Merge branch 'linus' into core/urgent, to merge in dependent changes
[linux-2.6-block.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65                          struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76         int rc = 0;
77         DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79         add_wait_queue(sk_sleep(sk), &wait);
80         while (1) {
81                 if (!*timeo) {
82                         rc = -EAGAIN;
83                         break;
84                 }
85
86                 if (signal_pending(current)) {
87                         rc = sock_intr_errno(*timeo);
88                         break;
89                 }
90
91                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92                         break;
93         }
94         remove_wait_queue(sk_sleep(sk), &wait);
95         return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99                 struct tls_context *ctx,
100                 struct scatterlist *sg,
101                 u16 first_offset,
102                 int flags)
103 {
104         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105         int ret = 0;
106         struct page *p;
107         size_t size;
108         int offset = first_offset;
109
110         size = sg->length - offset;
111         offset += sg->offset;
112
113         ctx->in_tcp_sendpages = true;
114         while (1) {
115                 if (sg_is_last(sg))
116                         sendpage_flags = flags;
117
118                 /* is sending application-limited? */
119                 tcp_rate_check_app_limited(sk);
120                 p = sg_page(sg);
121 retry:
122                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124                 if (ret != size) {
125                         if (ret > 0) {
126                                 offset += ret;
127                                 size -= ret;
128                                 goto retry;
129                         }
130
131                         offset -= sg->offset;
132                         ctx->partially_sent_offset = offset;
133                         ctx->partially_sent_record = (void *)sg;
134                         ctx->in_tcp_sendpages = false;
135                         return ret;
136                 }
137
138                 put_page(p);
139                 sk_mem_uncharge(sk, sg->length);
140                 sg = sg_next(sg);
141                 if (!sg)
142                         break;
143
144                 offset = sg->offset;
145                 size = sg->length;
146         }
147
148         ctx->in_tcp_sendpages = false;
149
150         return 0;
151 }
152
153 static int tls_handle_open_record(struct sock *sk, int flags)
154 {
155         struct tls_context *ctx = tls_get_ctx(sk);
156
157         if (tls_is_pending_open_record(ctx))
158                 return ctx->push_pending_record(sk, flags);
159
160         return 0;
161 }
162
163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
164                       unsigned char *record_type)
165 {
166         struct cmsghdr *cmsg;
167         int rc = -EINVAL;
168
169         for_each_cmsghdr(cmsg, msg) {
170                 if (!CMSG_OK(msg, cmsg))
171                         return -EINVAL;
172                 if (cmsg->cmsg_level != SOL_TLS)
173                         continue;
174
175                 switch (cmsg->cmsg_type) {
176                 case TLS_SET_RECORD_TYPE:
177                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
178                                 return -EINVAL;
179
180                         if (msg->msg_flags & MSG_MORE)
181                                 return -EINVAL;
182
183                         rc = tls_handle_open_record(sk, msg->msg_flags);
184                         if (rc)
185                                 return rc;
186
187                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
188                         rc = 0;
189                         break;
190                 default:
191                         return -EINVAL;
192                 }
193         }
194
195         return rc;
196 }
197
198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
199                             int flags)
200 {
201         struct scatterlist *sg;
202         u16 offset;
203
204         sg = ctx->partially_sent_record;
205         offset = ctx->partially_sent_offset;
206
207         ctx->partially_sent_record = NULL;
208         return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210
211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
212 {
213         struct scatterlist *sg;
214
215         sg = ctx->partially_sent_record;
216         if (!sg)
217                 return false;
218
219         while (1) {
220                 put_page(sg_page(sg));
221                 sk_mem_uncharge(sk, sg->length);
222
223                 if (sg_is_last(sg))
224                         break;
225                 sg++;
226         }
227         ctx->partially_sent_record = NULL;
228         return true;
229 }
230
231 static void tls_write_space(struct sock *sk)
232 {
233         struct tls_context *ctx = tls_get_ctx(sk);
234
235         /* If in_tcp_sendpages call lower protocol write space handler
236          * to ensure we wake up any waiting operations there. For example
237          * if do_tcp_sendpages where to call sk_wait_event.
238          */
239         if (ctx->in_tcp_sendpages) {
240                 ctx->sk_write_space(sk);
241                 return;
242         }
243
244 #ifdef CONFIG_TLS_DEVICE
245         if (ctx->tx_conf == TLS_HW)
246                 tls_device_write_space(sk, ctx);
247         else
248 #endif
249                 tls_sw_write_space(sk, ctx);
250
251         ctx->sk_write_space(sk);
252 }
253
254 static void tls_ctx_free(struct tls_context *ctx)
255 {
256         if (!ctx)
257                 return;
258
259         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261         kfree(ctx);
262 }
263
264 static void tls_sk_proto_close(struct sock *sk, long timeout)
265 {
266         struct tls_context *ctx = tls_get_ctx(sk);
267         long timeo = sock_sndtimeo(sk, 0);
268         void (*sk_proto_close)(struct sock *sk, long timeout);
269         bool free_ctx = false;
270
271         lock_sock(sk);
272         sk_proto_close = ctx->sk_proto_close;
273
274         if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
275                 goto skip_tx_cleanup;
276
277         if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
278                 free_ctx = true;
279                 goto skip_tx_cleanup;
280         }
281
282         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
283                 tls_handle_open_record(sk, 0);
284
285         /* We need these for tls_sw_fallback handling of other packets */
286         if (ctx->tx_conf == TLS_SW) {
287                 kfree(ctx->tx.rec_seq);
288                 kfree(ctx->tx.iv);
289                 tls_sw_free_resources_tx(sk);
290 #ifdef CONFIG_TLS_DEVICE
291         } else if (ctx->tx_conf == TLS_HW) {
292                 tls_device_free_resources_tx(sk);
293 #endif
294         }
295
296         if (ctx->rx_conf == TLS_SW)
297                 tls_sw_free_resources_rx(sk);
298
299 #ifdef CONFIG_TLS_DEVICE
300         if (ctx->rx_conf == TLS_HW)
301                 tls_device_offload_cleanup_rx(sk);
302
303         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
304 #else
305         {
306 #endif
307                 tls_ctx_free(ctx);
308                 ctx = NULL;
309         }
310
311 skip_tx_cleanup:
312         release_sock(sk);
313         sk_proto_close(sk, timeout);
314         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
315          * for sk->sk_prot->unhash [tls_hw_unhash]
316          */
317         if (free_ctx)
318                 tls_ctx_free(ctx);
319 }
320
321 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
322                                 int __user *optlen)
323 {
324         int rc = 0;
325         struct tls_context *ctx = tls_get_ctx(sk);
326         struct tls_crypto_info *crypto_info;
327         int len;
328
329         if (get_user(len, optlen))
330                 return -EFAULT;
331
332         if (!optval || (len < sizeof(*crypto_info))) {
333                 rc = -EINVAL;
334                 goto out;
335         }
336
337         if (!ctx) {
338                 rc = -EBUSY;
339                 goto out;
340         }
341
342         /* get user crypto info */
343         crypto_info = &ctx->crypto_send.info;
344
345         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
346                 rc = -EBUSY;
347                 goto out;
348         }
349
350         if (len == sizeof(*crypto_info)) {
351                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
352                         rc = -EFAULT;
353                 goto out;
354         }
355
356         switch (crypto_info->cipher_type) {
357         case TLS_CIPHER_AES_GCM_128: {
358                 struct tls12_crypto_info_aes_gcm_128 *
359                   crypto_info_aes_gcm_128 =
360                   container_of(crypto_info,
361                                struct tls12_crypto_info_aes_gcm_128,
362                                info);
363
364                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
365                         rc = -EINVAL;
366                         goto out;
367                 }
368                 lock_sock(sk);
369                 memcpy(crypto_info_aes_gcm_128->iv,
370                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
371                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
372                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
373                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
374                 release_sock(sk);
375                 if (copy_to_user(optval,
376                                  crypto_info_aes_gcm_128,
377                                  sizeof(*crypto_info_aes_gcm_128)))
378                         rc = -EFAULT;
379                 break;
380         }
381         case TLS_CIPHER_AES_GCM_256: {
382                 struct tls12_crypto_info_aes_gcm_256 *
383                   crypto_info_aes_gcm_256 =
384                   container_of(crypto_info,
385                                struct tls12_crypto_info_aes_gcm_256,
386                                info);
387
388                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
389                         rc = -EINVAL;
390                         goto out;
391                 }
392                 lock_sock(sk);
393                 memcpy(crypto_info_aes_gcm_256->iv,
394                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
395                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
396                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
397                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
398                 release_sock(sk);
399                 if (copy_to_user(optval,
400                                  crypto_info_aes_gcm_256,
401                                  sizeof(*crypto_info_aes_gcm_256)))
402                         rc = -EFAULT;
403                 break;
404         }
405         default:
406                 rc = -EINVAL;
407         }
408
409 out:
410         return rc;
411 }
412
413 static int do_tls_getsockopt(struct sock *sk, int optname,
414                              char __user *optval, int __user *optlen)
415 {
416         int rc = 0;
417
418         switch (optname) {
419         case TLS_TX:
420                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
421                 break;
422         default:
423                 rc = -ENOPROTOOPT;
424                 break;
425         }
426         return rc;
427 }
428
429 static int tls_getsockopt(struct sock *sk, int level, int optname,
430                           char __user *optval, int __user *optlen)
431 {
432         struct tls_context *ctx = tls_get_ctx(sk);
433
434         if (level != SOL_TLS)
435                 return ctx->getsockopt(sk, level, optname, optval, optlen);
436
437         return do_tls_getsockopt(sk, optname, optval, optlen);
438 }
439
440 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
441                                   unsigned int optlen, int tx)
442 {
443         struct tls_crypto_info *crypto_info;
444         struct tls_crypto_info *alt_crypto_info;
445         struct tls_context *ctx = tls_get_ctx(sk);
446         size_t optsize;
447         int rc = 0;
448         int conf;
449
450         if (!optval || (optlen < sizeof(*crypto_info))) {
451                 rc = -EINVAL;
452                 goto out;
453         }
454
455         if (tx) {
456                 crypto_info = &ctx->crypto_send.info;
457                 alt_crypto_info = &ctx->crypto_recv.info;
458         } else {
459                 crypto_info = &ctx->crypto_recv.info;
460                 alt_crypto_info = &ctx->crypto_send.info;
461         }
462
463         /* Currently we don't support set crypto info more than one time */
464         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
465                 rc = -EBUSY;
466                 goto out;
467         }
468
469         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
470         if (rc) {
471                 rc = -EFAULT;
472                 goto err_crypto_info;
473         }
474
475         /* check version */
476         if (crypto_info->version != TLS_1_2_VERSION &&
477             crypto_info->version != TLS_1_3_VERSION) {
478                 rc = -ENOTSUPP;
479                 goto err_crypto_info;
480         }
481
482         /* Ensure that TLS version and ciphers are same in both directions */
483         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
484                 if (alt_crypto_info->version != crypto_info->version ||
485                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
486                         rc = -EINVAL;
487                         goto err_crypto_info;
488                 }
489         }
490
491         switch (crypto_info->cipher_type) {
492         case TLS_CIPHER_AES_GCM_128:
493         case TLS_CIPHER_AES_GCM_256: {
494                 optsize = crypto_info->cipher_type == TLS_CIPHER_AES_GCM_128 ?
495                         sizeof(struct tls12_crypto_info_aes_gcm_128) :
496                         sizeof(struct tls12_crypto_info_aes_gcm_256);
497                 if (optlen != optsize) {
498                         rc = -EINVAL;
499                         goto err_crypto_info;
500                 }
501                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
502                                     optlen - sizeof(*crypto_info));
503                 if (rc) {
504                         rc = -EFAULT;
505                         goto err_crypto_info;
506                 }
507                 break;
508         }
509         default:
510                 rc = -EINVAL;
511                 goto err_crypto_info;
512         }
513
514         if (tx) {
515 #ifdef CONFIG_TLS_DEVICE
516                 rc = tls_set_device_offload(sk, ctx);
517                 conf = TLS_HW;
518                 if (rc) {
519 #else
520                 {
521 #endif
522                         rc = tls_set_sw_offload(sk, ctx, 1);
523                         conf = TLS_SW;
524                 }
525         } else {
526 #ifdef CONFIG_TLS_DEVICE
527                 rc = tls_set_device_offload_rx(sk, ctx);
528                 conf = TLS_HW;
529                 if (rc) {
530 #else
531                 {
532 #endif
533                         rc = tls_set_sw_offload(sk, ctx, 0);
534                         conf = TLS_SW;
535                 }
536         }
537
538         if (rc)
539                 goto err_crypto_info;
540
541         if (tx)
542                 ctx->tx_conf = conf;
543         else
544                 ctx->rx_conf = conf;
545         update_sk_prot(sk, ctx);
546         if (tx) {
547                 ctx->sk_write_space = sk->sk_write_space;
548                 sk->sk_write_space = tls_write_space;
549         } else {
550                 sk->sk_socket->ops = &tls_sw_proto_ops;
551         }
552         goto out;
553
554 err_crypto_info:
555         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
556 out:
557         return rc;
558 }
559
560 static int do_tls_setsockopt(struct sock *sk, int optname,
561                              char __user *optval, unsigned int optlen)
562 {
563         int rc = 0;
564
565         switch (optname) {
566         case TLS_TX:
567         case TLS_RX:
568                 lock_sock(sk);
569                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
570                                             optname == TLS_TX);
571                 release_sock(sk);
572                 break;
573         default:
574                 rc = -ENOPROTOOPT;
575                 break;
576         }
577         return rc;
578 }
579
580 static int tls_setsockopt(struct sock *sk, int level, int optname,
581                           char __user *optval, unsigned int optlen)
582 {
583         struct tls_context *ctx = tls_get_ctx(sk);
584
585         if (level != SOL_TLS)
586                 return ctx->setsockopt(sk, level, optname, optval, optlen);
587
588         return do_tls_setsockopt(sk, optname, optval, optlen);
589 }
590
591 static struct tls_context *create_ctx(struct sock *sk)
592 {
593         struct inet_connection_sock *icsk = inet_csk(sk);
594         struct tls_context *ctx;
595
596         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
597         if (!ctx)
598                 return NULL;
599
600         icsk->icsk_ulp_data = ctx;
601         ctx->setsockopt = sk->sk_prot->setsockopt;
602         ctx->getsockopt = sk->sk_prot->getsockopt;
603         ctx->sk_proto_close = sk->sk_prot->close;
604         return ctx;
605 }
606
607 static void tls_build_proto(struct sock *sk)
608 {
609         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
610
611         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
612         if (ip_ver == TLSV6 &&
613             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
614                 mutex_lock(&tcpv6_prot_mutex);
615                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
616                         build_protos(tls_prots[TLSV6], sk->sk_prot);
617                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
618                 }
619                 mutex_unlock(&tcpv6_prot_mutex);
620         }
621
622         if (ip_ver == TLSV4 &&
623             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
624                 mutex_lock(&tcpv4_prot_mutex);
625                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
626                         build_protos(tls_prots[TLSV4], sk->sk_prot);
627                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
628                 }
629                 mutex_unlock(&tcpv4_prot_mutex);
630         }
631 }
632
633 static void tls_hw_sk_destruct(struct sock *sk)
634 {
635         struct tls_context *ctx = tls_get_ctx(sk);
636         struct inet_connection_sock *icsk = inet_csk(sk);
637
638         ctx->sk_destruct(sk);
639         /* Free ctx */
640         kfree(ctx);
641         icsk->icsk_ulp_data = NULL;
642 }
643
644 static int tls_hw_prot(struct sock *sk)
645 {
646         struct tls_context *ctx;
647         struct tls_device *dev;
648         int rc = 0;
649
650         spin_lock_bh(&device_spinlock);
651         list_for_each_entry(dev, &device_list, dev_list) {
652                 if (dev->feature && dev->feature(dev)) {
653                         ctx = create_ctx(sk);
654                         if (!ctx)
655                                 goto out;
656
657                         spin_unlock_bh(&device_spinlock);
658                         tls_build_proto(sk);
659                         ctx->hash = sk->sk_prot->hash;
660                         ctx->unhash = sk->sk_prot->unhash;
661                         ctx->sk_proto_close = sk->sk_prot->close;
662                         ctx->sk_destruct = sk->sk_destruct;
663                         sk->sk_destruct = tls_hw_sk_destruct;
664                         ctx->rx_conf = TLS_HW_RECORD;
665                         ctx->tx_conf = TLS_HW_RECORD;
666                         update_sk_prot(sk, ctx);
667                         spin_lock_bh(&device_spinlock);
668                         rc = 1;
669                         break;
670                 }
671         }
672 out:
673         spin_unlock_bh(&device_spinlock);
674         return rc;
675 }
676
677 static void tls_hw_unhash(struct sock *sk)
678 {
679         struct tls_context *ctx = tls_get_ctx(sk);
680         struct tls_device *dev;
681
682         spin_lock_bh(&device_spinlock);
683         list_for_each_entry(dev, &device_list, dev_list) {
684                 if (dev->unhash) {
685                         kref_get(&dev->kref);
686                         spin_unlock_bh(&device_spinlock);
687                         dev->unhash(dev, sk);
688                         kref_put(&dev->kref, dev->release);
689                         spin_lock_bh(&device_spinlock);
690                 }
691         }
692         spin_unlock_bh(&device_spinlock);
693         ctx->unhash(sk);
694 }
695
696 static int tls_hw_hash(struct sock *sk)
697 {
698         struct tls_context *ctx = tls_get_ctx(sk);
699         struct tls_device *dev;
700         int err;
701
702         err = ctx->hash(sk);
703         spin_lock_bh(&device_spinlock);
704         list_for_each_entry(dev, &device_list, dev_list) {
705                 if (dev->hash) {
706                         kref_get(&dev->kref);
707                         spin_unlock_bh(&device_spinlock);
708                         err |= dev->hash(dev, sk);
709                         kref_put(&dev->kref, dev->release);
710                         spin_lock_bh(&device_spinlock);
711                 }
712         }
713         spin_unlock_bh(&device_spinlock);
714
715         if (err)
716                 tls_hw_unhash(sk);
717         return err;
718 }
719
720 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
721                          struct proto *base)
722 {
723         prot[TLS_BASE][TLS_BASE] = *base;
724         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
725         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
726         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
727
728         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
729         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
730         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
731
732         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
733         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
734         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
735         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
736
737         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
738         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
739         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
740         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
741
742 #ifdef CONFIG_TLS_DEVICE
743         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
744         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
745         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
746
747         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
748         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
749         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
750
751         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
752
753         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
754
755         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
756 #endif
757
758         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
759         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
760         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
761         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
762 }
763
764 static int tls_init(struct sock *sk)
765 {
766         struct tls_context *ctx;
767         int rc = 0;
768
769         if (tls_hw_prot(sk))
770                 goto out;
771
772         /* The TLS ulp is currently supported only for TCP sockets
773          * in ESTABLISHED state.
774          * Supporting sockets in LISTEN state will require us
775          * to modify the accept implementation to clone rather then
776          * share the ulp context.
777          */
778         if (sk->sk_state != TCP_ESTABLISHED)
779                 return -ENOTSUPP;
780
781         /* allocate tls context */
782         ctx = create_ctx(sk);
783         if (!ctx) {
784                 rc = -ENOMEM;
785                 goto out;
786         }
787
788         tls_build_proto(sk);
789         ctx->tx_conf = TLS_BASE;
790         ctx->rx_conf = TLS_BASE;
791         update_sk_prot(sk, ctx);
792 out:
793         return rc;
794 }
795
796 void tls_register_device(struct tls_device *device)
797 {
798         spin_lock_bh(&device_spinlock);
799         list_add_tail(&device->dev_list, &device_list);
800         spin_unlock_bh(&device_spinlock);
801 }
802 EXPORT_SYMBOL(tls_register_device);
803
804 void tls_unregister_device(struct tls_device *device)
805 {
806         spin_lock_bh(&device_spinlock);
807         list_del(&device->dev_list);
808         spin_unlock_bh(&device_spinlock);
809 }
810 EXPORT_SYMBOL(tls_unregister_device);
811
812 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
813         .name                   = "tls",
814         .owner                  = THIS_MODULE,
815         .init                   = tls_init,
816 };
817
818 static int __init tls_register(void)
819 {
820         tls_sw_proto_ops = inet_stream_ops;
821         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
822
823 #ifdef CONFIG_TLS_DEVICE
824         tls_device_init();
825 #endif
826         tcp_register_ulp(&tcp_tls_ulp_ops);
827
828         return 0;
829 }
830
831 static void __exit tls_unregister(void)
832 {
833         tcp_unregister_ulp(&tcp_tls_ulp_ops);
834 #ifdef CONFIG_TLS_DEVICE
835         tls_device_cleanup();
836 #endif
837 }
838
839 module_init(tls_register);
840 module_exit(tls_unregister);