Merge patch series "riscv: dma-mapping: unify support for cache flushes"
[linux-block.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56         TLSV4,
57         TLSV6,
58         TLS_NUM_PROTS,
59 };
60
61 #define CHECK_CIPHER_DESC(cipher,ci)                            \
62         static_assert(cipher ## _IV_SIZE <= MAX_IV_SIZE);               \
63         static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
64         static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);             \
65         static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);       \
66         static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);     \
67         static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);   \
68         static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
69
70 #define __CIPHER_DESC(ci) \
71         .iv_offset = offsetof(struct ci, iv), \
72         .key_offset = offsetof(struct ci, key), \
73         .salt_offset = offsetof(struct ci, salt), \
74         .rec_seq_offset = offsetof(struct ci, rec_seq), \
75         .crypto_info = sizeof(struct ci)
76
77 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {       \
78         .nonce = cipher ## _IV_SIZE, \
79         .iv = cipher ## _IV_SIZE, \
80         .key = cipher ## _KEY_SIZE, \
81         .salt = cipher ## _SALT_SIZE, \
82         .tag = cipher ## _TAG_SIZE, \
83         .rec_seq = cipher ## _REC_SEQ_SIZE, \
84         .cipher_name = algname, \
85         .offloadable = _offloadable, \
86         __CIPHER_DESC(ci), \
87 }
88
89 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
90         .nonce = 0, \
91         .iv = cipher ## _IV_SIZE, \
92         .key = cipher ## _KEY_SIZE, \
93         .salt = cipher ## _SALT_SIZE, \
94         .tag = cipher ## _TAG_SIZE, \
95         .rec_seq = cipher ## _REC_SEQ_SIZE, \
96         .cipher_name = algname, \
97         .offloadable = _offloadable, \
98         __CIPHER_DESC(ci), \
99 }
100
101 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
102         CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
103         CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
104         CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
105         CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
106         CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
107         CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
108         CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
109         CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
110 };
111
112 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
115 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
116 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
120
121 static const struct proto *saved_tcpv6_prot;
122 static DEFINE_MUTEX(tcpv6_prot_mutex);
123 static const struct proto *saved_tcpv4_prot;
124 static DEFINE_MUTEX(tcpv4_prot_mutex);
125 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
126 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
128                          const struct proto *base);
129
130 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
131 {
132         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
133
134         WRITE_ONCE(sk->sk_prot,
135                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
136         WRITE_ONCE(sk->sk_socket->ops,
137                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
138 }
139
140 int wait_on_pending_writer(struct sock *sk, long *timeo)
141 {
142         int rc = 0;
143         DEFINE_WAIT_FUNC(wait, woken_wake_function);
144
145         add_wait_queue(sk_sleep(sk), &wait);
146         while (1) {
147                 if (!*timeo) {
148                         rc = -EAGAIN;
149                         break;
150                 }
151
152                 if (signal_pending(current)) {
153                         rc = sock_intr_errno(*timeo);
154                         break;
155                 }
156
157                 if (sk_wait_event(sk, timeo,
158                                   !READ_ONCE(sk->sk_write_pending), &wait))
159                         break;
160         }
161         remove_wait_queue(sk_sleep(sk), &wait);
162         return rc;
163 }
164
165 int tls_push_sg(struct sock *sk,
166                 struct tls_context *ctx,
167                 struct scatterlist *sg,
168                 u16 first_offset,
169                 int flags)
170 {
171         struct bio_vec bvec;
172         struct msghdr msg = {
173                 .msg_flags = MSG_SPLICE_PAGES | flags,
174         };
175         int ret = 0;
176         struct page *p;
177         size_t size;
178         int offset = first_offset;
179
180         size = sg->length - offset;
181         offset += sg->offset;
182
183         ctx->splicing_pages = true;
184         while (1) {
185                 /* is sending application-limited? */
186                 tcp_rate_check_app_limited(sk);
187                 p = sg_page(sg);
188 retry:
189                 bvec_set_page(&bvec, p, size, offset);
190                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
191
192                 ret = tcp_sendmsg_locked(sk, &msg, size);
193
194                 if (ret != size) {
195                         if (ret > 0) {
196                                 offset += ret;
197                                 size -= ret;
198                                 goto retry;
199                         }
200
201                         offset -= sg->offset;
202                         ctx->partially_sent_offset = offset;
203                         ctx->partially_sent_record = (void *)sg;
204                         ctx->splicing_pages = false;
205                         return ret;
206                 }
207
208                 put_page(p);
209                 sk_mem_uncharge(sk, sg->length);
210                 sg = sg_next(sg);
211                 if (!sg)
212                         break;
213
214                 offset = sg->offset;
215                 size = sg->length;
216         }
217
218         ctx->splicing_pages = false;
219
220         return 0;
221 }
222
223 static int tls_handle_open_record(struct sock *sk, int flags)
224 {
225         struct tls_context *ctx = tls_get_ctx(sk);
226
227         if (tls_is_pending_open_record(ctx))
228                 return ctx->push_pending_record(sk, flags);
229
230         return 0;
231 }
232
233 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
234                      unsigned char *record_type)
235 {
236         struct cmsghdr *cmsg;
237         int rc = -EINVAL;
238
239         for_each_cmsghdr(cmsg, msg) {
240                 if (!CMSG_OK(msg, cmsg))
241                         return -EINVAL;
242                 if (cmsg->cmsg_level != SOL_TLS)
243                         continue;
244
245                 switch (cmsg->cmsg_type) {
246                 case TLS_SET_RECORD_TYPE:
247                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
248                                 return -EINVAL;
249
250                         if (msg->msg_flags & MSG_MORE)
251                                 return -EINVAL;
252
253                         rc = tls_handle_open_record(sk, msg->msg_flags);
254                         if (rc)
255                                 return rc;
256
257                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
258                         rc = 0;
259                         break;
260                 default:
261                         return -EINVAL;
262                 }
263         }
264
265         return rc;
266 }
267
268 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
269                             int flags)
270 {
271         struct scatterlist *sg;
272         u16 offset;
273
274         sg = ctx->partially_sent_record;
275         offset = ctx->partially_sent_offset;
276
277         ctx->partially_sent_record = NULL;
278         return tls_push_sg(sk, ctx, sg, offset, flags);
279 }
280
281 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
282 {
283         struct scatterlist *sg;
284
285         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
286                 put_page(sg_page(sg));
287                 sk_mem_uncharge(sk, sg->length);
288         }
289         ctx->partially_sent_record = NULL;
290 }
291
292 static void tls_write_space(struct sock *sk)
293 {
294         struct tls_context *ctx = tls_get_ctx(sk);
295
296         /* If splicing_pages call lower protocol write space handler
297          * to ensure we wake up any waiting operations there. For example
298          * if splicing pages where to call sk_wait_event.
299          */
300         if (ctx->splicing_pages) {
301                 ctx->sk_write_space(sk);
302                 return;
303         }
304
305 #ifdef CONFIG_TLS_DEVICE
306         if (ctx->tx_conf == TLS_HW)
307                 tls_device_write_space(sk, ctx);
308         else
309 #endif
310                 tls_sw_write_space(sk, ctx);
311
312         ctx->sk_write_space(sk);
313 }
314
315 /**
316  * tls_ctx_free() - free TLS ULP context
317  * @sk:  socket to with @ctx is attached
318  * @ctx: TLS context structure
319  *
320  * Free TLS context. If @sk is %NULL caller guarantees that the socket
321  * to which @ctx was attached has no outstanding references.
322  */
323 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
324 {
325         if (!ctx)
326                 return;
327
328         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
329         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
330         mutex_destroy(&ctx->tx_lock);
331
332         if (sk)
333                 kfree_rcu(ctx, rcu);
334         else
335                 kfree(ctx);
336 }
337
338 static void tls_sk_proto_cleanup(struct sock *sk,
339                                  struct tls_context *ctx, long timeo)
340 {
341         if (unlikely(sk->sk_write_pending) &&
342             !wait_on_pending_writer(sk, &timeo))
343                 tls_handle_open_record(sk, 0);
344
345         /* We need these for tls_sw_fallback handling of other packets */
346         if (ctx->tx_conf == TLS_SW) {
347                 kfree(ctx->tx.rec_seq);
348                 kfree(ctx->tx.iv);
349                 tls_sw_release_resources_tx(sk);
350                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
351         } else if (ctx->tx_conf == TLS_HW) {
352                 tls_device_free_resources_tx(sk);
353                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
354         }
355
356         if (ctx->rx_conf == TLS_SW) {
357                 tls_sw_release_resources_rx(sk);
358                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
359         } else if (ctx->rx_conf == TLS_HW) {
360                 tls_device_offload_cleanup_rx(sk);
361                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
362         }
363 }
364
365 static void tls_sk_proto_close(struct sock *sk, long timeout)
366 {
367         struct inet_connection_sock *icsk = inet_csk(sk);
368         struct tls_context *ctx = tls_get_ctx(sk);
369         long timeo = sock_sndtimeo(sk, 0);
370         bool free_ctx;
371
372         if (ctx->tx_conf == TLS_SW)
373                 tls_sw_cancel_work_tx(ctx);
374
375         lock_sock(sk);
376         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
377
378         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
379                 tls_sk_proto_cleanup(sk, ctx, timeo);
380
381         write_lock_bh(&sk->sk_callback_lock);
382         if (free_ctx)
383                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
384         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
385         if (sk->sk_write_space == tls_write_space)
386                 sk->sk_write_space = ctx->sk_write_space;
387         write_unlock_bh(&sk->sk_callback_lock);
388         release_sock(sk);
389         if (ctx->tx_conf == TLS_SW)
390                 tls_sw_free_ctx_tx(ctx);
391         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
392                 tls_sw_strparser_done(ctx);
393         if (ctx->rx_conf == TLS_SW)
394                 tls_sw_free_ctx_rx(ctx);
395         ctx->sk_proto->close(sk, timeout);
396
397         if (free_ctx)
398                 tls_ctx_free(sk, ctx);
399 }
400
401 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
402                             struct poll_table_struct *wait)
403 {
404         struct tls_sw_context_rx *ctx;
405         struct tls_context *tls_ctx;
406         struct sock *sk = sock->sk;
407         struct sk_psock *psock;
408         __poll_t mask = 0;
409         u8 shutdown;
410         int state;
411
412         mask = tcp_poll(file, sock, wait);
413
414         state = inet_sk_state_load(sk);
415         shutdown = READ_ONCE(sk->sk_shutdown);
416         if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
417                 return mask;
418
419         tls_ctx = tls_get_ctx(sk);
420         ctx = tls_sw_ctx_rx(tls_ctx);
421         psock = sk_psock_get(sk);
422
423         if (skb_queue_empty_lockless(&ctx->rx_list) &&
424             !tls_strp_msg_ready(ctx) &&
425             sk_psock_queue_empty(psock))
426                 mask &= ~(EPOLLIN | EPOLLRDNORM);
427
428         if (psock)
429                 sk_psock_put(sk, psock);
430
431         return mask;
432 }
433
434 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
435                                   int __user *optlen, int tx)
436 {
437         int rc = 0;
438         const struct tls_cipher_desc *cipher_desc;
439         struct tls_context *ctx = tls_get_ctx(sk);
440         struct tls_crypto_info *crypto_info;
441         struct cipher_context *cctx;
442         int len;
443
444         if (get_user(len, optlen))
445                 return -EFAULT;
446
447         if (!optval || (len < sizeof(*crypto_info))) {
448                 rc = -EINVAL;
449                 goto out;
450         }
451
452         if (!ctx) {
453                 rc = -EBUSY;
454                 goto out;
455         }
456
457         /* get user crypto info */
458         if (tx) {
459                 crypto_info = &ctx->crypto_send.info;
460                 cctx = &ctx->tx;
461         } else {
462                 crypto_info = &ctx->crypto_recv.info;
463                 cctx = &ctx->rx;
464         }
465
466         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
467                 rc = -EBUSY;
468                 goto out;
469         }
470
471         if (len == sizeof(*crypto_info)) {
472                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
473                         rc = -EFAULT;
474                 goto out;
475         }
476
477         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
478         if (!cipher_desc || len != cipher_desc->crypto_info) {
479                 rc = -EINVAL;
480                 goto out;
481         }
482
483         memcpy(crypto_info_iv(crypto_info, cipher_desc),
484                cctx->iv + cipher_desc->salt, cipher_desc->iv);
485         memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
486                cctx->rec_seq, cipher_desc->rec_seq);
487
488         if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
489                 rc = -EFAULT;
490
491 out:
492         return rc;
493 }
494
495 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
496                                    int __user *optlen)
497 {
498         struct tls_context *ctx = tls_get_ctx(sk);
499         unsigned int value;
500         int len;
501
502         if (get_user(len, optlen))
503                 return -EFAULT;
504
505         if (len != sizeof(value))
506                 return -EINVAL;
507
508         value = ctx->zerocopy_sendfile;
509         if (copy_to_user(optval, &value, sizeof(value)))
510                 return -EFAULT;
511
512         return 0;
513 }
514
515 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
516                                     int __user *optlen)
517 {
518         struct tls_context *ctx = tls_get_ctx(sk);
519         int value, len;
520
521         if (ctx->prot_info.version != TLS_1_3_VERSION)
522                 return -EINVAL;
523
524         if (get_user(len, optlen))
525                 return -EFAULT;
526         if (len < sizeof(value))
527                 return -EINVAL;
528
529         value = -EINVAL;
530         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
531                 value = ctx->rx_no_pad;
532         if (value < 0)
533                 return value;
534
535         if (put_user(sizeof(value), optlen))
536                 return -EFAULT;
537         if (copy_to_user(optval, &value, sizeof(value)))
538                 return -EFAULT;
539
540         return 0;
541 }
542
543 static int do_tls_getsockopt(struct sock *sk, int optname,
544                              char __user *optval, int __user *optlen)
545 {
546         int rc = 0;
547
548         lock_sock(sk);
549
550         switch (optname) {
551         case TLS_TX:
552         case TLS_RX:
553                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
554                                             optname == TLS_TX);
555                 break;
556         case TLS_TX_ZEROCOPY_RO:
557                 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
558                 break;
559         case TLS_RX_EXPECT_NO_PAD:
560                 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
561                 break;
562         default:
563                 rc = -ENOPROTOOPT;
564                 break;
565         }
566
567         release_sock(sk);
568
569         return rc;
570 }
571
572 static int tls_getsockopt(struct sock *sk, int level, int optname,
573                           char __user *optval, int __user *optlen)
574 {
575         struct tls_context *ctx = tls_get_ctx(sk);
576
577         if (level != SOL_TLS)
578                 return ctx->sk_proto->getsockopt(sk, level,
579                                                  optname, optval, optlen);
580
581         return do_tls_getsockopt(sk, optname, optval, optlen);
582 }
583
584 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
585                                   unsigned int optlen, int tx)
586 {
587         struct tls_crypto_info *crypto_info;
588         struct tls_crypto_info *alt_crypto_info;
589         struct tls_context *ctx = tls_get_ctx(sk);
590         const struct tls_cipher_desc *cipher_desc;
591         int rc = 0;
592         int conf;
593
594         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
595                 return -EINVAL;
596
597         if (tx) {
598                 crypto_info = &ctx->crypto_send.info;
599                 alt_crypto_info = &ctx->crypto_recv.info;
600         } else {
601                 crypto_info = &ctx->crypto_recv.info;
602                 alt_crypto_info = &ctx->crypto_send.info;
603         }
604
605         /* Currently we don't support set crypto info more than one time */
606         if (TLS_CRYPTO_INFO_READY(crypto_info))
607                 return -EBUSY;
608
609         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
610         if (rc) {
611                 rc = -EFAULT;
612                 goto err_crypto_info;
613         }
614
615         /* check version */
616         if (crypto_info->version != TLS_1_2_VERSION &&
617             crypto_info->version != TLS_1_3_VERSION) {
618                 rc = -EINVAL;
619                 goto err_crypto_info;
620         }
621
622         /* Ensure that TLS version and ciphers are same in both directions */
623         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
624                 if (alt_crypto_info->version != crypto_info->version ||
625                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
626                         rc = -EINVAL;
627                         goto err_crypto_info;
628                 }
629         }
630
631         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
632         if (!cipher_desc) {
633                 rc = -EINVAL;
634                 goto err_crypto_info;
635         }
636
637         switch (crypto_info->cipher_type) {
638         case TLS_CIPHER_ARIA_GCM_128:
639         case TLS_CIPHER_ARIA_GCM_256:
640                 if (crypto_info->version != TLS_1_2_VERSION) {
641                         rc = -EINVAL;
642                         goto err_crypto_info;
643                 }
644                 break;
645         }
646
647         if (optlen != cipher_desc->crypto_info) {
648                 rc = -EINVAL;
649                 goto err_crypto_info;
650         }
651
652         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
653                                       sizeof(*crypto_info),
654                                       optlen - sizeof(*crypto_info));
655         if (rc) {
656                 rc = -EFAULT;
657                 goto err_crypto_info;
658         }
659
660         if (tx) {
661                 rc = tls_set_device_offload(sk, ctx);
662                 conf = TLS_HW;
663                 if (!rc) {
664                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
665                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
666                 } else {
667                         rc = tls_set_sw_offload(sk, ctx, 1);
668                         if (rc)
669                                 goto err_crypto_info;
670                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
671                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
672                         conf = TLS_SW;
673                 }
674         } else {
675                 rc = tls_set_device_offload_rx(sk, ctx);
676                 conf = TLS_HW;
677                 if (!rc) {
678                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
679                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
680                 } else {
681                         rc = tls_set_sw_offload(sk, ctx, 0);
682                         if (rc)
683                                 goto err_crypto_info;
684                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
685                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
686                         conf = TLS_SW;
687                 }
688                 tls_sw_strparser_arm(sk, ctx);
689         }
690
691         if (tx)
692                 ctx->tx_conf = conf;
693         else
694                 ctx->rx_conf = conf;
695         update_sk_prot(sk, ctx);
696         if (tx) {
697                 ctx->sk_write_space = sk->sk_write_space;
698                 sk->sk_write_space = tls_write_space;
699         } else {
700                 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
701
702                 tls_strp_check_rcv(&rx_ctx->strp);
703         }
704         return 0;
705
706 err_crypto_info:
707         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
708         return rc;
709 }
710
711 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
712                                    unsigned int optlen)
713 {
714         struct tls_context *ctx = tls_get_ctx(sk);
715         unsigned int value;
716
717         if (sockptr_is_null(optval) || optlen != sizeof(value))
718                 return -EINVAL;
719
720         if (copy_from_sockptr(&value, optval, sizeof(value)))
721                 return -EFAULT;
722
723         if (value > 1)
724                 return -EINVAL;
725
726         ctx->zerocopy_sendfile = value;
727
728         return 0;
729 }
730
731 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
732                                     unsigned int optlen)
733 {
734         struct tls_context *ctx = tls_get_ctx(sk);
735         u32 val;
736         int rc;
737
738         if (ctx->prot_info.version != TLS_1_3_VERSION ||
739             sockptr_is_null(optval) || optlen < sizeof(val))
740                 return -EINVAL;
741
742         rc = copy_from_sockptr(&val, optval, sizeof(val));
743         if (rc)
744                 return -EFAULT;
745         if (val > 1)
746                 return -EINVAL;
747         rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
748         if (rc < 1)
749                 return rc == 0 ? -EINVAL : rc;
750
751         lock_sock(sk);
752         rc = -EINVAL;
753         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
754                 ctx->rx_no_pad = val;
755                 tls_update_rx_zc_capable(ctx);
756                 rc = 0;
757         }
758         release_sock(sk);
759
760         return rc;
761 }
762
763 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
764                              unsigned int optlen)
765 {
766         int rc = 0;
767
768         switch (optname) {
769         case TLS_TX:
770         case TLS_RX:
771                 lock_sock(sk);
772                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
773                                             optname == TLS_TX);
774                 release_sock(sk);
775                 break;
776         case TLS_TX_ZEROCOPY_RO:
777                 lock_sock(sk);
778                 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
779                 release_sock(sk);
780                 break;
781         case TLS_RX_EXPECT_NO_PAD:
782                 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
783                 break;
784         default:
785                 rc = -ENOPROTOOPT;
786                 break;
787         }
788         return rc;
789 }
790
791 static int tls_setsockopt(struct sock *sk, int level, int optname,
792                           sockptr_t optval, unsigned int optlen)
793 {
794         struct tls_context *ctx = tls_get_ctx(sk);
795
796         if (level != SOL_TLS)
797                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
798                                                  optlen);
799
800         return do_tls_setsockopt(sk, optname, optval, optlen);
801 }
802
803 struct tls_context *tls_ctx_create(struct sock *sk)
804 {
805         struct inet_connection_sock *icsk = inet_csk(sk);
806         struct tls_context *ctx;
807
808         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
809         if (!ctx)
810                 return NULL;
811
812         mutex_init(&ctx->tx_lock);
813         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
814         ctx->sk_proto = READ_ONCE(sk->sk_prot);
815         ctx->sk = sk;
816         return ctx;
817 }
818
819 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
820                             const struct proto_ops *base)
821 {
822         ops[TLS_BASE][TLS_BASE] = *base;
823
824         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
825         ops[TLS_SW  ][TLS_BASE].splice_eof      = tls_sw_splice_eof;
826
827         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
828         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
829         ops[TLS_BASE][TLS_SW  ].poll            = tls_sk_poll;
830         ops[TLS_BASE][TLS_SW  ].read_sock       = tls_sw_read_sock;
831
832         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
833         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
834         ops[TLS_SW  ][TLS_SW  ].poll            = tls_sk_poll;
835         ops[TLS_SW  ][TLS_SW  ].read_sock       = tls_sw_read_sock;
836
837 #ifdef CONFIG_TLS_DEVICE
838         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
839
840         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
841
842         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
843
844         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
845
846         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
847 #endif
848 #ifdef CONFIG_TLS_TOE
849         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
850 #endif
851 }
852
853 static void tls_build_proto(struct sock *sk)
854 {
855         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
856         struct proto *prot = READ_ONCE(sk->sk_prot);
857
858         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
859         if (ip_ver == TLSV6 &&
860             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
861                 mutex_lock(&tcpv6_prot_mutex);
862                 if (likely(prot != saved_tcpv6_prot)) {
863                         build_protos(tls_prots[TLSV6], prot);
864                         build_proto_ops(tls_proto_ops[TLSV6],
865                                         sk->sk_socket->ops);
866                         smp_store_release(&saved_tcpv6_prot, prot);
867                 }
868                 mutex_unlock(&tcpv6_prot_mutex);
869         }
870
871         if (ip_ver == TLSV4 &&
872             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
873                 mutex_lock(&tcpv4_prot_mutex);
874                 if (likely(prot != saved_tcpv4_prot)) {
875                         build_protos(tls_prots[TLSV4], prot);
876                         build_proto_ops(tls_proto_ops[TLSV4],
877                                         sk->sk_socket->ops);
878                         smp_store_release(&saved_tcpv4_prot, prot);
879                 }
880                 mutex_unlock(&tcpv4_prot_mutex);
881         }
882 }
883
884 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
885                          const struct proto *base)
886 {
887         prot[TLS_BASE][TLS_BASE] = *base;
888         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
889         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
890         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
891
892         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
893         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
894         prot[TLS_SW][TLS_BASE].splice_eof       = tls_sw_splice_eof;
895
896         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
897         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
898         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
899         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
900
901         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
902         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
903         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
904         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
905
906 #ifdef CONFIG_TLS_DEVICE
907         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
908         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
909         prot[TLS_HW][TLS_BASE].splice_eof       = tls_device_splice_eof;
910
911         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
912         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
913         prot[TLS_HW][TLS_SW].splice_eof         = tls_device_splice_eof;
914
915         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
916
917         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
918
919         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
920 #endif
921 #ifdef CONFIG_TLS_TOE
922         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
923         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
924         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
925 #endif
926 }
927
928 static int tls_init(struct sock *sk)
929 {
930         struct tls_context *ctx;
931         int rc = 0;
932
933         tls_build_proto(sk);
934
935 #ifdef CONFIG_TLS_TOE
936         if (tls_toe_bypass(sk))
937                 return 0;
938 #endif
939
940         /* The TLS ulp is currently supported only for TCP sockets
941          * in ESTABLISHED state.
942          * Supporting sockets in LISTEN state will require us
943          * to modify the accept implementation to clone rather then
944          * share the ulp context.
945          */
946         if (sk->sk_state != TCP_ESTABLISHED)
947                 return -ENOTCONN;
948
949         /* allocate tls context */
950         write_lock_bh(&sk->sk_callback_lock);
951         ctx = tls_ctx_create(sk);
952         if (!ctx) {
953                 rc = -ENOMEM;
954                 goto out;
955         }
956
957         ctx->tx_conf = TLS_BASE;
958         ctx->rx_conf = TLS_BASE;
959         update_sk_prot(sk, ctx);
960 out:
961         write_unlock_bh(&sk->sk_callback_lock);
962         return rc;
963 }
964
965 static void tls_update(struct sock *sk, struct proto *p,
966                        void (*write_space)(struct sock *sk))
967 {
968         struct tls_context *ctx;
969
970         WARN_ON_ONCE(sk->sk_prot == p);
971
972         ctx = tls_get_ctx(sk);
973         if (likely(ctx)) {
974                 ctx->sk_write_space = write_space;
975                 ctx->sk_proto = p;
976         } else {
977                 /* Pairs with lockless read in sk_clone_lock(). */
978                 WRITE_ONCE(sk->sk_prot, p);
979                 sk->sk_write_space = write_space;
980         }
981 }
982
983 static u16 tls_user_config(struct tls_context *ctx, bool tx)
984 {
985         u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
986
987         switch (config) {
988         case TLS_BASE:
989                 return TLS_CONF_BASE;
990         case TLS_SW:
991                 return TLS_CONF_SW;
992         case TLS_HW:
993                 return TLS_CONF_HW;
994         case TLS_HW_RECORD:
995                 return TLS_CONF_HW_RECORD;
996         }
997         return 0;
998 }
999
1000 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1001 {
1002         u16 version, cipher_type;
1003         struct tls_context *ctx;
1004         struct nlattr *start;
1005         int err;
1006
1007         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1008         if (!start)
1009                 return -EMSGSIZE;
1010
1011         rcu_read_lock();
1012         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1013         if (!ctx) {
1014                 err = 0;
1015                 goto nla_failure;
1016         }
1017         version = ctx->prot_info.version;
1018         if (version) {
1019                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1020                 if (err)
1021                         goto nla_failure;
1022         }
1023         cipher_type = ctx->prot_info.cipher_type;
1024         if (cipher_type) {
1025                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1026                 if (err)
1027                         goto nla_failure;
1028         }
1029         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1030         if (err)
1031                 goto nla_failure;
1032
1033         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1034         if (err)
1035                 goto nla_failure;
1036
1037         if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1038                 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1039                 if (err)
1040                         goto nla_failure;
1041         }
1042         if (ctx->rx_no_pad) {
1043                 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1044                 if (err)
1045                         goto nla_failure;
1046         }
1047
1048         rcu_read_unlock();
1049         nla_nest_end(skb, start);
1050         return 0;
1051
1052 nla_failure:
1053         rcu_read_unlock();
1054         nla_nest_cancel(skb, start);
1055         return err;
1056 }
1057
1058 static size_t tls_get_info_size(const struct sock *sk)
1059 {
1060         size_t size = 0;
1061
1062         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
1063                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
1064                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
1065                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
1066                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
1067                 nla_total_size(0) +             /* TLS_INFO_ZC_RO_TX */
1068                 nla_total_size(0) +             /* TLS_INFO_RX_NO_PAD */
1069                 0;
1070
1071         return size;
1072 }
1073
1074 static int __net_init tls_init_net(struct net *net)
1075 {
1076         int err;
1077
1078         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1079         if (!net->mib.tls_statistics)
1080                 return -ENOMEM;
1081
1082         err = tls_proc_init(net);
1083         if (err)
1084                 goto err_free_stats;
1085
1086         return 0;
1087 err_free_stats:
1088         free_percpu(net->mib.tls_statistics);
1089         return err;
1090 }
1091
1092 static void __net_exit tls_exit_net(struct net *net)
1093 {
1094         tls_proc_fini(net);
1095         free_percpu(net->mib.tls_statistics);
1096 }
1097
1098 static struct pernet_operations tls_proc_ops = {
1099         .init = tls_init_net,
1100         .exit = tls_exit_net,
1101 };
1102
1103 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1104         .name                   = "tls",
1105         .owner                  = THIS_MODULE,
1106         .init                   = tls_init,
1107         .update                 = tls_update,
1108         .get_info               = tls_get_info,
1109         .get_info_size          = tls_get_info_size,
1110 };
1111
1112 static int __init tls_register(void)
1113 {
1114         int err;
1115
1116         err = register_pernet_subsys(&tls_proc_ops);
1117         if (err)
1118                 return err;
1119
1120         err = tls_strp_dev_init();
1121         if (err)
1122                 goto err_pernet;
1123
1124         err = tls_device_init();
1125         if (err)
1126                 goto err_strp;
1127
1128         tcp_register_ulp(&tcp_tls_ulp_ops);
1129
1130         return 0;
1131 err_strp:
1132         tls_strp_dev_exit();
1133 err_pernet:
1134         unregister_pernet_subsys(&tls_proc_ops);
1135         return err;
1136 }
1137
1138 static void __exit tls_unregister(void)
1139 {
1140         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1141         tls_strp_dev_exit();
1142         tls_device_cleanup();
1143         unregister_pernet_subsys(&tls_proc_ops);
1144 }
1145
1146 module_init(tls_register);
1147 module_exit(tls_unregister);