Merge branch 'clocksource' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[linux-block.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54         TLSV4,
55         TLSV6,
56         TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          const struct proto *base);
67
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         WRITE_ONCE(sk->sk_prot,
73                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74         WRITE_ONCE(sk->sk_socket->ops,
75                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
76 }
77
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80         int rc = 0;
81         DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83         add_wait_queue(sk_sleep(sk), &wait);
84         while (1) {
85                 if (!*timeo) {
86                         rc = -EAGAIN;
87                         break;
88                 }
89
90                 if (signal_pending(current)) {
91                         rc = sock_intr_errno(*timeo);
92                         break;
93                 }
94
95                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96                         break;
97         }
98         remove_wait_queue(sk_sleep(sk), &wait);
99         return rc;
100 }
101
102 int tls_push_sg(struct sock *sk,
103                 struct tls_context *ctx,
104                 struct scatterlist *sg,
105                 u16 first_offset,
106                 int flags)
107 {
108         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109         int ret = 0;
110         struct page *p;
111         size_t size;
112         int offset = first_offset;
113
114         size = sg->length - offset;
115         offset += sg->offset;
116
117         ctx->in_tcp_sendpages = true;
118         while (1) {
119                 if (sg_is_last(sg))
120                         sendpage_flags = flags;
121
122                 /* is sending application-limited? */
123                 tcp_rate_check_app_limited(sk);
124                 p = sg_page(sg);
125 retry:
126                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127
128                 if (ret != size) {
129                         if (ret > 0) {
130                                 offset += ret;
131                                 size -= ret;
132                                 goto retry;
133                         }
134
135                         offset -= sg->offset;
136                         ctx->partially_sent_offset = offset;
137                         ctx->partially_sent_record = (void *)sg;
138                         ctx->in_tcp_sendpages = false;
139                         return ret;
140                 }
141
142                 put_page(p);
143                 sk_mem_uncharge(sk, sg->length);
144                 sg = sg_next(sg);
145                 if (!sg)
146                         break;
147
148                 offset = sg->offset;
149                 size = sg->length;
150         }
151
152         ctx->in_tcp_sendpages = false;
153
154         return 0;
155 }
156
157 static int tls_handle_open_record(struct sock *sk, int flags)
158 {
159         struct tls_context *ctx = tls_get_ctx(sk);
160
161         if (tls_is_pending_open_record(ctx))
162                 return ctx->push_pending_record(sk, flags);
163
164         return 0;
165 }
166
167 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
168                       unsigned char *record_type)
169 {
170         struct cmsghdr *cmsg;
171         int rc = -EINVAL;
172
173         for_each_cmsghdr(cmsg, msg) {
174                 if (!CMSG_OK(msg, cmsg))
175                         return -EINVAL;
176                 if (cmsg->cmsg_level != SOL_TLS)
177                         continue;
178
179                 switch (cmsg->cmsg_type) {
180                 case TLS_SET_RECORD_TYPE:
181                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
182                                 return -EINVAL;
183
184                         if (msg->msg_flags & MSG_MORE)
185                                 return -EINVAL;
186
187                         rc = tls_handle_open_record(sk, msg->msg_flags);
188                         if (rc)
189                                 return rc;
190
191                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
192                         rc = 0;
193                         break;
194                 default:
195                         return -EINVAL;
196                 }
197         }
198
199         return rc;
200 }
201
202 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
203                             int flags)
204 {
205         struct scatterlist *sg;
206         u16 offset;
207
208         sg = ctx->partially_sent_record;
209         offset = ctx->partially_sent_offset;
210
211         ctx->partially_sent_record = NULL;
212         return tls_push_sg(sk, ctx, sg, offset, flags);
213 }
214
215 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
216 {
217         struct scatterlist *sg;
218
219         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
220                 put_page(sg_page(sg));
221                 sk_mem_uncharge(sk, sg->length);
222         }
223         ctx->partially_sent_record = NULL;
224 }
225
226 static void tls_write_space(struct sock *sk)
227 {
228         struct tls_context *ctx = tls_get_ctx(sk);
229
230         /* If in_tcp_sendpages call lower protocol write space handler
231          * to ensure we wake up any waiting operations there. For example
232          * if do_tcp_sendpages where to call sk_wait_event.
233          */
234         if (ctx->in_tcp_sendpages) {
235                 ctx->sk_write_space(sk);
236                 return;
237         }
238
239 #ifdef CONFIG_TLS_DEVICE
240         if (ctx->tx_conf == TLS_HW)
241                 tls_device_write_space(sk, ctx);
242         else
243 #endif
244                 tls_sw_write_space(sk, ctx);
245
246         ctx->sk_write_space(sk);
247 }
248
249 /**
250  * tls_ctx_free() - free TLS ULP context
251  * @sk:  socket to with @ctx is attached
252  * @ctx: TLS context structure
253  *
254  * Free TLS context. If @sk is %NULL caller guarantees that the socket
255  * to which @ctx was attached has no outstanding references.
256  */
257 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
258 {
259         if (!ctx)
260                 return;
261
262         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
263         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
264         mutex_destroy(&ctx->tx_lock);
265
266         if (sk)
267                 kfree_rcu(ctx, rcu);
268         else
269                 kfree(ctx);
270 }
271
272 static void tls_sk_proto_cleanup(struct sock *sk,
273                                  struct tls_context *ctx, long timeo)
274 {
275         if (unlikely(sk->sk_write_pending) &&
276             !wait_on_pending_writer(sk, &timeo))
277                 tls_handle_open_record(sk, 0);
278
279         /* We need these for tls_sw_fallback handling of other packets */
280         if (ctx->tx_conf == TLS_SW) {
281                 kfree(ctx->tx.rec_seq);
282                 kfree(ctx->tx.iv);
283                 tls_sw_release_resources_tx(sk);
284                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
285         } else if (ctx->tx_conf == TLS_HW) {
286                 tls_device_free_resources_tx(sk);
287                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
288         }
289
290         if (ctx->rx_conf == TLS_SW) {
291                 tls_sw_release_resources_rx(sk);
292                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
293         } else if (ctx->rx_conf == TLS_HW) {
294                 tls_device_offload_cleanup_rx(sk);
295                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
296         }
297 }
298
299 static void tls_sk_proto_close(struct sock *sk, long timeout)
300 {
301         struct inet_connection_sock *icsk = inet_csk(sk);
302         struct tls_context *ctx = tls_get_ctx(sk);
303         long timeo = sock_sndtimeo(sk, 0);
304         bool free_ctx;
305
306         if (ctx->tx_conf == TLS_SW)
307                 tls_sw_cancel_work_tx(ctx);
308
309         lock_sock(sk);
310         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
311
312         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
313                 tls_sk_proto_cleanup(sk, ctx, timeo);
314
315         write_lock_bh(&sk->sk_callback_lock);
316         if (free_ctx)
317                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
318         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
319         if (sk->sk_write_space == tls_write_space)
320                 sk->sk_write_space = ctx->sk_write_space;
321         write_unlock_bh(&sk->sk_callback_lock);
322         release_sock(sk);
323         if (ctx->tx_conf == TLS_SW)
324                 tls_sw_free_ctx_tx(ctx);
325         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
326                 tls_sw_strparser_done(ctx);
327         if (ctx->rx_conf == TLS_SW)
328                 tls_sw_free_ctx_rx(ctx);
329         ctx->sk_proto->close(sk, timeout);
330
331         if (free_ctx)
332                 tls_ctx_free(sk, ctx);
333 }
334
335 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
336                                   int __user *optlen, int tx)
337 {
338         int rc = 0;
339         struct tls_context *ctx = tls_get_ctx(sk);
340         struct tls_crypto_info *crypto_info;
341         struct cipher_context *cctx;
342         int len;
343
344         if (get_user(len, optlen))
345                 return -EFAULT;
346
347         if (!optval || (len < sizeof(*crypto_info))) {
348                 rc = -EINVAL;
349                 goto out;
350         }
351
352         if (!ctx) {
353                 rc = -EBUSY;
354                 goto out;
355         }
356
357         /* get user crypto info */
358         if (tx) {
359                 crypto_info = &ctx->crypto_send.info;
360                 cctx = &ctx->tx;
361         } else {
362                 crypto_info = &ctx->crypto_recv.info;
363                 cctx = &ctx->rx;
364         }
365
366         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
367                 rc = -EBUSY;
368                 goto out;
369         }
370
371         if (len == sizeof(*crypto_info)) {
372                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
373                         rc = -EFAULT;
374                 goto out;
375         }
376
377         switch (crypto_info->cipher_type) {
378         case TLS_CIPHER_AES_GCM_128: {
379                 struct tls12_crypto_info_aes_gcm_128 *
380                   crypto_info_aes_gcm_128 =
381                   container_of(crypto_info,
382                                struct tls12_crypto_info_aes_gcm_128,
383                                info);
384
385                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
386                         rc = -EINVAL;
387                         goto out;
388                 }
389                 lock_sock(sk);
390                 memcpy(crypto_info_aes_gcm_128->iv,
391                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
392                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
393                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
394                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
395                 release_sock(sk);
396                 if (copy_to_user(optval,
397                                  crypto_info_aes_gcm_128,
398                                  sizeof(*crypto_info_aes_gcm_128)))
399                         rc = -EFAULT;
400                 break;
401         }
402         case TLS_CIPHER_AES_GCM_256: {
403                 struct tls12_crypto_info_aes_gcm_256 *
404                   crypto_info_aes_gcm_256 =
405                   container_of(crypto_info,
406                                struct tls12_crypto_info_aes_gcm_256,
407                                info);
408
409                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
410                         rc = -EINVAL;
411                         goto out;
412                 }
413                 lock_sock(sk);
414                 memcpy(crypto_info_aes_gcm_256->iv,
415                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
416                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
417                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
418                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
419                 release_sock(sk);
420                 if (copy_to_user(optval,
421                                  crypto_info_aes_gcm_256,
422                                  sizeof(*crypto_info_aes_gcm_256)))
423                         rc = -EFAULT;
424                 break;
425         }
426         case TLS_CIPHER_AES_CCM_128: {
427                 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
428                         container_of(crypto_info,
429                                 struct tls12_crypto_info_aes_ccm_128, info);
430
431                 if (len != sizeof(*aes_ccm_128)) {
432                         rc = -EINVAL;
433                         goto out;
434                 }
435                 lock_sock(sk);
436                 memcpy(aes_ccm_128->iv,
437                        cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
438                        TLS_CIPHER_AES_CCM_128_IV_SIZE);
439                 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
440                        TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
441                 release_sock(sk);
442                 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
443                         rc = -EFAULT;
444                 break;
445         }
446         case TLS_CIPHER_CHACHA20_POLY1305: {
447                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
448                         container_of(crypto_info,
449                                 struct tls12_crypto_info_chacha20_poly1305,
450                                 info);
451
452                 if (len != sizeof(*chacha20_poly1305)) {
453                         rc = -EINVAL;
454                         goto out;
455                 }
456                 lock_sock(sk);
457                 memcpy(chacha20_poly1305->iv,
458                        cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
459                        TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
460                 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
461                        TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
462                 release_sock(sk);
463                 if (copy_to_user(optval, chacha20_poly1305,
464                                 sizeof(*chacha20_poly1305)))
465                         rc = -EFAULT;
466                 break;
467         }
468         case TLS_CIPHER_SM4_GCM: {
469                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
470                         container_of(crypto_info,
471                                 struct tls12_crypto_info_sm4_gcm, info);
472
473                 if (len != sizeof(*sm4_gcm_info)) {
474                         rc = -EINVAL;
475                         goto out;
476                 }
477                 lock_sock(sk);
478                 memcpy(sm4_gcm_info->iv,
479                        cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
480                        TLS_CIPHER_SM4_GCM_IV_SIZE);
481                 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
482                        TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
483                 release_sock(sk);
484                 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
485                         rc = -EFAULT;
486                 break;
487         }
488         case TLS_CIPHER_SM4_CCM: {
489                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
490                         container_of(crypto_info,
491                                 struct tls12_crypto_info_sm4_ccm, info);
492
493                 if (len != sizeof(*sm4_ccm_info)) {
494                         rc = -EINVAL;
495                         goto out;
496                 }
497                 lock_sock(sk);
498                 memcpy(sm4_ccm_info->iv,
499                        cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
500                        TLS_CIPHER_SM4_CCM_IV_SIZE);
501                 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
502                        TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
503                 release_sock(sk);
504                 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
505                         rc = -EFAULT;
506                 break;
507         }
508         default:
509                 rc = -EINVAL;
510         }
511
512 out:
513         return rc;
514 }
515
516 static int do_tls_getsockopt(struct sock *sk, int optname,
517                              char __user *optval, int __user *optlen)
518 {
519         int rc = 0;
520
521         switch (optname) {
522         case TLS_TX:
523         case TLS_RX:
524                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
525                                             optname == TLS_TX);
526                 break;
527         default:
528                 rc = -ENOPROTOOPT;
529                 break;
530         }
531         return rc;
532 }
533
534 static int tls_getsockopt(struct sock *sk, int level, int optname,
535                           char __user *optval, int __user *optlen)
536 {
537         struct tls_context *ctx = tls_get_ctx(sk);
538
539         if (level != SOL_TLS)
540                 return ctx->sk_proto->getsockopt(sk, level,
541                                                  optname, optval, optlen);
542
543         return do_tls_getsockopt(sk, optname, optval, optlen);
544 }
545
546 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
547                                   unsigned int optlen, int tx)
548 {
549         struct tls_crypto_info *crypto_info;
550         struct tls_crypto_info *alt_crypto_info;
551         struct tls_context *ctx = tls_get_ctx(sk);
552         size_t optsize;
553         int rc = 0;
554         int conf;
555
556         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
557                 rc = -EINVAL;
558                 goto out;
559         }
560
561         if (tx) {
562                 crypto_info = &ctx->crypto_send.info;
563                 alt_crypto_info = &ctx->crypto_recv.info;
564         } else {
565                 crypto_info = &ctx->crypto_recv.info;
566                 alt_crypto_info = &ctx->crypto_send.info;
567         }
568
569         /* Currently we don't support set crypto info more than one time */
570         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
571                 rc = -EBUSY;
572                 goto out;
573         }
574
575         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
576         if (rc) {
577                 rc = -EFAULT;
578                 goto err_crypto_info;
579         }
580
581         /* check version */
582         if (crypto_info->version != TLS_1_2_VERSION &&
583             crypto_info->version != TLS_1_3_VERSION) {
584                 rc = -EINVAL;
585                 goto err_crypto_info;
586         }
587
588         /* Ensure that TLS version and ciphers are same in both directions */
589         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
590                 if (alt_crypto_info->version != crypto_info->version ||
591                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
592                         rc = -EINVAL;
593                         goto err_crypto_info;
594                 }
595         }
596
597         switch (crypto_info->cipher_type) {
598         case TLS_CIPHER_AES_GCM_128:
599                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
600                 break;
601         case TLS_CIPHER_AES_GCM_256: {
602                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
603                 break;
604         }
605         case TLS_CIPHER_AES_CCM_128:
606                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
607                 break;
608         case TLS_CIPHER_CHACHA20_POLY1305:
609                 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
610                 break;
611         case TLS_CIPHER_SM4_GCM:
612                 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
613                 break;
614         case TLS_CIPHER_SM4_CCM:
615                 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
616                 break;
617         default:
618                 rc = -EINVAL;
619                 goto err_crypto_info;
620         }
621
622         if (optlen != optsize) {
623                 rc = -EINVAL;
624                 goto err_crypto_info;
625         }
626
627         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
628                                       sizeof(*crypto_info),
629                                       optlen - sizeof(*crypto_info));
630         if (rc) {
631                 rc = -EFAULT;
632                 goto err_crypto_info;
633         }
634
635         if (tx) {
636                 rc = tls_set_device_offload(sk, ctx);
637                 conf = TLS_HW;
638                 if (!rc) {
639                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
640                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
641                 } else {
642                         rc = tls_set_sw_offload(sk, ctx, 1);
643                         if (rc)
644                                 goto err_crypto_info;
645                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
646                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
647                         conf = TLS_SW;
648                 }
649         } else {
650                 rc = tls_set_device_offload_rx(sk, ctx);
651                 conf = TLS_HW;
652                 if (!rc) {
653                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
654                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
655                 } else {
656                         rc = tls_set_sw_offload(sk, ctx, 0);
657                         if (rc)
658                                 goto err_crypto_info;
659                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
660                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
661                         conf = TLS_SW;
662                 }
663                 tls_sw_strparser_arm(sk, ctx);
664         }
665
666         if (tx)
667                 ctx->tx_conf = conf;
668         else
669                 ctx->rx_conf = conf;
670         update_sk_prot(sk, ctx);
671         if (tx) {
672                 ctx->sk_write_space = sk->sk_write_space;
673                 sk->sk_write_space = tls_write_space;
674         }
675         goto out;
676
677 err_crypto_info:
678         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
679 out:
680         return rc;
681 }
682
683 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
684                              unsigned int optlen)
685 {
686         int rc = 0;
687
688         switch (optname) {
689         case TLS_TX:
690         case TLS_RX:
691                 lock_sock(sk);
692                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
693                                             optname == TLS_TX);
694                 release_sock(sk);
695                 break;
696         default:
697                 rc = -ENOPROTOOPT;
698                 break;
699         }
700         return rc;
701 }
702
703 static int tls_setsockopt(struct sock *sk, int level, int optname,
704                           sockptr_t optval, unsigned int optlen)
705 {
706         struct tls_context *ctx = tls_get_ctx(sk);
707
708         if (level != SOL_TLS)
709                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
710                                                  optlen);
711
712         return do_tls_setsockopt(sk, optname, optval, optlen);
713 }
714
715 struct tls_context *tls_ctx_create(struct sock *sk)
716 {
717         struct inet_connection_sock *icsk = inet_csk(sk);
718         struct tls_context *ctx;
719
720         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
721         if (!ctx)
722                 return NULL;
723
724         mutex_init(&ctx->tx_lock);
725         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
726         ctx->sk_proto = READ_ONCE(sk->sk_prot);
727         ctx->sk = sk;
728         return ctx;
729 }
730
731 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
732                             const struct proto_ops *base)
733 {
734         ops[TLS_BASE][TLS_BASE] = *base;
735
736         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
737         ops[TLS_SW  ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
738
739         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
740         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
741
742         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
743         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
744
745 #ifdef CONFIG_TLS_DEVICE
746         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
747         ops[TLS_HW  ][TLS_BASE].sendpage_locked = NULL;
748
749         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
750         ops[TLS_HW  ][TLS_SW  ].sendpage_locked = NULL;
751
752         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
753
754         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
755
756         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
757         ops[TLS_HW  ][TLS_HW  ].sendpage_locked = NULL;
758 #endif
759 #ifdef CONFIG_TLS_TOE
760         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
761 #endif
762 }
763
764 static void tls_build_proto(struct sock *sk)
765 {
766         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
767         struct proto *prot = READ_ONCE(sk->sk_prot);
768
769         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
770         if (ip_ver == TLSV6 &&
771             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
772                 mutex_lock(&tcpv6_prot_mutex);
773                 if (likely(prot != saved_tcpv6_prot)) {
774                         build_protos(tls_prots[TLSV6], prot);
775                         build_proto_ops(tls_proto_ops[TLSV6],
776                                         sk->sk_socket->ops);
777                         smp_store_release(&saved_tcpv6_prot, prot);
778                 }
779                 mutex_unlock(&tcpv6_prot_mutex);
780         }
781
782         if (ip_ver == TLSV4 &&
783             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
784                 mutex_lock(&tcpv4_prot_mutex);
785                 if (likely(prot != saved_tcpv4_prot)) {
786                         build_protos(tls_prots[TLSV4], prot);
787                         build_proto_ops(tls_proto_ops[TLSV4],
788                                         sk->sk_socket->ops);
789                         smp_store_release(&saved_tcpv4_prot, prot);
790                 }
791                 mutex_unlock(&tcpv4_prot_mutex);
792         }
793 }
794
795 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
796                          const struct proto *base)
797 {
798         prot[TLS_BASE][TLS_BASE] = *base;
799         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
800         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
801         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
802
803         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
804         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
805         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
806
807         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
808         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
809         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
810         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
811
812         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
813         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
814         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
815         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
816
817 #ifdef CONFIG_TLS_DEVICE
818         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
819         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
820         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
821
822         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
823         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
824         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
825
826         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
827
828         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
829
830         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
831 #endif
832 #ifdef CONFIG_TLS_TOE
833         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
834         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
835         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
836 #endif
837 }
838
839 static int tls_init(struct sock *sk)
840 {
841         struct tls_context *ctx;
842         int rc = 0;
843
844         tls_build_proto(sk);
845
846 #ifdef CONFIG_TLS_TOE
847         if (tls_toe_bypass(sk))
848                 return 0;
849 #endif
850
851         /* The TLS ulp is currently supported only for TCP sockets
852          * in ESTABLISHED state.
853          * Supporting sockets in LISTEN state will require us
854          * to modify the accept implementation to clone rather then
855          * share the ulp context.
856          */
857         if (sk->sk_state != TCP_ESTABLISHED)
858                 return -ENOTCONN;
859
860         /* allocate tls context */
861         write_lock_bh(&sk->sk_callback_lock);
862         ctx = tls_ctx_create(sk);
863         if (!ctx) {
864                 rc = -ENOMEM;
865                 goto out;
866         }
867
868         ctx->tx_conf = TLS_BASE;
869         ctx->rx_conf = TLS_BASE;
870         update_sk_prot(sk, ctx);
871 out:
872         write_unlock_bh(&sk->sk_callback_lock);
873         return rc;
874 }
875
876 static void tls_update(struct sock *sk, struct proto *p,
877                        void (*write_space)(struct sock *sk))
878 {
879         struct tls_context *ctx;
880
881         ctx = tls_get_ctx(sk);
882         if (likely(ctx)) {
883                 ctx->sk_write_space = write_space;
884                 ctx->sk_proto = p;
885         } else {
886                 /* Pairs with lockless read in sk_clone_lock(). */
887                 WRITE_ONCE(sk->sk_prot, p);
888                 sk->sk_write_space = write_space;
889         }
890 }
891
892 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
893 {
894         u16 version, cipher_type;
895         struct tls_context *ctx;
896         struct nlattr *start;
897         int err;
898
899         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
900         if (!start)
901                 return -EMSGSIZE;
902
903         rcu_read_lock();
904         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
905         if (!ctx) {
906                 err = 0;
907                 goto nla_failure;
908         }
909         version = ctx->prot_info.version;
910         if (version) {
911                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
912                 if (err)
913                         goto nla_failure;
914         }
915         cipher_type = ctx->prot_info.cipher_type;
916         if (cipher_type) {
917                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
918                 if (err)
919                         goto nla_failure;
920         }
921         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
922         if (err)
923                 goto nla_failure;
924
925         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
926         if (err)
927                 goto nla_failure;
928
929         rcu_read_unlock();
930         nla_nest_end(skb, start);
931         return 0;
932
933 nla_failure:
934         rcu_read_unlock();
935         nla_nest_cancel(skb, start);
936         return err;
937 }
938
939 static size_t tls_get_info_size(const struct sock *sk)
940 {
941         size_t size = 0;
942
943         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
944                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
945                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
946                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
947                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
948                 0;
949
950         return size;
951 }
952
953 static int __net_init tls_init_net(struct net *net)
954 {
955         int err;
956
957         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
958         if (!net->mib.tls_statistics)
959                 return -ENOMEM;
960
961         err = tls_proc_init(net);
962         if (err)
963                 goto err_free_stats;
964
965         return 0;
966 err_free_stats:
967         free_percpu(net->mib.tls_statistics);
968         return err;
969 }
970
971 static void __net_exit tls_exit_net(struct net *net)
972 {
973         tls_proc_fini(net);
974         free_percpu(net->mib.tls_statistics);
975 }
976
977 static struct pernet_operations tls_proc_ops = {
978         .init = tls_init_net,
979         .exit = tls_exit_net,
980 };
981
982 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
983         .name                   = "tls",
984         .owner                  = THIS_MODULE,
985         .init                   = tls_init,
986         .update                 = tls_update,
987         .get_info               = tls_get_info,
988         .get_info_size          = tls_get_info_size,
989 };
990
991 static int __init tls_register(void)
992 {
993         int err;
994
995         err = register_pernet_subsys(&tls_proc_ops);
996         if (err)
997                 return err;
998
999         tls_device_init();
1000         tcp_register_ulp(&tcp_tls_ulp_ops);
1001
1002         return 0;
1003 }
1004
1005 static void __exit tls_unregister(void)
1006 {
1007         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1008         tls_device_cleanup();
1009         unregister_pernet_subsys(&tls_proc_ops);
1010 }
1011
1012 module_init(tls_register);
1013 module_exit(tls_unregister);