Merge tag 'pm-4.18-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-block.git] / net / rfkill / core.c
1 /*
2  * Copyright (C) 2006 - 2007 Ivo van Doorn
3  * Copyright (C) 2007 Dmitry Torokhov
4  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/workqueue.h>
24 #include <linux/capability.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/rfkill.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/slab.h>
36
37 #include "rfkill.h"
38
39 #define POLL_INTERVAL           (5 * HZ)
40
41 #define RFKILL_BLOCK_HW         BIT(0)
42 #define RFKILL_BLOCK_SW         BIT(1)
43 #define RFKILL_BLOCK_SW_PREV    BIT(2)
44 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
45                                  RFKILL_BLOCK_SW |\
46                                  RFKILL_BLOCK_SW_PREV)
47 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49 struct rfkill {
50         spinlock_t              lock;
51
52         enum rfkill_type        type;
53
54         unsigned long           state;
55
56         u32                     idx;
57
58         bool                    registered;
59         bool                    persistent;
60         bool                    polling_paused;
61         bool                    suspended;
62
63         const struct rfkill_ops *ops;
64         void                    *data;
65
66 #ifdef CONFIG_RFKILL_LEDS
67         struct led_trigger      led_trigger;
68         const char              *ledtrigname;
69 #endif
70
71         struct device           dev;
72         struct list_head        node;
73
74         struct delayed_work     poll_work;
75         struct work_struct      uevent_work;
76         struct work_struct      sync_work;
77         char                    name[];
78 };
79 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
80
81 struct rfkill_int_event {
82         struct list_head        list;
83         struct rfkill_event     ev;
84 };
85
86 struct rfkill_data {
87         struct list_head        list;
88         struct list_head        events;
89         struct mutex            mtx;
90         wait_queue_head_t       read_wait;
91         bool                    input_handler;
92 };
93
94
95 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97 MODULE_DESCRIPTION("RF switch support");
98 MODULE_LICENSE("GPL");
99
100
101 /*
102  * The locking here should be made much smarter, we currently have
103  * a bit of a stupid situation because drivers might want to register
104  * the rfkill struct under their own lock, and take this lock during
105  * rfkill method calls -- which will cause an AB-BA deadlock situation.
106  *
107  * To fix that, we need to rework this code here to be mostly lock-free
108  * and only use the mutex for list manipulations, not to protect the
109  * various other global variables. Then we can avoid holding the mutex
110  * around driver operations, and all is happy.
111  */
112 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
113 static DEFINE_MUTEX(rfkill_global_mutex);
114 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
115
116 static unsigned int rfkill_default_state = 1;
117 module_param_named(default_state, rfkill_default_state, uint, 0444);
118 MODULE_PARM_DESC(default_state,
119                  "Default initial state for all radio types, 0 = radio off");
120
121 static struct {
122         bool cur, sav;
123 } rfkill_global_states[NUM_RFKILL_TYPES];
124
125 static bool rfkill_epo_lock_active;
126
127
128 #ifdef CONFIG_RFKILL_LEDS
129 static void rfkill_led_trigger_event(struct rfkill *rfkill)
130 {
131         struct led_trigger *trigger;
132
133         if (!rfkill->registered)
134                 return;
135
136         trigger = &rfkill->led_trigger;
137
138         if (rfkill->state & RFKILL_BLOCK_ANY)
139                 led_trigger_event(trigger, LED_OFF);
140         else
141                 led_trigger_event(trigger, LED_FULL);
142 }
143
144 static void rfkill_led_trigger_activate(struct led_classdev *led)
145 {
146         struct rfkill *rfkill;
147
148         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150         rfkill_led_trigger_event(rfkill);
151 }
152
153 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
154 {
155         return rfkill->led_trigger.name;
156 }
157 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
158
159 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
160 {
161         BUG_ON(!rfkill);
162
163         rfkill->ledtrigname = name;
164 }
165 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
166
167 static int rfkill_led_trigger_register(struct rfkill *rfkill)
168 {
169         rfkill->led_trigger.name = rfkill->ledtrigname
170                                         ? : dev_name(&rfkill->dev);
171         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
172         return led_trigger_register(&rfkill->led_trigger);
173 }
174
175 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176 {
177         led_trigger_unregister(&rfkill->led_trigger);
178 }
179
180 static struct led_trigger rfkill_any_led_trigger;
181 static struct led_trigger rfkill_none_led_trigger;
182 static struct work_struct rfkill_global_led_trigger_work;
183
184 static void rfkill_global_led_trigger_worker(struct work_struct *work)
185 {
186         enum led_brightness brightness = LED_OFF;
187         struct rfkill *rfkill;
188
189         mutex_lock(&rfkill_global_mutex);
190         list_for_each_entry(rfkill, &rfkill_list, node) {
191                 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
192                         brightness = LED_FULL;
193                         break;
194                 }
195         }
196         mutex_unlock(&rfkill_global_mutex);
197
198         led_trigger_event(&rfkill_any_led_trigger, brightness);
199         led_trigger_event(&rfkill_none_led_trigger,
200                           brightness == LED_OFF ? LED_FULL : LED_OFF);
201 }
202
203 static void rfkill_global_led_trigger_event(void)
204 {
205         schedule_work(&rfkill_global_led_trigger_work);
206 }
207
208 static int rfkill_global_led_trigger_register(void)
209 {
210         int ret;
211
212         INIT_WORK(&rfkill_global_led_trigger_work,
213                         rfkill_global_led_trigger_worker);
214
215         rfkill_any_led_trigger.name = "rfkill-any";
216         ret = led_trigger_register(&rfkill_any_led_trigger);
217         if (ret)
218                 return ret;
219
220         rfkill_none_led_trigger.name = "rfkill-none";
221         ret = led_trigger_register(&rfkill_none_led_trigger);
222         if (ret)
223                 led_trigger_unregister(&rfkill_any_led_trigger);
224         else
225                 /* Delay activation until all global triggers are registered */
226                 rfkill_global_led_trigger_event();
227
228         return ret;
229 }
230
231 static void rfkill_global_led_trigger_unregister(void)
232 {
233         led_trigger_unregister(&rfkill_none_led_trigger);
234         led_trigger_unregister(&rfkill_any_led_trigger);
235         cancel_work_sync(&rfkill_global_led_trigger_work);
236 }
237 #else
238 static void rfkill_led_trigger_event(struct rfkill *rfkill)
239 {
240 }
241
242 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
243 {
244         return 0;
245 }
246
247 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
248 {
249 }
250
251 static void rfkill_global_led_trigger_event(void)
252 {
253 }
254
255 static int rfkill_global_led_trigger_register(void)
256 {
257         return 0;
258 }
259
260 static void rfkill_global_led_trigger_unregister(void)
261 {
262 }
263 #endif /* CONFIG_RFKILL_LEDS */
264
265 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
266                               enum rfkill_operation op)
267 {
268         unsigned long flags;
269
270         ev->idx = rfkill->idx;
271         ev->type = rfkill->type;
272         ev->op = op;
273
274         spin_lock_irqsave(&rfkill->lock, flags);
275         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
276         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
277                                         RFKILL_BLOCK_SW_PREV));
278         spin_unlock_irqrestore(&rfkill->lock, flags);
279 }
280
281 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
282 {
283         struct rfkill_data *data;
284         struct rfkill_int_event *ev;
285
286         list_for_each_entry(data, &rfkill_fds, list) {
287                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
288                 if (!ev)
289                         continue;
290                 rfkill_fill_event(&ev->ev, rfkill, op);
291                 mutex_lock(&data->mtx);
292                 list_add_tail(&ev->list, &data->events);
293                 mutex_unlock(&data->mtx);
294                 wake_up_interruptible(&data->read_wait);
295         }
296 }
297
298 static void rfkill_event(struct rfkill *rfkill)
299 {
300         if (!rfkill->registered)
301                 return;
302
303         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
304
305         /* also send event to /dev/rfkill */
306         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
307 }
308
309 /**
310  * rfkill_set_block - wrapper for set_block method
311  *
312  * @rfkill: the rfkill struct to use
313  * @blocked: the new software state
314  *
315  * Calls the set_block method (when applicable) and handles notifications
316  * etc. as well.
317  */
318 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
319 {
320         unsigned long flags;
321         bool prev, curr;
322         int err;
323
324         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
325                 return;
326
327         /*
328          * Some platforms (...!) generate input events which affect the
329          * _hard_ kill state -- whenever something tries to change the
330          * current software state query the hardware state too.
331          */
332         if (rfkill->ops->query)
333                 rfkill->ops->query(rfkill, rfkill->data);
334
335         spin_lock_irqsave(&rfkill->lock, flags);
336         prev = rfkill->state & RFKILL_BLOCK_SW;
337
338         if (prev)
339                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
340         else
341                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
342
343         if (blocked)
344                 rfkill->state |= RFKILL_BLOCK_SW;
345         else
346                 rfkill->state &= ~RFKILL_BLOCK_SW;
347
348         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
349         spin_unlock_irqrestore(&rfkill->lock, flags);
350
351         err = rfkill->ops->set_block(rfkill->data, blocked);
352
353         spin_lock_irqsave(&rfkill->lock, flags);
354         if (err) {
355                 /*
356                  * Failed -- reset status to _PREV, which may be different
357                  * from what we have set _PREV to earlier in this function
358                  * if rfkill_set_sw_state was invoked.
359                  */
360                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
361                         rfkill->state |= RFKILL_BLOCK_SW;
362                 else
363                         rfkill->state &= ~RFKILL_BLOCK_SW;
364         }
365         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
366         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
367         curr = rfkill->state & RFKILL_BLOCK_SW;
368         spin_unlock_irqrestore(&rfkill->lock, flags);
369
370         rfkill_led_trigger_event(rfkill);
371         rfkill_global_led_trigger_event();
372
373         if (prev != curr)
374                 rfkill_event(rfkill);
375 }
376
377 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
378 {
379         int i;
380
381         if (type != RFKILL_TYPE_ALL) {
382                 rfkill_global_states[type].cur = blocked;
383                 return;
384         }
385
386         for (i = 0; i < NUM_RFKILL_TYPES; i++)
387                 rfkill_global_states[i].cur = blocked;
388 }
389
390 #ifdef CONFIG_RFKILL_INPUT
391 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
392
393 /**
394  * __rfkill_switch_all - Toggle state of all switches of given type
395  * @type: type of interfaces to be affected
396  * @blocked: the new state
397  *
398  * This function sets the state of all switches of given type,
399  * unless a specific switch is suspended.
400  *
401  * Caller must have acquired rfkill_global_mutex.
402  */
403 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
404 {
405         struct rfkill *rfkill;
406
407         rfkill_update_global_state(type, blocked);
408         list_for_each_entry(rfkill, &rfkill_list, node) {
409                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
410                         continue;
411
412                 rfkill_set_block(rfkill, blocked);
413         }
414 }
415
416 /**
417  * rfkill_switch_all - Toggle state of all switches of given type
418  * @type: type of interfaces to be affected
419  * @blocked: the new state
420  *
421  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
422  * Please refer to __rfkill_switch_all() for details.
423  *
424  * Does nothing if the EPO lock is active.
425  */
426 void rfkill_switch_all(enum rfkill_type type, bool blocked)
427 {
428         if (atomic_read(&rfkill_input_disabled))
429                 return;
430
431         mutex_lock(&rfkill_global_mutex);
432
433         if (!rfkill_epo_lock_active)
434                 __rfkill_switch_all(type, blocked);
435
436         mutex_unlock(&rfkill_global_mutex);
437 }
438
439 /**
440  * rfkill_epo - emergency power off all transmitters
441  *
442  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
443  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
444  *
445  * The global state before the EPO is saved and can be restored later
446  * using rfkill_restore_states().
447  */
448 void rfkill_epo(void)
449 {
450         struct rfkill *rfkill;
451         int i;
452
453         if (atomic_read(&rfkill_input_disabled))
454                 return;
455
456         mutex_lock(&rfkill_global_mutex);
457
458         rfkill_epo_lock_active = true;
459         list_for_each_entry(rfkill, &rfkill_list, node)
460                 rfkill_set_block(rfkill, true);
461
462         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
463                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
464                 rfkill_global_states[i].cur = true;
465         }
466
467         mutex_unlock(&rfkill_global_mutex);
468 }
469
470 /**
471  * rfkill_restore_states - restore global states
472  *
473  * Restore (and sync switches to) the global state from the
474  * states in rfkill_default_states.  This can undo the effects of
475  * a call to rfkill_epo().
476  */
477 void rfkill_restore_states(void)
478 {
479         int i;
480
481         if (atomic_read(&rfkill_input_disabled))
482                 return;
483
484         mutex_lock(&rfkill_global_mutex);
485
486         rfkill_epo_lock_active = false;
487         for (i = 0; i < NUM_RFKILL_TYPES; i++)
488                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
489         mutex_unlock(&rfkill_global_mutex);
490 }
491
492 /**
493  * rfkill_remove_epo_lock - unlock state changes
494  *
495  * Used by rfkill-input manually unlock state changes, when
496  * the EPO switch is deactivated.
497  */
498 void rfkill_remove_epo_lock(void)
499 {
500         if (atomic_read(&rfkill_input_disabled))
501                 return;
502
503         mutex_lock(&rfkill_global_mutex);
504         rfkill_epo_lock_active = false;
505         mutex_unlock(&rfkill_global_mutex);
506 }
507
508 /**
509  * rfkill_is_epo_lock_active - returns true EPO is active
510  *
511  * Returns 0 (false) if there is NOT an active EPO contidion,
512  * and 1 (true) if there is an active EPO contition, which
513  * locks all radios in one of the BLOCKED states.
514  *
515  * Can be called in atomic context.
516  */
517 bool rfkill_is_epo_lock_active(void)
518 {
519         return rfkill_epo_lock_active;
520 }
521
522 /**
523  * rfkill_get_global_sw_state - returns global state for a type
524  * @type: the type to get the global state of
525  *
526  * Returns the current global state for a given wireless
527  * device type.
528  */
529 bool rfkill_get_global_sw_state(const enum rfkill_type type)
530 {
531         return rfkill_global_states[type].cur;
532 }
533 #endif
534
535 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
536 {
537         unsigned long flags;
538         bool ret, prev;
539
540         BUG_ON(!rfkill);
541
542         spin_lock_irqsave(&rfkill->lock, flags);
543         prev = !!(rfkill->state & RFKILL_BLOCK_HW);
544         if (blocked)
545                 rfkill->state |= RFKILL_BLOCK_HW;
546         else
547                 rfkill->state &= ~RFKILL_BLOCK_HW;
548         ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
549         spin_unlock_irqrestore(&rfkill->lock, flags);
550
551         rfkill_led_trigger_event(rfkill);
552         rfkill_global_led_trigger_event();
553
554         if (rfkill->registered && prev != blocked)
555                 schedule_work(&rfkill->uevent_work);
556
557         return ret;
558 }
559 EXPORT_SYMBOL(rfkill_set_hw_state);
560
561 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
562 {
563         u32 bit = RFKILL_BLOCK_SW;
564
565         /* if in a ops->set_block right now, use other bit */
566         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
567                 bit = RFKILL_BLOCK_SW_PREV;
568
569         if (blocked)
570                 rfkill->state |= bit;
571         else
572                 rfkill->state &= ~bit;
573 }
574
575 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
576 {
577         unsigned long flags;
578         bool prev, hwblock;
579
580         BUG_ON(!rfkill);
581
582         spin_lock_irqsave(&rfkill->lock, flags);
583         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
584         __rfkill_set_sw_state(rfkill, blocked);
585         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
586         blocked = blocked || hwblock;
587         spin_unlock_irqrestore(&rfkill->lock, flags);
588
589         if (!rfkill->registered)
590                 return blocked;
591
592         if (prev != blocked && !hwblock)
593                 schedule_work(&rfkill->uevent_work);
594
595         rfkill_led_trigger_event(rfkill);
596         rfkill_global_led_trigger_event();
597
598         return blocked;
599 }
600 EXPORT_SYMBOL(rfkill_set_sw_state);
601
602 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
603 {
604         unsigned long flags;
605
606         BUG_ON(!rfkill);
607         BUG_ON(rfkill->registered);
608
609         spin_lock_irqsave(&rfkill->lock, flags);
610         __rfkill_set_sw_state(rfkill, blocked);
611         rfkill->persistent = true;
612         spin_unlock_irqrestore(&rfkill->lock, flags);
613 }
614 EXPORT_SYMBOL(rfkill_init_sw_state);
615
616 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
617 {
618         unsigned long flags;
619         bool swprev, hwprev;
620
621         BUG_ON(!rfkill);
622
623         spin_lock_irqsave(&rfkill->lock, flags);
624
625         /*
626          * No need to care about prev/setblock ... this is for uevent only
627          * and that will get triggered by rfkill_set_block anyway.
628          */
629         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
630         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
631         __rfkill_set_sw_state(rfkill, sw);
632         if (hw)
633                 rfkill->state |= RFKILL_BLOCK_HW;
634         else
635                 rfkill->state &= ~RFKILL_BLOCK_HW;
636
637         spin_unlock_irqrestore(&rfkill->lock, flags);
638
639         if (!rfkill->registered) {
640                 rfkill->persistent = true;
641         } else {
642                 if (swprev != sw || hwprev != hw)
643                         schedule_work(&rfkill->uevent_work);
644
645                 rfkill_led_trigger_event(rfkill);
646                 rfkill_global_led_trigger_event();
647         }
648 }
649 EXPORT_SYMBOL(rfkill_set_states);
650
651 static const char * const rfkill_types[] = {
652         NULL, /* RFKILL_TYPE_ALL */
653         "wlan",
654         "bluetooth",
655         "ultrawideband",
656         "wimax",
657         "wwan",
658         "gps",
659         "fm",
660         "nfc",
661 };
662
663 enum rfkill_type rfkill_find_type(const char *name)
664 {
665         int i;
666
667         BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
668
669         if (!name)
670                 return RFKILL_TYPE_ALL;
671
672         for (i = 1; i < NUM_RFKILL_TYPES; i++)
673                 if (!strcmp(name, rfkill_types[i]))
674                         return i;
675         return RFKILL_TYPE_ALL;
676 }
677 EXPORT_SYMBOL(rfkill_find_type);
678
679 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
680                          char *buf)
681 {
682         struct rfkill *rfkill = to_rfkill(dev);
683
684         return sprintf(buf, "%s\n", rfkill->name);
685 }
686 static DEVICE_ATTR_RO(name);
687
688 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
689                          char *buf)
690 {
691         struct rfkill *rfkill = to_rfkill(dev);
692
693         return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
694 }
695 static DEVICE_ATTR_RO(type);
696
697 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
698                           char *buf)
699 {
700         struct rfkill *rfkill = to_rfkill(dev);
701
702         return sprintf(buf, "%d\n", rfkill->idx);
703 }
704 static DEVICE_ATTR_RO(index);
705
706 static ssize_t persistent_show(struct device *dev,
707                                struct device_attribute *attr, char *buf)
708 {
709         struct rfkill *rfkill = to_rfkill(dev);
710
711         return sprintf(buf, "%d\n", rfkill->persistent);
712 }
713 static DEVICE_ATTR_RO(persistent);
714
715 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
716                          char *buf)
717 {
718         struct rfkill *rfkill = to_rfkill(dev);
719
720         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
721 }
722 static DEVICE_ATTR_RO(hard);
723
724 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
725                          char *buf)
726 {
727         struct rfkill *rfkill = to_rfkill(dev);
728
729         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
730 }
731
732 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
733                           const char *buf, size_t count)
734 {
735         struct rfkill *rfkill = to_rfkill(dev);
736         unsigned long state;
737         int err;
738
739         if (!capable(CAP_NET_ADMIN))
740                 return -EPERM;
741
742         err = kstrtoul(buf, 0, &state);
743         if (err)
744                 return err;
745
746         if (state > 1 )
747                 return -EINVAL;
748
749         mutex_lock(&rfkill_global_mutex);
750         rfkill_set_block(rfkill, state);
751         mutex_unlock(&rfkill_global_mutex);
752
753         return count;
754 }
755 static DEVICE_ATTR_RW(soft);
756
757 static u8 user_state_from_blocked(unsigned long state)
758 {
759         if (state & RFKILL_BLOCK_HW)
760                 return RFKILL_USER_STATE_HARD_BLOCKED;
761         if (state & RFKILL_BLOCK_SW)
762                 return RFKILL_USER_STATE_SOFT_BLOCKED;
763
764         return RFKILL_USER_STATE_UNBLOCKED;
765 }
766
767 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
768                           char *buf)
769 {
770         struct rfkill *rfkill = to_rfkill(dev);
771
772         return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
773 }
774
775 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
776                            const char *buf, size_t count)
777 {
778         struct rfkill *rfkill = to_rfkill(dev);
779         unsigned long state;
780         int err;
781
782         if (!capable(CAP_NET_ADMIN))
783                 return -EPERM;
784
785         err = kstrtoul(buf, 0, &state);
786         if (err)
787                 return err;
788
789         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
790             state != RFKILL_USER_STATE_UNBLOCKED)
791                 return -EINVAL;
792
793         mutex_lock(&rfkill_global_mutex);
794         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
795         mutex_unlock(&rfkill_global_mutex);
796
797         return count;
798 }
799 static DEVICE_ATTR_RW(state);
800
801 static struct attribute *rfkill_dev_attrs[] = {
802         &dev_attr_name.attr,
803         &dev_attr_type.attr,
804         &dev_attr_index.attr,
805         &dev_attr_persistent.attr,
806         &dev_attr_state.attr,
807         &dev_attr_soft.attr,
808         &dev_attr_hard.attr,
809         NULL,
810 };
811 ATTRIBUTE_GROUPS(rfkill_dev);
812
813 static void rfkill_release(struct device *dev)
814 {
815         struct rfkill *rfkill = to_rfkill(dev);
816
817         kfree(rfkill);
818 }
819
820 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
821 {
822         struct rfkill *rfkill = to_rfkill(dev);
823         unsigned long flags;
824         u32 state;
825         int error;
826
827         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
828         if (error)
829                 return error;
830         error = add_uevent_var(env, "RFKILL_TYPE=%s",
831                                rfkill_types[rfkill->type]);
832         if (error)
833                 return error;
834         spin_lock_irqsave(&rfkill->lock, flags);
835         state = rfkill->state;
836         spin_unlock_irqrestore(&rfkill->lock, flags);
837         error = add_uevent_var(env, "RFKILL_STATE=%d",
838                                user_state_from_blocked(state));
839         return error;
840 }
841
842 void rfkill_pause_polling(struct rfkill *rfkill)
843 {
844         BUG_ON(!rfkill);
845
846         if (!rfkill->ops->poll)
847                 return;
848
849         rfkill->polling_paused = true;
850         cancel_delayed_work_sync(&rfkill->poll_work);
851 }
852 EXPORT_SYMBOL(rfkill_pause_polling);
853
854 void rfkill_resume_polling(struct rfkill *rfkill)
855 {
856         BUG_ON(!rfkill);
857
858         if (!rfkill->ops->poll)
859                 return;
860
861         rfkill->polling_paused = false;
862
863         if (rfkill->suspended)
864                 return;
865
866         queue_delayed_work(system_power_efficient_wq,
867                            &rfkill->poll_work, 0);
868 }
869 EXPORT_SYMBOL(rfkill_resume_polling);
870
871 #ifdef CONFIG_PM_SLEEP
872 static int rfkill_suspend(struct device *dev)
873 {
874         struct rfkill *rfkill = to_rfkill(dev);
875
876         rfkill->suspended = true;
877         cancel_delayed_work_sync(&rfkill->poll_work);
878
879         return 0;
880 }
881
882 static int rfkill_resume(struct device *dev)
883 {
884         struct rfkill *rfkill = to_rfkill(dev);
885         bool cur;
886
887         rfkill->suspended = false;
888
889         if (!rfkill->persistent) {
890                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
891                 rfkill_set_block(rfkill, cur);
892         }
893
894         if (rfkill->ops->poll && !rfkill->polling_paused)
895                 queue_delayed_work(system_power_efficient_wq,
896                                    &rfkill->poll_work, 0);
897
898         return 0;
899 }
900
901 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
902 #define RFKILL_PM_OPS (&rfkill_pm_ops)
903 #else
904 #define RFKILL_PM_OPS NULL
905 #endif
906
907 static struct class rfkill_class = {
908         .name           = "rfkill",
909         .dev_release    = rfkill_release,
910         .dev_groups     = rfkill_dev_groups,
911         .dev_uevent     = rfkill_dev_uevent,
912         .pm             = RFKILL_PM_OPS,
913 };
914
915 bool rfkill_blocked(struct rfkill *rfkill)
916 {
917         unsigned long flags;
918         u32 state;
919
920         spin_lock_irqsave(&rfkill->lock, flags);
921         state = rfkill->state;
922         spin_unlock_irqrestore(&rfkill->lock, flags);
923
924         return !!(state & RFKILL_BLOCK_ANY);
925 }
926 EXPORT_SYMBOL(rfkill_blocked);
927
928
929 struct rfkill * __must_check rfkill_alloc(const char *name,
930                                           struct device *parent,
931                                           const enum rfkill_type type,
932                                           const struct rfkill_ops *ops,
933                                           void *ops_data)
934 {
935         struct rfkill *rfkill;
936         struct device *dev;
937
938         if (WARN_ON(!ops))
939                 return NULL;
940
941         if (WARN_ON(!ops->set_block))
942                 return NULL;
943
944         if (WARN_ON(!name))
945                 return NULL;
946
947         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
948                 return NULL;
949
950         rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
951         if (!rfkill)
952                 return NULL;
953
954         spin_lock_init(&rfkill->lock);
955         INIT_LIST_HEAD(&rfkill->node);
956         rfkill->type = type;
957         strcpy(rfkill->name, name);
958         rfkill->ops = ops;
959         rfkill->data = ops_data;
960
961         dev = &rfkill->dev;
962         dev->class = &rfkill_class;
963         dev->parent = parent;
964         device_initialize(dev);
965
966         return rfkill;
967 }
968 EXPORT_SYMBOL(rfkill_alloc);
969
970 static void rfkill_poll(struct work_struct *work)
971 {
972         struct rfkill *rfkill;
973
974         rfkill = container_of(work, struct rfkill, poll_work.work);
975
976         /*
977          * Poll hardware state -- driver will use one of the
978          * rfkill_set{,_hw,_sw}_state functions and use its
979          * return value to update the current status.
980          */
981         rfkill->ops->poll(rfkill, rfkill->data);
982
983         queue_delayed_work(system_power_efficient_wq,
984                 &rfkill->poll_work,
985                 round_jiffies_relative(POLL_INTERVAL));
986 }
987
988 static void rfkill_uevent_work(struct work_struct *work)
989 {
990         struct rfkill *rfkill;
991
992         rfkill = container_of(work, struct rfkill, uevent_work);
993
994         mutex_lock(&rfkill_global_mutex);
995         rfkill_event(rfkill);
996         mutex_unlock(&rfkill_global_mutex);
997 }
998
999 static void rfkill_sync_work(struct work_struct *work)
1000 {
1001         struct rfkill *rfkill;
1002         bool cur;
1003
1004         rfkill = container_of(work, struct rfkill, sync_work);
1005
1006         mutex_lock(&rfkill_global_mutex);
1007         cur = rfkill_global_states[rfkill->type].cur;
1008         rfkill_set_block(rfkill, cur);
1009         mutex_unlock(&rfkill_global_mutex);
1010 }
1011
1012 int __must_check rfkill_register(struct rfkill *rfkill)
1013 {
1014         static unsigned long rfkill_no;
1015         struct device *dev = &rfkill->dev;
1016         int error;
1017
1018         BUG_ON(!rfkill);
1019
1020         mutex_lock(&rfkill_global_mutex);
1021
1022         if (rfkill->registered) {
1023                 error = -EALREADY;
1024                 goto unlock;
1025         }
1026
1027         rfkill->idx = rfkill_no;
1028         dev_set_name(dev, "rfkill%lu", rfkill_no);
1029         rfkill_no++;
1030
1031         list_add_tail(&rfkill->node, &rfkill_list);
1032
1033         error = device_add(dev);
1034         if (error)
1035                 goto remove;
1036
1037         error = rfkill_led_trigger_register(rfkill);
1038         if (error)
1039                 goto devdel;
1040
1041         rfkill->registered = true;
1042
1043         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1044         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1045         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1046
1047         if (rfkill->ops->poll)
1048                 queue_delayed_work(system_power_efficient_wq,
1049                         &rfkill->poll_work,
1050                         round_jiffies_relative(POLL_INTERVAL));
1051
1052         if (!rfkill->persistent || rfkill_epo_lock_active) {
1053                 schedule_work(&rfkill->sync_work);
1054         } else {
1055 #ifdef CONFIG_RFKILL_INPUT
1056                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1057
1058                 if (!atomic_read(&rfkill_input_disabled))
1059                         __rfkill_switch_all(rfkill->type, soft_blocked);
1060 #endif
1061         }
1062
1063         rfkill_global_led_trigger_event();
1064         rfkill_send_events(rfkill, RFKILL_OP_ADD);
1065
1066         mutex_unlock(&rfkill_global_mutex);
1067         return 0;
1068
1069  devdel:
1070         device_del(&rfkill->dev);
1071  remove:
1072         list_del_init(&rfkill->node);
1073  unlock:
1074         mutex_unlock(&rfkill_global_mutex);
1075         return error;
1076 }
1077 EXPORT_SYMBOL(rfkill_register);
1078
1079 void rfkill_unregister(struct rfkill *rfkill)
1080 {
1081         BUG_ON(!rfkill);
1082
1083         if (rfkill->ops->poll)
1084                 cancel_delayed_work_sync(&rfkill->poll_work);
1085
1086         cancel_work_sync(&rfkill->uevent_work);
1087         cancel_work_sync(&rfkill->sync_work);
1088
1089         rfkill->registered = false;
1090
1091         device_del(&rfkill->dev);
1092
1093         mutex_lock(&rfkill_global_mutex);
1094         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1095         list_del_init(&rfkill->node);
1096         rfkill_global_led_trigger_event();
1097         mutex_unlock(&rfkill_global_mutex);
1098
1099         rfkill_led_trigger_unregister(rfkill);
1100 }
1101 EXPORT_SYMBOL(rfkill_unregister);
1102
1103 void rfkill_destroy(struct rfkill *rfkill)
1104 {
1105         if (rfkill)
1106                 put_device(&rfkill->dev);
1107 }
1108 EXPORT_SYMBOL(rfkill_destroy);
1109
1110 static int rfkill_fop_open(struct inode *inode, struct file *file)
1111 {
1112         struct rfkill_data *data;
1113         struct rfkill *rfkill;
1114         struct rfkill_int_event *ev, *tmp;
1115
1116         data = kzalloc(sizeof(*data), GFP_KERNEL);
1117         if (!data)
1118                 return -ENOMEM;
1119
1120         INIT_LIST_HEAD(&data->events);
1121         mutex_init(&data->mtx);
1122         init_waitqueue_head(&data->read_wait);
1123
1124         mutex_lock(&rfkill_global_mutex);
1125         mutex_lock(&data->mtx);
1126         /*
1127          * start getting events from elsewhere but hold mtx to get
1128          * startup events added first
1129          */
1130
1131         list_for_each_entry(rfkill, &rfkill_list, node) {
1132                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1133                 if (!ev)
1134                         goto free;
1135                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1136                 list_add_tail(&ev->list, &data->events);
1137         }
1138         list_add(&data->list, &rfkill_fds);
1139         mutex_unlock(&data->mtx);
1140         mutex_unlock(&rfkill_global_mutex);
1141
1142         file->private_data = data;
1143
1144         return nonseekable_open(inode, file);
1145
1146  free:
1147         mutex_unlock(&data->mtx);
1148         mutex_unlock(&rfkill_global_mutex);
1149         mutex_destroy(&data->mtx);
1150         list_for_each_entry_safe(ev, tmp, &data->events, list)
1151                 kfree(ev);
1152         kfree(data);
1153         return -ENOMEM;
1154 }
1155
1156 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1157 {
1158         struct rfkill_data *data = file->private_data;
1159         __poll_t res = EPOLLOUT | EPOLLWRNORM;
1160
1161         poll_wait(file, &data->read_wait, wait);
1162
1163         mutex_lock(&data->mtx);
1164         if (!list_empty(&data->events))
1165                 res = EPOLLIN | EPOLLRDNORM;
1166         mutex_unlock(&data->mtx);
1167
1168         return res;
1169 }
1170
1171 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1172                                size_t count, loff_t *pos)
1173 {
1174         struct rfkill_data *data = file->private_data;
1175         struct rfkill_int_event *ev;
1176         unsigned long sz;
1177         int ret;
1178
1179         mutex_lock(&data->mtx);
1180
1181         while (list_empty(&data->events)) {
1182                 if (file->f_flags & O_NONBLOCK) {
1183                         ret = -EAGAIN;
1184                         goto out;
1185                 }
1186                 mutex_unlock(&data->mtx);
1187                 /* since we re-check and it just compares pointers,
1188                  * using !list_empty() without locking isn't a problem
1189                  */
1190                 ret = wait_event_interruptible(data->read_wait,
1191                                                !list_empty(&data->events));
1192                 mutex_lock(&data->mtx);
1193
1194                 if (ret)
1195                         goto out;
1196         }
1197
1198         ev = list_first_entry(&data->events, struct rfkill_int_event,
1199                                 list);
1200
1201         sz = min_t(unsigned long, sizeof(ev->ev), count);
1202         ret = sz;
1203         if (copy_to_user(buf, &ev->ev, sz))
1204                 ret = -EFAULT;
1205
1206         list_del(&ev->list);
1207         kfree(ev);
1208  out:
1209         mutex_unlock(&data->mtx);
1210         return ret;
1211 }
1212
1213 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1214                                 size_t count, loff_t *pos)
1215 {
1216         struct rfkill *rfkill;
1217         struct rfkill_event ev;
1218         int ret;
1219
1220         /* we don't need the 'hard' variable but accept it */
1221         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1222                 return -EINVAL;
1223
1224         /*
1225          * Copy as much data as we can accept into our 'ev' buffer,
1226          * but tell userspace how much we've copied so it can determine
1227          * our API version even in a write() call, if it cares.
1228          */
1229         count = min(count, sizeof(ev));
1230         if (copy_from_user(&ev, buf, count))
1231                 return -EFAULT;
1232
1233         if (ev.type >= NUM_RFKILL_TYPES)
1234                 return -EINVAL;
1235
1236         mutex_lock(&rfkill_global_mutex);
1237
1238         switch (ev.op) {
1239         case RFKILL_OP_CHANGE_ALL:
1240                 rfkill_update_global_state(ev.type, ev.soft);
1241                 list_for_each_entry(rfkill, &rfkill_list, node)
1242                         if (rfkill->type == ev.type ||
1243                             ev.type == RFKILL_TYPE_ALL)
1244                                 rfkill_set_block(rfkill, ev.soft);
1245                 ret = 0;
1246                 break;
1247         case RFKILL_OP_CHANGE:
1248                 list_for_each_entry(rfkill, &rfkill_list, node)
1249                         if (rfkill->idx == ev.idx &&
1250                             (rfkill->type == ev.type ||
1251                              ev.type == RFKILL_TYPE_ALL))
1252                                 rfkill_set_block(rfkill, ev.soft);
1253                 ret = 0;
1254                 break;
1255         default:
1256                 ret = -EINVAL;
1257                 break;
1258         }
1259
1260         mutex_unlock(&rfkill_global_mutex);
1261
1262         return ret ?: count;
1263 }
1264
1265 static int rfkill_fop_release(struct inode *inode, struct file *file)
1266 {
1267         struct rfkill_data *data = file->private_data;
1268         struct rfkill_int_event *ev, *tmp;
1269
1270         mutex_lock(&rfkill_global_mutex);
1271         list_del(&data->list);
1272         mutex_unlock(&rfkill_global_mutex);
1273
1274         mutex_destroy(&data->mtx);
1275         list_for_each_entry_safe(ev, tmp, &data->events, list)
1276                 kfree(ev);
1277
1278 #ifdef CONFIG_RFKILL_INPUT
1279         if (data->input_handler)
1280                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1281                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1282 #endif
1283
1284         kfree(data);
1285
1286         return 0;
1287 }
1288
1289 #ifdef CONFIG_RFKILL_INPUT
1290 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1291                              unsigned long arg)
1292 {
1293         struct rfkill_data *data = file->private_data;
1294
1295         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1296                 return -ENOSYS;
1297
1298         if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1299                 return -ENOSYS;
1300
1301         mutex_lock(&data->mtx);
1302
1303         if (!data->input_handler) {
1304                 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1305                         printk(KERN_DEBUG "rfkill: input handler disabled\n");
1306                 data->input_handler = true;
1307         }
1308
1309         mutex_unlock(&data->mtx);
1310
1311         return 0;
1312 }
1313 #endif
1314
1315 static const struct file_operations rfkill_fops = {
1316         .owner          = THIS_MODULE,
1317         .open           = rfkill_fop_open,
1318         .read           = rfkill_fop_read,
1319         .write          = rfkill_fop_write,
1320         .poll           = rfkill_fop_poll,
1321         .release        = rfkill_fop_release,
1322 #ifdef CONFIG_RFKILL_INPUT
1323         .unlocked_ioctl = rfkill_fop_ioctl,
1324         .compat_ioctl   = rfkill_fop_ioctl,
1325 #endif
1326         .llseek         = no_llseek,
1327 };
1328
1329 static struct miscdevice rfkill_miscdev = {
1330         .name   = "rfkill",
1331         .fops   = &rfkill_fops,
1332         .minor  = MISC_DYNAMIC_MINOR,
1333 };
1334
1335 static int __init rfkill_init(void)
1336 {
1337         int error;
1338
1339         rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1340
1341         error = class_register(&rfkill_class);
1342         if (error)
1343                 goto error_class;
1344
1345         error = misc_register(&rfkill_miscdev);
1346         if (error)
1347                 goto error_misc;
1348
1349         error = rfkill_global_led_trigger_register();
1350         if (error)
1351                 goto error_led_trigger;
1352
1353 #ifdef CONFIG_RFKILL_INPUT
1354         error = rfkill_handler_init();
1355         if (error)
1356                 goto error_input;
1357 #endif
1358
1359         return 0;
1360
1361 #ifdef CONFIG_RFKILL_INPUT
1362 error_input:
1363         rfkill_global_led_trigger_unregister();
1364 #endif
1365 error_led_trigger:
1366         misc_deregister(&rfkill_miscdev);
1367 error_misc:
1368         class_unregister(&rfkill_class);
1369 error_class:
1370         return error;
1371 }
1372 subsys_initcall(rfkill_init);
1373
1374 static void __exit rfkill_exit(void)
1375 {
1376 #ifdef CONFIG_RFKILL_INPUT
1377         rfkill_handler_exit();
1378 #endif
1379         rfkill_global_led_trigger_unregister();
1380         misc_deregister(&rfkill_miscdev);
1381         class_unregister(&rfkill_class);
1382 }
1383 module_exit(rfkill_exit);