a3ccb3135e51ac6fb01adda8d4198266ff43a646
[linux-block.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56         TLSV4,
57         TLSV6,
58         TLS_NUM_PROTS,
59 };
60
61 #define CHECK_CIPHER_DESC(cipher,ci)                            \
62         static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE);           \
63         static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE);               \
64         static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
65         static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);             \
66         static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);       \
67         static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);     \
68         static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);   \
69         static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
70
71 #define __CIPHER_DESC(ci) \
72         .iv_offset = offsetof(struct ci, iv), \
73         .key_offset = offsetof(struct ci, key), \
74         .salt_offset = offsetof(struct ci, salt), \
75         .rec_seq_offset = offsetof(struct ci, rec_seq), \
76         .crypto_info = sizeof(struct ci)
77
78 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {       \
79         .nonce = cipher ## _IV_SIZE, \
80         .iv = cipher ## _IV_SIZE, \
81         .key = cipher ## _KEY_SIZE, \
82         .salt = cipher ## _SALT_SIZE, \
83         .tag = cipher ## _TAG_SIZE, \
84         .rec_seq = cipher ## _REC_SEQ_SIZE, \
85         .cipher_name = algname, \
86         .offloadable = _offloadable, \
87         __CIPHER_DESC(ci), \
88 }
89
90 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
91         .nonce = 0, \
92         .iv = cipher ## _IV_SIZE, \
93         .key = cipher ## _KEY_SIZE, \
94         .salt = cipher ## _SALT_SIZE, \
95         .tag = cipher ## _TAG_SIZE, \
96         .rec_seq = cipher ## _REC_SEQ_SIZE, \
97         .cipher_name = algname, \
98         .offloadable = _offloadable, \
99         __CIPHER_DESC(ci), \
100 }
101
102 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103         CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104         CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105         CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106         CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107         CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108         CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109         CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110         CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111 };
112
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121
122 static const struct proto *saved_tcpv6_prot;
123 static DEFINE_MUTEX(tcpv6_prot_mutex);
124 static const struct proto *saved_tcpv4_prot;
125 static DEFINE_MUTEX(tcpv4_prot_mutex);
126 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129                          const struct proto *base);
130
131 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132 {
133         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134
135         WRITE_ONCE(sk->sk_prot,
136                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137         WRITE_ONCE(sk->sk_socket->ops,
138                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139 }
140
141 int wait_on_pending_writer(struct sock *sk, long *timeo)
142 {
143         DEFINE_WAIT_FUNC(wait, woken_wake_function);
144         int ret, rc = 0;
145
146         add_wait_queue(sk_sleep(sk), &wait);
147         while (1) {
148                 if (!*timeo) {
149                         rc = -EAGAIN;
150                         break;
151                 }
152
153                 if (signal_pending(current)) {
154                         rc = sock_intr_errno(*timeo);
155                         break;
156                 }
157
158                 ret = sk_wait_event(sk, timeo,
159                                     !READ_ONCE(sk->sk_write_pending), &wait);
160                 if (ret) {
161                         if (ret < 0)
162                                 rc = ret;
163                         break;
164                 }
165         }
166         remove_wait_queue(sk_sleep(sk), &wait);
167         return rc;
168 }
169
170 int tls_push_sg(struct sock *sk,
171                 struct tls_context *ctx,
172                 struct scatterlist *sg,
173                 u16 first_offset,
174                 int flags)
175 {
176         struct bio_vec bvec;
177         struct msghdr msg = {
178                 .msg_flags = MSG_SPLICE_PAGES | flags,
179         };
180         int ret = 0;
181         struct page *p;
182         size_t size;
183         int offset = first_offset;
184
185         size = sg->length - offset;
186         offset += sg->offset;
187
188         ctx->splicing_pages = true;
189         while (1) {
190                 /* is sending application-limited? */
191                 tcp_rate_check_app_limited(sk);
192                 p = sg_page(sg);
193 retry:
194                 bvec_set_page(&bvec, p, size, offset);
195                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
196
197                 ret = tcp_sendmsg_locked(sk, &msg, size);
198
199                 if (ret != size) {
200                         if (ret > 0) {
201                                 offset += ret;
202                                 size -= ret;
203                                 goto retry;
204                         }
205
206                         offset -= sg->offset;
207                         ctx->partially_sent_offset = offset;
208                         ctx->partially_sent_record = (void *)sg;
209                         ctx->splicing_pages = false;
210                         return ret;
211                 }
212
213                 put_page(p);
214                 sk_mem_uncharge(sk, sg->length);
215                 sg = sg_next(sg);
216                 if (!sg)
217                         break;
218
219                 offset = sg->offset;
220                 size = sg->length;
221         }
222
223         ctx->splicing_pages = false;
224
225         return 0;
226 }
227
228 static int tls_handle_open_record(struct sock *sk, int flags)
229 {
230         struct tls_context *ctx = tls_get_ctx(sk);
231
232         if (tls_is_pending_open_record(ctx))
233                 return ctx->push_pending_record(sk, flags);
234
235         return 0;
236 }
237
238 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239                      unsigned char *record_type)
240 {
241         struct cmsghdr *cmsg;
242         int rc = -EINVAL;
243
244         for_each_cmsghdr(cmsg, msg) {
245                 if (!CMSG_OK(msg, cmsg))
246                         return -EINVAL;
247                 if (cmsg->cmsg_level != SOL_TLS)
248                         continue;
249
250                 switch (cmsg->cmsg_type) {
251                 case TLS_SET_RECORD_TYPE:
252                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
253                                 return -EINVAL;
254
255                         if (msg->msg_flags & MSG_MORE)
256                                 return -EINVAL;
257
258                         rc = tls_handle_open_record(sk, msg->msg_flags);
259                         if (rc)
260                                 return rc;
261
262                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
263                         rc = 0;
264                         break;
265                 default:
266                         return -EINVAL;
267                 }
268         }
269
270         return rc;
271 }
272
273 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
274                             int flags)
275 {
276         struct scatterlist *sg;
277         u16 offset;
278
279         sg = ctx->partially_sent_record;
280         offset = ctx->partially_sent_offset;
281
282         ctx->partially_sent_record = NULL;
283         return tls_push_sg(sk, ctx, sg, offset, flags);
284 }
285
286 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
287 {
288         struct scatterlist *sg;
289
290         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
291                 put_page(sg_page(sg));
292                 sk_mem_uncharge(sk, sg->length);
293         }
294         ctx->partially_sent_record = NULL;
295 }
296
297 static void tls_write_space(struct sock *sk)
298 {
299         struct tls_context *ctx = tls_get_ctx(sk);
300
301         /* If splicing_pages call lower protocol write space handler
302          * to ensure we wake up any waiting operations there. For example
303          * if splicing pages where to call sk_wait_event.
304          */
305         if (ctx->splicing_pages) {
306                 ctx->sk_write_space(sk);
307                 return;
308         }
309
310 #ifdef CONFIG_TLS_DEVICE
311         if (ctx->tx_conf == TLS_HW)
312                 tls_device_write_space(sk, ctx);
313         else
314 #endif
315                 tls_sw_write_space(sk, ctx);
316
317         ctx->sk_write_space(sk);
318 }
319
320 /**
321  * tls_ctx_free() - free TLS ULP context
322  * @sk:  socket to with @ctx is attached
323  * @ctx: TLS context structure
324  *
325  * Free TLS context. If @sk is %NULL caller guarantees that the socket
326  * to which @ctx was attached has no outstanding references.
327  */
328 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
329 {
330         if (!ctx)
331                 return;
332
333         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
334         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
335         mutex_destroy(&ctx->tx_lock);
336
337         if (sk)
338                 kfree_rcu(ctx, rcu);
339         else
340                 kfree(ctx);
341 }
342
343 static void tls_sk_proto_cleanup(struct sock *sk,
344                                  struct tls_context *ctx, long timeo)
345 {
346         if (unlikely(sk->sk_write_pending) &&
347             !wait_on_pending_writer(sk, &timeo))
348                 tls_handle_open_record(sk, 0);
349
350         /* We need these for tls_sw_fallback handling of other packets */
351         if (ctx->tx_conf == TLS_SW) {
352                 tls_sw_release_resources_tx(sk);
353                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
354         } else if (ctx->tx_conf == TLS_HW) {
355                 tls_device_free_resources_tx(sk);
356                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
357         }
358
359         if (ctx->rx_conf == TLS_SW) {
360                 tls_sw_release_resources_rx(sk);
361                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
362         } else if (ctx->rx_conf == TLS_HW) {
363                 tls_device_offload_cleanup_rx(sk);
364                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
365         }
366 }
367
368 static void tls_sk_proto_close(struct sock *sk, long timeout)
369 {
370         struct inet_connection_sock *icsk = inet_csk(sk);
371         struct tls_context *ctx = tls_get_ctx(sk);
372         long timeo = sock_sndtimeo(sk, 0);
373         bool free_ctx;
374
375         if (ctx->tx_conf == TLS_SW)
376                 tls_sw_cancel_work_tx(ctx);
377
378         lock_sock(sk);
379         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
380
381         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
382                 tls_sk_proto_cleanup(sk, ctx, timeo);
383
384         write_lock_bh(&sk->sk_callback_lock);
385         if (free_ctx)
386                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
387         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
388         if (sk->sk_write_space == tls_write_space)
389                 sk->sk_write_space = ctx->sk_write_space;
390         write_unlock_bh(&sk->sk_callback_lock);
391         release_sock(sk);
392         if (ctx->tx_conf == TLS_SW)
393                 tls_sw_free_ctx_tx(ctx);
394         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
395                 tls_sw_strparser_done(ctx);
396         if (ctx->rx_conf == TLS_SW)
397                 tls_sw_free_ctx_rx(ctx);
398         ctx->sk_proto->close(sk, timeout);
399
400         if (free_ctx)
401                 tls_ctx_free(sk, ctx);
402 }
403
404 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
405                             struct poll_table_struct *wait)
406 {
407         struct tls_sw_context_rx *ctx;
408         struct tls_context *tls_ctx;
409         struct sock *sk = sock->sk;
410         struct sk_psock *psock;
411         __poll_t mask = 0;
412         u8 shutdown;
413         int state;
414
415         mask = tcp_poll(file, sock, wait);
416
417         state = inet_sk_state_load(sk);
418         shutdown = READ_ONCE(sk->sk_shutdown);
419         if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
420                 return mask;
421
422         tls_ctx = tls_get_ctx(sk);
423         ctx = tls_sw_ctx_rx(tls_ctx);
424         psock = sk_psock_get(sk);
425
426         if ((skb_queue_empty_lockless(&ctx->rx_list) &&
427              !tls_strp_msg_ready(ctx) &&
428              sk_psock_queue_empty(psock)) ||
429             READ_ONCE(ctx->key_update_pending))
430                 mask &= ~(EPOLLIN | EPOLLRDNORM);
431
432         if (psock)
433                 sk_psock_put(sk, psock);
434
435         return mask;
436 }
437
438 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
439                                   int __user *optlen, int tx)
440 {
441         int rc = 0;
442         const struct tls_cipher_desc *cipher_desc;
443         struct tls_context *ctx = tls_get_ctx(sk);
444         struct tls_crypto_info *crypto_info;
445         struct cipher_context *cctx;
446         int len;
447
448         if (get_user(len, optlen))
449                 return -EFAULT;
450
451         if (!optval || (len < sizeof(*crypto_info))) {
452                 rc = -EINVAL;
453                 goto out;
454         }
455
456         if (!ctx) {
457                 rc = -EBUSY;
458                 goto out;
459         }
460
461         /* get user crypto info */
462         if (tx) {
463                 crypto_info = &ctx->crypto_send.info;
464                 cctx = &ctx->tx;
465         } else {
466                 crypto_info = &ctx->crypto_recv.info;
467                 cctx = &ctx->rx;
468         }
469
470         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
471                 rc = -EBUSY;
472                 goto out;
473         }
474
475         if (len == sizeof(*crypto_info)) {
476                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
477                         rc = -EFAULT;
478                 goto out;
479         }
480
481         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
482         if (!cipher_desc || len != cipher_desc->crypto_info) {
483                 rc = -EINVAL;
484                 goto out;
485         }
486
487         memcpy(crypto_info_iv(crypto_info, cipher_desc),
488                cctx->iv + cipher_desc->salt, cipher_desc->iv);
489         memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
490                cctx->rec_seq, cipher_desc->rec_seq);
491
492         if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
493                 rc = -EFAULT;
494
495 out:
496         return rc;
497 }
498
499 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
500                                    int __user *optlen)
501 {
502         struct tls_context *ctx = tls_get_ctx(sk);
503         unsigned int value;
504         int len;
505
506         if (get_user(len, optlen))
507                 return -EFAULT;
508
509         if (len != sizeof(value))
510                 return -EINVAL;
511
512         value = ctx->zerocopy_sendfile;
513         if (copy_to_user(optval, &value, sizeof(value)))
514                 return -EFAULT;
515
516         return 0;
517 }
518
519 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
520                                     int __user *optlen)
521 {
522         struct tls_context *ctx = tls_get_ctx(sk);
523         int value, len;
524
525         if (ctx->prot_info.version != TLS_1_3_VERSION)
526                 return -EINVAL;
527
528         if (get_user(len, optlen))
529                 return -EFAULT;
530         if (len < sizeof(value))
531                 return -EINVAL;
532
533         value = -EINVAL;
534         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
535                 value = ctx->rx_no_pad;
536         if (value < 0)
537                 return value;
538
539         if (put_user(sizeof(value), optlen))
540                 return -EFAULT;
541         if (copy_to_user(optval, &value, sizeof(value)))
542                 return -EFAULT;
543
544         return 0;
545 }
546
547 static int do_tls_getsockopt(struct sock *sk, int optname,
548                              char __user *optval, int __user *optlen)
549 {
550         int rc = 0;
551
552         lock_sock(sk);
553
554         switch (optname) {
555         case TLS_TX:
556         case TLS_RX:
557                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
558                                             optname == TLS_TX);
559                 break;
560         case TLS_TX_ZEROCOPY_RO:
561                 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
562                 break;
563         case TLS_RX_EXPECT_NO_PAD:
564                 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
565                 break;
566         default:
567                 rc = -ENOPROTOOPT;
568                 break;
569         }
570
571         release_sock(sk);
572
573         return rc;
574 }
575
576 static int tls_getsockopt(struct sock *sk, int level, int optname,
577                           char __user *optval, int __user *optlen)
578 {
579         struct tls_context *ctx = tls_get_ctx(sk);
580
581         if (level != SOL_TLS)
582                 return ctx->sk_proto->getsockopt(sk, level,
583                                                  optname, optval, optlen);
584
585         return do_tls_getsockopt(sk, optname, optval, optlen);
586 }
587
588 static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
589                                 const struct tls_crypto_info *alt_crypto_info)
590 {
591         if (crypto_info->version != TLS_1_2_VERSION &&
592             crypto_info->version != TLS_1_3_VERSION)
593                 return -EINVAL;
594
595         switch (crypto_info->cipher_type) {
596         case TLS_CIPHER_ARIA_GCM_128:
597         case TLS_CIPHER_ARIA_GCM_256:
598                 if (crypto_info->version != TLS_1_2_VERSION)
599                         return -EINVAL;
600                 break;
601         }
602
603         /* Ensure that TLS version and ciphers are same in both directions */
604         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
605                 if (alt_crypto_info->version != crypto_info->version ||
606                     alt_crypto_info->cipher_type != crypto_info->cipher_type)
607                         return -EINVAL;
608         }
609
610         return 0;
611 }
612
613 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
614                                   unsigned int optlen, int tx)
615 {
616         struct tls_crypto_info *crypto_info, *alt_crypto_info;
617         struct tls_crypto_info *old_crypto_info = NULL;
618         struct tls_context *ctx = tls_get_ctx(sk);
619         const struct tls_cipher_desc *cipher_desc;
620         union tls_crypto_context *crypto_ctx;
621         union tls_crypto_context tmp = {};
622         bool update = false;
623         int rc = 0;
624         int conf;
625
626         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
627                 return -EINVAL;
628
629         if (tx) {
630                 crypto_ctx = &ctx->crypto_send;
631                 alt_crypto_info = &ctx->crypto_recv.info;
632         } else {
633                 crypto_ctx = &ctx->crypto_recv;
634                 alt_crypto_info = &ctx->crypto_send.info;
635         }
636
637         crypto_info = &crypto_ctx->info;
638
639         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
640                 /* Currently we only support setting crypto info more
641                  * than one time for TLS 1.3
642                  */
643                 if (crypto_info->version != TLS_1_3_VERSION) {
644                         TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR
645                                                        : LINUX_MIB_TLSRXREKEYERROR);
646                         return -EBUSY;
647                 }
648
649                 update = true;
650                 old_crypto_info = crypto_info;
651                 crypto_info = &tmp.info;
652                 crypto_ctx = &tmp;
653         }
654
655         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
656         if (rc) {
657                 rc = -EFAULT;
658                 goto err_crypto_info;
659         }
660
661         if (update) {
662                 /* Ensure that TLS version and ciphers are not modified */
663                 if (crypto_info->version != old_crypto_info->version ||
664                     crypto_info->cipher_type != old_crypto_info->cipher_type)
665                         rc = -EINVAL;
666         } else {
667                 rc = validate_crypto_info(crypto_info, alt_crypto_info);
668         }
669         if (rc)
670                 goto err_crypto_info;
671
672         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
673         if (!cipher_desc) {
674                 rc = -EINVAL;
675                 goto err_crypto_info;
676         }
677
678         if (optlen != cipher_desc->crypto_info) {
679                 rc = -EINVAL;
680                 goto err_crypto_info;
681         }
682
683         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
684                                       sizeof(*crypto_info),
685                                       optlen - sizeof(*crypto_info));
686         if (rc) {
687                 rc = -EFAULT;
688                 goto err_crypto_info;
689         }
690
691         if (tx) {
692                 rc = tls_set_device_offload(sk);
693                 conf = TLS_HW;
694                 if (!rc) {
695                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
696                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
697                 } else {
698                         rc = tls_set_sw_offload(sk, 1,
699                                                 update ? crypto_info : NULL);
700                         if (rc)
701                                 goto err_crypto_info;
702
703                         if (update) {
704                                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXREKEYOK);
705                         } else {
706                                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
707                                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
708                         }
709                         conf = TLS_SW;
710                 }
711         } else {
712                 rc = tls_set_device_offload_rx(sk, ctx);
713                 conf = TLS_HW;
714                 if (!rc) {
715                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
716                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
717                 } else {
718                         rc = tls_set_sw_offload(sk, 0,
719                                                 update ? crypto_info : NULL);
720                         if (rc)
721                                 goto err_crypto_info;
722
723                         if (update) {
724                                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXREKEYOK);
725                         } else {
726                                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
727                                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
728                         }
729                         conf = TLS_SW;
730                 }
731                 if (!update)
732                         tls_sw_strparser_arm(sk, ctx);
733         }
734
735         if (tx)
736                 ctx->tx_conf = conf;
737         else
738                 ctx->rx_conf = conf;
739         update_sk_prot(sk, ctx);
740
741         if (update)
742                 return 0;
743
744         if (tx) {
745                 ctx->sk_write_space = sk->sk_write_space;
746                 sk->sk_write_space = tls_write_space;
747         } else {
748                 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
749
750                 tls_strp_check_rcv(&rx_ctx->strp);
751         }
752         return 0;
753
754 err_crypto_info:
755         if (update) {
756                 TLS_INC_STATS(sock_net(sk), tx ? LINUX_MIB_TLSTXREKEYERROR
757                                                : LINUX_MIB_TLSRXREKEYERROR);
758         }
759         memzero_explicit(crypto_ctx, sizeof(*crypto_ctx));
760         return rc;
761 }
762
763 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
764                                    unsigned int optlen)
765 {
766         struct tls_context *ctx = tls_get_ctx(sk);
767         unsigned int value;
768
769         if (sockptr_is_null(optval) || optlen != sizeof(value))
770                 return -EINVAL;
771
772         if (copy_from_sockptr(&value, optval, sizeof(value)))
773                 return -EFAULT;
774
775         if (value > 1)
776                 return -EINVAL;
777
778         ctx->zerocopy_sendfile = value;
779
780         return 0;
781 }
782
783 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
784                                     unsigned int optlen)
785 {
786         struct tls_context *ctx = tls_get_ctx(sk);
787         u32 val;
788         int rc;
789
790         if (ctx->prot_info.version != TLS_1_3_VERSION ||
791             sockptr_is_null(optval) || optlen < sizeof(val))
792                 return -EINVAL;
793
794         rc = copy_from_sockptr(&val, optval, sizeof(val));
795         if (rc)
796                 return -EFAULT;
797         if (val > 1)
798                 return -EINVAL;
799         rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
800         if (rc < 1)
801                 return rc == 0 ? -EINVAL : rc;
802
803         lock_sock(sk);
804         rc = -EINVAL;
805         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
806                 ctx->rx_no_pad = val;
807                 tls_update_rx_zc_capable(ctx);
808                 rc = 0;
809         }
810         release_sock(sk);
811
812         return rc;
813 }
814
815 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
816                              unsigned int optlen)
817 {
818         int rc = 0;
819
820         switch (optname) {
821         case TLS_TX:
822         case TLS_RX:
823                 lock_sock(sk);
824                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
825                                             optname == TLS_TX);
826                 release_sock(sk);
827                 break;
828         case TLS_TX_ZEROCOPY_RO:
829                 lock_sock(sk);
830                 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
831                 release_sock(sk);
832                 break;
833         case TLS_RX_EXPECT_NO_PAD:
834                 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
835                 break;
836         default:
837                 rc = -ENOPROTOOPT;
838                 break;
839         }
840         return rc;
841 }
842
843 static int tls_setsockopt(struct sock *sk, int level, int optname,
844                           sockptr_t optval, unsigned int optlen)
845 {
846         struct tls_context *ctx = tls_get_ctx(sk);
847
848         if (level != SOL_TLS)
849                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
850                                                  optlen);
851
852         return do_tls_setsockopt(sk, optname, optval, optlen);
853 }
854
855 static int tls_disconnect(struct sock *sk, int flags)
856 {
857         return -EOPNOTSUPP;
858 }
859
860 struct tls_context *tls_ctx_create(struct sock *sk)
861 {
862         struct inet_connection_sock *icsk = inet_csk(sk);
863         struct tls_context *ctx;
864
865         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
866         if (!ctx)
867                 return NULL;
868
869         mutex_init(&ctx->tx_lock);
870         ctx->sk_proto = READ_ONCE(sk->sk_prot);
871         ctx->sk = sk;
872         /* Release semantic of rcu_assign_pointer() ensures that
873          * ctx->sk_proto is visible before changing sk->sk_prot in
874          * update_sk_prot(), and prevents reading uninitialized value in
875          * tls_{getsockopt, setsockopt}. Note that we do not need a
876          * read barrier in tls_{getsockopt,setsockopt} as there is an
877          * address dependency between sk->sk_proto->{getsockopt,setsockopt}
878          * and ctx->sk_proto.
879          */
880         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
881         return ctx;
882 }
883
884 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
885                             const struct proto_ops *base)
886 {
887         ops[TLS_BASE][TLS_BASE] = *base;
888
889         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
890         ops[TLS_SW  ][TLS_BASE].splice_eof      = tls_sw_splice_eof;
891
892         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
893         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
894         ops[TLS_BASE][TLS_SW  ].poll            = tls_sk_poll;
895         ops[TLS_BASE][TLS_SW  ].read_sock       = tls_sw_read_sock;
896
897         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
898         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
899         ops[TLS_SW  ][TLS_SW  ].poll            = tls_sk_poll;
900         ops[TLS_SW  ][TLS_SW  ].read_sock       = tls_sw_read_sock;
901
902 #ifdef CONFIG_TLS_DEVICE
903         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
904
905         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
906
907         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
908
909         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
910
911         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
912 #endif
913 #ifdef CONFIG_TLS_TOE
914         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
915 #endif
916 }
917
918 static void tls_build_proto(struct sock *sk)
919 {
920         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
921         struct proto *prot = READ_ONCE(sk->sk_prot);
922
923         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
924         if (ip_ver == TLSV6 &&
925             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
926                 mutex_lock(&tcpv6_prot_mutex);
927                 if (likely(prot != saved_tcpv6_prot)) {
928                         build_protos(tls_prots[TLSV6], prot);
929                         build_proto_ops(tls_proto_ops[TLSV6],
930                                         sk->sk_socket->ops);
931                         smp_store_release(&saved_tcpv6_prot, prot);
932                 }
933                 mutex_unlock(&tcpv6_prot_mutex);
934         }
935
936         if (ip_ver == TLSV4 &&
937             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
938                 mutex_lock(&tcpv4_prot_mutex);
939                 if (likely(prot != saved_tcpv4_prot)) {
940                         build_protos(tls_prots[TLSV4], prot);
941                         build_proto_ops(tls_proto_ops[TLSV4],
942                                         sk->sk_socket->ops);
943                         smp_store_release(&saved_tcpv4_prot, prot);
944                 }
945                 mutex_unlock(&tcpv4_prot_mutex);
946         }
947 }
948
949 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
950                          const struct proto *base)
951 {
952         prot[TLS_BASE][TLS_BASE] = *base;
953         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
954         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
955         prot[TLS_BASE][TLS_BASE].disconnect     = tls_disconnect;
956         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
957
958         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
959         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
960         prot[TLS_SW][TLS_BASE].splice_eof       = tls_sw_splice_eof;
961
962         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
963         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
964         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
965         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
966
967         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
968         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
969         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
970         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
971
972 #ifdef CONFIG_TLS_DEVICE
973         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
974         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
975         prot[TLS_HW][TLS_BASE].splice_eof       = tls_device_splice_eof;
976
977         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
978         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
979         prot[TLS_HW][TLS_SW].splice_eof         = tls_device_splice_eof;
980
981         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
982
983         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
984
985         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
986 #endif
987 #ifdef CONFIG_TLS_TOE
988         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
989         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
990         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
991 #endif
992 }
993
994 static int tls_init(struct sock *sk)
995 {
996         struct tls_context *ctx;
997         int rc = 0;
998
999         tls_build_proto(sk);
1000
1001 #ifdef CONFIG_TLS_TOE
1002         if (tls_toe_bypass(sk))
1003                 return 0;
1004 #endif
1005
1006         /* The TLS ulp is currently supported only for TCP sockets
1007          * in ESTABLISHED state.
1008          * Supporting sockets in LISTEN state will require us
1009          * to modify the accept implementation to clone rather then
1010          * share the ulp context.
1011          */
1012         if (sk->sk_state != TCP_ESTABLISHED)
1013                 return -ENOTCONN;
1014
1015         /* allocate tls context */
1016         write_lock_bh(&sk->sk_callback_lock);
1017         ctx = tls_ctx_create(sk);
1018         if (!ctx) {
1019                 rc = -ENOMEM;
1020                 goto out;
1021         }
1022
1023         ctx->tx_conf = TLS_BASE;
1024         ctx->rx_conf = TLS_BASE;
1025         update_sk_prot(sk, ctx);
1026 out:
1027         write_unlock_bh(&sk->sk_callback_lock);
1028         return rc;
1029 }
1030
1031 static void tls_update(struct sock *sk, struct proto *p,
1032                        void (*write_space)(struct sock *sk))
1033 {
1034         struct tls_context *ctx;
1035
1036         WARN_ON_ONCE(sk->sk_prot == p);
1037
1038         ctx = tls_get_ctx(sk);
1039         if (likely(ctx)) {
1040                 ctx->sk_write_space = write_space;
1041                 ctx->sk_proto = p;
1042         } else {
1043                 /* Pairs with lockless read in sk_clone_lock(). */
1044                 WRITE_ONCE(sk->sk_prot, p);
1045                 sk->sk_write_space = write_space;
1046         }
1047 }
1048
1049 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1050 {
1051         u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1052
1053         switch (config) {
1054         case TLS_BASE:
1055                 return TLS_CONF_BASE;
1056         case TLS_SW:
1057                 return TLS_CONF_SW;
1058         case TLS_HW:
1059                 return TLS_CONF_HW;
1060         case TLS_HW_RECORD:
1061                 return TLS_CONF_HW_RECORD;
1062         }
1063         return 0;
1064 }
1065
1066 static int tls_get_info(struct sock *sk, struct sk_buff *skb, bool net_admin)
1067 {
1068         u16 version, cipher_type;
1069         struct tls_context *ctx;
1070         struct nlattr *start;
1071         int err;
1072
1073         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1074         if (!start)
1075                 return -EMSGSIZE;
1076
1077         rcu_read_lock();
1078         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1079         if (!ctx) {
1080                 err = 0;
1081                 goto nla_failure;
1082         }
1083         version = ctx->prot_info.version;
1084         if (version) {
1085                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1086                 if (err)
1087                         goto nla_failure;
1088         }
1089         cipher_type = ctx->prot_info.cipher_type;
1090         if (cipher_type) {
1091                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1092                 if (err)
1093                         goto nla_failure;
1094         }
1095         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1096         if (err)
1097                 goto nla_failure;
1098
1099         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1100         if (err)
1101                 goto nla_failure;
1102
1103         if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1104                 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1105                 if (err)
1106                         goto nla_failure;
1107         }
1108         if (ctx->rx_no_pad) {
1109                 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1110                 if (err)
1111                         goto nla_failure;
1112         }
1113
1114         rcu_read_unlock();
1115         nla_nest_end(skb, start);
1116         return 0;
1117
1118 nla_failure:
1119         rcu_read_unlock();
1120         nla_nest_cancel(skb, start);
1121         return err;
1122 }
1123
1124 static size_t tls_get_info_size(const struct sock *sk, bool net_admin)
1125 {
1126         size_t size = 0;
1127
1128         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
1129                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
1130                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
1131                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
1132                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
1133                 nla_total_size(0) +             /* TLS_INFO_ZC_RO_TX */
1134                 nla_total_size(0) +             /* TLS_INFO_RX_NO_PAD */
1135                 0;
1136
1137         return size;
1138 }
1139
1140 static int __net_init tls_init_net(struct net *net)
1141 {
1142         int err;
1143
1144         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1145         if (!net->mib.tls_statistics)
1146                 return -ENOMEM;
1147
1148         err = tls_proc_init(net);
1149         if (err)
1150                 goto err_free_stats;
1151
1152         return 0;
1153 err_free_stats:
1154         free_percpu(net->mib.tls_statistics);
1155         return err;
1156 }
1157
1158 static void __net_exit tls_exit_net(struct net *net)
1159 {
1160         tls_proc_fini(net);
1161         free_percpu(net->mib.tls_statistics);
1162 }
1163
1164 static struct pernet_operations tls_proc_ops = {
1165         .init = tls_init_net,
1166         .exit = tls_exit_net,
1167 };
1168
1169 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1170         .name                   = "tls",
1171         .owner                  = THIS_MODULE,
1172         .init                   = tls_init,
1173         .update                 = tls_update,
1174         .get_info               = tls_get_info,
1175         .get_info_size          = tls_get_info_size,
1176 };
1177
1178 static int __init tls_register(void)
1179 {
1180         int err;
1181
1182         err = register_pernet_subsys(&tls_proc_ops);
1183         if (err)
1184                 return err;
1185
1186         err = tls_strp_dev_init();
1187         if (err)
1188                 goto err_pernet;
1189
1190         err = tls_device_init();
1191         if (err)
1192                 goto err_strp;
1193
1194         tcp_register_ulp(&tcp_tls_ulp_ops);
1195
1196         return 0;
1197 err_strp:
1198         tls_strp_dev_exit();
1199 err_pernet:
1200         unregister_pernet_subsys(&tls_proc_ops);
1201         return err;
1202 }
1203
1204 static void __exit tls_unregister(void)
1205 {
1206         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1207         tls_strp_dev_exit();
1208         tls_device_cleanup();
1209         unregister_pernet_subsys(&tls_proc_ops);
1210 }
1211
1212 module_init(tls_register);
1213 module_exit(tls_unregister);