treewide: Add SPDX license identifier for missed files
[linux-block.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26
27 #include "sunrpc.h"
28
29 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
30 #define RPCDBG_FACILITY         RPCDBG_SCHED
31 #endif
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/sunrpc.h>
35
36 /*
37  * RPC slabs and memory pools
38  */
39 #define RPC_BUFFER_MAXSIZE      (2048)
40 #define RPC_BUFFER_POOLSIZE     (8)
41 #define RPC_TASK_POOLSIZE       (8)
42 static struct kmem_cache        *rpc_task_slabp __read_mostly;
43 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
44 static mempool_t        *rpc_task_mempool __read_mostly;
45 static mempool_t        *rpc_buffer_mempool __read_mostly;
46
47 static void                     rpc_async_schedule(struct work_struct *);
48 static void                      rpc_release_task(struct rpc_task *task);
49 static void __rpc_queue_timer_fn(struct timer_list *t);
50
51 /*
52  * RPC tasks sit here while waiting for conditions to improve.
53  */
54 static struct rpc_wait_queue delay_queue;
55
56 /*
57  * rpciod-related stuff
58  */
59 struct workqueue_struct *rpciod_workqueue __read_mostly;
60 struct workqueue_struct *xprtiod_workqueue __read_mostly;
61
62 unsigned long
63 rpc_task_timeout(const struct rpc_task *task)
64 {
65         unsigned long timeout = READ_ONCE(task->tk_timeout);
66
67         if (timeout != 0) {
68                 unsigned long now = jiffies;
69                 if (time_before(now, timeout))
70                         return timeout - now;
71         }
72         return 0;
73 }
74 EXPORT_SYMBOL_GPL(rpc_task_timeout);
75
76 /*
77  * Disable the timer for a given RPC task. Should be called with
78  * queue->lock and bh_disabled in order to avoid races within
79  * rpc_run_timer().
80  */
81 static void
82 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
83 {
84         if (list_empty(&task->u.tk_wait.timer_list))
85                 return;
86         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
87         task->tk_timeout = 0;
88         list_del(&task->u.tk_wait.timer_list);
89         if (list_empty(&queue->timer_list.list))
90                 del_timer(&queue->timer_list.timer);
91 }
92
93 static void
94 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
95 {
96         timer_reduce(&queue->timer_list.timer, expires);
97 }
98
99 /*
100  * Set up a timer for the current task.
101  */
102 static void
103 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
104                 unsigned long timeout)
105 {
106         dprintk("RPC: %5u setting alarm for %u ms\n",
107                 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
108
109         task->tk_timeout = timeout;
110         rpc_set_queue_timer(queue, timeout);
111         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
112 }
113
114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
115 {
116         if (queue->priority != priority) {
117                 queue->priority = priority;
118                 queue->nr = 1U << priority;
119         }
120 }
121
122 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
123 {
124         rpc_set_waitqueue_priority(queue, queue->maxpriority);
125 }
126
127 /*
128  * Add a request to a queue list
129  */
130 static void
131 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
132 {
133         struct rpc_task *t;
134
135         list_for_each_entry(t, q, u.tk_wait.list) {
136                 if (t->tk_owner == task->tk_owner) {
137                         list_add_tail(&task->u.tk_wait.links,
138                                         &t->u.tk_wait.links);
139                         /* Cache the queue head in task->u.tk_wait.list */
140                         task->u.tk_wait.list.next = q;
141                         task->u.tk_wait.list.prev = NULL;
142                         return;
143                 }
144         }
145         INIT_LIST_HEAD(&task->u.tk_wait.links);
146         list_add_tail(&task->u.tk_wait.list, q);
147 }
148
149 /*
150  * Remove request from a queue list
151  */
152 static void
153 __rpc_list_dequeue_task(struct rpc_task *task)
154 {
155         struct list_head *q;
156         struct rpc_task *t;
157
158         if (task->u.tk_wait.list.prev == NULL) {
159                 list_del(&task->u.tk_wait.links);
160                 return;
161         }
162         if (!list_empty(&task->u.tk_wait.links)) {
163                 t = list_first_entry(&task->u.tk_wait.links,
164                                 struct rpc_task,
165                                 u.tk_wait.links);
166                 /* Assume __rpc_list_enqueue_task() cached the queue head */
167                 q = t->u.tk_wait.list.next;
168                 list_add_tail(&t->u.tk_wait.list, q);
169                 list_del(&task->u.tk_wait.links);
170         }
171         list_del(&task->u.tk_wait.list);
172 }
173
174 /*
175  * Add new request to a priority queue.
176  */
177 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
178                 struct rpc_task *task,
179                 unsigned char queue_priority)
180 {
181         if (unlikely(queue_priority > queue->maxpriority))
182                 queue_priority = queue->maxpriority;
183         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
184 }
185
186 /*
187  * Add new request to wait queue.
188  *
189  * Swapper tasks always get inserted at the head of the queue.
190  * This should avoid many nasty memory deadlocks and hopefully
191  * improve overall performance.
192  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
193  */
194 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
195                 struct rpc_task *task,
196                 unsigned char queue_priority)
197 {
198         WARN_ON_ONCE(RPC_IS_QUEUED(task));
199         if (RPC_IS_QUEUED(task))
200                 return;
201
202         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
203         if (RPC_IS_PRIORITY(queue))
204                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
205         else if (RPC_IS_SWAPPER(task))
206                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
207         else
208                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
209         task->tk_waitqueue = queue;
210         queue->qlen++;
211         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
212         smp_wmb();
213         rpc_set_queued(task);
214
215         dprintk("RPC: %5u added to queue %p \"%s\"\n",
216                         task->tk_pid, queue, rpc_qname(queue));
217 }
218
219 /*
220  * Remove request from a priority queue.
221  */
222 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
223 {
224         __rpc_list_dequeue_task(task);
225 }
226
227 /*
228  * Remove request from queue.
229  * Note: must be called with spin lock held.
230  */
231 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
232 {
233         __rpc_disable_timer(queue, task);
234         if (RPC_IS_PRIORITY(queue))
235                 __rpc_remove_wait_queue_priority(task);
236         else
237                 list_del(&task->u.tk_wait.list);
238         queue->qlen--;
239         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
240                         task->tk_pid, queue, rpc_qname(queue));
241 }
242
243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
244 {
245         int i;
246
247         spin_lock_init(&queue->lock);
248         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
249                 INIT_LIST_HEAD(&queue->tasks[i]);
250         queue->maxpriority = nr_queues - 1;
251         rpc_reset_waitqueue_priority(queue);
252         queue->qlen = 0;
253         timer_setup(&queue->timer_list.timer,
254                         __rpc_queue_timer_fn,
255                         TIMER_DEFERRABLE);
256         INIT_LIST_HEAD(&queue->timer_list.list);
257         rpc_assign_waitqueue_name(queue, qname);
258 }
259
260 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
261 {
262         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
263 }
264 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
265
266 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
267 {
268         __rpc_init_priority_wait_queue(queue, qname, 1);
269 }
270 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
271
272 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
273 {
274         del_timer_sync(&queue->timer_list.timer);
275 }
276 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
277
278 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
279 {
280         freezable_schedule_unsafe();
281         if (signal_pending_state(mode, current))
282                 return -ERESTARTSYS;
283         return 0;
284 }
285
286 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
287 static void rpc_task_set_debuginfo(struct rpc_task *task)
288 {
289         static atomic_t rpc_pid;
290
291         task->tk_pid = atomic_inc_return(&rpc_pid);
292 }
293 #else
294 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
295 {
296 }
297 #endif
298
299 static void rpc_set_active(struct rpc_task *task)
300 {
301         rpc_task_set_debuginfo(task);
302         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
303         trace_rpc_task_begin(task, NULL);
304 }
305
306 /*
307  * Mark an RPC call as having completed by clearing the 'active' bit
308  * and then waking up all tasks that were sleeping.
309  */
310 static int rpc_complete_task(struct rpc_task *task)
311 {
312         void *m = &task->tk_runstate;
313         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
314         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
315         unsigned long flags;
316         int ret;
317
318         trace_rpc_task_complete(task, NULL);
319
320         spin_lock_irqsave(&wq->lock, flags);
321         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
322         ret = atomic_dec_and_test(&task->tk_count);
323         if (waitqueue_active(wq))
324                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
325         spin_unlock_irqrestore(&wq->lock, flags);
326         return ret;
327 }
328
329 /*
330  * Allow callers to wait for completion of an RPC call
331  *
332  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
333  * to enforce taking of the wq->lock and hence avoid races with
334  * rpc_complete_task().
335  */
336 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
337 {
338         if (action == NULL)
339                 action = rpc_wait_bit_killable;
340         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
341                         action, TASK_KILLABLE);
342 }
343 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
344
345 /*
346  * Make an RPC task runnable.
347  *
348  * Note: If the task is ASYNC, and is being made runnable after sitting on an
349  * rpc_wait_queue, this must be called with the queue spinlock held to protect
350  * the wait queue operation.
351  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
352  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
353  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
354  * the RPC_TASK_RUNNING flag.
355  */
356 static void rpc_make_runnable(struct workqueue_struct *wq,
357                 struct rpc_task *task)
358 {
359         bool need_wakeup = !rpc_test_and_set_running(task);
360
361         rpc_clear_queued(task);
362         if (!need_wakeup)
363                 return;
364         if (RPC_IS_ASYNC(task)) {
365                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
366                 queue_work(wq, &task->u.tk_work);
367         } else
368                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
369 }
370
371 /*
372  * Prepare for sleeping on a wait queue.
373  * By always appending tasks to the list we ensure FIFO behavior.
374  * NB: An RPC task will only receive interrupt-driven events as long
375  * as it's on a wait queue.
376  */
377 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
378                 struct rpc_task *task,
379                 unsigned char queue_priority)
380 {
381         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
382                         task->tk_pid, rpc_qname(q), jiffies);
383
384         trace_rpc_task_sleep(task, q);
385
386         __rpc_add_wait_queue(q, task, queue_priority);
387
388 }
389
390 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
391                 struct rpc_task *task, unsigned long timeout,
392                 unsigned char queue_priority)
393 {
394         if (time_is_after_jiffies(timeout)) {
395                 __rpc_sleep_on_priority(q, task, queue_priority);
396                 __rpc_add_timer(q, task, timeout);
397         } else
398                 task->tk_status = -ETIMEDOUT;
399 }
400
401 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
402 {
403         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
404                 task->tk_callback = action;
405 }
406
407 static bool rpc_sleep_check_activated(struct rpc_task *task)
408 {
409         /* We shouldn't ever put an inactive task to sleep */
410         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
411                 task->tk_status = -EIO;
412                 rpc_put_task_async(task);
413                 return false;
414         }
415         return true;
416 }
417
418 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
419                                 rpc_action action, unsigned long timeout)
420 {
421         if (!rpc_sleep_check_activated(task))
422                 return;
423
424         rpc_set_tk_callback(task, action);
425
426         /*
427          * Protect the queue operations.
428          */
429         spin_lock_bh(&q->lock);
430         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
431         spin_unlock_bh(&q->lock);
432 }
433 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
434
435 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
436                                 rpc_action action)
437 {
438         if (!rpc_sleep_check_activated(task))
439                 return;
440
441         rpc_set_tk_callback(task, action);
442
443         WARN_ON_ONCE(task->tk_timeout != 0);
444         /*
445          * Protect the queue operations.
446          */
447         spin_lock_bh(&q->lock);
448         __rpc_sleep_on_priority(q, task, task->tk_priority);
449         spin_unlock_bh(&q->lock);
450 }
451 EXPORT_SYMBOL_GPL(rpc_sleep_on);
452
453 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
454                 struct rpc_task *task, unsigned long timeout, int priority)
455 {
456         if (!rpc_sleep_check_activated(task))
457                 return;
458
459         priority -= RPC_PRIORITY_LOW;
460         /*
461          * Protect the queue operations.
462          */
463         spin_lock_bh(&q->lock);
464         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
465         spin_unlock_bh(&q->lock);
466 }
467 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
468
469 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
470                 int priority)
471 {
472         if (!rpc_sleep_check_activated(task))
473                 return;
474
475         WARN_ON_ONCE(task->tk_timeout != 0);
476         priority -= RPC_PRIORITY_LOW;
477         /*
478          * Protect the queue operations.
479          */
480         spin_lock_bh(&q->lock);
481         __rpc_sleep_on_priority(q, task, priority);
482         spin_unlock_bh(&q->lock);
483 }
484 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
485
486 /**
487  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
488  * @wq: workqueue on which to run task
489  * @queue: wait queue
490  * @task: task to be woken up
491  *
492  * Caller must hold queue->lock, and have cleared the task queued flag.
493  */
494 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
495                 struct rpc_wait_queue *queue,
496                 struct rpc_task *task)
497 {
498         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
499                         task->tk_pid, jiffies);
500
501         /* Has the task been executed yet? If not, we cannot wake it up! */
502         if (!RPC_IS_ACTIVATED(task)) {
503                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
504                 return;
505         }
506
507         trace_rpc_task_wakeup(task, queue);
508
509         __rpc_remove_wait_queue(queue, task);
510
511         rpc_make_runnable(wq, task);
512
513         dprintk("RPC:       __rpc_wake_up_task done\n");
514 }
515
516 /*
517  * Wake up a queued task while the queue lock is being held
518  */
519 static struct rpc_task *
520 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
521                 struct rpc_wait_queue *queue, struct rpc_task *task,
522                 bool (*action)(struct rpc_task *, void *), void *data)
523 {
524         if (RPC_IS_QUEUED(task)) {
525                 smp_rmb();
526                 if (task->tk_waitqueue == queue) {
527                         if (action == NULL || action(task, data)) {
528                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
529                                 return task;
530                         }
531                 }
532         }
533         return NULL;
534 }
535
536 static void
537 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
538                 struct rpc_wait_queue *queue, struct rpc_task *task)
539 {
540         rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL);
541 }
542
543 /*
544  * Wake up a queued task while the queue lock is being held
545  */
546 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
547 {
548         rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
549 }
550
551 /*
552  * Wake up a task on a specific queue
553  */
554 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
555                 struct rpc_wait_queue *queue,
556                 struct rpc_task *task)
557 {
558         if (!RPC_IS_QUEUED(task))
559                 return;
560         spin_lock_bh(&queue->lock);
561         rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
562         spin_unlock_bh(&queue->lock);
563 }
564
565 /*
566  * Wake up a task on a specific queue
567  */
568 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
569 {
570         if (!RPC_IS_QUEUED(task))
571                 return;
572         spin_lock_bh(&queue->lock);
573         rpc_wake_up_task_queue_locked(queue, task);
574         spin_unlock_bh(&queue->lock);
575 }
576 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
577
578 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
579 {
580         task->tk_status = *(int *)status;
581         return true;
582 }
583
584 static void
585 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
586                 struct rpc_task *task, int status)
587 {
588         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
589                         task, rpc_task_action_set_status, &status);
590 }
591
592 /**
593  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
594  * @queue: pointer to rpc_wait_queue
595  * @task: pointer to rpc_task
596  * @status: integer error value
597  *
598  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
599  * set to the value of @status.
600  */
601 void
602 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
603                 struct rpc_task *task, int status)
604 {
605         if (!RPC_IS_QUEUED(task))
606                 return;
607         spin_lock_bh(&queue->lock);
608         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
609         spin_unlock_bh(&queue->lock);
610 }
611
612 /*
613  * Wake up the next task on a priority queue.
614  */
615 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
616 {
617         struct list_head *q;
618         struct rpc_task *task;
619
620         /*
621          * Service a batch of tasks from a single owner.
622          */
623         q = &queue->tasks[queue->priority];
624         if (!list_empty(q) && --queue->nr) {
625                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
626                 goto out;
627         }
628
629         /*
630          * Service the next queue.
631          */
632         do {
633                 if (q == &queue->tasks[0])
634                         q = &queue->tasks[queue->maxpriority];
635                 else
636                         q = q - 1;
637                 if (!list_empty(q)) {
638                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
639                         goto new_queue;
640                 }
641         } while (q != &queue->tasks[queue->priority]);
642
643         rpc_reset_waitqueue_priority(queue);
644         return NULL;
645
646 new_queue:
647         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
648 out:
649         return task;
650 }
651
652 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
653 {
654         if (RPC_IS_PRIORITY(queue))
655                 return __rpc_find_next_queued_priority(queue);
656         if (!list_empty(&queue->tasks[0]))
657                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
658         return NULL;
659 }
660
661 /*
662  * Wake up the first task on the wait queue.
663  */
664 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
665                 struct rpc_wait_queue *queue,
666                 bool (*func)(struct rpc_task *, void *), void *data)
667 {
668         struct rpc_task *task = NULL;
669
670         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
671                         queue, rpc_qname(queue));
672         spin_lock_bh(&queue->lock);
673         task = __rpc_find_next_queued(queue);
674         if (task != NULL)
675                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
676                                 task, func, data);
677         spin_unlock_bh(&queue->lock);
678
679         return task;
680 }
681
682 /*
683  * Wake up the first task on the wait queue.
684  */
685 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
686                 bool (*func)(struct rpc_task *, void *), void *data)
687 {
688         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
689 }
690 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
691
692 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
693 {
694         return true;
695 }
696
697 /*
698  * Wake up the next task on the wait queue.
699 */
700 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
701 {
702         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
703 }
704 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
705
706 /**
707  * rpc_wake_up - wake up all rpc_tasks
708  * @queue: rpc_wait_queue on which the tasks are sleeping
709  *
710  * Grabs queue->lock
711  */
712 void rpc_wake_up(struct rpc_wait_queue *queue)
713 {
714         struct list_head *head;
715
716         spin_lock_bh(&queue->lock);
717         head = &queue->tasks[queue->maxpriority];
718         for (;;) {
719                 while (!list_empty(head)) {
720                         struct rpc_task *task;
721                         task = list_first_entry(head,
722                                         struct rpc_task,
723                                         u.tk_wait.list);
724                         rpc_wake_up_task_queue_locked(queue, task);
725                 }
726                 if (head == &queue->tasks[0])
727                         break;
728                 head--;
729         }
730         spin_unlock_bh(&queue->lock);
731 }
732 EXPORT_SYMBOL_GPL(rpc_wake_up);
733
734 /**
735  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
736  * @queue: rpc_wait_queue on which the tasks are sleeping
737  * @status: status value to set
738  *
739  * Grabs queue->lock
740  */
741 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
742 {
743         struct list_head *head;
744
745         spin_lock_bh(&queue->lock);
746         head = &queue->tasks[queue->maxpriority];
747         for (;;) {
748                 while (!list_empty(head)) {
749                         struct rpc_task *task;
750                         task = list_first_entry(head,
751                                         struct rpc_task,
752                                         u.tk_wait.list);
753                         task->tk_status = status;
754                         rpc_wake_up_task_queue_locked(queue, task);
755                 }
756                 if (head == &queue->tasks[0])
757                         break;
758                 head--;
759         }
760         spin_unlock_bh(&queue->lock);
761 }
762 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
763
764 static void __rpc_queue_timer_fn(struct timer_list *t)
765 {
766         struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
767         struct rpc_task *task, *n;
768         unsigned long expires, now, timeo;
769
770         spin_lock(&queue->lock);
771         expires = now = jiffies;
772         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
773                 timeo = task->tk_timeout;
774                 if (time_after_eq(now, timeo)) {
775                         dprintk("RPC: %5u timeout\n", task->tk_pid);
776                         task->tk_status = -ETIMEDOUT;
777                         rpc_wake_up_task_queue_locked(queue, task);
778                         continue;
779                 }
780                 if (expires == now || time_after(expires, timeo))
781                         expires = timeo;
782         }
783         if (!list_empty(&queue->timer_list.list))
784                 rpc_set_queue_timer(queue, expires);
785         spin_unlock(&queue->lock);
786 }
787
788 static void __rpc_atrun(struct rpc_task *task)
789 {
790         if (task->tk_status == -ETIMEDOUT)
791                 task->tk_status = 0;
792 }
793
794 /*
795  * Run a task at a later time
796  */
797 void rpc_delay(struct rpc_task *task, unsigned long delay)
798 {
799         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
800 }
801 EXPORT_SYMBOL_GPL(rpc_delay);
802
803 /*
804  * Helper to call task->tk_ops->rpc_call_prepare
805  */
806 void rpc_prepare_task(struct rpc_task *task)
807 {
808         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
809 }
810
811 static void
812 rpc_init_task_statistics(struct rpc_task *task)
813 {
814         /* Initialize retry counters */
815         task->tk_garb_retry = 2;
816         task->tk_cred_retry = 2;
817         task->tk_rebind_retry = 2;
818
819         /* starting timestamp */
820         task->tk_start = ktime_get();
821 }
822
823 static void
824 rpc_reset_task_statistics(struct rpc_task *task)
825 {
826         task->tk_timeouts = 0;
827         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
828         rpc_init_task_statistics(task);
829 }
830
831 /*
832  * Helper that calls task->tk_ops->rpc_call_done if it exists
833  */
834 void rpc_exit_task(struct rpc_task *task)
835 {
836         task->tk_action = NULL;
837         if (task->tk_ops->rpc_call_done != NULL) {
838                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
839                 if (task->tk_action != NULL) {
840                         /* Always release the RPC slot and buffer memory */
841                         xprt_release(task);
842                         rpc_reset_task_statistics(task);
843                 }
844         }
845 }
846
847 void rpc_signal_task(struct rpc_task *task)
848 {
849         struct rpc_wait_queue *queue;
850
851         if (!RPC_IS_ACTIVATED(task))
852                 return;
853         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
854         smp_mb__after_atomic();
855         queue = READ_ONCE(task->tk_waitqueue);
856         if (queue)
857                 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
858 }
859
860 void rpc_exit(struct rpc_task *task, int status)
861 {
862         task->tk_status = status;
863         task->tk_action = rpc_exit_task;
864         rpc_wake_up_queued_task(task->tk_waitqueue, task);
865 }
866 EXPORT_SYMBOL_GPL(rpc_exit);
867
868 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
869 {
870         if (ops->rpc_release != NULL)
871                 ops->rpc_release(calldata);
872 }
873
874 /*
875  * This is the RPC `scheduler' (or rather, the finite state machine).
876  */
877 static void __rpc_execute(struct rpc_task *task)
878 {
879         struct rpc_wait_queue *queue;
880         int task_is_async = RPC_IS_ASYNC(task);
881         int status = 0;
882
883         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
884                         task->tk_pid, task->tk_flags);
885
886         WARN_ON_ONCE(RPC_IS_QUEUED(task));
887         if (RPC_IS_QUEUED(task))
888                 return;
889
890         for (;;) {
891                 void (*do_action)(struct rpc_task *);
892
893                 /*
894                  * Perform the next FSM step or a pending callback.
895                  *
896                  * tk_action may be NULL if the task has been killed.
897                  * In particular, note that rpc_killall_tasks may
898                  * do this at any time, so beware when dereferencing.
899                  */
900                 do_action = task->tk_action;
901                 if (task->tk_callback) {
902                         do_action = task->tk_callback;
903                         task->tk_callback = NULL;
904                 }
905                 if (!do_action)
906                         break;
907                 trace_rpc_task_run_action(task, do_action);
908                 do_action(task);
909
910                 /*
911                  * Lockless check for whether task is sleeping or not.
912                  */
913                 if (!RPC_IS_QUEUED(task))
914                         continue;
915
916                 /*
917                  * Signalled tasks should exit rather than sleep.
918                  */
919                 if (RPC_SIGNALLED(task))
920                         rpc_exit(task, -ERESTARTSYS);
921
922                 /*
923                  * The queue->lock protects against races with
924                  * rpc_make_runnable().
925                  *
926                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
927                  * rpc_task, rpc_make_runnable() can assign it to a
928                  * different workqueue. We therefore cannot assume that the
929                  * rpc_task pointer may still be dereferenced.
930                  */
931                 queue = task->tk_waitqueue;
932                 spin_lock_bh(&queue->lock);
933                 if (!RPC_IS_QUEUED(task)) {
934                         spin_unlock_bh(&queue->lock);
935                         continue;
936                 }
937                 rpc_clear_running(task);
938                 spin_unlock_bh(&queue->lock);
939                 if (task_is_async)
940                         return;
941
942                 /* sync task: sleep here */
943                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
944                 status = out_of_line_wait_on_bit(&task->tk_runstate,
945                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
946                                 TASK_KILLABLE);
947                 if (status < 0) {
948                         /*
949                          * When a sync task receives a signal, it exits with
950                          * -ERESTARTSYS. In order to catch any callbacks that
951                          * clean up after sleeping on some queue, we don't
952                          * break the loop here, but go around once more.
953                          */
954                         dprintk("RPC: %5u got signal\n", task->tk_pid);
955                         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
956                         rpc_exit(task, -ERESTARTSYS);
957                 }
958                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
959         }
960
961         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
962                         task->tk_status);
963         /* Release all resources associated with the task */
964         rpc_release_task(task);
965 }
966
967 /*
968  * User-visible entry point to the scheduler.
969  *
970  * This may be called recursively if e.g. an async NFS task updates
971  * the attributes and finds that dirty pages must be flushed.
972  * NOTE: Upon exit of this function the task is guaranteed to be
973  *       released. In particular note that tk_release() will have
974  *       been called, so your task memory may have been freed.
975  */
976 void rpc_execute(struct rpc_task *task)
977 {
978         bool is_async = RPC_IS_ASYNC(task);
979
980         rpc_set_active(task);
981         rpc_make_runnable(rpciod_workqueue, task);
982         if (!is_async)
983                 __rpc_execute(task);
984 }
985
986 static void rpc_async_schedule(struct work_struct *work)
987 {
988         unsigned int pflags = memalloc_nofs_save();
989
990         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
991         memalloc_nofs_restore(pflags);
992 }
993
994 /**
995  * rpc_malloc - allocate RPC buffer resources
996  * @task: RPC task
997  *
998  * A single memory region is allocated, which is split between the
999  * RPC call and RPC reply that this task is being used for. When
1000  * this RPC is retired, the memory is released by calling rpc_free.
1001  *
1002  * To prevent rpciod from hanging, this allocator never sleeps,
1003  * returning -ENOMEM and suppressing warning if the request cannot
1004  * be serviced immediately. The caller can arrange to sleep in a
1005  * way that is safe for rpciod.
1006  *
1007  * Most requests are 'small' (under 2KiB) and can be serviced from a
1008  * mempool, ensuring that NFS reads and writes can always proceed,
1009  * and that there is good locality of reference for these buffers.
1010  */
1011 int rpc_malloc(struct rpc_task *task)
1012 {
1013         struct rpc_rqst *rqst = task->tk_rqstp;
1014         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1015         struct rpc_buffer *buf;
1016         gfp_t gfp = GFP_NOFS;
1017
1018         if (RPC_IS_SWAPPER(task))
1019                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1020
1021         size += sizeof(struct rpc_buffer);
1022         if (size <= RPC_BUFFER_MAXSIZE)
1023                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1024         else
1025                 buf = kmalloc(size, gfp);
1026
1027         if (!buf)
1028                 return -ENOMEM;
1029
1030         buf->len = size;
1031         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1032                         task->tk_pid, size, buf);
1033         rqst->rq_buffer = buf->data;
1034         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1035         return 0;
1036 }
1037 EXPORT_SYMBOL_GPL(rpc_malloc);
1038
1039 /**
1040  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1041  * @task: RPC task
1042  *
1043  */
1044 void rpc_free(struct rpc_task *task)
1045 {
1046         void *buffer = task->tk_rqstp->rq_buffer;
1047         size_t size;
1048         struct rpc_buffer *buf;
1049
1050         buf = container_of(buffer, struct rpc_buffer, data);
1051         size = buf->len;
1052
1053         dprintk("RPC:       freeing buffer of size %zu at %p\n",
1054                         size, buf);
1055
1056         if (size <= RPC_BUFFER_MAXSIZE)
1057                 mempool_free(buf, rpc_buffer_mempool);
1058         else
1059                 kfree(buf);
1060 }
1061 EXPORT_SYMBOL_GPL(rpc_free);
1062
1063 /*
1064  * Creation and deletion of RPC task structures
1065  */
1066 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1067 {
1068         memset(task, 0, sizeof(*task));
1069         atomic_set(&task->tk_count, 1);
1070         task->tk_flags  = task_setup_data->flags;
1071         task->tk_ops = task_setup_data->callback_ops;
1072         task->tk_calldata = task_setup_data->callback_data;
1073         INIT_LIST_HEAD(&task->tk_task);
1074
1075         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1076         task->tk_owner = current->tgid;
1077
1078         /* Initialize workqueue for async tasks */
1079         task->tk_workqueue = task_setup_data->workqueue;
1080
1081         task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
1082
1083         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1084
1085         if (task->tk_ops->rpc_call_prepare != NULL)
1086                 task->tk_action = rpc_prepare_task;
1087
1088         rpc_init_task_statistics(task);
1089
1090         dprintk("RPC:       new task initialized, procpid %u\n",
1091                                 task_pid_nr(current));
1092 }
1093
1094 static struct rpc_task *
1095 rpc_alloc_task(void)
1096 {
1097         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1098 }
1099
1100 /*
1101  * Create a new task for the specified client.
1102  */
1103 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1104 {
1105         struct rpc_task *task = setup_data->task;
1106         unsigned short flags = 0;
1107
1108         if (task == NULL) {
1109                 task = rpc_alloc_task();
1110                 flags = RPC_TASK_DYNAMIC;
1111         }
1112
1113         rpc_init_task(task, setup_data);
1114         task->tk_flags |= flags;
1115         dprintk("RPC:       allocated task %p\n", task);
1116         return task;
1117 }
1118
1119 /*
1120  * rpc_free_task - release rpc task and perform cleanups
1121  *
1122  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1123  * in order to work around a workqueue dependency issue.
1124  *
1125  * Tejun Heo states:
1126  * "Workqueue currently considers two work items to be the same if they're
1127  * on the same address and won't execute them concurrently - ie. it
1128  * makes a work item which is queued again while being executed wait
1129  * for the previous execution to complete.
1130  *
1131  * If a work function frees the work item, and then waits for an event
1132  * which should be performed by another work item and *that* work item
1133  * recycles the freed work item, it can create a false dependency loop.
1134  * There really is no reliable way to detect this short of verifying
1135  * every memory free."
1136  *
1137  */
1138 static void rpc_free_task(struct rpc_task *task)
1139 {
1140         unsigned short tk_flags = task->tk_flags;
1141
1142         put_rpccred(task->tk_op_cred);
1143         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1144
1145         if (tk_flags & RPC_TASK_DYNAMIC) {
1146                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1147                 mempool_free(task, rpc_task_mempool);
1148         }
1149 }
1150
1151 static void rpc_async_release(struct work_struct *work)
1152 {
1153         unsigned int pflags = memalloc_nofs_save();
1154
1155         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1156         memalloc_nofs_restore(pflags);
1157 }
1158
1159 static void rpc_release_resources_task(struct rpc_task *task)
1160 {
1161         xprt_release(task);
1162         if (task->tk_msg.rpc_cred) {
1163                 put_cred(task->tk_msg.rpc_cred);
1164                 task->tk_msg.rpc_cred = NULL;
1165         }
1166         rpc_task_release_client(task);
1167 }
1168
1169 static void rpc_final_put_task(struct rpc_task *task,
1170                 struct workqueue_struct *q)
1171 {
1172         if (q != NULL) {
1173                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1174                 queue_work(q, &task->u.tk_work);
1175         } else
1176                 rpc_free_task(task);
1177 }
1178
1179 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1180 {
1181         if (atomic_dec_and_test(&task->tk_count)) {
1182                 rpc_release_resources_task(task);
1183                 rpc_final_put_task(task, q);
1184         }
1185 }
1186
1187 void rpc_put_task(struct rpc_task *task)
1188 {
1189         rpc_do_put_task(task, NULL);
1190 }
1191 EXPORT_SYMBOL_GPL(rpc_put_task);
1192
1193 void rpc_put_task_async(struct rpc_task *task)
1194 {
1195         rpc_do_put_task(task, task->tk_workqueue);
1196 }
1197 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1198
1199 static void rpc_release_task(struct rpc_task *task)
1200 {
1201         dprintk("RPC: %5u release task\n", task->tk_pid);
1202
1203         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1204
1205         rpc_release_resources_task(task);
1206
1207         /*
1208          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1209          * so it should be safe to use task->tk_count as a test for whether
1210          * or not any other processes still hold references to our rpc_task.
1211          */
1212         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1213                 /* Wake up anyone who may be waiting for task completion */
1214                 if (!rpc_complete_task(task))
1215                         return;
1216         } else {
1217                 if (!atomic_dec_and_test(&task->tk_count))
1218                         return;
1219         }
1220         rpc_final_put_task(task, task->tk_workqueue);
1221 }
1222
1223 int rpciod_up(void)
1224 {
1225         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1226 }
1227
1228 void rpciod_down(void)
1229 {
1230         module_put(THIS_MODULE);
1231 }
1232
1233 /*
1234  * Start up the rpciod workqueue.
1235  */
1236 static int rpciod_start(void)
1237 {
1238         struct workqueue_struct *wq;
1239
1240         /*
1241          * Create the rpciod thread and wait for it to start.
1242          */
1243         dprintk("RPC:       creating workqueue rpciod\n");
1244         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1245         if (!wq)
1246                 goto out_failed;
1247         rpciod_workqueue = wq;
1248         /* Note: highpri because network receive is latency sensitive */
1249         wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1250         if (!wq)
1251                 goto free_rpciod;
1252         xprtiod_workqueue = wq;
1253         return 1;
1254 free_rpciod:
1255         wq = rpciod_workqueue;
1256         rpciod_workqueue = NULL;
1257         destroy_workqueue(wq);
1258 out_failed:
1259         return 0;
1260 }
1261
1262 static void rpciod_stop(void)
1263 {
1264         struct workqueue_struct *wq = NULL;
1265
1266         if (rpciod_workqueue == NULL)
1267                 return;
1268         dprintk("RPC:       destroying workqueue rpciod\n");
1269
1270         wq = rpciod_workqueue;
1271         rpciod_workqueue = NULL;
1272         destroy_workqueue(wq);
1273         wq = xprtiod_workqueue;
1274         xprtiod_workqueue = NULL;
1275         destroy_workqueue(wq);
1276 }
1277
1278 void
1279 rpc_destroy_mempool(void)
1280 {
1281         rpciod_stop();
1282         mempool_destroy(rpc_buffer_mempool);
1283         mempool_destroy(rpc_task_mempool);
1284         kmem_cache_destroy(rpc_task_slabp);
1285         kmem_cache_destroy(rpc_buffer_slabp);
1286         rpc_destroy_wait_queue(&delay_queue);
1287 }
1288
1289 int
1290 rpc_init_mempool(void)
1291 {
1292         /*
1293          * The following is not strictly a mempool initialisation,
1294          * but there is no harm in doing it here
1295          */
1296         rpc_init_wait_queue(&delay_queue, "delayq");
1297         if (!rpciod_start())
1298                 goto err_nomem;
1299
1300         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1301                                              sizeof(struct rpc_task),
1302                                              0, SLAB_HWCACHE_ALIGN,
1303                                              NULL);
1304         if (!rpc_task_slabp)
1305                 goto err_nomem;
1306         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1307                                              RPC_BUFFER_MAXSIZE,
1308                                              0, SLAB_HWCACHE_ALIGN,
1309                                              NULL);
1310         if (!rpc_buffer_slabp)
1311                 goto err_nomem;
1312         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1313                                                     rpc_task_slabp);
1314         if (!rpc_task_mempool)
1315                 goto err_nomem;
1316         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1317                                                       rpc_buffer_slabp);
1318         if (!rpc_buffer_mempool)
1319                 goto err_nomem;
1320         return 0;
1321 err_nomem:
1322         rpc_destroy_mempool();
1323         return -ENOMEM;
1324 }