Merge tag 'gcc-plugins-v5.2-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / net / openvswitch / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2017 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51 #include <net/tun_proto.h>
52 #include <net/erspan.h>
53
54 #include "flow_netlink.h"
55
56 struct ovs_len_tbl {
57         int len;
58         const struct ovs_len_tbl *next;
59 };
60
61 #define OVS_ATTR_NESTED -1
62 #define OVS_ATTR_VARIABLE -2
63
64 static bool actions_may_change_flow(const struct nlattr *actions)
65 {
66         struct nlattr *nla;
67         int rem;
68
69         nla_for_each_nested(nla, actions, rem) {
70                 u16 action = nla_type(nla);
71
72                 switch (action) {
73                 case OVS_ACTION_ATTR_OUTPUT:
74                 case OVS_ACTION_ATTR_RECIRC:
75                 case OVS_ACTION_ATTR_TRUNC:
76                 case OVS_ACTION_ATTR_USERSPACE:
77                         break;
78
79                 case OVS_ACTION_ATTR_CT:
80                 case OVS_ACTION_ATTR_CT_CLEAR:
81                 case OVS_ACTION_ATTR_HASH:
82                 case OVS_ACTION_ATTR_POP_ETH:
83                 case OVS_ACTION_ATTR_POP_MPLS:
84                 case OVS_ACTION_ATTR_POP_NSH:
85                 case OVS_ACTION_ATTR_POP_VLAN:
86                 case OVS_ACTION_ATTR_PUSH_ETH:
87                 case OVS_ACTION_ATTR_PUSH_MPLS:
88                 case OVS_ACTION_ATTR_PUSH_NSH:
89                 case OVS_ACTION_ATTR_PUSH_VLAN:
90                 case OVS_ACTION_ATTR_SAMPLE:
91                 case OVS_ACTION_ATTR_SET:
92                 case OVS_ACTION_ATTR_SET_MASKED:
93                 case OVS_ACTION_ATTR_METER:
94                 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
95                 default:
96                         return true;
97                 }
98         }
99         return false;
100 }
101
102 static void update_range(struct sw_flow_match *match,
103                          size_t offset, size_t size, bool is_mask)
104 {
105         struct sw_flow_key_range *range;
106         size_t start = rounddown(offset, sizeof(long));
107         size_t end = roundup(offset + size, sizeof(long));
108
109         if (!is_mask)
110                 range = &match->range;
111         else
112                 range = &match->mask->range;
113
114         if (range->start == range->end) {
115                 range->start = start;
116                 range->end = end;
117                 return;
118         }
119
120         if (range->start > start)
121                 range->start = start;
122
123         if (range->end < end)
124                 range->end = end;
125 }
126
127 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
128         do { \
129                 update_range(match, offsetof(struct sw_flow_key, field),    \
130                              sizeof((match)->key->field), is_mask);         \
131                 if (is_mask)                                                \
132                         (match)->mask->key.field = value;                   \
133                 else                                                        \
134                         (match)->key->field = value;                        \
135         } while (0)
136
137 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
138         do {                                                                \
139                 update_range(match, offset, len, is_mask);                  \
140                 if (is_mask)                                                \
141                         memcpy((u8 *)&(match)->mask->key + offset, value_p, \
142                                len);                                       \
143                 else                                                        \
144                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
145         } while (0)
146
147 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
148         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
149                                   value_p, len, is_mask)
150
151 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
152         do {                                                                \
153                 update_range(match, offsetof(struct sw_flow_key, field),    \
154                              sizeof((match)->key->field), is_mask);         \
155                 if (is_mask)                                                \
156                         memset((u8 *)&(match)->mask->key.field, value,      \
157                                sizeof((match)->mask->key.field));           \
158                 else                                                        \
159                         memset((u8 *)&(match)->key->field, value,           \
160                                sizeof((match)->key->field));                \
161         } while (0)
162
163 static bool match_validate(const struct sw_flow_match *match,
164                            u64 key_attrs, u64 mask_attrs, bool log)
165 {
166         u64 key_expected = 0;
167         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
168
169         /* The following mask attributes allowed only if they
170          * pass the validation tests. */
171         mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
172                         | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
173                         | (1 << OVS_KEY_ATTR_IPV6)
174                         | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
175                         | (1 << OVS_KEY_ATTR_TCP)
176                         | (1 << OVS_KEY_ATTR_TCP_FLAGS)
177                         | (1 << OVS_KEY_ATTR_UDP)
178                         | (1 << OVS_KEY_ATTR_SCTP)
179                         | (1 << OVS_KEY_ATTR_ICMP)
180                         | (1 << OVS_KEY_ATTR_ICMPV6)
181                         | (1 << OVS_KEY_ATTR_ARP)
182                         | (1 << OVS_KEY_ATTR_ND)
183                         | (1 << OVS_KEY_ATTR_MPLS)
184                         | (1 << OVS_KEY_ATTR_NSH));
185
186         /* Always allowed mask fields. */
187         mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
188                        | (1 << OVS_KEY_ATTR_IN_PORT)
189                        | (1 << OVS_KEY_ATTR_ETHERTYPE));
190
191         /* Check key attributes. */
192         if (match->key->eth.type == htons(ETH_P_ARP)
193                         || match->key->eth.type == htons(ETH_P_RARP)) {
194                 key_expected |= 1 << OVS_KEY_ATTR_ARP;
195                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
196                         mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
197         }
198
199         if (eth_p_mpls(match->key->eth.type)) {
200                 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
201                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
202                         mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
203         }
204
205         if (match->key->eth.type == htons(ETH_P_IP)) {
206                 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
207                 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
208                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
209                         mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
210                 }
211
212                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
213                         if (match->key->ip.proto == IPPROTO_UDP) {
214                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
215                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
216                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
217                         }
218
219                         if (match->key->ip.proto == IPPROTO_SCTP) {
220                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
221                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
222                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
223                         }
224
225                         if (match->key->ip.proto == IPPROTO_TCP) {
226                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
227                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
228                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
229                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
230                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
231                                 }
232                         }
233
234                         if (match->key->ip.proto == IPPROTO_ICMP) {
235                                 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
236                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
237                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
238                         }
239                 }
240         }
241
242         if (match->key->eth.type == htons(ETH_P_IPV6)) {
243                 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
244                 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
245                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
246                         mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
247                 }
248
249                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
250                         if (match->key->ip.proto == IPPROTO_UDP) {
251                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
252                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
253                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
254                         }
255
256                         if (match->key->ip.proto == IPPROTO_SCTP) {
257                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
258                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
259                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
260                         }
261
262                         if (match->key->ip.proto == IPPROTO_TCP) {
263                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
264                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
265                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
266                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
267                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
268                                 }
269                         }
270
271                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
272                                 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
273                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
274                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
275
276                                 if (match->key->tp.src ==
277                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
278                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
279                                         key_expected |= 1 << OVS_KEY_ATTR_ND;
280                                         /* Original direction conntrack tuple
281                                          * uses the same space as the ND fields
282                                          * in the key, so both are not allowed
283                                          * at the same time.
284                                          */
285                                         mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
286                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
287                                                 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
288                                 }
289                         }
290                 }
291         }
292
293         if (match->key->eth.type == htons(ETH_P_NSH)) {
294                 key_expected |= 1 << OVS_KEY_ATTR_NSH;
295                 if (match->mask &&
296                     match->mask->key.eth.type == htons(0xffff)) {
297                         mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
298                 }
299         }
300
301         if ((key_attrs & key_expected) != key_expected) {
302                 /* Key attributes check failed. */
303                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
304                           (unsigned long long)key_attrs,
305                           (unsigned long long)key_expected);
306                 return false;
307         }
308
309         if ((mask_attrs & mask_allowed) != mask_attrs) {
310                 /* Mask attributes check failed. */
311                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
312                           (unsigned long long)mask_attrs,
313                           (unsigned long long)mask_allowed);
314                 return false;
315         }
316
317         return true;
318 }
319
320 size_t ovs_tun_key_attr_size(void)
321 {
322         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
323          * updating this function.
324          */
325         return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
326                 + nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
327                 + nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
328                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
329                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
330                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
331                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
332                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
333                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
334                 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
335                  * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
336                  * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
337                  */
338                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
339                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
340 }
341
342 static size_t ovs_nsh_key_attr_size(void)
343 {
344         /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
345          * updating this function.
346          */
347         return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
348                 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
349                  * mutually exclusive, so the bigger one can cover
350                  * the small one.
351                  */
352                 + nla_total_size(NSH_CTX_HDRS_MAX_LEN);
353 }
354
355 size_t ovs_key_attr_size(void)
356 {
357         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
358          * updating this function.
359          */
360         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
361
362         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
363                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
364                   + ovs_tun_key_attr_size()
365                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
366                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
367                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
368                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
369                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
370                 + nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
371                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
372                 + nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
373                 + nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
374                 + nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
375                   + ovs_nsh_key_attr_size()
376                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
377                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
378                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
379                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
380                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
381                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
382                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
383                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
384 }
385
386 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
387         [OVS_VXLAN_EXT_GBP]         = { .len = sizeof(u32) },
388 };
389
390 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
391         [OVS_TUNNEL_KEY_ATTR_ID]            = { .len = sizeof(u64) },
392         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC]      = { .len = sizeof(u32) },
393         [OVS_TUNNEL_KEY_ATTR_IPV4_DST]      = { .len = sizeof(u32) },
394         [OVS_TUNNEL_KEY_ATTR_TOS]           = { .len = 1 },
395         [OVS_TUNNEL_KEY_ATTR_TTL]           = { .len = 1 },
396         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
397         [OVS_TUNNEL_KEY_ATTR_CSUM]          = { .len = 0 },
398         [OVS_TUNNEL_KEY_ATTR_TP_SRC]        = { .len = sizeof(u16) },
399         [OVS_TUNNEL_KEY_ATTR_TP_DST]        = { .len = sizeof(u16) },
400         [OVS_TUNNEL_KEY_ATTR_OAM]           = { .len = 0 },
401         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
402         [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
403                                                 .next = ovs_vxlan_ext_key_lens },
404         [OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
405         [OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
406         [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
407         [OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
408 };
409
410 static const struct ovs_len_tbl
411 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
412         [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
413         [OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
414         [OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
415 };
416
417 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
418 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
419         [OVS_KEY_ATTR_ENCAP]     = { .len = OVS_ATTR_NESTED },
420         [OVS_KEY_ATTR_PRIORITY]  = { .len = sizeof(u32) },
421         [OVS_KEY_ATTR_IN_PORT]   = { .len = sizeof(u32) },
422         [OVS_KEY_ATTR_SKB_MARK]  = { .len = sizeof(u32) },
423         [OVS_KEY_ATTR_ETHERNET]  = { .len = sizeof(struct ovs_key_ethernet) },
424         [OVS_KEY_ATTR_VLAN]      = { .len = sizeof(__be16) },
425         [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
426         [OVS_KEY_ATTR_IPV4]      = { .len = sizeof(struct ovs_key_ipv4) },
427         [OVS_KEY_ATTR_IPV6]      = { .len = sizeof(struct ovs_key_ipv6) },
428         [OVS_KEY_ATTR_TCP]       = { .len = sizeof(struct ovs_key_tcp) },
429         [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
430         [OVS_KEY_ATTR_UDP]       = { .len = sizeof(struct ovs_key_udp) },
431         [OVS_KEY_ATTR_SCTP]      = { .len = sizeof(struct ovs_key_sctp) },
432         [OVS_KEY_ATTR_ICMP]      = { .len = sizeof(struct ovs_key_icmp) },
433         [OVS_KEY_ATTR_ICMPV6]    = { .len = sizeof(struct ovs_key_icmpv6) },
434         [OVS_KEY_ATTR_ARP]       = { .len = sizeof(struct ovs_key_arp) },
435         [OVS_KEY_ATTR_ND]        = { .len = sizeof(struct ovs_key_nd) },
436         [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
437         [OVS_KEY_ATTR_DP_HASH]   = { .len = sizeof(u32) },
438         [OVS_KEY_ATTR_TUNNEL]    = { .len = OVS_ATTR_NESTED,
439                                      .next = ovs_tunnel_key_lens, },
440         [OVS_KEY_ATTR_MPLS]      = { .len = sizeof(struct ovs_key_mpls) },
441         [OVS_KEY_ATTR_CT_STATE]  = { .len = sizeof(u32) },
442         [OVS_KEY_ATTR_CT_ZONE]   = { .len = sizeof(u16) },
443         [OVS_KEY_ATTR_CT_MARK]   = { .len = sizeof(u32) },
444         [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
445         [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
446                 .len = sizeof(struct ovs_key_ct_tuple_ipv4) },
447         [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
448                 .len = sizeof(struct ovs_key_ct_tuple_ipv6) },
449         [OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
450                                      .next = ovs_nsh_key_attr_lens, },
451 };
452
453 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
454 {
455         return expected_len == attr_len ||
456                expected_len == OVS_ATTR_NESTED ||
457                expected_len == OVS_ATTR_VARIABLE;
458 }
459
460 static bool is_all_zero(const u8 *fp, size_t size)
461 {
462         int i;
463
464         if (!fp)
465                 return false;
466
467         for (i = 0; i < size; i++)
468                 if (fp[i])
469                         return false;
470
471         return true;
472 }
473
474 static int __parse_flow_nlattrs(const struct nlattr *attr,
475                                 const struct nlattr *a[],
476                                 u64 *attrsp, bool log, bool nz)
477 {
478         const struct nlattr *nla;
479         u64 attrs;
480         int rem;
481
482         attrs = *attrsp;
483         nla_for_each_nested(nla, attr, rem) {
484                 u16 type = nla_type(nla);
485                 int expected_len;
486
487                 if (type > OVS_KEY_ATTR_MAX) {
488                         OVS_NLERR(log, "Key type %d is out of range max %d",
489                                   type, OVS_KEY_ATTR_MAX);
490                         return -EINVAL;
491                 }
492
493                 if (attrs & (1 << type)) {
494                         OVS_NLERR(log, "Duplicate key (type %d).", type);
495                         return -EINVAL;
496                 }
497
498                 expected_len = ovs_key_lens[type].len;
499                 if (!check_attr_len(nla_len(nla), expected_len)) {
500                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
501                                   type, nla_len(nla), expected_len);
502                         return -EINVAL;
503                 }
504
505                 if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
506                         attrs |= 1 << type;
507                         a[type] = nla;
508                 }
509         }
510         if (rem) {
511                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
512                 return -EINVAL;
513         }
514
515         *attrsp = attrs;
516         return 0;
517 }
518
519 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
520                                    const struct nlattr *a[], u64 *attrsp,
521                                    bool log)
522 {
523         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
524 }
525
526 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
527                        u64 *attrsp, bool log)
528 {
529         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
530 }
531
532 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
533                                      struct sw_flow_match *match, bool is_mask,
534                                      bool log)
535 {
536         unsigned long opt_key_offset;
537
538         if (nla_len(a) > sizeof(match->key->tun_opts)) {
539                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
540                           nla_len(a), sizeof(match->key->tun_opts));
541                 return -EINVAL;
542         }
543
544         if (nla_len(a) % 4 != 0) {
545                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
546                           nla_len(a));
547                 return -EINVAL;
548         }
549
550         /* We need to record the length of the options passed
551          * down, otherwise packets with the same format but
552          * additional options will be silently matched.
553          */
554         if (!is_mask) {
555                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
556                                 false);
557         } else {
558                 /* This is somewhat unusual because it looks at
559                  * both the key and mask while parsing the
560                  * attributes (and by extension assumes the key
561                  * is parsed first). Normally, we would verify
562                  * that each is the correct length and that the
563                  * attributes line up in the validate function.
564                  * However, that is difficult because this is
565                  * variable length and we won't have the
566                  * information later.
567                  */
568                 if (match->key->tun_opts_len != nla_len(a)) {
569                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
570                                   match->key->tun_opts_len, nla_len(a));
571                         return -EINVAL;
572                 }
573
574                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
575         }
576
577         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
578         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
579                                   nla_len(a), is_mask);
580         return 0;
581 }
582
583 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
584                                      struct sw_flow_match *match, bool is_mask,
585                                      bool log)
586 {
587         struct nlattr *a;
588         int rem;
589         unsigned long opt_key_offset;
590         struct vxlan_metadata opts;
591
592         BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
593
594         memset(&opts, 0, sizeof(opts));
595         nla_for_each_nested(a, attr, rem) {
596                 int type = nla_type(a);
597
598                 if (type > OVS_VXLAN_EXT_MAX) {
599                         OVS_NLERR(log, "VXLAN extension %d out of range max %d",
600                                   type, OVS_VXLAN_EXT_MAX);
601                         return -EINVAL;
602                 }
603
604                 if (!check_attr_len(nla_len(a),
605                                     ovs_vxlan_ext_key_lens[type].len)) {
606                         OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
607                                   type, nla_len(a),
608                                   ovs_vxlan_ext_key_lens[type].len);
609                         return -EINVAL;
610                 }
611
612                 switch (type) {
613                 case OVS_VXLAN_EXT_GBP:
614                         opts.gbp = nla_get_u32(a);
615                         break;
616                 default:
617                         OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
618                                   type);
619                         return -EINVAL;
620                 }
621         }
622         if (rem) {
623                 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
624                           rem);
625                 return -EINVAL;
626         }
627
628         if (!is_mask)
629                 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
630         else
631                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
632
633         opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
634         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
635                                   is_mask);
636         return 0;
637 }
638
639 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
640                                       struct sw_flow_match *match, bool is_mask,
641                                       bool log)
642 {
643         unsigned long opt_key_offset;
644
645         BUILD_BUG_ON(sizeof(struct erspan_metadata) >
646                      sizeof(match->key->tun_opts));
647
648         if (nla_len(a) > sizeof(match->key->tun_opts)) {
649                 OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
650                           nla_len(a), sizeof(match->key->tun_opts));
651                 return -EINVAL;
652         }
653
654         if (!is_mask)
655                 SW_FLOW_KEY_PUT(match, tun_opts_len,
656                                 sizeof(struct erspan_metadata), false);
657         else
658                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
659
660         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
661         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
662                                   nla_len(a), is_mask);
663         return 0;
664 }
665
666 static int ip_tun_from_nlattr(const struct nlattr *attr,
667                               struct sw_flow_match *match, bool is_mask,
668                               bool log)
669 {
670         bool ttl = false, ipv4 = false, ipv6 = false;
671         bool info_bridge_mode = false;
672         __be16 tun_flags = 0;
673         int opts_type = 0;
674         struct nlattr *a;
675         int rem;
676
677         nla_for_each_nested(a, attr, rem) {
678                 int type = nla_type(a);
679                 int err;
680
681                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
682                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
683                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
684                         return -EINVAL;
685                 }
686
687                 if (!check_attr_len(nla_len(a),
688                                     ovs_tunnel_key_lens[type].len)) {
689                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
690                                   type, nla_len(a), ovs_tunnel_key_lens[type].len);
691                         return -EINVAL;
692                 }
693
694                 switch (type) {
695                 case OVS_TUNNEL_KEY_ATTR_ID:
696                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
697                                         nla_get_be64(a), is_mask);
698                         tun_flags |= TUNNEL_KEY;
699                         break;
700                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
701                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
702                                         nla_get_in_addr(a), is_mask);
703                         ipv4 = true;
704                         break;
705                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
706                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
707                                         nla_get_in_addr(a), is_mask);
708                         ipv4 = true;
709                         break;
710                 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
711                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
712                                         nla_get_in6_addr(a), is_mask);
713                         ipv6 = true;
714                         break;
715                 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
716                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
717                                         nla_get_in6_addr(a), is_mask);
718                         ipv6 = true;
719                         break;
720                 case OVS_TUNNEL_KEY_ATTR_TOS:
721                         SW_FLOW_KEY_PUT(match, tun_key.tos,
722                                         nla_get_u8(a), is_mask);
723                         break;
724                 case OVS_TUNNEL_KEY_ATTR_TTL:
725                         SW_FLOW_KEY_PUT(match, tun_key.ttl,
726                                         nla_get_u8(a), is_mask);
727                         ttl = true;
728                         break;
729                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
730                         tun_flags |= TUNNEL_DONT_FRAGMENT;
731                         break;
732                 case OVS_TUNNEL_KEY_ATTR_CSUM:
733                         tun_flags |= TUNNEL_CSUM;
734                         break;
735                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
736                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
737                                         nla_get_be16(a), is_mask);
738                         break;
739                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
740                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
741                                         nla_get_be16(a), is_mask);
742                         break;
743                 case OVS_TUNNEL_KEY_ATTR_OAM:
744                         tun_flags |= TUNNEL_OAM;
745                         break;
746                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
747                         if (opts_type) {
748                                 OVS_NLERR(log, "Multiple metadata blocks provided");
749                                 return -EINVAL;
750                         }
751
752                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
753                         if (err)
754                                 return err;
755
756                         tun_flags |= TUNNEL_GENEVE_OPT;
757                         opts_type = type;
758                         break;
759                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
760                         if (opts_type) {
761                                 OVS_NLERR(log, "Multiple metadata blocks provided");
762                                 return -EINVAL;
763                         }
764
765                         err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
766                         if (err)
767                                 return err;
768
769                         tun_flags |= TUNNEL_VXLAN_OPT;
770                         opts_type = type;
771                         break;
772                 case OVS_TUNNEL_KEY_ATTR_PAD:
773                         break;
774                 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
775                         if (opts_type) {
776                                 OVS_NLERR(log, "Multiple metadata blocks provided");
777                                 return -EINVAL;
778                         }
779
780                         err = erspan_tun_opt_from_nlattr(a, match, is_mask,
781                                                          log);
782                         if (err)
783                                 return err;
784
785                         tun_flags |= TUNNEL_ERSPAN_OPT;
786                         opts_type = type;
787                         break;
788                 case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
789                         info_bridge_mode = true;
790                         ipv4 = true;
791                         break;
792                 default:
793                         OVS_NLERR(log, "Unknown IP tunnel attribute %d",
794                                   type);
795                         return -EINVAL;
796                 }
797         }
798
799         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
800         if (is_mask)
801                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
802         else
803                 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
804                                 false);
805
806         if (rem > 0) {
807                 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
808                           rem);
809                 return -EINVAL;
810         }
811
812         if (ipv4 && ipv6) {
813                 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
814                 return -EINVAL;
815         }
816
817         if (!is_mask) {
818                 if (!ipv4 && !ipv6) {
819                         OVS_NLERR(log, "IP tunnel dst address not specified");
820                         return -EINVAL;
821                 }
822                 if (ipv4) {
823                         if (info_bridge_mode) {
824                                 if (match->key->tun_key.u.ipv4.src ||
825                                     match->key->tun_key.u.ipv4.dst ||
826                                     match->key->tun_key.tp_src ||
827                                     match->key->tun_key.tp_dst ||
828                                     match->key->tun_key.ttl ||
829                                     match->key->tun_key.tos ||
830                                     tun_flags & ~TUNNEL_KEY) {
831                                         OVS_NLERR(log, "IPv4 tun info is not correct");
832                                         return -EINVAL;
833                                 }
834                         } else if (!match->key->tun_key.u.ipv4.dst) {
835                                 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
836                                 return -EINVAL;
837                         }
838                 }
839                 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
840                         OVS_NLERR(log, "IPv6 tunnel dst address is zero");
841                         return -EINVAL;
842                 }
843
844                 if (!ttl && !info_bridge_mode) {
845                         OVS_NLERR(log, "IP tunnel TTL not specified.");
846                         return -EINVAL;
847                 }
848         }
849
850         return opts_type;
851 }
852
853 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
854                                const void *tun_opts, int swkey_tun_opts_len)
855 {
856         const struct vxlan_metadata *opts = tun_opts;
857         struct nlattr *nla;
858
859         nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
860         if (!nla)
861                 return -EMSGSIZE;
862
863         if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
864                 return -EMSGSIZE;
865
866         nla_nest_end(skb, nla);
867         return 0;
868 }
869
870 static int __ip_tun_to_nlattr(struct sk_buff *skb,
871                               const struct ip_tunnel_key *output,
872                               const void *tun_opts, int swkey_tun_opts_len,
873                               unsigned short tun_proto, u8 mode)
874 {
875         if (output->tun_flags & TUNNEL_KEY &&
876             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
877                          OVS_TUNNEL_KEY_ATTR_PAD))
878                 return -EMSGSIZE;
879
880         if (mode & IP_TUNNEL_INFO_BRIDGE)
881                 return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
882                        ? -EMSGSIZE : 0;
883
884         switch (tun_proto) {
885         case AF_INET:
886                 if (output->u.ipv4.src &&
887                     nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
888                                     output->u.ipv4.src))
889                         return -EMSGSIZE;
890                 if (output->u.ipv4.dst &&
891                     nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
892                                     output->u.ipv4.dst))
893                         return -EMSGSIZE;
894                 break;
895         case AF_INET6:
896                 if (!ipv6_addr_any(&output->u.ipv6.src) &&
897                     nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
898                                      &output->u.ipv6.src))
899                         return -EMSGSIZE;
900                 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
901                     nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
902                                      &output->u.ipv6.dst))
903                         return -EMSGSIZE;
904                 break;
905         }
906         if (output->tos &&
907             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
908                 return -EMSGSIZE;
909         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
910                 return -EMSGSIZE;
911         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
912             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
913                 return -EMSGSIZE;
914         if ((output->tun_flags & TUNNEL_CSUM) &&
915             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
916                 return -EMSGSIZE;
917         if (output->tp_src &&
918             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
919                 return -EMSGSIZE;
920         if (output->tp_dst &&
921             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
922                 return -EMSGSIZE;
923         if ((output->tun_flags & TUNNEL_OAM) &&
924             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
925                 return -EMSGSIZE;
926         if (swkey_tun_opts_len) {
927                 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
928                     nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
929                             swkey_tun_opts_len, tun_opts))
930                         return -EMSGSIZE;
931                 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
932                          vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
933                         return -EMSGSIZE;
934                 else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
935                          nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
936                                  swkey_tun_opts_len, tun_opts))
937                         return -EMSGSIZE;
938         }
939
940         return 0;
941 }
942
943 static int ip_tun_to_nlattr(struct sk_buff *skb,
944                             const struct ip_tunnel_key *output,
945                             const void *tun_opts, int swkey_tun_opts_len,
946                             unsigned short tun_proto, u8 mode)
947 {
948         struct nlattr *nla;
949         int err;
950
951         nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
952         if (!nla)
953                 return -EMSGSIZE;
954
955         err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
956                                  tun_proto, mode);
957         if (err)
958                 return err;
959
960         nla_nest_end(skb, nla);
961         return 0;
962 }
963
964 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
965                             struct ip_tunnel_info *tun_info)
966 {
967         return __ip_tun_to_nlattr(skb, &tun_info->key,
968                                   ip_tunnel_info_opts(tun_info),
969                                   tun_info->options_len,
970                                   ip_tunnel_info_af(tun_info), tun_info->mode);
971 }
972
973 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
974                                     const struct nlattr *a[],
975                                     bool is_mask, bool inner)
976 {
977         __be16 tci = 0;
978         __be16 tpid = 0;
979
980         if (a[OVS_KEY_ATTR_VLAN])
981                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
982
983         if (a[OVS_KEY_ATTR_ETHERTYPE])
984                 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
985
986         if (likely(!inner)) {
987                 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
988                 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
989         } else {
990                 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
991                 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
992         }
993         return 0;
994 }
995
996 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
997                                       u64 key_attrs, bool inner,
998                                       const struct nlattr **a, bool log)
999 {
1000         __be16 tci = 0;
1001
1002         if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1003               (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1004                eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1005                 /* Not a VLAN. */
1006                 return 0;
1007         }
1008
1009         if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1010               (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1011                 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1012                 return -EINVAL;
1013         }
1014
1015         if (a[OVS_KEY_ATTR_VLAN])
1016                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1017
1018         if (!(tci & htons(VLAN_CFI_MASK))) {
1019                 if (tci) {
1020                         OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1021                                   (inner) ? "C-VLAN" : "VLAN");
1022                         return -EINVAL;
1023                 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1024                         /* Corner case for truncated VLAN header. */
1025                         OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1026                                   (inner) ? "C-VLAN" : "VLAN");
1027                         return -EINVAL;
1028                 }
1029         }
1030
1031         return 1;
1032 }
1033
1034 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1035                                            u64 key_attrs, bool inner,
1036                                            const struct nlattr **a, bool log)
1037 {
1038         __be16 tci = 0;
1039         __be16 tpid = 0;
1040         bool encap_valid = !!(match->key->eth.vlan.tci &
1041                               htons(VLAN_CFI_MASK));
1042         bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1043                                 htons(VLAN_CFI_MASK));
1044
1045         if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1046                 /* Not a VLAN. */
1047                 return 0;
1048         }
1049
1050         if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1051                 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1052                           (inner) ? "C-VLAN" : "VLAN");
1053                 return -EINVAL;
1054         }
1055
1056         if (a[OVS_KEY_ATTR_VLAN])
1057                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1058
1059         if (a[OVS_KEY_ATTR_ETHERTYPE])
1060                 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1061
1062         if (tpid != htons(0xffff)) {
1063                 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1064                           (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1065                 return -EINVAL;
1066         }
1067         if (!(tci & htons(VLAN_CFI_MASK))) {
1068                 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1069                           (inner) ? "C-VLAN" : "VLAN");
1070                 return -EINVAL;
1071         }
1072
1073         return 1;
1074 }
1075
1076 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1077                                      u64 *key_attrs, bool inner,
1078                                      const struct nlattr **a, bool is_mask,
1079                                      bool log)
1080 {
1081         int err;
1082         const struct nlattr *encap;
1083
1084         if (!is_mask)
1085                 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1086                                                  a, log);
1087         else
1088                 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1089                                                       a, log);
1090         if (err <= 0)
1091                 return err;
1092
1093         err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1094         if (err)
1095                 return err;
1096
1097         *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1098         *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1099         *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1100
1101         encap = a[OVS_KEY_ATTR_ENCAP];
1102
1103         if (!is_mask)
1104                 err = parse_flow_nlattrs(encap, a, key_attrs, log);
1105         else
1106                 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1107
1108         return err;
1109 }
1110
1111 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1112                                    u64 *key_attrs, const struct nlattr **a,
1113                                    bool is_mask, bool log)
1114 {
1115         int err;
1116         bool encap_valid = false;
1117
1118         err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1119                                         is_mask, log);
1120         if (err)
1121                 return err;
1122
1123         encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1124         if (encap_valid) {
1125                 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1126                                                 is_mask, log);
1127                 if (err)
1128                         return err;
1129         }
1130
1131         return 0;
1132 }
1133
1134 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1135                                        u64 *attrs, const struct nlattr **a,
1136                                        bool is_mask, bool log)
1137 {
1138         __be16 eth_type;
1139
1140         eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1141         if (is_mask) {
1142                 /* Always exact match EtherType. */
1143                 eth_type = htons(0xffff);
1144         } else if (!eth_proto_is_802_3(eth_type)) {
1145                 OVS_NLERR(log, "EtherType %x is less than min %x",
1146                                 ntohs(eth_type), ETH_P_802_3_MIN);
1147                 return -EINVAL;
1148         }
1149
1150         SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1151         *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1152         return 0;
1153 }
1154
1155 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1156                                  u64 *attrs, const struct nlattr **a,
1157                                  bool is_mask, bool log)
1158 {
1159         u8 mac_proto = MAC_PROTO_ETHERNET;
1160
1161         if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1162                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1163
1164                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1165                 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1166         }
1167
1168         if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1169                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1170
1171                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1172                 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1173         }
1174
1175         if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1176                 SW_FLOW_KEY_PUT(match, phy.priority,
1177                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1178                 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1179         }
1180
1181         if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1182                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1183
1184                 if (is_mask) {
1185                         in_port = 0xffffffff; /* Always exact match in_port. */
1186                 } else if (in_port >= DP_MAX_PORTS) {
1187                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
1188                                   in_port, DP_MAX_PORTS);
1189                         return -EINVAL;
1190                 }
1191
1192                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1193                 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1194         } else if (!is_mask) {
1195                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1196         }
1197
1198         if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1199                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1200
1201                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1202                 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1203         }
1204         if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1205                 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1206                                        is_mask, log) < 0)
1207                         return -EINVAL;
1208                 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1209         }
1210
1211         if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1212             ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1213                 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1214
1215                 if (ct_state & ~CT_SUPPORTED_MASK) {
1216                         OVS_NLERR(log, "ct_state flags %08x unsupported",
1217                                   ct_state);
1218                         return -EINVAL;
1219                 }
1220
1221                 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1222                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1223         }
1224         if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1225             ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1226                 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1227
1228                 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1229                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1230         }
1231         if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1232             ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1233                 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1234
1235                 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1236                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1237         }
1238         if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1239             ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1240                 const struct ovs_key_ct_labels *cl;
1241
1242                 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1243                 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1244                                    sizeof(*cl), is_mask);
1245                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1246         }
1247         if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1248                 const struct ovs_key_ct_tuple_ipv4 *ct;
1249
1250                 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1251
1252                 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1253                 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1254                 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1255                 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1256                 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1257                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1258         }
1259         if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1260                 const struct ovs_key_ct_tuple_ipv6 *ct;
1261
1262                 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1263
1264                 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1265                                    sizeof(match->key->ipv6.ct_orig.src),
1266                                    is_mask);
1267                 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1268                                    sizeof(match->key->ipv6.ct_orig.dst),
1269                                    is_mask);
1270                 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1271                 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1272                 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1273                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1274         }
1275
1276         /* For layer 3 packets the Ethernet type is provided
1277          * and treated as metadata but no MAC addresses are provided.
1278          */
1279         if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1280             (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1281                 mac_proto = MAC_PROTO_NONE;
1282
1283         /* Always exact match mac_proto */
1284         SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1285
1286         if (mac_proto == MAC_PROTO_NONE)
1287                 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1288                                                    log);
1289
1290         return 0;
1291 }
1292
1293 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1294                         struct nshhdr *nh, size_t size)
1295 {
1296         struct nlattr *a;
1297         int rem;
1298         u8 flags = 0;
1299         u8 ttl = 0;
1300         int mdlen = 0;
1301
1302         /* validate_nsh has check this, so we needn't do duplicate check here
1303          */
1304         if (size < NSH_BASE_HDR_LEN)
1305                 return -ENOBUFS;
1306
1307         nla_for_each_nested(a, attr, rem) {
1308                 int type = nla_type(a);
1309
1310                 switch (type) {
1311                 case OVS_NSH_KEY_ATTR_BASE: {
1312                         const struct ovs_nsh_key_base *base = nla_data(a);
1313
1314                         flags = base->flags;
1315                         ttl = base->ttl;
1316                         nh->np = base->np;
1317                         nh->mdtype = base->mdtype;
1318                         nh->path_hdr = base->path_hdr;
1319                         break;
1320                 }
1321                 case OVS_NSH_KEY_ATTR_MD1:
1322                         mdlen = nla_len(a);
1323                         if (mdlen > size - NSH_BASE_HDR_LEN)
1324                                 return -ENOBUFS;
1325                         memcpy(&nh->md1, nla_data(a), mdlen);
1326                         break;
1327
1328                 case OVS_NSH_KEY_ATTR_MD2:
1329                         mdlen = nla_len(a);
1330                         if (mdlen > size - NSH_BASE_HDR_LEN)
1331                                 return -ENOBUFS;
1332                         memcpy(&nh->md2, nla_data(a), mdlen);
1333                         break;
1334
1335                 default:
1336                         return -EINVAL;
1337                 }
1338         }
1339
1340         /* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1341         nh->ver_flags_ttl_len = 0;
1342         nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1343
1344         return 0;
1345 }
1346
1347 int nsh_key_from_nlattr(const struct nlattr *attr,
1348                         struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1349 {
1350         struct nlattr *a;
1351         int rem;
1352
1353         /* validate_nsh has check this, so we needn't do duplicate check here
1354          */
1355         nla_for_each_nested(a, attr, rem) {
1356                 int type = nla_type(a);
1357
1358                 switch (type) {
1359                 case OVS_NSH_KEY_ATTR_BASE: {
1360                         const struct ovs_nsh_key_base *base = nla_data(a);
1361                         const struct ovs_nsh_key_base *base_mask = base + 1;
1362
1363                         nsh->base = *base;
1364                         nsh_mask->base = *base_mask;
1365                         break;
1366                 }
1367                 case OVS_NSH_KEY_ATTR_MD1: {
1368                         const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1369                         const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1370
1371                         memcpy(nsh->context, md1->context, sizeof(*md1));
1372                         memcpy(nsh_mask->context, md1_mask->context,
1373                                sizeof(*md1_mask));
1374                         break;
1375                 }
1376                 case OVS_NSH_KEY_ATTR_MD2:
1377                         /* Not supported yet */
1378                         return -ENOTSUPP;
1379                 default:
1380                         return -EINVAL;
1381                 }
1382         }
1383
1384         return 0;
1385 }
1386
1387 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1388                                    struct sw_flow_match *match, bool is_mask,
1389                                    bool is_push_nsh, bool log)
1390 {
1391         struct nlattr *a;
1392         int rem;
1393         bool has_base = false;
1394         bool has_md1 = false;
1395         bool has_md2 = false;
1396         u8 mdtype = 0;
1397         int mdlen = 0;
1398
1399         if (WARN_ON(is_push_nsh && is_mask))
1400                 return -EINVAL;
1401
1402         nla_for_each_nested(a, attr, rem) {
1403                 int type = nla_type(a);
1404                 int i;
1405
1406                 if (type > OVS_NSH_KEY_ATTR_MAX) {
1407                         OVS_NLERR(log, "nsh attr %d is out of range max %d",
1408                                   type, OVS_NSH_KEY_ATTR_MAX);
1409                         return -EINVAL;
1410                 }
1411
1412                 if (!check_attr_len(nla_len(a),
1413                                     ovs_nsh_key_attr_lens[type].len)) {
1414                         OVS_NLERR(
1415                             log,
1416                             "nsh attr %d has unexpected len %d expected %d",
1417                             type,
1418                             nla_len(a),
1419                             ovs_nsh_key_attr_lens[type].len
1420                         );
1421                         return -EINVAL;
1422                 }
1423
1424                 switch (type) {
1425                 case OVS_NSH_KEY_ATTR_BASE: {
1426                         const struct ovs_nsh_key_base *base = nla_data(a);
1427
1428                         has_base = true;
1429                         mdtype = base->mdtype;
1430                         SW_FLOW_KEY_PUT(match, nsh.base.flags,
1431                                         base->flags, is_mask);
1432                         SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1433                                         base->ttl, is_mask);
1434                         SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1435                                         base->mdtype, is_mask);
1436                         SW_FLOW_KEY_PUT(match, nsh.base.np,
1437                                         base->np, is_mask);
1438                         SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1439                                         base->path_hdr, is_mask);
1440                         break;
1441                 }
1442                 case OVS_NSH_KEY_ATTR_MD1: {
1443                         const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1444
1445                         has_md1 = true;
1446                         for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1447                                 SW_FLOW_KEY_PUT(match, nsh.context[i],
1448                                                 md1->context[i], is_mask);
1449                         break;
1450                 }
1451                 case OVS_NSH_KEY_ATTR_MD2:
1452                         if (!is_push_nsh) /* Not supported MD type 2 yet */
1453                                 return -ENOTSUPP;
1454
1455                         has_md2 = true;
1456                         mdlen = nla_len(a);
1457                         if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1458                                 OVS_NLERR(
1459                                     log,
1460                                     "Invalid MD length %d for MD type %d",
1461                                     mdlen,
1462                                     mdtype
1463                                 );
1464                                 return -EINVAL;
1465                         }
1466                         break;
1467                 default:
1468                         OVS_NLERR(log, "Unknown nsh attribute %d",
1469                                   type);
1470                         return -EINVAL;
1471                 }
1472         }
1473
1474         if (rem > 0) {
1475                 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1476                 return -EINVAL;
1477         }
1478
1479         if (has_md1 && has_md2) {
1480                 OVS_NLERR(
1481                     1,
1482                     "invalid nsh attribute: md1 and md2 are exclusive."
1483                 );
1484                 return -EINVAL;
1485         }
1486
1487         if (!is_mask) {
1488                 if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1489                     (has_md2 && mdtype != NSH_M_TYPE2)) {
1490                         OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1491                                   mdtype);
1492                         return -EINVAL;
1493                 }
1494
1495                 if (is_push_nsh &&
1496                     (!has_base || (!has_md1 && !has_md2))) {
1497                         OVS_NLERR(
1498                             1,
1499                             "push_nsh: missing base or metadata attributes"
1500                         );
1501                         return -EINVAL;
1502                 }
1503         }
1504
1505         return 0;
1506 }
1507
1508 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1509                                 u64 attrs, const struct nlattr **a,
1510                                 bool is_mask, bool log)
1511 {
1512         int err;
1513
1514         err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1515         if (err)
1516                 return err;
1517
1518         if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1519                 const struct ovs_key_ethernet *eth_key;
1520
1521                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1522                 SW_FLOW_KEY_MEMCPY(match, eth.src,
1523                                 eth_key->eth_src, ETH_ALEN, is_mask);
1524                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1525                                 eth_key->eth_dst, ETH_ALEN, is_mask);
1526                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1527
1528                 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1529                         /* VLAN attribute is always parsed before getting here since it
1530                          * may occur multiple times.
1531                          */
1532                         OVS_NLERR(log, "VLAN attribute unexpected.");
1533                         return -EINVAL;
1534                 }
1535
1536                 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1537                         err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1538                                                           log);
1539                         if (err)
1540                                 return err;
1541                 } else if (!is_mask) {
1542                         SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1543                 }
1544         } else if (!match->key->eth.type) {
1545                 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1546                 return -EINVAL;
1547         }
1548
1549         if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1550                 const struct ovs_key_ipv4 *ipv4_key;
1551
1552                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1553                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1554                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1555                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1556                         return -EINVAL;
1557                 }
1558                 SW_FLOW_KEY_PUT(match, ip.proto,
1559                                 ipv4_key->ipv4_proto, is_mask);
1560                 SW_FLOW_KEY_PUT(match, ip.tos,
1561                                 ipv4_key->ipv4_tos, is_mask);
1562                 SW_FLOW_KEY_PUT(match, ip.ttl,
1563                                 ipv4_key->ipv4_ttl, is_mask);
1564                 SW_FLOW_KEY_PUT(match, ip.frag,
1565                                 ipv4_key->ipv4_frag, is_mask);
1566                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1567                                 ipv4_key->ipv4_src, is_mask);
1568                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1569                                 ipv4_key->ipv4_dst, is_mask);
1570                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1571         }
1572
1573         if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1574                 const struct ovs_key_ipv6 *ipv6_key;
1575
1576                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1577                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1578                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1579                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1580                         return -EINVAL;
1581                 }
1582
1583                 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1584                         OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1585                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1586                         return -EINVAL;
1587                 }
1588
1589                 SW_FLOW_KEY_PUT(match, ipv6.label,
1590                                 ipv6_key->ipv6_label, is_mask);
1591                 SW_FLOW_KEY_PUT(match, ip.proto,
1592                                 ipv6_key->ipv6_proto, is_mask);
1593                 SW_FLOW_KEY_PUT(match, ip.tos,
1594                                 ipv6_key->ipv6_tclass, is_mask);
1595                 SW_FLOW_KEY_PUT(match, ip.ttl,
1596                                 ipv6_key->ipv6_hlimit, is_mask);
1597                 SW_FLOW_KEY_PUT(match, ip.frag,
1598                                 ipv6_key->ipv6_frag, is_mask);
1599                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1600                                 ipv6_key->ipv6_src,
1601                                 sizeof(match->key->ipv6.addr.src),
1602                                 is_mask);
1603                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1604                                 ipv6_key->ipv6_dst,
1605                                 sizeof(match->key->ipv6.addr.dst),
1606                                 is_mask);
1607
1608                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1609         }
1610
1611         if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1612                 const struct ovs_key_arp *arp_key;
1613
1614                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1615                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1616                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1617                                   arp_key->arp_op);
1618                         return -EINVAL;
1619                 }
1620
1621                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1622                                 arp_key->arp_sip, is_mask);
1623                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1624                         arp_key->arp_tip, is_mask);
1625                 SW_FLOW_KEY_PUT(match, ip.proto,
1626                                 ntohs(arp_key->arp_op), is_mask);
1627                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1628                                 arp_key->arp_sha, ETH_ALEN, is_mask);
1629                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1630                                 arp_key->arp_tha, ETH_ALEN, is_mask);
1631
1632                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1633         }
1634
1635         if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1636                 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1637                                             is_mask, false, log) < 0)
1638                         return -EINVAL;
1639                 attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1640         }
1641
1642         if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1643                 const struct ovs_key_mpls *mpls_key;
1644
1645                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1646                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1647                                 mpls_key->mpls_lse, is_mask);
1648
1649                 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1650          }
1651
1652         if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1653                 const struct ovs_key_tcp *tcp_key;
1654
1655                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1656                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1657                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1658                 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1659         }
1660
1661         if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1662                 SW_FLOW_KEY_PUT(match, tp.flags,
1663                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1664                                 is_mask);
1665                 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1666         }
1667
1668         if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1669                 const struct ovs_key_udp *udp_key;
1670
1671                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1672                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1673                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1674                 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1675         }
1676
1677         if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1678                 const struct ovs_key_sctp *sctp_key;
1679
1680                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1681                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1682                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1683                 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1684         }
1685
1686         if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1687                 const struct ovs_key_icmp *icmp_key;
1688
1689                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1690                 SW_FLOW_KEY_PUT(match, tp.src,
1691                                 htons(icmp_key->icmp_type), is_mask);
1692                 SW_FLOW_KEY_PUT(match, tp.dst,
1693                                 htons(icmp_key->icmp_code), is_mask);
1694                 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1695         }
1696
1697         if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1698                 const struct ovs_key_icmpv6 *icmpv6_key;
1699
1700                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1701                 SW_FLOW_KEY_PUT(match, tp.src,
1702                                 htons(icmpv6_key->icmpv6_type), is_mask);
1703                 SW_FLOW_KEY_PUT(match, tp.dst,
1704                                 htons(icmpv6_key->icmpv6_code), is_mask);
1705                 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1706         }
1707
1708         if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1709                 const struct ovs_key_nd *nd_key;
1710
1711                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1712                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1713                         nd_key->nd_target,
1714                         sizeof(match->key->ipv6.nd.target),
1715                         is_mask);
1716                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1717                         nd_key->nd_sll, ETH_ALEN, is_mask);
1718                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1719                                 nd_key->nd_tll, ETH_ALEN, is_mask);
1720                 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1721         }
1722
1723         if (attrs != 0) {
1724                 OVS_NLERR(log, "Unknown key attributes %llx",
1725                           (unsigned long long)attrs);
1726                 return -EINVAL;
1727         }
1728
1729         return 0;
1730 }
1731
1732 static void nlattr_set(struct nlattr *attr, u8 val,
1733                        const struct ovs_len_tbl *tbl)
1734 {
1735         struct nlattr *nla;
1736         int rem;
1737
1738         /* The nlattr stream should already have been validated */
1739         nla_for_each_nested(nla, attr, rem) {
1740                 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1741                         nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1742                 else
1743                         memset(nla_data(nla), val, nla_len(nla));
1744
1745                 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1746                         *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1747         }
1748 }
1749
1750 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1751 {
1752         nlattr_set(attr, val, ovs_key_lens);
1753 }
1754
1755 /**
1756  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1757  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1758  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1759  * does not include any don't care bit.
1760  * @net: Used to determine per-namespace field support.
1761  * @match: receives the extracted flow match information.
1762  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1763  * sequence. The fields should of the packet that triggered the creation
1764  * of this flow.
1765  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1766  * attribute specifies the mask field of the wildcarded flow.
1767  * @log: Boolean to allow kernel error logging.  Normally true, but when
1768  * probing for feature compatibility this should be passed in as false to
1769  * suppress unnecessary error logging.
1770  */
1771 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1772                       const struct nlattr *nla_key,
1773                       const struct nlattr *nla_mask,
1774                       bool log)
1775 {
1776         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1777         struct nlattr *newmask = NULL;
1778         u64 key_attrs = 0;
1779         u64 mask_attrs = 0;
1780         int err;
1781
1782         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1783         if (err)
1784                 return err;
1785
1786         err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1787         if (err)
1788                 return err;
1789
1790         err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1791         if (err)
1792                 return err;
1793
1794         if (match->mask) {
1795                 if (!nla_mask) {
1796                         /* Create an exact match mask. We need to set to 0xff
1797                          * all the 'match->mask' fields that have been touched
1798                          * in 'match->key'. We cannot simply memset
1799                          * 'match->mask', because padding bytes and fields not
1800                          * specified in 'match->key' should be left to 0.
1801                          * Instead, we use a stream of netlink attributes,
1802                          * copied from 'key' and set to 0xff.
1803                          * ovs_key_from_nlattrs() will take care of filling
1804                          * 'match->mask' appropriately.
1805                          */
1806                         newmask = kmemdup(nla_key,
1807                                           nla_total_size(nla_len(nla_key)),
1808                                           GFP_KERNEL);
1809                         if (!newmask)
1810                                 return -ENOMEM;
1811
1812                         mask_set_nlattr(newmask, 0xff);
1813
1814                         /* The userspace does not send tunnel attributes that
1815                          * are 0, but we should not wildcard them nonetheless.
1816                          */
1817                         if (match->key->tun_proto)
1818                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1819                                                          0xff, true);
1820
1821                         nla_mask = newmask;
1822                 }
1823
1824                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1825                 if (err)
1826                         goto free_newmask;
1827
1828                 /* Always match on tci. */
1829                 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1830                 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1831
1832                 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1833                 if (err)
1834                         goto free_newmask;
1835
1836                 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1837                                            log);
1838                 if (err)
1839                         goto free_newmask;
1840         }
1841
1842         if (!match_validate(match, key_attrs, mask_attrs, log))
1843                 err = -EINVAL;
1844
1845 free_newmask:
1846         kfree(newmask);
1847         return err;
1848 }
1849
1850 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1851 {
1852         size_t len;
1853
1854         if (!attr)
1855                 return 0;
1856
1857         len = nla_len(attr);
1858         if (len < 1 || len > MAX_UFID_LENGTH) {
1859                 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1860                           nla_len(attr), MAX_UFID_LENGTH);
1861                 return 0;
1862         }
1863
1864         return len;
1865 }
1866
1867 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1868  * or false otherwise.
1869  */
1870 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1871                       bool log)
1872 {
1873         sfid->ufid_len = get_ufid_len(attr, log);
1874         if (sfid->ufid_len)
1875                 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1876
1877         return sfid->ufid_len;
1878 }
1879
1880 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1881                            const struct sw_flow_key *key, bool log)
1882 {
1883         struct sw_flow_key *new_key;
1884
1885         if (ovs_nla_get_ufid(sfid, ufid, log))
1886                 return 0;
1887
1888         /* If UFID was not provided, use unmasked key. */
1889         new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1890         if (!new_key)
1891                 return -ENOMEM;
1892         memcpy(new_key, key, sizeof(*key));
1893         sfid->unmasked_key = new_key;
1894
1895         return 0;
1896 }
1897
1898 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1899 {
1900         return attr ? nla_get_u32(attr) : 0;
1901 }
1902
1903 /**
1904  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1905  * @net: Network namespace.
1906  * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1907  * metadata.
1908  * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1909  * attributes.
1910  * @attrs: Bit mask for the netlink attributes included in @a.
1911  * @log: Boolean to allow kernel error logging.  Normally true, but when
1912  * probing for feature compatibility this should be passed in as false to
1913  * suppress unnecessary error logging.
1914  *
1915  * This parses a series of Netlink attributes that form a flow key, which must
1916  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1917  * get the metadata, that is, the parts of the flow key that cannot be
1918  * extracted from the packet itself.
1919  *
1920  * This must be called before the packet key fields are filled in 'key'.
1921  */
1922
1923 int ovs_nla_get_flow_metadata(struct net *net,
1924                               const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1925                               u64 attrs, struct sw_flow_key *key, bool log)
1926 {
1927         struct sw_flow_match match;
1928
1929         memset(&match, 0, sizeof(match));
1930         match.key = key;
1931
1932         key->ct_state = 0;
1933         key->ct_zone = 0;
1934         key->ct_orig_proto = 0;
1935         memset(&key->ct, 0, sizeof(key->ct));
1936         memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1937         memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1938
1939         key->phy.in_port = DP_MAX_PORTS;
1940
1941         return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1942 }
1943
1944 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1945                             bool is_mask)
1946 {
1947         __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1948
1949         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1950             nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1951                 return -EMSGSIZE;
1952         return 0;
1953 }
1954
1955 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1956                              struct sk_buff *skb)
1957 {
1958         struct nlattr *start;
1959
1960         start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1961         if (!start)
1962                 return -EMSGSIZE;
1963
1964         if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1965                 goto nla_put_failure;
1966
1967         if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1968                 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1969                             sizeof(nsh->context), nsh->context))
1970                         goto nla_put_failure;
1971         }
1972
1973         /* Don't support MD type 2 yet */
1974
1975         nla_nest_end(skb, start);
1976
1977         return 0;
1978
1979 nla_put_failure:
1980         return -EMSGSIZE;
1981 }
1982
1983 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1984                              const struct sw_flow_key *output, bool is_mask,
1985                              struct sk_buff *skb)
1986 {
1987         struct ovs_key_ethernet *eth_key;
1988         struct nlattr *nla;
1989         struct nlattr *encap = NULL;
1990         struct nlattr *in_encap = NULL;
1991
1992         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1993                 goto nla_put_failure;
1994
1995         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1996                 goto nla_put_failure;
1997
1998         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1999                 goto nla_put_failure;
2000
2001         if ((swkey->tun_proto || is_mask)) {
2002                 const void *opts = NULL;
2003
2004                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2005                         opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2006
2007                 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2008                                      swkey->tun_opts_len, swkey->tun_proto, 0))
2009                         goto nla_put_failure;
2010         }
2011
2012         if (swkey->phy.in_port == DP_MAX_PORTS) {
2013                 if (is_mask && (output->phy.in_port == 0xffff))
2014                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2015                                 goto nla_put_failure;
2016         } else {
2017                 u16 upper_u16;
2018                 upper_u16 = !is_mask ? 0 : 0xffff;
2019
2020                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2021                                 (upper_u16 << 16) | output->phy.in_port))
2022                         goto nla_put_failure;
2023         }
2024
2025         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2026                 goto nla_put_failure;
2027
2028         if (ovs_ct_put_key(swkey, output, skb))
2029                 goto nla_put_failure;
2030
2031         if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2032                 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2033                 if (!nla)
2034                         goto nla_put_failure;
2035
2036                 eth_key = nla_data(nla);
2037                 ether_addr_copy(eth_key->eth_src, output->eth.src);
2038                 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2039
2040                 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2041                         if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2042                                 goto nla_put_failure;
2043                         encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2044                         if (!swkey->eth.vlan.tci)
2045                                 goto unencap;
2046
2047                         if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2048                                 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2049                                         goto nla_put_failure;
2050                                 in_encap = nla_nest_start_noflag(skb,
2051                                                                  OVS_KEY_ATTR_ENCAP);
2052                                 if (!swkey->eth.cvlan.tci)
2053                                         goto unencap;
2054                         }
2055                 }
2056
2057                 if (swkey->eth.type == htons(ETH_P_802_2)) {
2058                         /*
2059                         * Ethertype 802.2 is represented in the netlink with omitted
2060                         * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2061                         * 0xffff in the mask attribute.  Ethertype can also
2062                         * be wildcarded.
2063                         */
2064                         if (is_mask && output->eth.type)
2065                                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2066                                                         output->eth.type))
2067                                         goto nla_put_failure;
2068                         goto unencap;
2069                 }
2070         }
2071
2072         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2073                 goto nla_put_failure;
2074
2075         if (eth_type_vlan(swkey->eth.type)) {
2076                 /* There are 3 VLAN tags, we don't know anything about the rest
2077                  * of the packet, so truncate here.
2078                  */
2079                 WARN_ON_ONCE(!(encap && in_encap));
2080                 goto unencap;
2081         }
2082
2083         if (swkey->eth.type == htons(ETH_P_IP)) {
2084                 struct ovs_key_ipv4 *ipv4_key;
2085
2086                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2087                 if (!nla)
2088                         goto nla_put_failure;
2089                 ipv4_key = nla_data(nla);
2090                 ipv4_key->ipv4_src = output->ipv4.addr.src;
2091                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2092                 ipv4_key->ipv4_proto = output->ip.proto;
2093                 ipv4_key->ipv4_tos = output->ip.tos;
2094                 ipv4_key->ipv4_ttl = output->ip.ttl;
2095                 ipv4_key->ipv4_frag = output->ip.frag;
2096         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2097                 struct ovs_key_ipv6 *ipv6_key;
2098
2099                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2100                 if (!nla)
2101                         goto nla_put_failure;
2102                 ipv6_key = nla_data(nla);
2103                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2104                                 sizeof(ipv6_key->ipv6_src));
2105                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2106                                 sizeof(ipv6_key->ipv6_dst));
2107                 ipv6_key->ipv6_label = output->ipv6.label;
2108                 ipv6_key->ipv6_proto = output->ip.proto;
2109                 ipv6_key->ipv6_tclass = output->ip.tos;
2110                 ipv6_key->ipv6_hlimit = output->ip.ttl;
2111                 ipv6_key->ipv6_frag = output->ip.frag;
2112         } else if (swkey->eth.type == htons(ETH_P_NSH)) {
2113                 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2114                         goto nla_put_failure;
2115         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
2116                    swkey->eth.type == htons(ETH_P_RARP)) {
2117                 struct ovs_key_arp *arp_key;
2118
2119                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2120                 if (!nla)
2121                         goto nla_put_failure;
2122                 arp_key = nla_data(nla);
2123                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
2124                 arp_key->arp_sip = output->ipv4.addr.src;
2125                 arp_key->arp_tip = output->ipv4.addr.dst;
2126                 arp_key->arp_op = htons(output->ip.proto);
2127                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2128                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2129         } else if (eth_p_mpls(swkey->eth.type)) {
2130                 struct ovs_key_mpls *mpls_key;
2131
2132                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
2133                 if (!nla)
2134                         goto nla_put_failure;
2135                 mpls_key = nla_data(nla);
2136                 mpls_key->mpls_lse = output->mpls.top_lse;
2137         }
2138
2139         if ((swkey->eth.type == htons(ETH_P_IP) ||
2140              swkey->eth.type == htons(ETH_P_IPV6)) &&
2141              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2142
2143                 if (swkey->ip.proto == IPPROTO_TCP) {
2144                         struct ovs_key_tcp *tcp_key;
2145
2146                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2147                         if (!nla)
2148                                 goto nla_put_failure;
2149                         tcp_key = nla_data(nla);
2150                         tcp_key->tcp_src = output->tp.src;
2151                         tcp_key->tcp_dst = output->tp.dst;
2152                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2153                                          output->tp.flags))
2154                                 goto nla_put_failure;
2155                 } else if (swkey->ip.proto == IPPROTO_UDP) {
2156                         struct ovs_key_udp *udp_key;
2157
2158                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2159                         if (!nla)
2160                                 goto nla_put_failure;
2161                         udp_key = nla_data(nla);
2162                         udp_key->udp_src = output->tp.src;
2163                         udp_key->udp_dst = output->tp.dst;
2164                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
2165                         struct ovs_key_sctp *sctp_key;
2166
2167                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2168                         if (!nla)
2169                                 goto nla_put_failure;
2170                         sctp_key = nla_data(nla);
2171                         sctp_key->sctp_src = output->tp.src;
2172                         sctp_key->sctp_dst = output->tp.dst;
2173                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
2174                            swkey->ip.proto == IPPROTO_ICMP) {
2175                         struct ovs_key_icmp *icmp_key;
2176
2177                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2178                         if (!nla)
2179                                 goto nla_put_failure;
2180                         icmp_key = nla_data(nla);
2181                         icmp_key->icmp_type = ntohs(output->tp.src);
2182                         icmp_key->icmp_code = ntohs(output->tp.dst);
2183                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2184                            swkey->ip.proto == IPPROTO_ICMPV6) {
2185                         struct ovs_key_icmpv6 *icmpv6_key;
2186
2187                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2188                                                 sizeof(*icmpv6_key));
2189                         if (!nla)
2190                                 goto nla_put_failure;
2191                         icmpv6_key = nla_data(nla);
2192                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2193                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2194
2195                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2196                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2197                                 struct ovs_key_nd *nd_key;
2198
2199                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2200                                 if (!nla)
2201                                         goto nla_put_failure;
2202                                 nd_key = nla_data(nla);
2203                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2204                                                         sizeof(nd_key->nd_target));
2205                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2206                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2207                         }
2208                 }
2209         }
2210
2211 unencap:
2212         if (in_encap)
2213                 nla_nest_end(skb, in_encap);
2214         if (encap)
2215                 nla_nest_end(skb, encap);
2216
2217         return 0;
2218
2219 nla_put_failure:
2220         return -EMSGSIZE;
2221 }
2222
2223 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2224                     const struct sw_flow_key *output, int attr, bool is_mask,
2225                     struct sk_buff *skb)
2226 {
2227         int err;
2228         struct nlattr *nla;
2229
2230         nla = nla_nest_start_noflag(skb, attr);
2231         if (!nla)
2232                 return -EMSGSIZE;
2233         err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2234         if (err)
2235                 return err;
2236         nla_nest_end(skb, nla);
2237
2238         return 0;
2239 }
2240
2241 /* Called with ovs_mutex or RCU read lock. */
2242 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2243 {
2244         if (ovs_identifier_is_ufid(&flow->id))
2245                 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2246                                flow->id.ufid);
2247
2248         return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2249                                OVS_FLOW_ATTR_KEY, false, skb);
2250 }
2251
2252 /* Called with ovs_mutex or RCU read lock. */
2253 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2254 {
2255         return ovs_nla_put_key(&flow->key, &flow->key,
2256                                 OVS_FLOW_ATTR_KEY, false, skb);
2257 }
2258
2259 /* Called with ovs_mutex or RCU read lock. */
2260 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2261 {
2262         return ovs_nla_put_key(&flow->key, &flow->mask->key,
2263                                 OVS_FLOW_ATTR_MASK, true, skb);
2264 }
2265
2266 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
2267
2268 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2269 {
2270         struct sw_flow_actions *sfa;
2271
2272         WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2273
2274         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2275         if (!sfa)
2276                 return ERR_PTR(-ENOMEM);
2277
2278         sfa->actions_len = 0;
2279         return sfa;
2280 }
2281
2282 static void ovs_nla_free_set_action(const struct nlattr *a)
2283 {
2284         const struct nlattr *ovs_key = nla_data(a);
2285         struct ovs_tunnel_info *ovs_tun;
2286
2287         switch (nla_type(ovs_key)) {
2288         case OVS_KEY_ATTR_TUNNEL_INFO:
2289                 ovs_tun = nla_data(ovs_key);
2290                 dst_release((struct dst_entry *)ovs_tun->tun_dst);
2291                 break;
2292         }
2293 }
2294
2295 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2296 {
2297         const struct nlattr *a;
2298         int rem;
2299
2300         if (!sf_acts)
2301                 return;
2302
2303         nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2304                 switch (nla_type(a)) {
2305                 case OVS_ACTION_ATTR_SET:
2306                         ovs_nla_free_set_action(a);
2307                         break;
2308                 case OVS_ACTION_ATTR_CT:
2309                         ovs_ct_free_action(a);
2310                         break;
2311                 }
2312         }
2313
2314         kfree(sf_acts);
2315 }
2316
2317 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2318 {
2319         ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2320 }
2321
2322 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2323  * The caller must hold rcu_read_lock for this to be sensible. */
2324 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2325 {
2326         call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2327 }
2328
2329 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2330                                        int attr_len, bool log)
2331 {
2332
2333         struct sw_flow_actions *acts;
2334         int new_acts_size;
2335         size_t req_size = NLA_ALIGN(attr_len);
2336         int next_offset = offsetof(struct sw_flow_actions, actions) +
2337                                         (*sfa)->actions_len;
2338
2339         if (req_size <= (ksize(*sfa) - next_offset))
2340                 goto out;
2341
2342         new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2343
2344         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2345                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2346                         OVS_NLERR(log, "Flow action size exceeds max %u",
2347                                   MAX_ACTIONS_BUFSIZE);
2348                         return ERR_PTR(-EMSGSIZE);
2349                 }
2350                 new_acts_size = MAX_ACTIONS_BUFSIZE;
2351         }
2352
2353         acts = nla_alloc_flow_actions(new_acts_size);
2354         if (IS_ERR(acts))
2355                 return (void *)acts;
2356
2357         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2358         acts->actions_len = (*sfa)->actions_len;
2359         acts->orig_len = (*sfa)->orig_len;
2360         kfree(*sfa);
2361         *sfa = acts;
2362
2363 out:
2364         (*sfa)->actions_len += req_size;
2365         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2366 }
2367
2368 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2369                                    int attrtype, void *data, int len, bool log)
2370 {
2371         struct nlattr *a;
2372
2373         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2374         if (IS_ERR(a))
2375                 return a;
2376
2377         a->nla_type = attrtype;
2378         a->nla_len = nla_attr_size(len);
2379
2380         if (data)
2381                 memcpy(nla_data(a), data, len);
2382         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2383
2384         return a;
2385 }
2386
2387 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2388                        int len, bool log)
2389 {
2390         struct nlattr *a;
2391
2392         a = __add_action(sfa, attrtype, data, len, log);
2393
2394         return PTR_ERR_OR_ZERO(a);
2395 }
2396
2397 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2398                                           int attrtype, bool log)
2399 {
2400         int used = (*sfa)->actions_len;
2401         int err;
2402
2403         err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2404         if (err)
2405                 return err;
2406
2407         return used;
2408 }
2409
2410 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2411                                          int st_offset)
2412 {
2413         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2414                                                                st_offset);
2415
2416         a->nla_len = sfa->actions_len - st_offset;
2417 }
2418
2419 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2420                                   const struct sw_flow_key *key,
2421                                   struct sw_flow_actions **sfa,
2422                                   __be16 eth_type, __be16 vlan_tci, bool log);
2423
2424 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2425                                     const struct sw_flow_key *key,
2426                                     struct sw_flow_actions **sfa,
2427                                     __be16 eth_type, __be16 vlan_tci,
2428                                     bool log, bool last)
2429 {
2430         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2431         const struct nlattr *probability, *actions;
2432         const struct nlattr *a;
2433         int rem, start, err;
2434         struct sample_arg arg;
2435
2436         memset(attrs, 0, sizeof(attrs));
2437         nla_for_each_nested(a, attr, rem) {
2438                 int type = nla_type(a);
2439                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2440                         return -EINVAL;
2441                 attrs[type] = a;
2442         }
2443         if (rem)
2444                 return -EINVAL;
2445
2446         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2447         if (!probability || nla_len(probability) != sizeof(u32))
2448                 return -EINVAL;
2449
2450         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2451         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2452                 return -EINVAL;
2453
2454         /* validation done, copy sample action. */
2455         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2456         if (start < 0)
2457                 return start;
2458
2459         /* When both skb and flow may be changed, put the sample
2460          * into a deferred fifo. On the other hand, if only skb
2461          * may be modified, the actions can be executed in place.
2462          *
2463          * Do this analysis at the flow installation time.
2464          * Set 'clone_action->exec' to true if the actions can be
2465          * executed without being deferred.
2466          *
2467          * If the sample is the last action, it can always be excuted
2468          * rather than deferred.
2469          */
2470         arg.exec = last || !actions_may_change_flow(actions);
2471         arg.probability = nla_get_u32(probability);
2472
2473         err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2474                                  log);
2475         if (err)
2476                 return err;
2477
2478         err = __ovs_nla_copy_actions(net, actions, key, sfa,
2479                                      eth_type, vlan_tci, log);
2480
2481         if (err)
2482                 return err;
2483
2484         add_nested_action_end(*sfa, start);
2485
2486         return 0;
2487 }
2488
2489 static int validate_and_copy_clone(struct net *net,
2490                                    const struct nlattr *attr,
2491                                    const struct sw_flow_key *key,
2492                                    struct sw_flow_actions **sfa,
2493                                    __be16 eth_type, __be16 vlan_tci,
2494                                    bool log, bool last)
2495 {
2496         int start, err;
2497         u32 exec;
2498
2499         if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2500                 return -EINVAL;
2501
2502         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2503         if (start < 0)
2504                 return start;
2505
2506         exec = last || !actions_may_change_flow(attr);
2507
2508         err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2509                                  sizeof(exec), log);
2510         if (err)
2511                 return err;
2512
2513         err = __ovs_nla_copy_actions(net, attr, key, sfa,
2514                                      eth_type, vlan_tci, log);
2515         if (err)
2516                 return err;
2517
2518         add_nested_action_end(*sfa, start);
2519
2520         return 0;
2521 }
2522
2523 void ovs_match_init(struct sw_flow_match *match,
2524                     struct sw_flow_key *key,
2525                     bool reset_key,
2526                     struct sw_flow_mask *mask)
2527 {
2528         memset(match, 0, sizeof(*match));
2529         match->key = key;
2530         match->mask = mask;
2531
2532         if (reset_key)
2533                 memset(key, 0, sizeof(*key));
2534
2535         if (mask) {
2536                 memset(&mask->key, 0, sizeof(mask->key));
2537                 mask->range.start = mask->range.end = 0;
2538         }
2539 }
2540
2541 static int validate_geneve_opts(struct sw_flow_key *key)
2542 {
2543         struct geneve_opt *option;
2544         int opts_len = key->tun_opts_len;
2545         bool crit_opt = false;
2546
2547         option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2548         while (opts_len > 0) {
2549                 int len;
2550
2551                 if (opts_len < sizeof(*option))
2552                         return -EINVAL;
2553
2554                 len = sizeof(*option) + option->length * 4;
2555                 if (len > opts_len)
2556                         return -EINVAL;
2557
2558                 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2559
2560                 option = (struct geneve_opt *)((u8 *)option + len);
2561                 opts_len -= len;
2562         }
2563
2564         key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2565
2566         return 0;
2567 }
2568
2569 static int validate_and_copy_set_tun(const struct nlattr *attr,
2570                                      struct sw_flow_actions **sfa, bool log)
2571 {
2572         struct sw_flow_match match;
2573         struct sw_flow_key key;
2574         struct metadata_dst *tun_dst;
2575         struct ip_tunnel_info *tun_info;
2576         struct ovs_tunnel_info *ovs_tun;
2577         struct nlattr *a;
2578         int err = 0, start, opts_type;
2579         __be16 dst_opt_type;
2580
2581         dst_opt_type = 0;
2582         ovs_match_init(&match, &key, true, NULL);
2583         opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2584         if (opts_type < 0)
2585                 return opts_type;
2586
2587         if (key.tun_opts_len) {
2588                 switch (opts_type) {
2589                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2590                         err = validate_geneve_opts(&key);
2591                         if (err < 0)
2592                                 return err;
2593                         dst_opt_type = TUNNEL_GENEVE_OPT;
2594                         break;
2595                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2596                         dst_opt_type = TUNNEL_VXLAN_OPT;
2597                         break;
2598                 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2599                         dst_opt_type = TUNNEL_ERSPAN_OPT;
2600                         break;
2601                 }
2602         }
2603
2604         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2605         if (start < 0)
2606                 return start;
2607
2608         tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2609                                      GFP_KERNEL);
2610
2611         if (!tun_dst)
2612                 return -ENOMEM;
2613
2614         err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2615         if (err) {
2616                 dst_release((struct dst_entry *)tun_dst);
2617                 return err;
2618         }
2619
2620         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2621                          sizeof(*ovs_tun), log);
2622         if (IS_ERR(a)) {
2623                 dst_release((struct dst_entry *)tun_dst);
2624                 return PTR_ERR(a);
2625         }
2626
2627         ovs_tun = nla_data(a);
2628         ovs_tun->tun_dst = tun_dst;
2629
2630         tun_info = &tun_dst->u.tun_info;
2631         tun_info->mode = IP_TUNNEL_INFO_TX;
2632         if (key.tun_proto == AF_INET6)
2633                 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2634         else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2635                 tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2636         tun_info->key = key.tun_key;
2637
2638         /* We need to store the options in the action itself since
2639          * everything else will go away after flow setup. We can append
2640          * it to tun_info and then point there.
2641          */
2642         ip_tunnel_info_opts_set(tun_info,
2643                                 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2644                                 key.tun_opts_len, dst_opt_type);
2645         add_nested_action_end(*sfa, start);
2646
2647         return err;
2648 }
2649
2650 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2651                          bool is_push_nsh, bool log)
2652 {
2653         struct sw_flow_match match;
2654         struct sw_flow_key key;
2655         int ret = 0;
2656
2657         ovs_match_init(&match, &key, true, NULL);
2658         ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2659                                       is_push_nsh, log);
2660         return !ret;
2661 }
2662
2663 /* Return false if there are any non-masked bits set.
2664  * Mask follows data immediately, before any netlink padding.
2665  */
2666 static bool validate_masked(u8 *data, int len)
2667 {
2668         u8 *mask = data + len;
2669
2670         while (len--)
2671                 if (*data++ & ~*mask++)
2672                         return false;
2673
2674         return true;
2675 }
2676
2677 static int validate_set(const struct nlattr *a,
2678                         const struct sw_flow_key *flow_key,
2679                         struct sw_flow_actions **sfa, bool *skip_copy,
2680                         u8 mac_proto, __be16 eth_type, bool masked, bool log)
2681 {
2682         const struct nlattr *ovs_key = nla_data(a);
2683         int key_type = nla_type(ovs_key);
2684         size_t key_len;
2685
2686         /* There can be only one key in a action */
2687         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2688                 return -EINVAL;
2689
2690         key_len = nla_len(ovs_key);
2691         if (masked)
2692                 key_len /= 2;
2693
2694         if (key_type > OVS_KEY_ATTR_MAX ||
2695             !check_attr_len(key_len, ovs_key_lens[key_type].len))
2696                 return -EINVAL;
2697
2698         if (masked && !validate_masked(nla_data(ovs_key), key_len))
2699                 return -EINVAL;
2700
2701         switch (key_type) {
2702         const struct ovs_key_ipv4 *ipv4_key;
2703         const struct ovs_key_ipv6 *ipv6_key;
2704         int err;
2705
2706         case OVS_KEY_ATTR_PRIORITY:
2707         case OVS_KEY_ATTR_SKB_MARK:
2708         case OVS_KEY_ATTR_CT_MARK:
2709         case OVS_KEY_ATTR_CT_LABELS:
2710                 break;
2711
2712         case OVS_KEY_ATTR_ETHERNET:
2713                 if (mac_proto != MAC_PROTO_ETHERNET)
2714                         return -EINVAL;
2715                 break;
2716
2717         case OVS_KEY_ATTR_TUNNEL:
2718                 if (masked)
2719                         return -EINVAL; /* Masked tunnel set not supported. */
2720
2721                 *skip_copy = true;
2722                 err = validate_and_copy_set_tun(a, sfa, log);
2723                 if (err)
2724                         return err;
2725                 break;
2726
2727         case OVS_KEY_ATTR_IPV4:
2728                 if (eth_type != htons(ETH_P_IP))
2729                         return -EINVAL;
2730
2731                 ipv4_key = nla_data(ovs_key);
2732
2733                 if (masked) {
2734                         const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2735
2736                         /* Non-writeable fields. */
2737                         if (mask->ipv4_proto || mask->ipv4_frag)
2738                                 return -EINVAL;
2739                 } else {
2740                         if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2741                                 return -EINVAL;
2742
2743                         if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2744                                 return -EINVAL;
2745                 }
2746                 break;
2747
2748         case OVS_KEY_ATTR_IPV6:
2749                 if (eth_type != htons(ETH_P_IPV6))
2750                         return -EINVAL;
2751
2752                 ipv6_key = nla_data(ovs_key);
2753
2754                 if (masked) {
2755                         const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2756
2757                         /* Non-writeable fields. */
2758                         if (mask->ipv6_proto || mask->ipv6_frag)
2759                                 return -EINVAL;
2760
2761                         /* Invalid bits in the flow label mask? */
2762                         if (ntohl(mask->ipv6_label) & 0xFFF00000)
2763                                 return -EINVAL;
2764                 } else {
2765                         if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2766                                 return -EINVAL;
2767
2768                         if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2769                                 return -EINVAL;
2770                 }
2771                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2772                         return -EINVAL;
2773
2774                 break;
2775
2776         case OVS_KEY_ATTR_TCP:
2777                 if ((eth_type != htons(ETH_P_IP) &&
2778                      eth_type != htons(ETH_P_IPV6)) ||
2779                     flow_key->ip.proto != IPPROTO_TCP)
2780                         return -EINVAL;
2781
2782                 break;
2783
2784         case OVS_KEY_ATTR_UDP:
2785                 if ((eth_type != htons(ETH_P_IP) &&
2786                      eth_type != htons(ETH_P_IPV6)) ||
2787                     flow_key->ip.proto != IPPROTO_UDP)
2788                         return -EINVAL;
2789
2790                 break;
2791
2792         case OVS_KEY_ATTR_MPLS:
2793                 if (!eth_p_mpls(eth_type))
2794                         return -EINVAL;
2795                 break;
2796
2797         case OVS_KEY_ATTR_SCTP:
2798                 if ((eth_type != htons(ETH_P_IP) &&
2799                      eth_type != htons(ETH_P_IPV6)) ||
2800                     flow_key->ip.proto != IPPROTO_SCTP)
2801                         return -EINVAL;
2802
2803                 break;
2804
2805         case OVS_KEY_ATTR_NSH:
2806                 if (eth_type != htons(ETH_P_NSH))
2807                         return -EINVAL;
2808                 if (!validate_nsh(nla_data(a), masked, false, log))
2809                         return -EINVAL;
2810                 break;
2811
2812         default:
2813                 return -EINVAL;
2814         }
2815
2816         /* Convert non-masked non-tunnel set actions to masked set actions. */
2817         if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2818                 int start, len = key_len * 2;
2819                 struct nlattr *at;
2820
2821                 *skip_copy = true;
2822
2823                 start = add_nested_action_start(sfa,
2824                                                 OVS_ACTION_ATTR_SET_TO_MASKED,
2825                                                 log);
2826                 if (start < 0)
2827                         return start;
2828
2829                 at = __add_action(sfa, key_type, NULL, len, log);
2830                 if (IS_ERR(at))
2831                         return PTR_ERR(at);
2832
2833                 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2834                 memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2835                 /* Clear non-writeable bits from otherwise writeable fields. */
2836                 if (key_type == OVS_KEY_ATTR_IPV6) {
2837                         struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2838
2839                         mask->ipv6_label &= htonl(0x000FFFFF);
2840                 }
2841                 add_nested_action_end(*sfa, start);
2842         }
2843
2844         return 0;
2845 }
2846
2847 static int validate_userspace(const struct nlattr *attr)
2848 {
2849         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2850                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2851                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2852                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2853         };
2854         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2855         int error;
2856
2857         error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
2858                                             userspace_policy, NULL);
2859         if (error)
2860                 return error;
2861
2862         if (!a[OVS_USERSPACE_ATTR_PID] ||
2863             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2864                 return -EINVAL;
2865
2866         return 0;
2867 }
2868
2869 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
2870         [OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
2871         [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
2872         [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
2873 };
2874
2875 static int validate_and_copy_check_pkt_len(struct net *net,
2876                                            const struct nlattr *attr,
2877                                            const struct sw_flow_key *key,
2878                                            struct sw_flow_actions **sfa,
2879                                            __be16 eth_type, __be16 vlan_tci,
2880                                            bool log, bool last)
2881 {
2882         const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
2883         struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
2884         struct check_pkt_len_arg arg;
2885         int nested_acts_start;
2886         int start, err;
2887
2888         err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
2889                                           nla_data(attr), nla_len(attr),
2890                                           cpl_policy, NULL);
2891         if (err)
2892                 return err;
2893
2894         if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
2895             !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
2896                 return -EINVAL;
2897
2898         acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
2899         acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
2900
2901         /* Both the nested action should be present. */
2902         if (!acts_if_greater || !acts_if_lesser_eq)
2903                 return -EINVAL;
2904
2905         /* validation done, copy the nested actions. */
2906         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
2907                                         log);
2908         if (start < 0)
2909                 return start;
2910
2911         arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
2912         arg.exec_for_lesser_equal =
2913                 last || !actions_may_change_flow(acts_if_lesser_eq);
2914         arg.exec_for_greater =
2915                 last || !actions_may_change_flow(acts_if_greater);
2916
2917         err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
2918                                  sizeof(arg), log);
2919         if (err)
2920                 return err;
2921
2922         nested_acts_start = add_nested_action_start(sfa,
2923                 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
2924         if (nested_acts_start < 0)
2925                 return nested_acts_start;
2926
2927         err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
2928                                      eth_type, vlan_tci, log);
2929
2930         if (err)
2931                 return err;
2932
2933         add_nested_action_end(*sfa, nested_acts_start);
2934
2935         nested_acts_start = add_nested_action_start(sfa,
2936                 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
2937         if (nested_acts_start < 0)
2938                 return nested_acts_start;
2939
2940         err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
2941                                      eth_type, vlan_tci, log);
2942
2943         if (err)
2944                 return err;
2945
2946         add_nested_action_end(*sfa, nested_acts_start);
2947         add_nested_action_end(*sfa, start);
2948         return 0;
2949 }
2950
2951 static int copy_action(const struct nlattr *from,
2952                        struct sw_flow_actions **sfa, bool log)
2953 {
2954         int totlen = NLA_ALIGN(from->nla_len);
2955         struct nlattr *to;
2956
2957         to = reserve_sfa_size(sfa, from->nla_len, log);
2958         if (IS_ERR(to))
2959                 return PTR_ERR(to);
2960
2961         memcpy(to, from, totlen);
2962         return 0;
2963 }
2964
2965 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2966                                   const struct sw_flow_key *key,
2967                                   struct sw_flow_actions **sfa,
2968                                   __be16 eth_type, __be16 vlan_tci, bool log)
2969 {
2970         u8 mac_proto = ovs_key_mac_proto(key);
2971         const struct nlattr *a;
2972         int rem, err;
2973
2974         nla_for_each_nested(a, attr, rem) {
2975                 /* Expected argument lengths, (u32)-1 for variable length. */
2976                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2977                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2978                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2979                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2980                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2981                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2982                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2983                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
2984                         [OVS_ACTION_ATTR_SET] = (u32)-1,
2985                         [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2986                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2987                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2988                         [OVS_ACTION_ATTR_CT] = (u32)-1,
2989                         [OVS_ACTION_ATTR_CT_CLEAR] = 0,
2990                         [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2991                         [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2992                         [OVS_ACTION_ATTR_POP_ETH] = 0,
2993                         [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
2994                         [OVS_ACTION_ATTR_POP_NSH] = 0,
2995                         [OVS_ACTION_ATTR_METER] = sizeof(u32),
2996                         [OVS_ACTION_ATTR_CLONE] = (u32)-1,
2997                         [OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
2998                 };
2999                 const struct ovs_action_push_vlan *vlan;
3000                 int type = nla_type(a);
3001                 bool skip_copy;
3002
3003                 if (type > OVS_ACTION_ATTR_MAX ||
3004                     (action_lens[type] != nla_len(a) &&
3005                      action_lens[type] != (u32)-1))
3006                         return -EINVAL;
3007
3008                 skip_copy = false;
3009                 switch (type) {
3010                 case OVS_ACTION_ATTR_UNSPEC:
3011                         return -EINVAL;
3012
3013                 case OVS_ACTION_ATTR_USERSPACE:
3014                         err = validate_userspace(a);
3015                         if (err)
3016                                 return err;
3017                         break;
3018
3019                 case OVS_ACTION_ATTR_OUTPUT:
3020                         if (nla_get_u32(a) >= DP_MAX_PORTS)
3021                                 return -EINVAL;
3022                         break;
3023
3024                 case OVS_ACTION_ATTR_TRUNC: {
3025                         const struct ovs_action_trunc *trunc = nla_data(a);
3026
3027                         if (trunc->max_len < ETH_HLEN)
3028                                 return -EINVAL;
3029                         break;
3030                 }
3031
3032                 case OVS_ACTION_ATTR_HASH: {
3033                         const struct ovs_action_hash *act_hash = nla_data(a);
3034
3035                         switch (act_hash->hash_alg) {
3036                         case OVS_HASH_ALG_L4:
3037                                 break;
3038                         default:
3039                                 return  -EINVAL;
3040                         }
3041
3042                         break;
3043                 }
3044
3045                 case OVS_ACTION_ATTR_POP_VLAN:
3046                         if (mac_proto != MAC_PROTO_ETHERNET)
3047                                 return -EINVAL;
3048                         vlan_tci = htons(0);
3049                         break;
3050
3051                 case OVS_ACTION_ATTR_PUSH_VLAN:
3052                         if (mac_proto != MAC_PROTO_ETHERNET)
3053                                 return -EINVAL;
3054                         vlan = nla_data(a);
3055                         if (!eth_type_vlan(vlan->vlan_tpid))
3056                                 return -EINVAL;
3057                         if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3058                                 return -EINVAL;
3059                         vlan_tci = vlan->vlan_tci;
3060                         break;
3061
3062                 case OVS_ACTION_ATTR_RECIRC:
3063                         break;
3064
3065                 case OVS_ACTION_ATTR_PUSH_MPLS: {
3066                         const struct ovs_action_push_mpls *mpls = nla_data(a);
3067
3068                         if (!eth_p_mpls(mpls->mpls_ethertype))
3069                                 return -EINVAL;
3070                         /* Prohibit push MPLS other than to a white list
3071                          * for packets that have a known tag order.
3072                          */
3073                         if (vlan_tci & htons(VLAN_CFI_MASK) ||
3074                             (eth_type != htons(ETH_P_IP) &&
3075                              eth_type != htons(ETH_P_IPV6) &&
3076                              eth_type != htons(ETH_P_ARP) &&
3077                              eth_type != htons(ETH_P_RARP) &&
3078                              !eth_p_mpls(eth_type)))
3079                                 return -EINVAL;
3080                         eth_type = mpls->mpls_ethertype;
3081                         break;
3082                 }
3083
3084                 case OVS_ACTION_ATTR_POP_MPLS:
3085                         if (vlan_tci & htons(VLAN_CFI_MASK) ||
3086                             !eth_p_mpls(eth_type))
3087                                 return -EINVAL;
3088
3089                         /* Disallow subsequent L2.5+ set and mpls_pop actions
3090                          * as there is no check here to ensure that the new
3091                          * eth_type is valid and thus set actions could
3092                          * write off the end of the packet or otherwise
3093                          * corrupt it.
3094                          *
3095                          * Support for these actions is planned using packet
3096                          * recirculation.
3097                          */
3098                         eth_type = htons(0);
3099                         break;
3100
3101                 case OVS_ACTION_ATTR_SET:
3102                         err = validate_set(a, key, sfa,
3103                                            &skip_copy, mac_proto, eth_type,
3104                                            false, log);
3105                         if (err)
3106                                 return err;
3107                         break;
3108
3109                 case OVS_ACTION_ATTR_SET_MASKED:
3110                         err = validate_set(a, key, sfa,
3111                                            &skip_copy, mac_proto, eth_type,
3112                                            true, log);
3113                         if (err)
3114                                 return err;
3115                         break;
3116
3117                 case OVS_ACTION_ATTR_SAMPLE: {
3118                         bool last = nla_is_last(a, rem);
3119
3120                         err = validate_and_copy_sample(net, a, key, sfa,
3121                                                        eth_type, vlan_tci,
3122                                                        log, last);
3123                         if (err)
3124                                 return err;
3125                         skip_copy = true;
3126                         break;
3127                 }
3128
3129                 case OVS_ACTION_ATTR_CT:
3130                         err = ovs_ct_copy_action(net, a, key, sfa, log);
3131                         if (err)
3132                                 return err;
3133                         skip_copy = true;
3134                         break;
3135
3136                 case OVS_ACTION_ATTR_CT_CLEAR:
3137                         break;
3138
3139                 case OVS_ACTION_ATTR_PUSH_ETH:
3140                         /* Disallow pushing an Ethernet header if one
3141                          * is already present */
3142                         if (mac_proto != MAC_PROTO_NONE)
3143                                 return -EINVAL;
3144                         mac_proto = MAC_PROTO_ETHERNET;
3145                         break;
3146
3147                 case OVS_ACTION_ATTR_POP_ETH:
3148                         if (mac_proto != MAC_PROTO_ETHERNET)
3149                                 return -EINVAL;
3150                         if (vlan_tci & htons(VLAN_CFI_MASK))
3151                                 return -EINVAL;
3152                         mac_proto = MAC_PROTO_NONE;
3153                         break;
3154
3155                 case OVS_ACTION_ATTR_PUSH_NSH:
3156                         if (mac_proto != MAC_PROTO_ETHERNET) {
3157                                 u8 next_proto;
3158
3159                                 next_proto = tun_p_from_eth_p(eth_type);
3160                                 if (!next_proto)
3161                                         return -EINVAL;
3162                         }
3163                         mac_proto = MAC_PROTO_NONE;
3164                         if (!validate_nsh(nla_data(a), false, true, true))
3165                                 return -EINVAL;
3166                         break;
3167
3168                 case OVS_ACTION_ATTR_POP_NSH: {
3169                         __be16 inner_proto;
3170
3171                         if (eth_type != htons(ETH_P_NSH))
3172                                 return -EINVAL;
3173                         inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3174                         if (!inner_proto)
3175                                 return -EINVAL;
3176                         if (key->nsh.base.np == TUN_P_ETHERNET)
3177                                 mac_proto = MAC_PROTO_ETHERNET;
3178                         else
3179                                 mac_proto = MAC_PROTO_NONE;
3180                         break;
3181                 }
3182
3183                 case OVS_ACTION_ATTR_METER:
3184                         /* Non-existent meters are simply ignored.  */
3185                         break;
3186
3187                 case OVS_ACTION_ATTR_CLONE: {
3188                         bool last = nla_is_last(a, rem);
3189
3190                         err = validate_and_copy_clone(net, a, key, sfa,
3191                                                       eth_type, vlan_tci,
3192                                                       log, last);
3193                         if (err)
3194                                 return err;
3195                         skip_copy = true;
3196                         break;
3197                 }
3198
3199                 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3200                         bool last = nla_is_last(a, rem);
3201
3202                         err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3203                                                               eth_type,
3204                                                               vlan_tci, log,
3205                                                               last);
3206                         if (err)
3207                                 return err;
3208                         skip_copy = true;
3209                         break;
3210                 }
3211
3212                 default:
3213                         OVS_NLERR(log, "Unknown Action type %d", type);
3214                         return -EINVAL;
3215                 }
3216                 if (!skip_copy) {
3217                         err = copy_action(a, sfa, log);
3218                         if (err)
3219                                 return err;
3220                 }
3221         }
3222
3223         if (rem > 0)
3224                 return -EINVAL;
3225
3226         return 0;
3227 }
3228
3229 /* 'key' must be the masked key. */
3230 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3231                          const struct sw_flow_key *key,
3232                          struct sw_flow_actions **sfa, bool log)
3233 {
3234         int err;
3235
3236         *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3237         if (IS_ERR(*sfa))
3238                 return PTR_ERR(*sfa);
3239
3240         (*sfa)->orig_len = nla_len(attr);
3241         err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3242                                      key->eth.vlan.tci, log);
3243         if (err)
3244                 ovs_nla_free_flow_actions(*sfa);
3245
3246         return err;
3247 }
3248
3249 static int sample_action_to_attr(const struct nlattr *attr,
3250                                  struct sk_buff *skb)
3251 {
3252         struct nlattr *start, *ac_start = NULL, *sample_arg;
3253         int err = 0, rem = nla_len(attr);
3254         const struct sample_arg *arg;
3255         struct nlattr *actions;
3256
3257         start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3258         if (!start)
3259                 return -EMSGSIZE;
3260
3261         sample_arg = nla_data(attr);
3262         arg = nla_data(sample_arg);
3263         actions = nla_next(sample_arg, &rem);
3264
3265         if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3266                 err = -EMSGSIZE;
3267                 goto out;
3268         }
3269
3270         ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3271         if (!ac_start) {
3272                 err = -EMSGSIZE;
3273                 goto out;
3274         }
3275
3276         err = ovs_nla_put_actions(actions, rem, skb);
3277
3278 out:
3279         if (err) {
3280                 nla_nest_cancel(skb, ac_start);
3281                 nla_nest_cancel(skb, start);
3282         } else {
3283                 nla_nest_end(skb, ac_start);
3284                 nla_nest_end(skb, start);
3285         }
3286
3287         return err;
3288 }
3289
3290 static int clone_action_to_attr(const struct nlattr *attr,
3291                                 struct sk_buff *skb)
3292 {
3293         struct nlattr *start;
3294         int err = 0, rem = nla_len(attr);
3295
3296         start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3297         if (!start)
3298                 return -EMSGSIZE;
3299
3300         err = ovs_nla_put_actions(nla_data(attr), rem, skb);
3301
3302         if (err)
3303                 nla_nest_cancel(skb, start);
3304         else
3305                 nla_nest_end(skb, start);
3306
3307         return err;
3308 }
3309
3310 static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3311                                         struct sk_buff *skb)
3312 {
3313         struct nlattr *start, *ac_start = NULL;
3314         const struct check_pkt_len_arg *arg;
3315         const struct nlattr *a, *cpl_arg;
3316         int err = 0, rem = nla_len(attr);
3317
3318         start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3319         if (!start)
3320                 return -EMSGSIZE;
3321
3322         /* The first nested attribute in 'attr' is always
3323          * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3324          */
3325         cpl_arg = nla_data(attr);
3326         arg = nla_data(cpl_arg);
3327
3328         if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3329                 err = -EMSGSIZE;
3330                 goto out;
3331         }
3332
3333         /* Second nested attribute in 'attr' is always
3334          * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3335          */
3336         a = nla_next(cpl_arg, &rem);
3337         ac_start =  nla_nest_start_noflag(skb,
3338                                           OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3339         if (!ac_start) {
3340                 err = -EMSGSIZE;
3341                 goto out;
3342         }
3343
3344         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3345         if (err) {
3346                 nla_nest_cancel(skb, ac_start);
3347                 goto out;
3348         } else {
3349                 nla_nest_end(skb, ac_start);
3350         }
3351
3352         /* Third nested attribute in 'attr' is always
3353          * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3354          */
3355         a = nla_next(a, &rem);
3356         ac_start =  nla_nest_start_noflag(skb,
3357                                           OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3358         if (!ac_start) {
3359                 err = -EMSGSIZE;
3360                 goto out;
3361         }
3362
3363         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3364         if (err) {
3365                 nla_nest_cancel(skb, ac_start);
3366                 goto out;
3367         } else {
3368                 nla_nest_end(skb, ac_start);
3369         }
3370
3371         nla_nest_end(skb, start);
3372         return 0;
3373
3374 out:
3375         nla_nest_cancel(skb, start);
3376         return err;
3377 }
3378
3379 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3380 {
3381         const struct nlattr *ovs_key = nla_data(a);
3382         int key_type = nla_type(ovs_key);
3383         struct nlattr *start;
3384         int err;
3385
3386         switch (key_type) {
3387         case OVS_KEY_ATTR_TUNNEL_INFO: {
3388                 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3389                 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3390
3391                 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3392                 if (!start)
3393                         return -EMSGSIZE;
3394
3395                 err =  ip_tun_to_nlattr(skb, &tun_info->key,
3396                                         ip_tunnel_info_opts(tun_info),
3397                                         tun_info->options_len,
3398                                         ip_tunnel_info_af(tun_info), tun_info->mode);
3399                 if (err)
3400                         return err;
3401                 nla_nest_end(skb, start);
3402                 break;
3403         }
3404         default:
3405                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3406                         return -EMSGSIZE;
3407                 break;
3408         }
3409
3410         return 0;
3411 }
3412
3413 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3414                                                 struct sk_buff *skb)
3415 {
3416         const struct nlattr *ovs_key = nla_data(a);
3417         struct nlattr *nla;
3418         size_t key_len = nla_len(ovs_key) / 2;
3419
3420         /* Revert the conversion we did from a non-masked set action to
3421          * masked set action.
3422          */
3423         nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3424         if (!nla)
3425                 return -EMSGSIZE;
3426
3427         if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3428                 return -EMSGSIZE;
3429
3430         nla_nest_end(skb, nla);
3431         return 0;
3432 }
3433
3434 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3435 {
3436         const struct nlattr *a;
3437         int rem, err;
3438
3439         nla_for_each_attr(a, attr, len, rem) {
3440                 int type = nla_type(a);
3441
3442                 switch (type) {
3443                 case OVS_ACTION_ATTR_SET:
3444                         err = set_action_to_attr(a, skb);
3445                         if (err)
3446                                 return err;
3447                         break;
3448
3449                 case OVS_ACTION_ATTR_SET_TO_MASKED:
3450                         err = masked_set_action_to_set_action_attr(a, skb);
3451                         if (err)
3452                                 return err;
3453                         break;
3454
3455                 case OVS_ACTION_ATTR_SAMPLE:
3456                         err = sample_action_to_attr(a, skb);
3457                         if (err)
3458                                 return err;
3459                         break;
3460
3461                 case OVS_ACTION_ATTR_CT:
3462                         err = ovs_ct_action_to_attr(nla_data(a), skb);
3463                         if (err)
3464                                 return err;
3465                         break;
3466
3467                 case OVS_ACTION_ATTR_CLONE:
3468                         err = clone_action_to_attr(a, skb);
3469                         if (err)
3470                                 return err;
3471                         break;
3472
3473                 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3474                         err = check_pkt_len_action_to_attr(a, skb);
3475                         if (err)
3476                                 return err;
3477                         break;
3478
3479                 default:
3480                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
3481                                 return -EMSGSIZE;
3482                         break;
3483                 }
3484         }
3485
3486         return 0;
3487 }