tls: store rec_seq directly within cipher_context
[linux-block.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "tls.h"
42 #include "trace.h"
43
44 /* device_offload_lock is used to synchronize tls_dev_add
45  * against NETDEV_DOWN notifications.
46  */
47 static DECLARE_RWSEM(device_offload_lock);
48
49 static struct workqueue_struct *destruct_wq __read_mostly;
50
51 static LIST_HEAD(tls_device_list);
52 static LIST_HEAD(tls_device_down_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54
55 static struct page *dummy_page;
56
57 static void tls_device_free_ctx(struct tls_context *ctx)
58 {
59         if (ctx->tx_conf == TLS_HW) {
60                 kfree(tls_offload_ctx_tx(ctx));
61                 kfree(ctx->tx.iv);
62         }
63
64         if (ctx->rx_conf == TLS_HW)
65                 kfree(tls_offload_ctx_rx(ctx));
66
67         tls_ctx_free(NULL, ctx);
68 }
69
70 static void tls_device_tx_del_task(struct work_struct *work)
71 {
72         struct tls_offload_context_tx *offload_ctx =
73                 container_of(work, struct tls_offload_context_tx, destruct_work);
74         struct tls_context *ctx = offload_ctx->ctx;
75         struct net_device *netdev;
76
77         /* Safe, because this is the destroy flow, refcount is 0, so
78          * tls_device_down can't store this field in parallel.
79          */
80         netdev = rcu_dereference_protected(ctx->netdev,
81                                            !refcount_read(&ctx->refcount));
82
83         netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
84         dev_put(netdev);
85         ctx->netdev = NULL;
86         tls_device_free_ctx(ctx);
87 }
88
89 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
90 {
91         struct net_device *netdev;
92         unsigned long flags;
93         bool async_cleanup;
94
95         spin_lock_irqsave(&tls_device_lock, flags);
96         if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
97                 spin_unlock_irqrestore(&tls_device_lock, flags);
98                 return;
99         }
100
101         list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
102
103         /* Safe, because this is the destroy flow, refcount is 0, so
104          * tls_device_down can't store this field in parallel.
105          */
106         netdev = rcu_dereference_protected(ctx->netdev,
107                                            !refcount_read(&ctx->refcount));
108
109         async_cleanup = netdev && ctx->tx_conf == TLS_HW;
110         if (async_cleanup) {
111                 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
112
113                 /* queue_work inside the spinlock
114                  * to make sure tls_device_down waits for that work.
115                  */
116                 queue_work(destruct_wq, &offload_ctx->destruct_work);
117         }
118         spin_unlock_irqrestore(&tls_device_lock, flags);
119
120         if (!async_cleanup)
121                 tls_device_free_ctx(ctx);
122 }
123
124 /* We assume that the socket is already connected */
125 static struct net_device *get_netdev_for_sock(struct sock *sk)
126 {
127         struct dst_entry *dst = sk_dst_get(sk);
128         struct net_device *netdev = NULL;
129
130         if (likely(dst)) {
131                 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
132                 dev_hold(netdev);
133         }
134
135         dst_release(dst);
136
137         return netdev;
138 }
139
140 static void destroy_record(struct tls_record_info *record)
141 {
142         int i;
143
144         for (i = 0; i < record->num_frags; i++)
145                 __skb_frag_unref(&record->frags[i], false);
146         kfree(record);
147 }
148
149 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
150 {
151         struct tls_record_info *info, *temp;
152
153         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
154                 list_del(&info->list);
155                 destroy_record(info);
156         }
157
158         offload_ctx->retransmit_hint = NULL;
159 }
160
161 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
162 {
163         struct tls_context *tls_ctx = tls_get_ctx(sk);
164         struct tls_record_info *info, *temp;
165         struct tls_offload_context_tx *ctx;
166         u64 deleted_records = 0;
167         unsigned long flags;
168
169         if (!tls_ctx)
170                 return;
171
172         ctx = tls_offload_ctx_tx(tls_ctx);
173
174         spin_lock_irqsave(&ctx->lock, flags);
175         info = ctx->retransmit_hint;
176         if (info && !before(acked_seq, info->end_seq))
177                 ctx->retransmit_hint = NULL;
178
179         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
180                 if (before(acked_seq, info->end_seq))
181                         break;
182                 list_del(&info->list);
183
184                 destroy_record(info);
185                 deleted_records++;
186         }
187
188         ctx->unacked_record_sn += deleted_records;
189         spin_unlock_irqrestore(&ctx->lock, flags);
190 }
191
192 /* At this point, there should be no references on this
193  * socket and no in-flight SKBs associated with this
194  * socket, so it is safe to free all the resources.
195  */
196 void tls_device_sk_destruct(struct sock *sk)
197 {
198         struct tls_context *tls_ctx = tls_get_ctx(sk);
199         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
200
201         tls_ctx->sk_destruct(sk);
202
203         if (tls_ctx->tx_conf == TLS_HW) {
204                 if (ctx->open_record)
205                         destroy_record(ctx->open_record);
206                 delete_all_records(ctx);
207                 crypto_free_aead(ctx->aead_send);
208                 clean_acked_data_disable(inet_csk(sk));
209         }
210
211         tls_device_queue_ctx_destruction(tls_ctx);
212 }
213 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
214
215 void tls_device_free_resources_tx(struct sock *sk)
216 {
217         struct tls_context *tls_ctx = tls_get_ctx(sk);
218
219         tls_free_partial_record(sk, tls_ctx);
220 }
221
222 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
223 {
224         struct tls_context *tls_ctx = tls_get_ctx(sk);
225
226         trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
227         WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
228 }
229 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
230
231 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
232                                  u32 seq)
233 {
234         struct net_device *netdev;
235         struct sk_buff *skb;
236         int err = 0;
237         u8 *rcd_sn;
238
239         skb = tcp_write_queue_tail(sk);
240         if (skb)
241                 TCP_SKB_CB(skb)->eor = 1;
242
243         rcd_sn = tls_ctx->tx.rec_seq;
244
245         trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
246         down_read(&device_offload_lock);
247         netdev = rcu_dereference_protected(tls_ctx->netdev,
248                                            lockdep_is_held(&device_offload_lock));
249         if (netdev)
250                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
251                                                          rcd_sn,
252                                                          TLS_OFFLOAD_CTX_DIR_TX);
253         up_read(&device_offload_lock);
254         if (err)
255                 return;
256
257         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
258 }
259
260 static void tls_append_frag(struct tls_record_info *record,
261                             struct page_frag *pfrag,
262                             int size)
263 {
264         skb_frag_t *frag;
265
266         frag = &record->frags[record->num_frags - 1];
267         if (skb_frag_page(frag) == pfrag->page &&
268             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
269                 skb_frag_size_add(frag, size);
270         } else {
271                 ++frag;
272                 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
273                                         size);
274                 ++record->num_frags;
275                 get_page(pfrag->page);
276         }
277
278         pfrag->offset += size;
279         record->len += size;
280 }
281
282 static int tls_push_record(struct sock *sk,
283                            struct tls_context *ctx,
284                            struct tls_offload_context_tx *offload_ctx,
285                            struct tls_record_info *record,
286                            int flags)
287 {
288         struct tls_prot_info *prot = &ctx->prot_info;
289         struct tcp_sock *tp = tcp_sk(sk);
290         skb_frag_t *frag;
291         int i;
292
293         record->end_seq = tp->write_seq + record->len;
294         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
295         offload_ctx->open_record = NULL;
296
297         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
298                 tls_device_resync_tx(sk, ctx, tp->write_seq);
299
300         tls_advance_record_sn(sk, prot, &ctx->tx);
301
302         for (i = 0; i < record->num_frags; i++) {
303                 frag = &record->frags[i];
304                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
305                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
306                             skb_frag_size(frag), skb_frag_off(frag));
307                 sk_mem_charge(sk, skb_frag_size(frag));
308                 get_page(skb_frag_page(frag));
309         }
310         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
311
312         /* all ready, send */
313         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
314 }
315
316 static void tls_device_record_close(struct sock *sk,
317                                     struct tls_context *ctx,
318                                     struct tls_record_info *record,
319                                     struct page_frag *pfrag,
320                                     unsigned char record_type)
321 {
322         struct tls_prot_info *prot = &ctx->prot_info;
323         struct page_frag dummy_tag_frag;
324
325         /* append tag
326          * device will fill in the tag, we just need to append a placeholder
327          * use socket memory to improve coalescing (re-using a single buffer
328          * increases frag count)
329          * if we can't allocate memory now use the dummy page
330          */
331         if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
332             !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
333                 dummy_tag_frag.page = dummy_page;
334                 dummy_tag_frag.offset = 0;
335                 pfrag = &dummy_tag_frag;
336         }
337         tls_append_frag(record, pfrag, prot->tag_size);
338
339         /* fill prepend */
340         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
341                          record->len - prot->overhead_size,
342                          record_type);
343 }
344
345 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
346                                  struct page_frag *pfrag,
347                                  size_t prepend_size)
348 {
349         struct tls_record_info *record;
350         skb_frag_t *frag;
351
352         record = kmalloc(sizeof(*record), GFP_KERNEL);
353         if (!record)
354                 return -ENOMEM;
355
356         frag = &record->frags[0];
357         skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
358                                 prepend_size);
359
360         get_page(pfrag->page);
361         pfrag->offset += prepend_size;
362
363         record->num_frags = 1;
364         record->len = prepend_size;
365         offload_ctx->open_record = record;
366         return 0;
367 }
368
369 static int tls_do_allocation(struct sock *sk,
370                              struct tls_offload_context_tx *offload_ctx,
371                              struct page_frag *pfrag,
372                              size_t prepend_size)
373 {
374         int ret;
375
376         if (!offload_ctx->open_record) {
377                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
378                                                    sk->sk_allocation))) {
379                         READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
380                         sk_stream_moderate_sndbuf(sk);
381                         return -ENOMEM;
382                 }
383
384                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
385                 if (ret)
386                         return ret;
387
388                 if (pfrag->size > pfrag->offset)
389                         return 0;
390         }
391
392         if (!sk_page_frag_refill(sk, pfrag))
393                 return -ENOMEM;
394
395         return 0;
396 }
397
398 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
399 {
400         size_t pre_copy, nocache;
401
402         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
403         if (pre_copy) {
404                 pre_copy = min(pre_copy, bytes);
405                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
406                         return -EFAULT;
407                 bytes -= pre_copy;
408                 addr += pre_copy;
409         }
410
411         nocache = round_down(bytes, SMP_CACHE_BYTES);
412         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
413                 return -EFAULT;
414         bytes -= nocache;
415         addr += nocache;
416
417         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
418                 return -EFAULT;
419
420         return 0;
421 }
422
423 static int tls_push_data(struct sock *sk,
424                          struct iov_iter *iter,
425                          size_t size, int flags,
426                          unsigned char record_type)
427 {
428         struct tls_context *tls_ctx = tls_get_ctx(sk);
429         struct tls_prot_info *prot = &tls_ctx->prot_info;
430         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
431         struct tls_record_info *record;
432         int tls_push_record_flags;
433         struct page_frag *pfrag;
434         size_t orig_size = size;
435         u32 max_open_record_len;
436         bool more = false;
437         bool done = false;
438         int copy, rc = 0;
439         long timeo;
440
441         if (flags &
442             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
443               MSG_SPLICE_PAGES | MSG_EOR))
444                 return -EOPNOTSUPP;
445
446         if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
447                 return -EINVAL;
448
449         if (unlikely(sk->sk_err))
450                 return -sk->sk_err;
451
452         flags |= MSG_SENDPAGE_DECRYPTED;
453         tls_push_record_flags = flags | MSG_MORE;
454
455         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
456         if (tls_is_partially_sent_record(tls_ctx)) {
457                 rc = tls_push_partial_record(sk, tls_ctx, flags);
458                 if (rc < 0)
459                         return rc;
460         }
461
462         pfrag = sk_page_frag(sk);
463
464         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
465          * we need to leave room for an authentication tag.
466          */
467         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
468                               prot->prepend_size;
469         do {
470                 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
471                 if (unlikely(rc)) {
472                         rc = sk_stream_wait_memory(sk, &timeo);
473                         if (!rc)
474                                 continue;
475
476                         record = ctx->open_record;
477                         if (!record)
478                                 break;
479 handle_error:
480                         if (record_type != TLS_RECORD_TYPE_DATA) {
481                                 /* avoid sending partial
482                                  * record with type !=
483                                  * application_data
484                                  */
485                                 size = orig_size;
486                                 destroy_record(record);
487                                 ctx->open_record = NULL;
488                         } else if (record->len > prot->prepend_size) {
489                                 goto last_record;
490                         }
491
492                         break;
493                 }
494
495                 record = ctx->open_record;
496
497                 copy = min_t(size_t, size, max_open_record_len - record->len);
498                 if (copy && (flags & MSG_SPLICE_PAGES)) {
499                         struct page_frag zc_pfrag;
500                         struct page **pages = &zc_pfrag.page;
501                         size_t off;
502
503                         rc = iov_iter_extract_pages(iter, &pages,
504                                                     copy, 1, 0, &off);
505                         if (rc <= 0) {
506                                 if (rc == 0)
507                                         rc = -EIO;
508                                 goto handle_error;
509                         }
510                         copy = rc;
511
512                         if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
513                                 iov_iter_revert(iter, copy);
514                                 rc = -EIO;
515                                 goto handle_error;
516                         }
517
518                         zc_pfrag.offset = off;
519                         zc_pfrag.size = copy;
520                         tls_append_frag(record, &zc_pfrag, copy);
521                 } else if (copy) {
522                         copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
523
524                         rc = tls_device_copy_data(page_address(pfrag->page) +
525                                                   pfrag->offset, copy,
526                                                   iter);
527                         if (rc)
528                                 goto handle_error;
529                         tls_append_frag(record, pfrag, copy);
530                 }
531
532                 size -= copy;
533                 if (!size) {
534 last_record:
535                         tls_push_record_flags = flags;
536                         if (flags & MSG_MORE) {
537                                 more = true;
538                                 break;
539                         }
540
541                         done = true;
542                 }
543
544                 if (done || record->len >= max_open_record_len ||
545                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
546                         tls_device_record_close(sk, tls_ctx, record,
547                                                 pfrag, record_type);
548
549                         rc = tls_push_record(sk,
550                                              tls_ctx,
551                                              ctx,
552                                              record,
553                                              tls_push_record_flags);
554                         if (rc < 0)
555                                 break;
556                 }
557         } while (!done);
558
559         tls_ctx->pending_open_record_frags = more;
560
561         if (orig_size - size > 0)
562                 rc = orig_size - size;
563
564         return rc;
565 }
566
567 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
568 {
569         unsigned char record_type = TLS_RECORD_TYPE_DATA;
570         struct tls_context *tls_ctx = tls_get_ctx(sk);
571         int rc;
572
573         if (!tls_ctx->zerocopy_sendfile)
574                 msg->msg_flags &= ~MSG_SPLICE_PAGES;
575
576         mutex_lock(&tls_ctx->tx_lock);
577         lock_sock(sk);
578
579         if (unlikely(msg->msg_controllen)) {
580                 rc = tls_process_cmsg(sk, msg, &record_type);
581                 if (rc)
582                         goto out;
583         }
584
585         rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
586                            record_type);
587
588 out:
589         release_sock(sk);
590         mutex_unlock(&tls_ctx->tx_lock);
591         return rc;
592 }
593
594 void tls_device_splice_eof(struct socket *sock)
595 {
596         struct sock *sk = sock->sk;
597         struct tls_context *tls_ctx = tls_get_ctx(sk);
598         struct iov_iter iter = {};
599
600         if (!tls_is_partially_sent_record(tls_ctx))
601                 return;
602
603         mutex_lock(&tls_ctx->tx_lock);
604         lock_sock(sk);
605
606         if (tls_is_partially_sent_record(tls_ctx)) {
607                 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
608                 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
609         }
610
611         release_sock(sk);
612         mutex_unlock(&tls_ctx->tx_lock);
613 }
614
615 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
616                                        u32 seq, u64 *p_record_sn)
617 {
618         u64 record_sn = context->hint_record_sn;
619         struct tls_record_info *info, *last;
620
621         info = context->retransmit_hint;
622         if (!info ||
623             before(seq, info->end_seq - info->len)) {
624                 /* if retransmit_hint is irrelevant start
625                  * from the beginning of the list
626                  */
627                 info = list_first_entry_or_null(&context->records_list,
628                                                 struct tls_record_info, list);
629                 if (!info)
630                         return NULL;
631                 /* send the start_marker record if seq number is before the
632                  * tls offload start marker sequence number. This record is
633                  * required to handle TCP packets which are before TLS offload
634                  * started.
635                  *  And if it's not start marker, look if this seq number
636                  * belongs to the list.
637                  */
638                 if (likely(!tls_record_is_start_marker(info))) {
639                         /* we have the first record, get the last record to see
640                          * if this seq number belongs to the list.
641                          */
642                         last = list_last_entry(&context->records_list,
643                                                struct tls_record_info, list);
644
645                         if (!between(seq, tls_record_start_seq(info),
646                                      last->end_seq))
647                                 return NULL;
648                 }
649                 record_sn = context->unacked_record_sn;
650         }
651
652         /* We just need the _rcu for the READ_ONCE() */
653         rcu_read_lock();
654         list_for_each_entry_from_rcu(info, &context->records_list, list) {
655                 if (before(seq, info->end_seq)) {
656                         if (!context->retransmit_hint ||
657                             after(info->end_seq,
658                                   context->retransmit_hint->end_seq)) {
659                                 context->hint_record_sn = record_sn;
660                                 context->retransmit_hint = info;
661                         }
662                         *p_record_sn = record_sn;
663                         goto exit_rcu_unlock;
664                 }
665                 record_sn++;
666         }
667         info = NULL;
668
669 exit_rcu_unlock:
670         rcu_read_unlock();
671         return info;
672 }
673 EXPORT_SYMBOL(tls_get_record);
674
675 static int tls_device_push_pending_record(struct sock *sk, int flags)
676 {
677         struct iov_iter iter;
678
679         iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
680         return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
681 }
682
683 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
684 {
685         if (tls_is_partially_sent_record(ctx)) {
686                 gfp_t sk_allocation = sk->sk_allocation;
687
688                 WARN_ON_ONCE(sk->sk_write_pending);
689
690                 sk->sk_allocation = GFP_ATOMIC;
691                 tls_push_partial_record(sk, ctx,
692                                         MSG_DONTWAIT | MSG_NOSIGNAL |
693                                         MSG_SENDPAGE_DECRYPTED);
694                 sk->sk_allocation = sk_allocation;
695         }
696 }
697
698 static void tls_device_resync_rx(struct tls_context *tls_ctx,
699                                  struct sock *sk, u32 seq, u8 *rcd_sn)
700 {
701         struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
702         struct net_device *netdev;
703
704         trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
705         rcu_read_lock();
706         netdev = rcu_dereference(tls_ctx->netdev);
707         if (netdev)
708                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
709                                                    TLS_OFFLOAD_CTX_DIR_RX);
710         rcu_read_unlock();
711         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
712 }
713
714 static bool
715 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
716                            s64 resync_req, u32 *seq, u16 *rcd_delta)
717 {
718         u32 is_async = resync_req & RESYNC_REQ_ASYNC;
719         u32 req_seq = resync_req >> 32;
720         u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
721         u16 i;
722
723         *rcd_delta = 0;
724
725         if (is_async) {
726                 /* shouldn't get to wraparound:
727                  * too long in async stage, something bad happened
728                  */
729                 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
730                         return false;
731
732                 /* asynchronous stage: log all headers seq such that
733                  * req_seq <= seq <= end_seq, and wait for real resync request
734                  */
735                 if (before(*seq, req_seq))
736                         return false;
737                 if (!after(*seq, req_end) &&
738                     resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
739                         resync_async->log[resync_async->loglen++] = *seq;
740
741                 resync_async->rcd_delta++;
742
743                 return false;
744         }
745
746         /* synchronous stage: check against the logged entries and
747          * proceed to check the next entries if no match was found
748          */
749         for (i = 0; i < resync_async->loglen; i++)
750                 if (req_seq == resync_async->log[i] &&
751                     atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
752                         *rcd_delta = resync_async->rcd_delta - i;
753                         *seq = req_seq;
754                         resync_async->loglen = 0;
755                         resync_async->rcd_delta = 0;
756                         return true;
757                 }
758
759         resync_async->loglen = 0;
760         resync_async->rcd_delta = 0;
761
762         if (req_seq == *seq &&
763             atomic64_try_cmpxchg(&resync_async->req,
764                                  &resync_req, 0))
765                 return true;
766
767         return false;
768 }
769
770 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
771 {
772         struct tls_context *tls_ctx = tls_get_ctx(sk);
773         struct tls_offload_context_rx *rx_ctx;
774         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
775         u32 sock_data, is_req_pending;
776         struct tls_prot_info *prot;
777         s64 resync_req;
778         u16 rcd_delta;
779         u32 req_seq;
780
781         if (tls_ctx->rx_conf != TLS_HW)
782                 return;
783         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
784                 return;
785
786         prot = &tls_ctx->prot_info;
787         rx_ctx = tls_offload_ctx_rx(tls_ctx);
788         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
789
790         switch (rx_ctx->resync_type) {
791         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
792                 resync_req = atomic64_read(&rx_ctx->resync_req);
793                 req_seq = resync_req >> 32;
794                 seq += TLS_HEADER_SIZE - 1;
795                 is_req_pending = resync_req;
796
797                 if (likely(!is_req_pending) || req_seq != seq ||
798                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
799                         return;
800                 break;
801         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
802                 if (likely(!rx_ctx->resync_nh_do_now))
803                         return;
804
805                 /* head of next rec is already in, note that the sock_inq will
806                  * include the currently parsed message when called from parser
807                  */
808                 sock_data = tcp_inq(sk);
809                 if (sock_data > rcd_len) {
810                         trace_tls_device_rx_resync_nh_delay(sk, sock_data,
811                                                             rcd_len);
812                         return;
813                 }
814
815                 rx_ctx->resync_nh_do_now = 0;
816                 seq += rcd_len;
817                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
818                 break;
819         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
820                 resync_req = atomic64_read(&rx_ctx->resync_async->req);
821                 is_req_pending = resync_req;
822                 if (likely(!is_req_pending))
823                         return;
824
825                 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
826                                                 resync_req, &seq, &rcd_delta))
827                         return;
828                 tls_bigint_subtract(rcd_sn, rcd_delta);
829                 break;
830         }
831
832         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
833 }
834
835 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
836                                            struct tls_offload_context_rx *ctx,
837                                            struct sock *sk, struct sk_buff *skb)
838 {
839         struct strp_msg *rxm;
840
841         /* device will request resyncs by itself based on stream scan */
842         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
843                 return;
844         /* already scheduled */
845         if (ctx->resync_nh_do_now)
846                 return;
847         /* seen decrypted fragments since last fully-failed record */
848         if (ctx->resync_nh_reset) {
849                 ctx->resync_nh_reset = 0;
850                 ctx->resync_nh.decrypted_failed = 1;
851                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
852                 return;
853         }
854
855         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
856                 return;
857
858         /* doing resync, bump the next target in case it fails */
859         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
860                 ctx->resync_nh.decrypted_tgt *= 2;
861         else
862                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
863
864         rxm = strp_msg(skb);
865
866         /* head of next rec is already in, parser will sync for us */
867         if (tcp_inq(sk) > rxm->full_len) {
868                 trace_tls_device_rx_resync_nh_schedule(sk);
869                 ctx->resync_nh_do_now = 1;
870         } else {
871                 struct tls_prot_info *prot = &tls_ctx->prot_info;
872                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
873
874                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
875                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
876
877                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
878                                      rcd_sn);
879         }
880 }
881
882 static int
883 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
884 {
885         struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
886         const struct tls_cipher_desc *cipher_desc;
887         int err, offset, copy, data_len, pos;
888         struct sk_buff *skb, *skb_iter;
889         struct scatterlist sg[1];
890         struct strp_msg *rxm;
891         char *orig_buf, *buf;
892
893         cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
894         DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
895
896         rxm = strp_msg(tls_strp_msg(sw_ctx));
897         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
898                            sk->sk_allocation);
899         if (!orig_buf)
900                 return -ENOMEM;
901         buf = orig_buf;
902
903         err = tls_strp_msg_cow(sw_ctx);
904         if (unlikely(err))
905                 goto free_buf;
906
907         skb = tls_strp_msg(sw_ctx);
908         rxm = strp_msg(skb);
909         offset = rxm->offset;
910
911         sg_init_table(sg, 1);
912         sg_set_buf(&sg[0], buf,
913                    rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
914         err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
915         if (err)
916                 goto free_buf;
917
918         /* We are interested only in the decrypted data not the auth */
919         err = decrypt_skb(sk, sg);
920         if (err != -EBADMSG)
921                 goto free_buf;
922         else
923                 err = 0;
924
925         data_len = rxm->full_len - cipher_desc->tag;
926
927         if (skb_pagelen(skb) > offset) {
928                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
929
930                 if (skb->decrypted) {
931                         err = skb_store_bits(skb, offset, buf, copy);
932                         if (err)
933                                 goto free_buf;
934                 }
935
936                 offset += copy;
937                 buf += copy;
938         }
939
940         pos = skb_pagelen(skb);
941         skb_walk_frags(skb, skb_iter) {
942                 int frag_pos;
943
944                 /* Practically all frags must belong to msg if reencrypt
945                  * is needed with current strparser and coalescing logic,
946                  * but strparser may "get optimized", so let's be safe.
947                  */
948                 if (pos + skb_iter->len <= offset)
949                         goto done_with_frag;
950                 if (pos >= data_len + rxm->offset)
951                         break;
952
953                 frag_pos = offset - pos;
954                 copy = min_t(int, skb_iter->len - frag_pos,
955                              data_len + rxm->offset - offset);
956
957                 if (skb_iter->decrypted) {
958                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
959                         if (err)
960                                 goto free_buf;
961                 }
962
963                 offset += copy;
964                 buf += copy;
965 done_with_frag:
966                 pos += skb_iter->len;
967         }
968
969 free_buf:
970         kfree(orig_buf);
971         return err;
972 }
973
974 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
975 {
976         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
977         struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
978         struct sk_buff *skb = tls_strp_msg(sw_ctx);
979         struct strp_msg *rxm = strp_msg(skb);
980         int is_decrypted, is_encrypted;
981
982         if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
983                 is_decrypted = skb->decrypted;
984                 is_encrypted = !is_decrypted;
985         } else {
986                 is_decrypted = 0;
987                 is_encrypted = 0;
988         }
989
990         trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
991                                    tls_ctx->rx.rec_seq, rxm->full_len,
992                                    is_encrypted, is_decrypted);
993
994         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
995                 if (likely(is_encrypted || is_decrypted))
996                         return is_decrypted;
997
998                 /* After tls_device_down disables the offload, the next SKB will
999                  * likely have initial fragments decrypted, and final ones not
1000                  * decrypted. We need to reencrypt that single SKB.
1001                  */
1002                 return tls_device_reencrypt(sk, tls_ctx);
1003         }
1004
1005         /* Return immediately if the record is either entirely plaintext or
1006          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1007          * record.
1008          */
1009         if (is_decrypted) {
1010                 ctx->resync_nh_reset = 1;
1011                 return is_decrypted;
1012         }
1013         if (is_encrypted) {
1014                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1015                 return 0;
1016         }
1017
1018         ctx->resync_nh_reset = 1;
1019         return tls_device_reencrypt(sk, tls_ctx);
1020 }
1021
1022 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1023                               struct net_device *netdev)
1024 {
1025         if (sk->sk_destruct != tls_device_sk_destruct) {
1026                 refcount_set(&ctx->refcount, 1);
1027                 dev_hold(netdev);
1028                 RCU_INIT_POINTER(ctx->netdev, netdev);
1029                 spin_lock_irq(&tls_device_lock);
1030                 list_add_tail(&ctx->list, &tls_device_list);
1031                 spin_unlock_irq(&tls_device_lock);
1032
1033                 ctx->sk_destruct = sk->sk_destruct;
1034                 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1035         }
1036 }
1037
1038 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1039 {
1040         struct tls_context *tls_ctx = tls_get_ctx(sk);
1041         struct tls_prot_info *prot = &tls_ctx->prot_info;
1042         const struct tls_cipher_desc *cipher_desc;
1043         struct tls_record_info *start_marker_record;
1044         struct tls_offload_context_tx *offload_ctx;
1045         struct tls_crypto_info *crypto_info;
1046         struct net_device *netdev;
1047         char *iv, *rec_seq;
1048         struct sk_buff *skb;
1049         __be64 rcd_sn;
1050         int rc;
1051
1052         if (!ctx)
1053                 return -EINVAL;
1054
1055         if (ctx->priv_ctx_tx)
1056                 return -EEXIST;
1057
1058         netdev = get_netdev_for_sock(sk);
1059         if (!netdev) {
1060                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1061                 return -EINVAL;
1062         }
1063
1064         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1065                 rc = -EOPNOTSUPP;
1066                 goto release_netdev;
1067         }
1068
1069         crypto_info = &ctx->crypto_send.info;
1070         if (crypto_info->version != TLS_1_2_VERSION) {
1071                 rc = -EOPNOTSUPP;
1072                 goto release_netdev;
1073         }
1074
1075         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1076         if (!cipher_desc || !cipher_desc->offloadable) {
1077                 rc = -EINVAL;
1078                 goto release_netdev;
1079         }
1080
1081         iv = crypto_info_iv(crypto_info, cipher_desc);
1082         rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1083
1084         prot->version = crypto_info->version;
1085         prot->cipher_type = crypto_info->cipher_type;
1086         prot->prepend_size = TLS_HEADER_SIZE + cipher_desc->iv;
1087         prot->tag_size = cipher_desc->tag;
1088         prot->overhead_size = prot->prepend_size + prot->tag_size;
1089         prot->iv_size = cipher_desc->iv;
1090         prot->salt_size = cipher_desc->salt;
1091         ctx->tx.iv = kmalloc(cipher_desc->iv + cipher_desc->salt, GFP_KERNEL);
1092         if (!ctx->tx.iv) {
1093                 rc = -ENOMEM;
1094                 goto release_netdev;
1095         }
1096
1097         memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1098
1099         prot->rec_seq_size = cipher_desc->rec_seq;
1100         memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq);
1101
1102         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1103         if (!start_marker_record) {
1104                 rc = -ENOMEM;
1105                 goto free_iv;
1106         }
1107
1108         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1109         if (!offload_ctx) {
1110                 rc = -ENOMEM;
1111                 goto free_marker_record;
1112         }
1113
1114         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1115         if (rc)
1116                 goto free_offload_ctx;
1117
1118         /* start at rec_seq - 1 to account for the start marker record */
1119         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1120         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1121
1122         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1123         start_marker_record->len = 0;
1124         start_marker_record->num_frags = 0;
1125
1126         INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1127         offload_ctx->ctx = ctx;
1128
1129         INIT_LIST_HEAD(&offload_ctx->records_list);
1130         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1131         spin_lock_init(&offload_ctx->lock);
1132         sg_init_table(offload_ctx->sg_tx_data,
1133                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1134
1135         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1136         ctx->push_pending_record = tls_device_push_pending_record;
1137
1138         /* TLS offload is greatly simplified if we don't send
1139          * SKBs where only part of the payload needs to be encrypted.
1140          * So mark the last skb in the write queue as end of record.
1141          */
1142         skb = tcp_write_queue_tail(sk);
1143         if (skb)
1144                 TCP_SKB_CB(skb)->eor = 1;
1145
1146         /* Avoid offloading if the device is down
1147          * We don't want to offload new flows after
1148          * the NETDEV_DOWN event
1149          *
1150          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1151          * handler thus protecting from the device going down before
1152          * ctx was added to tls_device_list.
1153          */
1154         down_read(&device_offload_lock);
1155         if (!(netdev->flags & IFF_UP)) {
1156                 rc = -EINVAL;
1157                 goto release_lock;
1158         }
1159
1160         ctx->priv_ctx_tx = offload_ctx;
1161         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1162                                              &ctx->crypto_send.info,
1163                                              tcp_sk(sk)->write_seq);
1164         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1165                                      tcp_sk(sk)->write_seq, rec_seq, rc);
1166         if (rc)
1167                 goto release_lock;
1168
1169         tls_device_attach(ctx, sk, netdev);
1170         up_read(&device_offload_lock);
1171
1172         /* following this assignment tls_is_skb_tx_device_offloaded
1173          * will return true and the context might be accessed
1174          * by the netdev's xmit function.
1175          */
1176         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1177         dev_put(netdev);
1178
1179         return 0;
1180
1181 release_lock:
1182         up_read(&device_offload_lock);
1183         clean_acked_data_disable(inet_csk(sk));
1184         crypto_free_aead(offload_ctx->aead_send);
1185 free_offload_ctx:
1186         kfree(offload_ctx);
1187         ctx->priv_ctx_tx = NULL;
1188 free_marker_record:
1189         kfree(start_marker_record);
1190 free_iv:
1191         kfree(ctx->tx.iv);
1192 release_netdev:
1193         dev_put(netdev);
1194         return rc;
1195 }
1196
1197 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1198 {
1199         struct tls12_crypto_info_aes_gcm_128 *info;
1200         struct tls_offload_context_rx *context;
1201         struct net_device *netdev;
1202         int rc = 0;
1203
1204         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1205                 return -EOPNOTSUPP;
1206
1207         netdev = get_netdev_for_sock(sk);
1208         if (!netdev) {
1209                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1210                 return -EINVAL;
1211         }
1212
1213         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1214                 rc = -EOPNOTSUPP;
1215                 goto release_netdev;
1216         }
1217
1218         /* Avoid offloading if the device is down
1219          * We don't want to offload new flows after
1220          * the NETDEV_DOWN event
1221          *
1222          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1223          * handler thus protecting from the device going down before
1224          * ctx was added to tls_device_list.
1225          */
1226         down_read(&device_offload_lock);
1227         if (!(netdev->flags & IFF_UP)) {
1228                 rc = -EINVAL;
1229                 goto release_lock;
1230         }
1231
1232         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1233         if (!context) {
1234                 rc = -ENOMEM;
1235                 goto release_lock;
1236         }
1237         context->resync_nh_reset = 1;
1238
1239         ctx->priv_ctx_rx = context;
1240         rc = tls_set_sw_offload(sk, ctx, 0);
1241         if (rc)
1242                 goto release_ctx;
1243
1244         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1245                                              &ctx->crypto_recv.info,
1246                                              tcp_sk(sk)->copied_seq);
1247         info = (void *)&ctx->crypto_recv.info;
1248         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1249                                      tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1250         if (rc)
1251                 goto free_sw_resources;
1252
1253         tls_device_attach(ctx, sk, netdev);
1254         up_read(&device_offload_lock);
1255
1256         dev_put(netdev);
1257
1258         return 0;
1259
1260 free_sw_resources:
1261         up_read(&device_offload_lock);
1262         tls_sw_free_resources_rx(sk);
1263         down_read(&device_offload_lock);
1264 release_ctx:
1265         ctx->priv_ctx_rx = NULL;
1266 release_lock:
1267         up_read(&device_offload_lock);
1268 release_netdev:
1269         dev_put(netdev);
1270         return rc;
1271 }
1272
1273 void tls_device_offload_cleanup_rx(struct sock *sk)
1274 {
1275         struct tls_context *tls_ctx = tls_get_ctx(sk);
1276         struct net_device *netdev;
1277
1278         down_read(&device_offload_lock);
1279         netdev = rcu_dereference_protected(tls_ctx->netdev,
1280                                            lockdep_is_held(&device_offload_lock));
1281         if (!netdev)
1282                 goto out;
1283
1284         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1285                                         TLS_OFFLOAD_CTX_DIR_RX);
1286
1287         if (tls_ctx->tx_conf != TLS_HW) {
1288                 dev_put(netdev);
1289                 rcu_assign_pointer(tls_ctx->netdev, NULL);
1290         } else {
1291                 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1292         }
1293 out:
1294         up_read(&device_offload_lock);
1295         tls_sw_release_resources_rx(sk);
1296 }
1297
1298 static int tls_device_down(struct net_device *netdev)
1299 {
1300         struct tls_context *ctx, *tmp;
1301         unsigned long flags;
1302         LIST_HEAD(list);
1303
1304         /* Request a write lock to block new offload attempts */
1305         down_write(&device_offload_lock);
1306
1307         spin_lock_irqsave(&tls_device_lock, flags);
1308         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1309                 struct net_device *ctx_netdev =
1310                         rcu_dereference_protected(ctx->netdev,
1311                                                   lockdep_is_held(&device_offload_lock));
1312
1313                 if (ctx_netdev != netdev ||
1314                     !refcount_inc_not_zero(&ctx->refcount))
1315                         continue;
1316
1317                 list_move(&ctx->list, &list);
1318         }
1319         spin_unlock_irqrestore(&tls_device_lock, flags);
1320
1321         list_for_each_entry_safe(ctx, tmp, &list, list) {
1322                 /* Stop offloaded TX and switch to the fallback.
1323                  * tls_is_skb_tx_device_offloaded will return false.
1324                  */
1325                 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1326
1327                 /* Stop the RX and TX resync.
1328                  * tls_dev_resync must not be called after tls_dev_del.
1329                  */
1330                 rcu_assign_pointer(ctx->netdev, NULL);
1331
1332                 /* Start skipping the RX resync logic completely. */
1333                 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1334
1335                 /* Sync with inflight packets. After this point:
1336                  * TX: no non-encrypted packets will be passed to the driver.
1337                  * RX: resync requests from the driver will be ignored.
1338                  */
1339                 synchronize_net();
1340
1341                 /* Release the offload context on the driver side. */
1342                 if (ctx->tx_conf == TLS_HW)
1343                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1344                                                         TLS_OFFLOAD_CTX_DIR_TX);
1345                 if (ctx->rx_conf == TLS_HW &&
1346                     !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1347                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1348                                                         TLS_OFFLOAD_CTX_DIR_RX);
1349
1350                 dev_put(netdev);
1351
1352                 /* Move the context to a separate list for two reasons:
1353                  * 1. When the context is deallocated, list_del is called.
1354                  * 2. It's no longer an offloaded context, so we don't want to
1355                  *    run offload-specific code on this context.
1356                  */
1357                 spin_lock_irqsave(&tls_device_lock, flags);
1358                 list_move_tail(&ctx->list, &tls_device_down_list);
1359                 spin_unlock_irqrestore(&tls_device_lock, flags);
1360
1361                 /* Device contexts for RX and TX will be freed in on sk_destruct
1362                  * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1363                  * Now release the ref taken above.
1364                  */
1365                 if (refcount_dec_and_test(&ctx->refcount)) {
1366                         /* sk_destruct ran after tls_device_down took a ref, and
1367                          * it returned early. Complete the destruction here.
1368                          */
1369                         list_del(&ctx->list);
1370                         tls_device_free_ctx(ctx);
1371                 }
1372         }
1373
1374         up_write(&device_offload_lock);
1375
1376         flush_workqueue(destruct_wq);
1377
1378         return NOTIFY_DONE;
1379 }
1380
1381 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1382                          void *ptr)
1383 {
1384         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1385
1386         if (!dev->tlsdev_ops &&
1387             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1388                 return NOTIFY_DONE;
1389
1390         switch (event) {
1391         case NETDEV_REGISTER:
1392         case NETDEV_FEAT_CHANGE:
1393                 if (netif_is_bond_master(dev))
1394                         return NOTIFY_DONE;
1395                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1396                     !dev->tlsdev_ops->tls_dev_resync)
1397                         return NOTIFY_BAD;
1398
1399                 if  (dev->tlsdev_ops &&
1400                      dev->tlsdev_ops->tls_dev_add &&
1401                      dev->tlsdev_ops->tls_dev_del)
1402                         return NOTIFY_DONE;
1403                 else
1404                         return NOTIFY_BAD;
1405         case NETDEV_DOWN:
1406                 return tls_device_down(dev);
1407         }
1408         return NOTIFY_DONE;
1409 }
1410
1411 static struct notifier_block tls_dev_notifier = {
1412         .notifier_call  = tls_dev_event,
1413 };
1414
1415 int __init tls_device_init(void)
1416 {
1417         int err;
1418
1419         dummy_page = alloc_page(GFP_KERNEL);
1420         if (!dummy_page)
1421                 return -ENOMEM;
1422
1423         destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1424         if (!destruct_wq) {
1425                 err = -ENOMEM;
1426                 goto err_free_dummy;
1427         }
1428
1429         err = register_netdevice_notifier(&tls_dev_notifier);
1430         if (err)
1431                 goto err_destroy_wq;
1432
1433         return 0;
1434
1435 err_destroy_wq:
1436         destroy_workqueue(destruct_wq);
1437 err_free_dummy:
1438         put_page(dummy_page);
1439         return err;
1440 }
1441
1442 void __exit tls_device_cleanup(void)
1443 {
1444         unregister_netdevice_notifier(&tls_dev_notifier);
1445         destroy_workqueue(destruct_wq);
1446         clean_acked_data_flush();
1447         put_page(dummy_page);
1448 }