
2081                         if (is_peek)
2082                                 goto put_on_rx_list;
2083
2084                         if (partially_consumed) {
2085                                 rxm->offset += chunk;
2086                                 rxm->full_len -= chunk;
2087                                 goto put_on_rx_list;
2088                         }
2089
2090                         consume_skb(skb);
2091                 }
2092
2093                 decrypted += chunk;
2094                 len -= chunk;
2095
2096                 /* Return full control message to userspace before trying
2097                  * to parse another message type
2098                  */
2099                 msg->msg_flags |= MSG_EOR;
2100                 if (control != TLS_RECORD_TYPE_DATA)
2101                         break;
2102         }
2103
2104 recv_end:
2105         if (async) {
2106                 int ret, pending;
2107
2108                 /* Wait for all previously submitted records to be decrypted */
2109                 spin_lock_bh(&ctx->decrypt_compl_lock);
2110                 reinit_completion(&ctx->async_wait.completion);
2111                 pending = atomic_read(&ctx->decrypt_pending);
2112                 spin_unlock_bh(&ctx->decrypt_compl_lock);
2113                 ret = 0;
2114                 if (pending)
2115                         ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2116                 __skb_queue_purge(&ctx->async_hold);
2117
2118                 if (ret) {
2119                         if (err >= 0 || err == -EINPROGRESS)
2120                                 err = ret;
2121                         decrypted = 0;
2122                         goto end;
2123                 }
2124
2125                 /* Drain records from the rx_list & copy if required */
2126                 if (is_peek || is_kvec)
2127                         err = process_rx_list(ctx, msg, &control, copied,
2128                                               decrypted, is_peek);
2129                 else
2130                         err = process_rx_list(ctx, msg, &control, 0,
2131                                               async_copy_bytes, is_peek);
2132                 decrypted += max(err, 0);
2133         }
2134
2135         copied += decrypted;
2136
2137 end:
2138         tls_rx_reader_unlock(sk, ctx);
2139         if (psock)
2140                 sk_psock_put(sk, psock);
2141         return copied ? : err;
2142 }
2143
2144 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2145                            struct pipe_inode_info *pipe,
2146                            size_t len, unsigned int flags)
2147 {
2148         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2149         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2150         struct strp_msg *rxm = NULL;
2151         struct sock *sk = sock->sk;
2152         struct tls_msg *tlm;
2153         struct sk_buff *skb;
2154         ssize_t copied = 0;
2155         int chunk;
2156         int err;
2157
2158         err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2159         if (err < 0)
2160                 return err;
2161
2162         if (!skb_queue_empty(&ctx->rx_list)) {
2163                 skb = __skb_dequeue(&ctx->rx_list);
2164         } else {
2165                 struct tls_decrypt_arg darg;
2166
2167                 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2168                                       true);
2169                 if (err <= 0)
2170                         goto splice_read_end;
2171
2172                 memset(&darg.inargs, 0, sizeof(darg.inargs));
2173
2174                 err = tls_rx_one_record(sk, NULL, &darg);
2175                 if (err < 0) {
2176                         tls_err_abort(sk, -EBADMSG);
2177                         goto splice_read_end;
2178                 }
2179
2180                 tls_rx_rec_done(ctx);
2181                 skb = darg.skb;
2182         }
2183
2184         rxm = strp_msg(skb);
2185         tlm = tls_msg(skb);
2186
2187         /* splice does not support reading control messages */
2188         if (tlm->control != TLS_RECORD_TYPE_DATA) {
2189                 err = -EINVAL;
2190                 goto splice_requeue;
2191         }
2192
2193         chunk = min_t(unsigned int, rxm->full_len, len);
2194         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2195         if (copied < 0)
2196                 goto splice_requeue;
2197
2198         if (chunk < rxm->full_len) {
2199                 rxm->offset += len;
2200                 rxm->full_len -= len;
2201                 goto splice_requeue;
2202         }
2203
2204         consume_skb(skb);
2205
2206 splice_read_end:
2207         tls_rx_reader_unlock(sk, ctx);
2208         return copied ? : err;
2209
2210 splice_requeue:
2211         __skb_queue_head(&ctx->rx_list, skb);
2212         goto splice_read_end;
2213 }
2214
2215 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2216                      sk_read_actor_t read_actor)
2217 {
2218         struct tls_context *tls_ctx = tls_get_ctx(sk);
2219         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2220         struct tls_prot_info *prot = &tls_ctx->prot_info;
2221         struct strp_msg *rxm = NULL;
2222         struct sk_buff *skb = NULL;
2223         struct sk_psock *psock;
2224         size_t flushed_at = 0;
2225         bool released = true;
2226         struct tls_msg *tlm;
2227         ssize_t copied = 0;
2228         ssize_t decrypted;
2229         int err, used;
2230
2231         psock = sk_psock_get(sk);
2232         if (psock) {
2233                 sk_psock_put(sk, psock);
2234                 return -EINVAL;
2235         }
2236         err = tls_rx_reader_acquire(sk, ctx, true);
2237         if (err < 0)
2238                 return err;
2239
2240         /* If crypto failed the connection is broken */
2241         err = ctx->async_wait.err;
2242         if (err)
2243                 goto read_sock_end;
2244
2245         decrypted = 0;
2246         do {
2247                 if (!skb_queue_empty(&ctx->rx_list)) {
2248                         skb = __skb_dequeue(&ctx->rx_list);
2249                         rxm = strp_msg(skb);
2250                         tlm = tls_msg(skb);
2251                 } else {
2252                         struct tls_decrypt_arg darg;
2253
2254                         err = tls_rx_rec_wait(sk, NULL, true, released);
2255                         if (err <= 0)
2256                                 goto read_sock_end;
2257
2258                         memset(&darg.inargs, 0, sizeof(darg.inargs));
2259
2260                         err = tls_rx_one_record(sk, NULL, &darg);
2261                         if (err < 0) {
2262                                 tls_err_abort(sk, -EBADMSG);
2263                                 goto read_sock_end;
2264                         }
2265
2266                         released = tls_read_flush_backlog(sk, prot, INT_MAX,
2267                                                           0, decrypted,
2268                                                           &flushed_at);
2269                         skb = darg.skb;
2270                         rxm = strp_msg(skb);
2271                         tlm = tls_msg(skb);
2272                         decrypted += rxm->full_len;
2273
2274                         tls_rx_rec_done(ctx);
2275                 }
2276
2277                 /* read_sock does not support reading control messages */
2278                 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2279                         err = -EINVAL;
2280                         goto read_sock_requeue;
2281                 }
2282
2283                 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2284                 if (used <= 0) {
2285                         if (!copied)
2286                                 err = used;
2287                         goto read_sock_requeue;
2288                 }
2289                 copied += used;
2290                 if (used < rxm->full_len) {
2291                         rxm->offset += used;
2292                         rxm->full_len -= used;
2293                         if (!desc->count)
2294                                 goto read_sock_requeue;
2295                 } else {
2296                         consume_skb(skb);
2297                         if (!desc->count)
2298                                 skb = NULL;
2299                 }
2300         } while (skb);
2301
2302 read_sock_end:
2303         tls_rx_reader_release(sk, ctx);
2304         return copied ? : err;
2305
2306 read_sock_requeue:
2307         __skb_queue_head(&ctx->rx_list, skb);
2308         goto read_sock_end;
2309 }
2310
2311 bool tls_sw_sock_is_readable(struct sock *sk)
2312 {
2313         struct tls_context *tls_ctx = tls_get_ctx(sk);
2314         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2315         bool ingress_empty = true;
2316         struct sk_psock *psock;
2317
2318         rcu_read_lock();
2319         psock = sk_psock(sk);
2320         if (psock)
2321                 ingress_empty = list_empty(&psock->ingress_msg);
2322         rcu_read_unlock();
2323
2324         return !ingress_empty || tls_strp_msg_ready(ctx) ||
2325                 !skb_queue_empty(&ctx->rx_list);
2326 }
2327
2328 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2329 {
2330         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2331         struct tls_prot_info *prot = &tls_ctx->prot_info;
2332         char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2333         size_t cipher_overhead;
2334         size_t data_len = 0;
2335         int ret;
2336
2337         /* Verify that we have a full TLS header, or wait for more data */
2338         if (strp->stm.offset + prot->prepend_size > skb->len)
2339                 return 0;
2340
2341         /* Sanity-check size of on-stack buffer. */
2342         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2343                 ret = -EINVAL;
2344                 goto read_failure;
2345         }
2346
2347         /* Linearize header to local buffer */
2348         ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2349         if (ret < 0)
2350                 goto read_failure;
2351
2352         strp->mark = header[0];
2353
2354         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2355
2356         cipher_overhead = prot->tag_size;
2357         if (prot->version != TLS_1_3_VERSION &&
2358             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2359                 cipher_overhead += prot->iv_size;
2360
2361         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2362             prot->tail_size) {
2363                 ret = -EMSGSIZE;
2364                 goto read_failure;
2365         }
2366         if (data_len < cipher_overhead) {
2367                 ret = -EBADMSG;
2368                 goto read_failure;
2369         }
2370
2371         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2372         if (header[1] != TLS_1_2_VERSION_MINOR ||
2373             header[2] != TLS_1_2_VERSION_MAJOR) {
2374                 ret = -EINVAL;
2375                 goto read_failure;
2376         }
2377
2378         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2379                                      TCP_SKB_CB(skb)->seq + strp->stm.offset);
2380         return data_len + TLS_HEADER_SIZE;
2381
2382 read_failure:
2383         tls_err_abort(strp->sk, ret);
2384
2385         return ret;
2386 }
2387
2388 void tls_rx_msg_ready(struct tls_strparser *strp)
2389 {
2390         struct tls_sw_context_rx *ctx;
2391
2392         ctx = container_of(strp, struct tls_sw_context_rx, strp);
2393         ctx->saved_data_ready(strp->sk);
2394 }
2395
2396 static void tls_data_ready(struct sock *sk)
2397 {
2398         struct tls_context *tls_ctx = tls_get_ctx(sk);
2399         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2400         struct sk_psock *psock;
2401         gfp_t alloc_save;
2402
2403         trace_sk_data_ready(sk);
2404
2405         alloc_save = sk->sk_allocation;
2406         sk->sk_allocation = GFP_ATOMIC;
2407         tls_strp_data_ready(&ctx->strp);
2408         sk->sk_allocation = alloc_save;
2409
2410         psock = sk_psock_get(sk);
2411         if (psock) {
2412                 if (!list_empty(&psock->ingress_msg))
2413                         ctx->saved_data_ready(sk);
2414                 sk_psock_put(sk, psock);
2415         }
2416 }
2417
2418 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2419 {
2420         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2421
2422         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2423         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2424         cancel_delayed_work_sync(&ctx->tx_work.work);
2425 }
2426
2427 void tls_sw_release_resources_tx(struct sock *sk)
2428 {
2429         struct tls_context *tls_ctx = tls_get_ctx(sk);
2430         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2431         struct tls_rec *rec, *tmp;
2432         int pending;
2433
2434         /* Wait for any pending async encryptions to complete */
2435         spin_lock_bh(&ctx->encrypt_compl_lock);
2436         ctx->async_notify = true;
2437         pending = atomic_read(&ctx->encrypt_pending);
2438         spin_unlock_bh(&ctx->encrypt_compl_lock);
2439
2440         if (pending)
2441                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2442
2443         tls_tx_records(sk, -1);
2444
2445         /* Free up un-sent records in tx_list. First, free
2446          * the partially sent record if any at head of tx_list.
2447          */
2448         if (tls_ctx->partially_sent_record) {
2449                 tls_free_partial_record(sk, tls_ctx);
2450                 rec = list_first_entry(&ctx->tx_list,
2451                                        struct tls_rec, list);
2452                 list_del(&rec->list);
2453                 sk_msg_free(sk, &rec->msg_plaintext);
2454                 kfree(rec);
2455         }
2456
2457         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2458                 list_del(&rec->list);
2459                 sk_msg_free(sk, &rec->msg_encrypted);
2460                 sk_msg_free(sk, &rec->msg_plaintext);
2461                 kfree(rec);
2462         }
2463
2464         crypto_free_aead(ctx->aead_send);
2465         tls_free_open_rec(sk);
2466 }
2467
2468 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2469 {
2470         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2471
2472         kfree(ctx);
2473 }
2474
2475 void tls_sw_release_resources_rx(struct sock *sk)
2476 {
2477         struct tls_context *tls_ctx = tls_get_ctx(sk);
2478         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2479
2480         if (ctx->aead_recv) {
2481                 __skb_queue_purge(&ctx->rx_list);
2482                 crypto_free_aead(ctx->aead_recv);
2483                 tls_strp_stop(&ctx->strp);
2484                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2485                  * we still want to tls_strp_stop(), but sk->sk_data_ready was
2486                  * never swapped.
2487                  */
2488                 if (ctx->saved_data_ready) {
2489                         write_lock_bh(&sk->sk_callback_lock);
2490                         sk->sk_data_ready = ctx->saved_data_ready;
2491                         write_unlock_bh(&sk->sk_callback_lock);
2492                 }
2493         }
2494 }
2495
2496 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2497 {
2498         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2499
2500         tls_strp_done(&ctx->strp);
2501 }
2502
2503 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2504 {
2505         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2506
2507         kfree(ctx);
2508 }
2509
2510 void tls_sw_free_resources_rx(struct sock *sk)
2511 {
2512         struct tls_context *tls_ctx = tls_get_ctx(sk);
2513
2514         tls_sw_release_resources_rx(sk);
2515         tls_sw_free_ctx_rx(tls_ctx);
2516 }
2517
2518 /* The work handler to transmitt the encrypted records in tx_list */
2519 static void tx_work_handler(struct work_struct *work)
2520 {
2521         struct delayed_work *delayed_work = to_delayed_work(work);
2522         struct tx_work *tx_work = container_of(delayed_work,
2523                                                struct tx_work, work);
2524         struct sock *sk = tx_work->sk;
2525         struct tls_context *tls_ctx = tls_get_ctx(sk);
2526         struct tls_sw_context_tx *ctx;
2527
2528         if (unlikely(!tls_ctx))
2529                 return;
2530
2531         ctx = tls_sw_ctx_tx(tls_ctx);
2532         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2533                 return;
2534
2535         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2536                 return;
2537
2538         if (mutex_trylock(&tls_ctx->tx_lock)) {
2539                 lock_sock(sk);
2540                 tls_tx_records(sk, -1);
2541                 release_sock(sk);
2542                 mutex_unlock(&tls_ctx->tx_lock);
2543         } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2544                 /* Someone is holding the tx_lock, they will likely run Tx
2545                  * and cancel the work on their way out of the lock section.
2546                  * Schedule a long delay just in case.
2547                  */
2548                 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2549         }
2550 }
2551
2552 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2553 {
2554         struct tls_rec *rec;
2555
2556         rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2557         if (!rec)
2558                 return false;
2559
2560         return READ_ONCE(rec->tx_ready);
2561 }
2562
2563 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2564 {
2565         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2566
2567         /* Schedule the transmission if tx list is ready */
2568         if (tls_is_tx_ready(tx_ctx) &&
2569             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2570                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2571 }
2572
2573 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2574 {
2575         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2576
2577         write_lock_bh(&sk->sk_callback_lock);
2578         rx_ctx->saved_data_ready = sk->sk_data_ready;
2579         sk->sk_data_ready = tls_data_ready;
2580         write_unlock_bh(&sk->sk_callback_lock);
2581 }
2582
2583 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2584 {
2585         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2586
2587         rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2588                 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2589 }
2590
2591 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2592 {
2593         struct tls_sw_context_tx *sw_ctx_tx;
2594
2595         if (!ctx->priv_ctx_tx) {
2596                 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2597                 if (!sw_ctx_tx)
2598                         return NULL;
2599         } else {
2600                 sw_ctx_tx = ctx->priv_ctx_tx;
2601         }
2602
2603         crypto_init_wait(&sw_ctx_tx->async_wait);
2604         spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2605         INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2606         INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2607         sw_ctx_tx->tx_work.sk = sk;
2608
2609         return sw_ctx_tx;
2610 }
2611
2612 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2613 {
2614         struct tls_sw_context_rx *sw_ctx_rx;
2615
2616         if (!ctx->priv_ctx_rx) {
2617                 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2618                 if (!sw_ctx_rx)
2619                         return NULL;
2620         } else {
2621                 sw_ctx_rx = ctx->priv_ctx_rx;
2622         }
2623
2624         crypto_init_wait(&sw_ctx_rx->async_wait);
2625         spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2626         init_waitqueue_head(&sw_ctx_rx->wq);
2627         skb_queue_head_init(&sw_ctx_rx->rx_list);
2628         skb_queue_head_init(&sw_ctx_rx->async_hold);
2629
2630         return sw_ctx_rx;
2631 }
2632
2633 int init_prot_info(struct tls_prot_info *prot,
2634                    const struct tls_crypto_info *crypto_info,
2635                    const struct tls_cipher_desc *cipher_desc)
2636 {
2637         u16 nonce_size = cipher_desc->nonce;
2638
2639         if (crypto_info->version == TLS_1_3_VERSION) {
2640                 nonce_size = 0;
2641                 prot->aad_size = TLS_HEADER_SIZE;
2642                 prot->tail_size = 1;
2643         } else {
2644                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2645                 prot->tail_size = 0;
2646         }
2647
2648         /* Sanity-check the sizes for stack allocations. */
2649         if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2650                 return -EINVAL;
2651
2652         prot->version = crypto_info->version;
2653         prot->cipher_type = crypto_info->cipher_type;
2654         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2655         prot->tag_size = cipher_desc->tag;
2656         prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2657         prot->iv_size = cipher_desc->iv;
2658         prot->salt_size = cipher_desc->salt;
2659         prot->rec_seq_size = cipher_desc->rec_seq;
2660
2661         return 0;
2662 }
2663
2664 int tls_set_sw_offload(struct sock *sk, int tx)
2665 {
2666         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2667         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2668         const struct tls_cipher_desc *cipher_desc;
2669         struct tls_crypto_info *crypto_info;
2670         char *iv, *rec_seq, *key, *salt;
2671         struct cipher_context *cctx;
2672         struct tls_prot_info *prot;
2673         struct crypto_aead **aead;
2674         struct tls_context *ctx;
2675         struct crypto_tfm *tfm;
2676         int rc = 0;
2677
2678         ctx = tls_get_ctx(sk);
2679         prot = &ctx->prot_info;
2680
2681         if (tx) {
2682                 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2683                 if (!ctx->priv_ctx_tx)
2684                         return -ENOMEM;
2685
2686                 sw_ctx_tx = ctx->priv_ctx_tx;
2687                 crypto_info = &ctx->crypto_send.info;
2688                 cctx = &ctx->tx;
2689                 aead = &sw_ctx_tx->aead_send;
2690         } else {
2691                 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2692                 if (!ctx->priv_ctx_rx)
2693                         return -ENOMEM;
2694
2695                 sw_ctx_rx = ctx->priv_ctx_rx;
2696                 crypto_info = &ctx->crypto_recv.info;
2697                 cctx = &ctx->rx;
2698                 aead = &sw_ctx_rx->aead_recv;
2699         }
2700
2701         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2702         if (!cipher_desc) {
2703                 rc = -EINVAL;
2704                 goto free_priv;
2705         }
2706
2707         rc = init_prot_info(prot, crypto_info, cipher_desc);
2708         if (rc)
2709                 goto free_priv;
2710
2711         iv = crypto_info_iv(crypto_info, cipher_desc);
2712         key = crypto_info_key(crypto_info, cipher_desc);
2713         salt = crypto_info_salt(crypto_info, cipher_desc);
2714         rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2715
2716         memcpy(cctx->iv, salt, cipher_desc->salt);
2717         memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2718         memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2719
2720         if (!*aead) {
2721                 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2722                 if (IS_ERR(*aead)) {
2723                         rc = PTR_ERR(*aead);
2724                         *aead = NULL;
2725                         goto free_priv;
2726                 }
2727         }
2728
2729         ctx->push_pending_record = tls_sw_push_pending_record;
2730
2731         rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2732         if (rc)
2733                 goto free_aead;
2734
2735         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2736         if (rc)
2737                 goto free_aead;
2738
2739         if (sw_ctx_rx) {
2740                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2741
2742                 tls_update_rx_zc_capable(ctx);
2743                 sw_ctx_rx->async_capable =
2744                         crypto_info->version != TLS_1_3_VERSION &&
2745                         !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2746
2747                 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2748                 if (rc)
2749                         goto free_aead;
2750         }
2751
2752         goto out;
2753
2754 free_aead:
2755         crypto_free_aead(*aead);
2756         *aead = NULL;
2757 free_priv:
2758         if (tx) {
2759                 kfree(ctx->priv_ctx_tx);
2760                 ctx->priv_ctx_tx = NULL;
2761         } else {
2762                 kfree(ctx->priv_ctx_rx);
2763                 ctx->priv_ctx_rx = NULL;
2764         }
2765 out:
2766         return rc;
2767 }