Merge tag 'gcc-plugins-v5.2-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65                          struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76         int rc = 0;
77         DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79         add_wait_queue(sk_sleep(sk), &wait);
80         while (1) {
81                 if (!*timeo) {
82                         rc = -EAGAIN;
83                         break;
84                 }
85
86                 if (signal_pending(current)) {
87                         rc = sock_intr_errno(*timeo);
88                         break;
89                 }
90
91                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92                         break;
93         }
94         remove_wait_queue(sk_sleep(sk), &wait);
95         return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99                 struct tls_context *ctx,
100                 struct scatterlist *sg,
101                 u16 first_offset,
102                 int flags)
103 {
104         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105         int ret = 0;
106         struct page *p;
107         size_t size;
108         int offset = first_offset;
109
110         size = sg->length - offset;
111         offset += sg->offset;
112
113         ctx->in_tcp_sendpages = true;
114         while (1) {
115                 if (sg_is_last(sg))
116                         sendpage_flags = flags;
117
118                 /* is sending application-limited? */
119                 tcp_rate_check_app_limited(sk);
120                 p = sg_page(sg);
121 retry:
122                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124                 if (ret != size) {
125                         if (ret > 0) {
126                                 offset += ret;
127                                 size -= ret;
128                                 goto retry;
129                         }
130
131                         offset -= sg->offset;
132                         ctx->partially_sent_offset = offset;
133                         ctx->partially_sent_record = (void *)sg;
134                         ctx->in_tcp_sendpages = false;
135                         return ret;
136                 }
137
138                 put_page(p);
139                 sk_mem_uncharge(sk, sg->length);
140                 sg = sg_next(sg);
141                 if (!sg)
142                         break;
143
144                 offset = sg->offset;
145                 size = sg->length;
146         }
147
148         ctx->in_tcp_sendpages = false;
149
150         return 0;
151 }
152
153 static int tls_handle_open_record(struct sock *sk, int flags)
154 {
155         struct tls_context *ctx = tls_get_ctx(sk);
156
157         if (tls_is_pending_open_record(ctx))
158                 return ctx->push_pending_record(sk, flags);
159
160         return 0;
161 }
162
163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
164                       unsigned char *record_type)
165 {
166         struct cmsghdr *cmsg;
167         int rc = -EINVAL;
168
169         for_each_cmsghdr(cmsg, msg) {
170                 if (!CMSG_OK(msg, cmsg))
171                         return -EINVAL;
172                 if (cmsg->cmsg_level != SOL_TLS)
173                         continue;
174
175                 switch (cmsg->cmsg_type) {
176                 case TLS_SET_RECORD_TYPE:
177                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
178                                 return -EINVAL;
179
180                         if (msg->msg_flags & MSG_MORE)
181                                 return -EINVAL;
182
183                         rc = tls_handle_open_record(sk, msg->msg_flags);
184                         if (rc)
185                                 return rc;
186
187                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
188                         rc = 0;
189                         break;
190                 default:
191                         return -EINVAL;
192                 }
193         }
194
195         return rc;
196 }
197
198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
199                             int flags)
200 {
201         struct scatterlist *sg;
202         u16 offset;
203
204         sg = ctx->partially_sent_record;
205         offset = ctx->partially_sent_offset;
206
207         ctx->partially_sent_record = NULL;
208         return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210
211 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
212 {
213         struct scatterlist *sg;
214
215         sg = ctx->partially_sent_record;
216         if (!sg)
217                 return false;
218
219         while (1) {
220                 put_page(sg_page(sg));
221                 sk_mem_uncharge(sk, sg->length);
222
223                 if (sg_is_last(sg))
224                         break;
225                 sg++;
226         }
227         ctx->partially_sent_record = NULL;
228         return true;
229 }
230
231 static void tls_write_space(struct sock *sk)
232 {
233         struct tls_context *ctx = tls_get_ctx(sk);
234
235         /* If in_tcp_sendpages call lower protocol write space handler
236          * to ensure we wake up any waiting operations there. For example
237          * if do_tcp_sendpages where to call sk_wait_event.
238          */
239         if (ctx->in_tcp_sendpages) {
240                 ctx->sk_write_space(sk);
241                 return;
242         }
243
244 #ifdef CONFIG_TLS_DEVICE
245         if (ctx->tx_conf == TLS_HW)
246                 tls_device_write_space(sk, ctx);
247         else
248 #endif
249                 tls_sw_write_space(sk, ctx);
250
251         ctx->sk_write_space(sk);
252 }
253
254 static void tls_ctx_free(struct tls_context *ctx)
255 {
256         if (!ctx)
257                 return;
258
259         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261         kfree(ctx);
262 }
263
264 static void tls_sk_proto_close(struct sock *sk, long timeout)
265 {
266         struct tls_context *ctx = tls_get_ctx(sk);
267         long timeo = sock_sndtimeo(sk, 0);
268         void (*sk_proto_close)(struct sock *sk, long timeout);
269         bool free_ctx = false;
270
271         lock_sock(sk);
272         sk_proto_close = ctx->sk_proto_close;
273
274         if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
275                 goto skip_tx_cleanup;
276
277         if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
278                 free_ctx = true;
279                 goto skip_tx_cleanup;
280         }
281
282         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
283                 tls_handle_open_record(sk, 0);
284
285         /* We need these for tls_sw_fallback handling of other packets */
286         if (ctx->tx_conf == TLS_SW) {
287                 kfree(ctx->tx.rec_seq);
288                 kfree(ctx->tx.iv);
289                 tls_sw_free_resources_tx(sk);
290 #ifdef CONFIG_TLS_DEVICE
291         } else if (ctx->tx_conf == TLS_HW) {
292                 tls_device_free_resources_tx(sk);
293 #endif
294         }
295
296         if (ctx->rx_conf == TLS_SW)
297                 tls_sw_free_resources_rx(sk);
298
299 #ifdef CONFIG_TLS_DEVICE
300         if (ctx->rx_conf == TLS_HW)
301                 tls_device_offload_cleanup_rx(sk);
302
303         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
304 #else
305         {
306 #endif
307                 tls_ctx_free(ctx);
308                 ctx = NULL;
309         }
310
311 skip_tx_cleanup:
312         release_sock(sk);
313         sk_proto_close(sk, timeout);
314         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
315          * for sk->sk_prot->unhash [tls_hw_unhash]
316          */
317         if (free_ctx)
318                 tls_ctx_free(ctx);
319 }
320
321 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
322                                 int __user *optlen)
323 {
324         int rc = 0;
325         struct tls_context *ctx = tls_get_ctx(sk);
326         struct tls_crypto_info *crypto_info;
327         int len;
328
329         if (get_user(len, optlen))
330                 return -EFAULT;
331
332         if (!optval || (len < sizeof(*crypto_info))) {
333                 rc = -EINVAL;
334                 goto out;
335         }
336
337         if (!ctx) {
338                 rc = -EBUSY;
339                 goto out;
340         }
341
342         /* get user crypto info */
343         crypto_info = &ctx->crypto_send.info;
344
345         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
346                 rc = -EBUSY;
347                 goto out;
348         }
349
350         if (len == sizeof(*crypto_info)) {
351                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
352                         rc = -EFAULT;
353                 goto out;
354         }
355
356         switch (crypto_info->cipher_type) {
357         case TLS_CIPHER_AES_GCM_128: {
358                 struct tls12_crypto_info_aes_gcm_128 *
359                   crypto_info_aes_gcm_128 =
360                   container_of(crypto_info,
361                                struct tls12_crypto_info_aes_gcm_128,
362                                info);
363
364                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
365                         rc = -EINVAL;
366                         goto out;
367                 }
368                 lock_sock(sk);
369                 memcpy(crypto_info_aes_gcm_128->iv,
370                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
371                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
372                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
373                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
374                 release_sock(sk);
375                 if (copy_to_user(optval,
376                                  crypto_info_aes_gcm_128,
377                                  sizeof(*crypto_info_aes_gcm_128)))
378                         rc = -EFAULT;
379                 break;
380         }
381         case TLS_CIPHER_AES_GCM_256: {
382                 struct tls12_crypto_info_aes_gcm_256 *
383                   crypto_info_aes_gcm_256 =
384                   container_of(crypto_info,
385                                struct tls12_crypto_info_aes_gcm_256,
386                                info);
387
388                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
389                         rc = -EINVAL;
390                         goto out;
391                 }
392                 lock_sock(sk);
393                 memcpy(crypto_info_aes_gcm_256->iv,
394                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
395                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
396                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
397                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
398                 release_sock(sk);
399                 if (copy_to_user(optval,
400                                  crypto_info_aes_gcm_256,
401                                  sizeof(*crypto_info_aes_gcm_256)))
402                         rc = -EFAULT;
403                 break;
404         }
405         default:
406                 rc = -EINVAL;
407         }
408
409 out:
410         return rc;
411 }
412
413 static int do_tls_getsockopt(struct sock *sk, int optname,
414                              char __user *optval, int __user *optlen)
415 {
416         int rc = 0;
417
418         switch (optname) {
419         case TLS_TX:
420                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
421                 break;
422         default:
423                 rc = -ENOPROTOOPT;
424                 break;
425         }
426         return rc;
427 }
428
429 static int tls_getsockopt(struct sock *sk, int level, int optname,
430                           char __user *optval, int __user *optlen)
431 {
432         struct tls_context *ctx = tls_get_ctx(sk);
433
434         if (level != SOL_TLS)
435                 return ctx->getsockopt(sk, level, optname, optval, optlen);
436
437         return do_tls_getsockopt(sk, optname, optval, optlen);
438 }
439
440 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
441                                   unsigned int optlen, int tx)
442 {
443         struct tls_crypto_info *crypto_info;
444         struct tls_crypto_info *alt_crypto_info;
445         struct tls_context *ctx = tls_get_ctx(sk);
446         size_t optsize;
447         int rc = 0;
448         int conf;
449
450         if (!optval || (optlen < sizeof(*crypto_info))) {
451                 rc = -EINVAL;
452                 goto out;
453         }
454
455         if (tx) {
456                 crypto_info = &ctx->crypto_send.info;
457                 alt_crypto_info = &ctx->crypto_recv.info;
458         } else {
459                 crypto_info = &ctx->crypto_recv.info;
460                 alt_crypto_info = &ctx->crypto_send.info;
461         }
462
463         /* Currently we don't support set crypto info more than one time */
464         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
465                 rc = -EBUSY;
466                 goto out;
467         }
468
469         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
470         if (rc) {
471                 rc = -EFAULT;
472                 goto err_crypto_info;
473         }
474
475         /* check version */
476         if (crypto_info->version != TLS_1_2_VERSION &&
477             crypto_info->version != TLS_1_3_VERSION) {
478                 rc = -ENOTSUPP;
479                 goto err_crypto_info;
480         }
481
482         /* Ensure that TLS version and ciphers are same in both directions */
483         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
484                 if (alt_crypto_info->version != crypto_info->version ||
485                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
486                         rc = -EINVAL;
487                         goto err_crypto_info;
488                 }
489         }
490
491         switch (crypto_info->cipher_type) {
492         case TLS_CIPHER_AES_GCM_128:
493                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
494                 break;
495         case TLS_CIPHER_AES_GCM_256: {
496                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
497                 break;
498         }
499         case TLS_CIPHER_AES_CCM_128:
500                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
501                 break;
502         default:
503                 rc = -EINVAL;
504                 goto err_crypto_info;
505         }
506
507         if (optlen != optsize) {
508                 rc = -EINVAL;
509                 goto err_crypto_info;
510         }
511
512         rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
513                             optlen - sizeof(*crypto_info));
514         if (rc) {
515                 rc = -EFAULT;
516                 goto err_crypto_info;
517         }
518
519         if (tx) {
520 #ifdef CONFIG_TLS_DEVICE
521                 rc = tls_set_device_offload(sk, ctx);
522                 conf = TLS_HW;
523                 if (rc) {
524 #else
525                 {
526 #endif
527                         rc = tls_set_sw_offload(sk, ctx, 1);
528                         conf = TLS_SW;
529                 }
530         } else {
531 #ifdef CONFIG_TLS_DEVICE
532                 rc = tls_set_device_offload_rx(sk, ctx);
533                 conf = TLS_HW;
534                 if (rc) {
535 #else
536                 {
537 #endif
538                         rc = tls_set_sw_offload(sk, ctx, 0);
539                         conf = TLS_SW;
540                 }
541         }
542
543         if (rc)
544                 goto err_crypto_info;
545
546         if (tx)
547                 ctx->tx_conf = conf;
548         else
549                 ctx->rx_conf = conf;
550         update_sk_prot(sk, ctx);
551         if (tx) {
552                 ctx->sk_write_space = sk->sk_write_space;
553                 sk->sk_write_space = tls_write_space;
554         } else {
555                 sk->sk_socket->ops = &tls_sw_proto_ops;
556         }
557         goto out;
558
559 err_crypto_info:
560         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
561 out:
562         return rc;
563 }
564
565 static int do_tls_setsockopt(struct sock *sk, int optname,
566                              char __user *optval, unsigned int optlen)
567 {
568         int rc = 0;
569
570         switch (optname) {
571         case TLS_TX:
572         case TLS_RX:
573                 lock_sock(sk);
574                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
575                                             optname == TLS_TX);
576                 release_sock(sk);
577                 break;
578         default:
579                 rc = -ENOPROTOOPT;
580                 break;
581         }
582         return rc;
583 }
584
585 static int tls_setsockopt(struct sock *sk, int level, int optname,
586                           char __user *optval, unsigned int optlen)
587 {
588         struct tls_context *ctx = tls_get_ctx(sk);
589
590         if (level != SOL_TLS)
591                 return ctx->setsockopt(sk, level, optname, optval, optlen);
592
593         return do_tls_setsockopt(sk, optname, optval, optlen);
594 }
595
596 static struct tls_context *create_ctx(struct sock *sk)
597 {
598         struct inet_connection_sock *icsk = inet_csk(sk);
599         struct tls_context *ctx;
600
601         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
602         if (!ctx)
603                 return NULL;
604
605         icsk->icsk_ulp_data = ctx;
606         ctx->setsockopt = sk->sk_prot->setsockopt;
607         ctx->getsockopt = sk->sk_prot->getsockopt;
608         ctx->sk_proto_close = sk->sk_prot->close;
609         return ctx;
610 }
611
612 static void tls_build_proto(struct sock *sk)
613 {
614         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
615
616         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
617         if (ip_ver == TLSV6 &&
618             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
619                 mutex_lock(&tcpv6_prot_mutex);
620                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
621                         build_protos(tls_prots[TLSV6], sk->sk_prot);
622                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
623                 }
624                 mutex_unlock(&tcpv6_prot_mutex);
625         }
626
627         if (ip_ver == TLSV4 &&
628             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
629                 mutex_lock(&tcpv4_prot_mutex);
630                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
631                         build_protos(tls_prots[TLSV4], sk->sk_prot);
632                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
633                 }
634                 mutex_unlock(&tcpv4_prot_mutex);
635         }
636 }
637
638 static void tls_hw_sk_destruct(struct sock *sk)
639 {
640         struct tls_context *ctx = tls_get_ctx(sk);
641         struct inet_connection_sock *icsk = inet_csk(sk);
642
643         ctx->sk_destruct(sk);
644         /* Free ctx */
645         kfree(ctx);
646         icsk->icsk_ulp_data = NULL;
647 }
648
649 static int tls_hw_prot(struct sock *sk)
650 {
651         struct tls_context *ctx;
652         struct tls_device *dev;
653         int rc = 0;
654
655         spin_lock_bh(&device_spinlock);
656         list_for_each_entry(dev, &device_list, dev_list) {
657                 if (dev->feature && dev->feature(dev)) {
658                         ctx = create_ctx(sk);
659                         if (!ctx)
660                                 goto out;
661
662                         spin_unlock_bh(&device_spinlock);
663                         tls_build_proto(sk);
664                         ctx->hash = sk->sk_prot->hash;
665                         ctx->unhash = sk->sk_prot->unhash;
666                         ctx->sk_proto_close = sk->sk_prot->close;
667                         ctx->sk_destruct = sk->sk_destruct;
668                         sk->sk_destruct = tls_hw_sk_destruct;
669                         ctx->rx_conf = TLS_HW_RECORD;
670                         ctx->tx_conf = TLS_HW_RECORD;
671                         update_sk_prot(sk, ctx);
672                         spin_lock_bh(&device_spinlock);
673                         rc = 1;
674                         break;
675                 }
676         }
677 out:
678         spin_unlock_bh(&device_spinlock);
679         return rc;
680 }
681
682 static void tls_hw_unhash(struct sock *sk)
683 {
684         struct tls_context *ctx = tls_get_ctx(sk);
685         struct tls_device *dev;
686
687         spin_lock_bh(&device_spinlock);
688         list_for_each_entry(dev, &device_list, dev_list) {
689                 if (dev->unhash) {
690                         kref_get(&dev->kref);
691                         spin_unlock_bh(&device_spinlock);
692                         dev->unhash(dev, sk);
693                         kref_put(&dev->kref, dev->release);
694                         spin_lock_bh(&device_spinlock);
695                 }
696         }
697         spin_unlock_bh(&device_spinlock);
698         ctx->unhash(sk);
699 }
700
701 static int tls_hw_hash(struct sock *sk)
702 {
703         struct tls_context *ctx = tls_get_ctx(sk);
704         struct tls_device *dev;
705         int err;
706
707         err = ctx->hash(sk);
708         spin_lock_bh(&device_spinlock);
709         list_for_each_entry(dev, &device_list, dev_list) {
710                 if (dev->hash) {
711                         kref_get(&dev->kref);
712                         spin_unlock_bh(&device_spinlock);
713                         err |= dev->hash(dev, sk);
714                         kref_put(&dev->kref, dev->release);
715                         spin_lock_bh(&device_spinlock);
716                 }
717         }
718         spin_unlock_bh(&device_spinlock);
719
720         if (err)
721                 tls_hw_unhash(sk);
722         return err;
723 }
724
725 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
726                          struct proto *base)
727 {
728         prot[TLS_BASE][TLS_BASE] = *base;
729         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
730         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
731         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
732
733         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
734         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
735         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
736
737         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
738         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
739         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
740         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
741
742         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
743         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
744         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
745         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
746
747 #ifdef CONFIG_TLS_DEVICE
748         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
749         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
750         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
751
752         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
753         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
754         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
755
756         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
757
758         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
759
760         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
761 #endif
762
763         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
764         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
765         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
766         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
767 }
768
769 static int tls_init(struct sock *sk)
770 {
771         struct tls_context *ctx;
772         int rc = 0;
773
774         if (tls_hw_prot(sk))
775                 goto out;
776
777         /* The TLS ulp is currently supported only for TCP sockets
778          * in ESTABLISHED state.
779          * Supporting sockets in LISTEN state will require us
780          * to modify the accept implementation to clone rather then
781          * share the ulp context.
782          */
783         if (sk->sk_state != TCP_ESTABLISHED)
784                 return -ENOTSUPP;
785
786         /* allocate tls context */
787         ctx = create_ctx(sk);
788         if (!ctx) {
789                 rc = -ENOMEM;
790                 goto out;
791         }
792
793         tls_build_proto(sk);
794         ctx->tx_conf = TLS_BASE;
795         ctx->rx_conf = TLS_BASE;
796         update_sk_prot(sk, ctx);
797 out:
798         return rc;
799 }
800
801 void tls_register_device(struct tls_device *device)
802 {
803         spin_lock_bh(&device_spinlock);
804         list_add_tail(&device->dev_list, &device_list);
805         spin_unlock_bh(&device_spinlock);
806 }
807 EXPORT_SYMBOL(tls_register_device);
808
809 void tls_unregister_device(struct tls_device *device)
810 {
811         spin_lock_bh(&device_spinlock);
812         list_del(&device->dev_list);
813         spin_unlock_bh(&device_spinlock);
814 }
815 EXPORT_SYMBOL(tls_unregister_device);
816
817 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
818         .name                   = "tls",
819         .owner                  = THIS_MODULE,
820         .init                   = tls_init,
821 };
822
823 static int __init tls_register(void)
824 {
825         tls_sw_proto_ops = inet_stream_ops;
826         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
827
828 #ifdef CONFIG_TLS_DEVICE
829         tls_device_init();
830 #endif
831         tcp_register_ulp(&tcp_tls_ulp_ops);
832
833         return 0;
834 }
835
836 static void __exit tls_unregister(void)
837 {
838         tcp_unregister_ulp(&tcp_tls_ulp_ops);
839 #ifdef CONFIG_TLS_DEVICE
840         tls_device_cleanup();
841 #endif
842 }
843
844 module_init(tls_register);
845 module_exit(tls_unregister);