Merge tag 'tpmdd-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux...
[linux-2.6-block.git] / net / netfilter / nf_conntrack_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54
55 #include "nf_internals.h"
56
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65
66 struct conntrack_gc_work {
67         struct delayed_work     dwork;
68         u32                     next_bucket;
69         u32                     avg_timeout;
70         u32                     count;
71         u32                     start_time;
72         bool                    exiting;
73         bool                    early_drop;
74 };
75
76 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
77 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79
80 /* serialize hash resizes and nf_ct_iterate_cleanup */
81 static DEFINE_MUTEX(nf_conntrack_mutex);
82
83 #define GC_SCAN_INTERVAL_MAX    (60ul * HZ)
84 #define GC_SCAN_INTERVAL_MIN    (1ul * HZ)
85
86 /* clamp timeouts to this value (TCP unacked) */
87 #define GC_SCAN_INTERVAL_CLAMP  (300ul * HZ)
88
89 /* Initial bias pretending we have 100 entries at the upper bound so we don't
90  * wakeup often just because we have three entries with a 1s timeout while still
91  * allowing non-idle machines to wakeup more often when needed.
92  */
93 #define GC_SCAN_INITIAL_COUNT   100
94 #define GC_SCAN_INTERVAL_INIT   GC_SCAN_INTERVAL_MAX
95
96 #define GC_SCAN_MAX_DURATION    msecs_to_jiffies(10)
97 #define GC_SCAN_EXPIRED_MAX     (64000u / HZ)
98
99 #define MIN_CHAINLEN    50u
100 #define MAX_CHAINLEN    (80u - MIN_CHAINLEN)
101
102 static struct conntrack_gc_work conntrack_gc_work;
103
104 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
105 {
106         /* 1) Acquire the lock */
107         spin_lock(lock);
108
109         /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
110          * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
111          */
112         if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
113                 return;
114
115         /* fast path failed, unlock */
116         spin_unlock(lock);
117
118         /* Slow path 1) get global lock */
119         spin_lock(&nf_conntrack_locks_all_lock);
120
121         /* Slow path 2) get the lock we want */
122         spin_lock(lock);
123
124         /* Slow path 3) release the global lock */
125         spin_unlock(&nf_conntrack_locks_all_lock);
126 }
127 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
128
129 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
130 {
131         h1 %= CONNTRACK_LOCKS;
132         h2 %= CONNTRACK_LOCKS;
133         spin_unlock(&nf_conntrack_locks[h1]);
134         if (h1 != h2)
135                 spin_unlock(&nf_conntrack_locks[h2]);
136 }
137
138 /* return true if we need to recompute hashes (in case hash table was resized) */
139 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
140                                      unsigned int h2, unsigned int sequence)
141 {
142         h1 %= CONNTRACK_LOCKS;
143         h2 %= CONNTRACK_LOCKS;
144         if (h1 <= h2) {
145                 nf_conntrack_lock(&nf_conntrack_locks[h1]);
146                 if (h1 != h2)
147                         spin_lock_nested(&nf_conntrack_locks[h2],
148                                          SINGLE_DEPTH_NESTING);
149         } else {
150                 nf_conntrack_lock(&nf_conntrack_locks[h2]);
151                 spin_lock_nested(&nf_conntrack_locks[h1],
152                                  SINGLE_DEPTH_NESTING);
153         }
154         if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
155                 nf_conntrack_double_unlock(h1, h2);
156                 return true;
157         }
158         return false;
159 }
160
161 static void nf_conntrack_all_lock(void)
162         __acquires(&nf_conntrack_locks_all_lock)
163 {
164         int i;
165
166         spin_lock(&nf_conntrack_locks_all_lock);
167
168         /* For nf_contrack_locks_all, only the latest time when another
169          * CPU will see an update is controlled, by the "release" of the
170          * spin_lock below.
171          * The earliest time is not controlled, an thus KCSAN could detect
172          * a race when nf_conntract_lock() reads the variable.
173          * WRITE_ONCE() is used to ensure the compiler will not
174          * optimize the write.
175          */
176         WRITE_ONCE(nf_conntrack_locks_all, true);
177
178         for (i = 0; i < CONNTRACK_LOCKS; i++) {
179                 spin_lock(&nf_conntrack_locks[i]);
180
181                 /* This spin_unlock provides the "release" to ensure that
182                  * nf_conntrack_locks_all==true is visible to everyone that
183                  * acquired spin_lock(&nf_conntrack_locks[]).
184                  */
185                 spin_unlock(&nf_conntrack_locks[i]);
186         }
187 }
188
189 static void nf_conntrack_all_unlock(void)
190         __releases(&nf_conntrack_locks_all_lock)
191 {
192         /* All prior stores must be complete before we clear
193          * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
194          * might observe the false value but not the entire
195          * critical section.
196          * It pairs with the smp_load_acquire() in nf_conntrack_lock()
197          */
198         smp_store_release(&nf_conntrack_locks_all, false);
199         spin_unlock(&nf_conntrack_locks_all_lock);
200 }
201
202 unsigned int nf_conntrack_htable_size __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
204
205 unsigned int nf_conntrack_max __read_mostly;
206 EXPORT_SYMBOL_GPL(nf_conntrack_max);
207 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
208 static siphash_aligned_key_t nf_conntrack_hash_rnd;
209
210 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
211                               unsigned int zoneid,
212                               const struct net *net)
213 {
214         siphash_key_t key;
215
216         get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
217
218         key = nf_conntrack_hash_rnd;
219
220         key.key[0] ^= zoneid;
221         key.key[1] ^= net_hash_mix(net);
222
223         return siphash((void *)tuple,
224                         offsetofend(struct nf_conntrack_tuple, dst.__nfct_hash_offsetend),
225                         &key);
226 }
227
228 static u32 scale_hash(u32 hash)
229 {
230         return reciprocal_scale(hash, nf_conntrack_htable_size);
231 }
232
233 static u32 __hash_conntrack(const struct net *net,
234                             const struct nf_conntrack_tuple *tuple,
235                             unsigned int zoneid,
236                             unsigned int size)
237 {
238         return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
239 }
240
241 static u32 hash_conntrack(const struct net *net,
242                           const struct nf_conntrack_tuple *tuple,
243                           unsigned int zoneid)
244 {
245         return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
246 }
247
248 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
249                                   unsigned int dataoff,
250                                   struct nf_conntrack_tuple *tuple)
251 {       struct {
252                 __be16 sport;
253                 __be16 dport;
254         } _inet_hdr, *inet_hdr;
255
256         /* Actually only need first 4 bytes to get ports. */
257         inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
258         if (!inet_hdr)
259                 return false;
260
261         tuple->src.u.udp.port = inet_hdr->sport;
262         tuple->dst.u.udp.port = inet_hdr->dport;
263         return true;
264 }
265
266 static bool
267 nf_ct_get_tuple(const struct sk_buff *skb,
268                 unsigned int nhoff,
269                 unsigned int dataoff,
270                 u_int16_t l3num,
271                 u_int8_t protonum,
272                 struct net *net,
273                 struct nf_conntrack_tuple *tuple)
274 {
275         unsigned int size;
276         const __be32 *ap;
277         __be32 _addrs[8];
278
279         memset(tuple, 0, sizeof(*tuple));
280
281         tuple->src.l3num = l3num;
282         switch (l3num) {
283         case NFPROTO_IPV4:
284                 nhoff += offsetof(struct iphdr, saddr);
285                 size = 2 * sizeof(__be32);
286                 break;
287         case NFPROTO_IPV6:
288                 nhoff += offsetof(struct ipv6hdr, saddr);
289                 size = sizeof(_addrs);
290                 break;
291         default:
292                 return true;
293         }
294
295         ap = skb_header_pointer(skb, nhoff, size, _addrs);
296         if (!ap)
297                 return false;
298
299         switch (l3num) {
300         case NFPROTO_IPV4:
301                 tuple->src.u3.ip = ap[0];
302                 tuple->dst.u3.ip = ap[1];
303                 break;
304         case NFPROTO_IPV6:
305                 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
306                 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
307                 break;
308         }
309
310         tuple->dst.protonum = protonum;
311         tuple->dst.dir = IP_CT_DIR_ORIGINAL;
312
313         switch (protonum) {
314 #if IS_ENABLED(CONFIG_IPV6)
315         case IPPROTO_ICMPV6:
316                 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
317 #endif
318         case IPPROTO_ICMP:
319                 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
320 #ifdef CONFIG_NF_CT_PROTO_GRE
321         case IPPROTO_GRE:
322                 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
323 #endif
324         case IPPROTO_TCP:
325         case IPPROTO_UDP:
326 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
327         case IPPROTO_UDPLITE:
328 #endif
329 #ifdef CONFIG_NF_CT_PROTO_SCTP
330         case IPPROTO_SCTP:
331 #endif
332 #ifdef CONFIG_NF_CT_PROTO_DCCP
333         case IPPROTO_DCCP:
334 #endif
335                 /* fallthrough */
336                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
337         default:
338                 break;
339         }
340
341         return true;
342 }
343
344 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
345                             u_int8_t *protonum)
346 {
347         int dataoff = -1;
348         const struct iphdr *iph;
349         struct iphdr _iph;
350
351         iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
352         if (!iph)
353                 return -1;
354
355         /* Conntrack defragments packets, we might still see fragments
356          * inside ICMP packets though.
357          */
358         if (iph->frag_off & htons(IP_OFFSET))
359                 return -1;
360
361         dataoff = nhoff + (iph->ihl << 2);
362         *protonum = iph->protocol;
363
364         /* Check bogus IP headers */
365         if (dataoff > skb->len) {
366                 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
367                          nhoff, iph->ihl << 2, skb->len);
368                 return -1;
369         }
370         return dataoff;
371 }
372
373 #if IS_ENABLED(CONFIG_IPV6)
374 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
375                             u8 *protonum)
376 {
377         int protoff = -1;
378         unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
379         __be16 frag_off;
380         u8 nexthdr;
381
382         if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
383                           &nexthdr, sizeof(nexthdr)) != 0) {
384                 pr_debug("can't get nexthdr\n");
385                 return -1;
386         }
387         protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
388         /*
389          * (protoff == skb->len) means the packet has not data, just
390          * IPv6 and possibly extensions headers, but it is tracked anyway
391          */
392         if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
393                 pr_debug("can't find proto in pkt\n");
394                 return -1;
395         }
396
397         *protonum = nexthdr;
398         return protoff;
399 }
400 #endif
401
402 static int get_l4proto(const struct sk_buff *skb,
403                        unsigned int nhoff, u8 pf, u8 *l4num)
404 {
405         switch (pf) {
406         case NFPROTO_IPV4:
407                 return ipv4_get_l4proto(skb, nhoff, l4num);
408 #if IS_ENABLED(CONFIG_IPV6)
409         case NFPROTO_IPV6:
410                 return ipv6_get_l4proto(skb, nhoff, l4num);
411 #endif
412         default:
413                 *l4num = 0;
414                 break;
415         }
416         return -1;
417 }
418
419 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
420                        u_int16_t l3num,
421                        struct net *net, struct nf_conntrack_tuple *tuple)
422 {
423         u8 protonum;
424         int protoff;
425
426         protoff = get_l4proto(skb, nhoff, l3num, &protonum);
427         if (protoff <= 0)
428                 return false;
429
430         return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
431 }
432 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
433
434 bool
435 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
436                    const struct nf_conntrack_tuple *orig)
437 {
438         memset(inverse, 0, sizeof(*inverse));
439
440         inverse->src.l3num = orig->src.l3num;
441
442         switch (orig->src.l3num) {
443         case NFPROTO_IPV4:
444                 inverse->src.u3.ip = orig->dst.u3.ip;
445                 inverse->dst.u3.ip = orig->src.u3.ip;
446                 break;
447         case NFPROTO_IPV6:
448                 inverse->src.u3.in6 = orig->dst.u3.in6;
449                 inverse->dst.u3.in6 = orig->src.u3.in6;
450                 break;
451         default:
452                 break;
453         }
454
455         inverse->dst.dir = !orig->dst.dir;
456
457         inverse->dst.protonum = orig->dst.protonum;
458
459         switch (orig->dst.protonum) {
460         case IPPROTO_ICMP:
461                 return nf_conntrack_invert_icmp_tuple(inverse, orig);
462 #if IS_ENABLED(CONFIG_IPV6)
463         case IPPROTO_ICMPV6:
464                 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
465 #endif
466         }
467
468         inverse->src.u.all = orig->dst.u.all;
469         inverse->dst.u.all = orig->src.u.all;
470         return true;
471 }
472 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
473
474 /* Generate a almost-unique pseudo-id for a given conntrack.
475  *
476  * intentionally doesn't re-use any of the seeds used for hash
477  * table location, we assume id gets exposed to userspace.
478  *
479  * Following nf_conn items do not change throughout lifetime
480  * of the nf_conn:
481  *
482  * 1. nf_conn address
483  * 2. nf_conn->master address (normally NULL)
484  * 3. the associated net namespace
485  * 4. the original direction tuple
486  */
487 u32 nf_ct_get_id(const struct nf_conn *ct)
488 {
489         static siphash_aligned_key_t ct_id_seed;
490         unsigned long a, b, c, d;
491
492         net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
493
494         a = (unsigned long)ct;
495         b = (unsigned long)ct->master;
496         c = (unsigned long)nf_ct_net(ct);
497         d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
498                                    sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
499                                    &ct_id_seed);
500 #ifdef CONFIG_64BIT
501         return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
502 #else
503         return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
504 #endif
505 }
506 EXPORT_SYMBOL_GPL(nf_ct_get_id);
507
508 static void
509 clean_from_lists(struct nf_conn *ct)
510 {
511         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
512         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
513
514         /* Destroy all pending expectations */
515         nf_ct_remove_expectations(ct);
516 }
517
518 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
519
520 /* Released via nf_ct_destroy() */
521 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
522                                  const struct nf_conntrack_zone *zone,
523                                  gfp_t flags)
524 {
525         struct nf_conn *tmpl, *p;
526
527         if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
528                 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
529                 if (!tmpl)
530                         return NULL;
531
532                 p = tmpl;
533                 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
534                 if (tmpl != p) {
535                         tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
536                         tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
537                 }
538         } else {
539                 tmpl = kzalloc(sizeof(*tmpl), flags);
540                 if (!tmpl)
541                         return NULL;
542         }
543
544         tmpl->status = IPS_TEMPLATE;
545         write_pnet(&tmpl->ct_net, net);
546         nf_ct_zone_add(tmpl, zone);
547         refcount_set(&tmpl->ct_general.use, 1);
548
549         return tmpl;
550 }
551 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
552
553 void nf_ct_tmpl_free(struct nf_conn *tmpl)
554 {
555         kfree(tmpl->ext);
556
557         if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
558                 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
559         else
560                 kfree(tmpl);
561 }
562 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
563
564 static void destroy_gre_conntrack(struct nf_conn *ct)
565 {
566 #ifdef CONFIG_NF_CT_PROTO_GRE
567         struct nf_conn *master = ct->master;
568
569         if (master)
570                 nf_ct_gre_keymap_destroy(master);
571 #endif
572 }
573
574 void nf_ct_destroy(struct nf_conntrack *nfct)
575 {
576         struct nf_conn *ct = (struct nf_conn *)nfct;
577
578         WARN_ON(refcount_read(&nfct->use) != 0);
579
580         if (unlikely(nf_ct_is_template(ct))) {
581                 nf_ct_tmpl_free(ct);
582                 return;
583         }
584
585         if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
586                 destroy_gre_conntrack(ct);
587
588         /* Expectations will have been removed in clean_from_lists,
589          * except TFTP can create an expectation on the first packet,
590          * before connection is in the list, so we need to clean here,
591          * too.
592          */
593         nf_ct_remove_expectations(ct);
594
595         if (ct->master)
596                 nf_ct_put(ct->master);
597
598         nf_conntrack_free(ct);
599 }
600 EXPORT_SYMBOL(nf_ct_destroy);
601
602 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
603 {
604         struct net *net = nf_ct_net(ct);
605         unsigned int hash, reply_hash;
606         unsigned int sequence;
607
608         do {
609                 sequence = read_seqcount_begin(&nf_conntrack_generation);
610                 hash = hash_conntrack(net,
611                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
612                                       nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
613                 reply_hash = hash_conntrack(net,
614                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
615                                            nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
616         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
617
618         clean_from_lists(ct);
619         nf_conntrack_double_unlock(hash, reply_hash);
620 }
621
622 static void nf_ct_delete_from_lists(struct nf_conn *ct)
623 {
624         nf_ct_helper_destroy(ct);
625         local_bh_disable();
626
627         __nf_ct_delete_from_lists(ct);
628
629         local_bh_enable();
630 }
631
632 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
633 {
634 #ifdef CONFIG_NF_CONNTRACK_EVENTS
635         struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
636
637         spin_lock(&cnet->ecache.dying_lock);
638         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
639                                  &cnet->ecache.dying_list);
640         spin_unlock(&cnet->ecache.dying_lock);
641 #endif
642 }
643
644 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
645 {
646         struct nf_conn_tstamp *tstamp;
647         struct net *net;
648
649         if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
650                 return false;
651
652         tstamp = nf_conn_tstamp_find(ct);
653         if (tstamp) {
654                 s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
655
656                 tstamp->stop = ktime_get_real_ns();
657                 if (timeout < 0)
658                         tstamp->stop -= jiffies_to_nsecs(-timeout);
659         }
660
661         if (nf_conntrack_event_report(IPCT_DESTROY, ct,
662                                     portid, report) < 0) {
663                 /* destroy event was not delivered. nf_ct_put will
664                  * be done by event cache worker on redelivery.
665                  */
666                 nf_ct_helper_destroy(ct);
667                 local_bh_disable();
668                 __nf_ct_delete_from_lists(ct);
669                 nf_ct_add_to_ecache_list(ct);
670                 local_bh_enable();
671
672                 nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
673                 return false;
674         }
675
676         net = nf_ct_net(ct);
677         if (nf_conntrack_ecache_dwork_pending(net))
678                 nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
679         nf_ct_delete_from_lists(ct);
680         nf_ct_put(ct);
681         return true;
682 }
683 EXPORT_SYMBOL_GPL(nf_ct_delete);
684
685 static inline bool
686 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
687                 const struct nf_conntrack_tuple *tuple,
688                 const struct nf_conntrack_zone *zone,
689                 const struct net *net)
690 {
691         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
692
693         /* A conntrack can be recreated with the equal tuple,
694          * so we need to check that the conntrack is confirmed
695          */
696         return nf_ct_tuple_equal(tuple, &h->tuple) &&
697                nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
698                nf_ct_is_confirmed(ct) &&
699                net_eq(net, nf_ct_net(ct));
700 }
701
702 static inline bool
703 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
704 {
705         return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
706                                  &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
707                nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
708                                  &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
709                nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
710                nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
711                net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
712 }
713
714 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
715 static void nf_ct_gc_expired(struct nf_conn *ct)
716 {
717         if (!refcount_inc_not_zero(&ct->ct_general.use))
718                 return;
719
720         /* load ->status after refcount increase */
721         smp_acquire__after_ctrl_dep();
722
723         if (nf_ct_should_gc(ct))
724                 nf_ct_kill(ct);
725
726         nf_ct_put(ct);
727 }
728
729 /*
730  * Warning :
731  * - Caller must take a reference on returned object
732  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
733  */
734 static struct nf_conntrack_tuple_hash *
735 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
736                       const struct nf_conntrack_tuple *tuple, u32 hash)
737 {
738         struct nf_conntrack_tuple_hash *h;
739         struct hlist_nulls_head *ct_hash;
740         struct hlist_nulls_node *n;
741         unsigned int bucket, hsize;
742
743 begin:
744         nf_conntrack_get_ht(&ct_hash, &hsize);
745         bucket = reciprocal_scale(hash, hsize);
746
747         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
748                 struct nf_conn *ct;
749
750                 ct = nf_ct_tuplehash_to_ctrack(h);
751                 if (nf_ct_is_expired(ct)) {
752                         nf_ct_gc_expired(ct);
753                         continue;
754                 }
755
756                 if (nf_ct_key_equal(h, tuple, zone, net))
757                         return h;
758         }
759         /*
760          * if the nulls value we got at the end of this lookup is
761          * not the expected one, we must restart lookup.
762          * We probably met an item that was moved to another chain.
763          */
764         if (get_nulls_value(n) != bucket) {
765                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
766                 goto begin;
767         }
768
769         return NULL;
770 }
771
772 /* Find a connection corresponding to a tuple. */
773 static struct nf_conntrack_tuple_hash *
774 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
775                         const struct nf_conntrack_tuple *tuple, u32 hash)
776 {
777         struct nf_conntrack_tuple_hash *h;
778         struct nf_conn *ct;
779
780         h = ____nf_conntrack_find(net, zone, tuple, hash);
781         if (h) {
782                 /* We have a candidate that matches the tuple we're interested
783                  * in, try to obtain a reference and re-check tuple
784                  */
785                 ct = nf_ct_tuplehash_to_ctrack(h);
786                 if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
787                         /* re-check key after refcount */
788                         smp_acquire__after_ctrl_dep();
789
790                         if (likely(nf_ct_key_equal(h, tuple, zone, net)))
791                                 return h;
792
793                         /* TYPESAFE_BY_RCU recycled the candidate */
794                         nf_ct_put(ct);
795                 }
796
797                 h = NULL;
798         }
799
800         return h;
801 }
802
803 struct nf_conntrack_tuple_hash *
804 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
805                       const struct nf_conntrack_tuple *tuple)
806 {
807         unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
808         struct nf_conntrack_tuple_hash *thash;
809
810         rcu_read_lock();
811
812         thash = __nf_conntrack_find_get(net, zone, tuple,
813                                         hash_conntrack_raw(tuple, zone_id, net));
814
815         if (thash)
816                 goto out_unlock;
817
818         rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
819         if (rid != zone_id)
820                 thash = __nf_conntrack_find_get(net, zone, tuple,
821                                                 hash_conntrack_raw(tuple, rid, net));
822
823 out_unlock:
824         rcu_read_unlock();
825         return thash;
826 }
827 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
828
829 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
830                                        unsigned int hash,
831                                        unsigned int reply_hash)
832 {
833         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
834                            &nf_conntrack_hash[hash]);
835         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
836                            &nf_conntrack_hash[reply_hash]);
837 }
838
839 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
840 {
841         /* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
842          * may contain stale pointers to e.g. helper that has been removed.
843          *
844          * The helper can't clear this because the nf_conn object isn't in
845          * any hash and synchronize_rcu() isn't enough because associated skb
846          * might sit in a queue.
847          */
848         return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
849 }
850
851 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
852 {
853         if (!ext)
854                 return true;
855
856         if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
857                 return false;
858
859         /* inserted into conntrack table, nf_ct_iterate_cleanup()
860          * will find it.  Disable nf_ct_ext_find() id check.
861          */
862         WRITE_ONCE(ext->gen_id, 0);
863         return true;
864 }
865
866 int
867 nf_conntrack_hash_check_insert(struct nf_conn *ct)
868 {
869         const struct nf_conntrack_zone *zone;
870         struct net *net = nf_ct_net(ct);
871         unsigned int hash, reply_hash;
872         struct nf_conntrack_tuple_hash *h;
873         struct hlist_nulls_node *n;
874         unsigned int max_chainlen;
875         unsigned int chainlen = 0;
876         unsigned int sequence;
877         int err = -EEXIST;
878
879         zone = nf_ct_zone(ct);
880
881         if (!nf_ct_ext_valid_pre(ct->ext))
882                 return -EAGAIN;
883
884         local_bh_disable();
885         do {
886                 sequence = read_seqcount_begin(&nf_conntrack_generation);
887                 hash = hash_conntrack(net,
888                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
889                                       nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
890                 reply_hash = hash_conntrack(net,
891                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
892                                            nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
893         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
894
895         max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
896
897         /* See if there's one in the list already, including reverse */
898         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
899                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
900                                     zone, net))
901                         goto out;
902
903                 if (chainlen++ > max_chainlen)
904                         goto chaintoolong;
905         }
906
907         chainlen = 0;
908
909         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
910                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
911                                     zone, net))
912                         goto out;
913                 if (chainlen++ > max_chainlen)
914                         goto chaintoolong;
915         }
916
917         /* If genid has changed, we can't insert anymore because ct
918          * extensions could have stale pointers and nf_ct_iterate_destroy
919          * might have completed its table scan already.
920          *
921          * Increment of the ext genid right after this check is fine:
922          * nf_ct_iterate_destroy blocks until locks are released.
923          */
924         if (!nf_ct_ext_valid_post(ct->ext)) {
925                 err = -EAGAIN;
926                 goto out;
927         }
928
929         smp_wmb();
930         /* The caller holds a reference to this object */
931         refcount_set(&ct->ct_general.use, 2);
932         __nf_conntrack_hash_insert(ct, hash, reply_hash);
933         nf_conntrack_double_unlock(hash, reply_hash);
934         NF_CT_STAT_INC(net, insert);
935         local_bh_enable();
936
937         return 0;
938 chaintoolong:
939         NF_CT_STAT_INC(net, chaintoolong);
940         err = -ENOSPC;
941 out:
942         nf_conntrack_double_unlock(hash, reply_hash);
943         local_bh_enable();
944         return err;
945 }
946 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
947
948 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
949                     unsigned int bytes)
950 {
951         struct nf_conn_acct *acct;
952
953         acct = nf_conn_acct_find(ct);
954         if (acct) {
955                 struct nf_conn_counter *counter = acct->counter;
956
957                 atomic64_add(packets, &counter[dir].packets);
958                 atomic64_add(bytes, &counter[dir].bytes);
959         }
960 }
961 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
962
963 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
964                              const struct nf_conn *loser_ct)
965 {
966         struct nf_conn_acct *acct;
967
968         acct = nf_conn_acct_find(loser_ct);
969         if (acct) {
970                 struct nf_conn_counter *counter = acct->counter;
971                 unsigned int bytes;
972
973                 /* u32 should be fine since we must have seen one packet. */
974                 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
975                 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
976         }
977 }
978
979 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
980 {
981         struct nf_conn_tstamp *tstamp;
982
983         refcount_inc(&ct->ct_general.use);
984
985         /* set conntrack timestamp, if enabled. */
986         tstamp = nf_conn_tstamp_find(ct);
987         if (tstamp)
988                 tstamp->start = ktime_get_real_ns();
989 }
990
991 /* caller must hold locks to prevent concurrent changes */
992 static int __nf_ct_resolve_clash(struct sk_buff *skb,
993                                  struct nf_conntrack_tuple_hash *h)
994 {
995         /* This is the conntrack entry already in hashes that won race. */
996         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
997         enum ip_conntrack_info ctinfo;
998         struct nf_conn *loser_ct;
999
1000         loser_ct = nf_ct_get(skb, &ctinfo);
1001
1002         if (nf_ct_is_dying(ct))
1003                 return NF_DROP;
1004
1005         if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1006             nf_ct_match(ct, loser_ct)) {
1007                 struct net *net = nf_ct_net(ct);
1008
1009                 nf_conntrack_get(&ct->ct_general);
1010
1011                 nf_ct_acct_merge(ct, ctinfo, loser_ct);
1012                 nf_ct_put(loser_ct);
1013                 nf_ct_set(skb, ct, ctinfo);
1014
1015                 NF_CT_STAT_INC(net, clash_resolve);
1016                 return NF_ACCEPT;
1017         }
1018
1019         return NF_DROP;
1020 }
1021
1022 /**
1023  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1024  *
1025  * @skb: skb that causes the collision
1026  * @repl_idx: hash slot for reply direction
1027  *
1028  * Called when origin or reply direction had a clash.
1029  * The skb can be handled without packet drop provided the reply direction
1030  * is unique or there the existing entry has the identical tuple in both
1031  * directions.
1032  *
1033  * Caller must hold conntrack table locks to prevent concurrent updates.
1034  *
1035  * Returns NF_DROP if the clash could not be handled.
1036  */
1037 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1038 {
1039         struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1040         const struct nf_conntrack_zone *zone;
1041         struct nf_conntrack_tuple_hash *h;
1042         struct hlist_nulls_node *n;
1043         struct net *net;
1044
1045         zone = nf_ct_zone(loser_ct);
1046         net = nf_ct_net(loser_ct);
1047
1048         /* Reply direction must never result in a clash, unless both origin
1049          * and reply tuples are identical.
1050          */
1051         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1052                 if (nf_ct_key_equal(h,
1053                                     &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1054                                     zone, net))
1055                         return __nf_ct_resolve_clash(skb, h);
1056         }
1057
1058         /* We want the clashing entry to go away real soon: 1 second timeout. */
1059         WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1060
1061         /* IPS_NAT_CLASH removes the entry automatically on the first
1062          * reply.  Also prevents UDP tracker from moving the entry to
1063          * ASSURED state, i.e. the entry can always be evicted under
1064          * pressure.
1065          */
1066         loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1067
1068         __nf_conntrack_insert_prepare(loser_ct);
1069
1070         /* fake add for ORIGINAL dir: we want lookups to only find the entry
1071          * already in the table.  This also hides the clashing entry from
1072          * ctnetlink iteration, i.e. conntrack -L won't show them.
1073          */
1074         hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1075
1076         hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1077                                  &nf_conntrack_hash[repl_idx]);
1078
1079         NF_CT_STAT_INC(net, clash_resolve);
1080         return NF_ACCEPT;
1081 }
1082
1083 /**
1084  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1085  *
1086  * @skb: skb that causes the clash
1087  * @h: tuplehash of the clashing entry already in table
1088  * @reply_hash: hash slot for reply direction
1089  *
1090  * A conntrack entry can be inserted to the connection tracking table
1091  * if there is no existing entry with an identical tuple.
1092  *
1093  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1094  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1095  * will find the already-existing entry.
1096  *
1097  * The major problem with such packet drop is the extra delay added by
1098  * the packet loss -- it will take some time for a retransmit to occur
1099  * (or the sender to time out when waiting for a reply).
1100  *
1101  * This function attempts to handle the situation without packet drop.
1102  *
1103  * If @skb has no NAT transformation or if the colliding entries are
1104  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1105  * and @skb is associated with the conntrack entry already in the table.
1106  *
1107  * Failing that, the new, unconfirmed conntrack is still added to the table
1108  * provided that the collision only occurs in the ORIGINAL direction.
1109  * The new entry will be added only in the non-clashing REPLY direction,
1110  * so packets in the ORIGINAL direction will continue to match the existing
1111  * entry.  The new entry will also have a fixed timeout so it expires --
1112  * due to the collision, it will only see reply traffic.
1113  *
1114  * Returns NF_DROP if the clash could not be resolved.
1115  */
1116 static __cold noinline int
1117 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1118                     u32 reply_hash)
1119 {
1120         /* This is the conntrack entry already in hashes that won race. */
1121         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1122         const struct nf_conntrack_l4proto *l4proto;
1123         enum ip_conntrack_info ctinfo;
1124         struct nf_conn *loser_ct;
1125         struct net *net;
1126         int ret;
1127
1128         loser_ct = nf_ct_get(skb, &ctinfo);
1129         net = nf_ct_net(loser_ct);
1130
1131         l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1132         if (!l4proto->allow_clash)
1133                 goto drop;
1134
1135         ret = __nf_ct_resolve_clash(skb, h);
1136         if (ret == NF_ACCEPT)
1137                 return ret;
1138
1139         ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1140         if (ret == NF_ACCEPT)
1141                 return ret;
1142
1143 drop:
1144         NF_CT_STAT_INC(net, drop);
1145         NF_CT_STAT_INC(net, insert_failed);
1146         return NF_DROP;
1147 }
1148
1149 /* Confirm a connection given skb; places it in hash table */
1150 int
1151 __nf_conntrack_confirm(struct sk_buff *skb)
1152 {
1153         unsigned int chainlen = 0, sequence, max_chainlen;
1154         const struct nf_conntrack_zone *zone;
1155         unsigned int hash, reply_hash;
1156         struct nf_conntrack_tuple_hash *h;
1157         struct nf_conn *ct;
1158         struct nf_conn_help *help;
1159         struct hlist_nulls_node *n;
1160         enum ip_conntrack_info ctinfo;
1161         struct net *net;
1162         int ret = NF_DROP;
1163
1164         ct = nf_ct_get(skb, &ctinfo);
1165         net = nf_ct_net(ct);
1166
1167         /* ipt_REJECT uses nf_conntrack_attach to attach related
1168            ICMP/TCP RST packets in other direction.  Actual packet
1169            which created connection will be IP_CT_NEW or for an
1170            expected connection, IP_CT_RELATED. */
1171         if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1172                 return NF_ACCEPT;
1173
1174         zone = nf_ct_zone(ct);
1175         local_bh_disable();
1176
1177         do {
1178                 sequence = read_seqcount_begin(&nf_conntrack_generation);
1179                 /* reuse the hash saved before */
1180                 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1181                 hash = scale_hash(hash);
1182                 reply_hash = hash_conntrack(net,
1183                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1184                                            nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1185         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1186
1187         /* We're not in hash table, and we refuse to set up related
1188          * connections for unconfirmed conns.  But packet copies and
1189          * REJECT will give spurious warnings here.
1190          */
1191
1192         /* Another skb with the same unconfirmed conntrack may
1193          * win the race. This may happen for bridge(br_flood)
1194          * or broadcast/multicast packets do skb_clone with
1195          * unconfirmed conntrack.
1196          */
1197         if (unlikely(nf_ct_is_confirmed(ct))) {
1198                 WARN_ON_ONCE(1);
1199                 nf_conntrack_double_unlock(hash, reply_hash);
1200                 local_bh_enable();
1201                 return NF_DROP;
1202         }
1203
1204         if (!nf_ct_ext_valid_pre(ct->ext)) {
1205                 NF_CT_STAT_INC(net, insert_failed);
1206                 goto dying;
1207         }
1208
1209         /* We have to check the DYING flag after unlink to prevent
1210          * a race against nf_ct_get_next_corpse() possibly called from
1211          * user context, else we insert an already 'dead' hash, blocking
1212          * further use of that particular connection -JM.
1213          */
1214         ct->status |= IPS_CONFIRMED;
1215
1216         if (unlikely(nf_ct_is_dying(ct))) {
1217                 NF_CT_STAT_INC(net, insert_failed);
1218                 goto dying;
1219         }
1220
1221         max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
1222         /* See if there's one in the list already, including reverse:
1223            NAT could have grabbed it without realizing, since we're
1224            not in the hash.  If there is, we lost race. */
1225         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1226                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1227                                     zone, net))
1228                         goto out;
1229                 if (chainlen++ > max_chainlen)
1230                         goto chaintoolong;
1231         }
1232
1233         chainlen = 0;
1234         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1235                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1236                                     zone, net))
1237                         goto out;
1238                 if (chainlen++ > max_chainlen) {
1239 chaintoolong:
1240                         NF_CT_STAT_INC(net, chaintoolong);
1241                         NF_CT_STAT_INC(net, insert_failed);
1242                         ret = NF_DROP;
1243                         goto dying;
1244                 }
1245         }
1246
1247         /* Timer relative to confirmation time, not original
1248            setting time, otherwise we'd get timer wrap in
1249            weird delay cases. */
1250         ct->timeout += nfct_time_stamp;
1251
1252         __nf_conntrack_insert_prepare(ct);
1253
1254         /* Since the lookup is lockless, hash insertion must be done after
1255          * starting the timer and setting the CONFIRMED bit. The RCU barriers
1256          * guarantee that no other CPU can find the conntrack before the above
1257          * stores are visible.
1258          */
1259         __nf_conntrack_hash_insert(ct, hash, reply_hash);
1260         nf_conntrack_double_unlock(hash, reply_hash);
1261         local_bh_enable();
1262
1263         /* ext area is still valid (rcu read lock is held,
1264          * but will go out of scope soon, we need to remove
1265          * this conntrack again.
1266          */
1267         if (!nf_ct_ext_valid_post(ct->ext)) {
1268                 nf_ct_kill(ct);
1269                 NF_CT_STAT_INC_ATOMIC(net, drop);
1270                 return NF_DROP;
1271         }
1272
1273         help = nfct_help(ct);
1274         if (help && help->helper)
1275                 nf_conntrack_event_cache(IPCT_HELPER, ct);
1276
1277         nf_conntrack_event_cache(master_ct(ct) ?
1278                                  IPCT_RELATED : IPCT_NEW, ct);
1279         return NF_ACCEPT;
1280
1281 out:
1282         ret = nf_ct_resolve_clash(skb, h, reply_hash);
1283 dying:
1284         nf_conntrack_double_unlock(hash, reply_hash);
1285         local_bh_enable();
1286         return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1289
1290 /* Returns true if a connection corresponds to the tuple (required
1291    for NAT). */
1292 int
1293 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1294                          const struct nf_conn *ignored_conntrack)
1295 {
1296         struct net *net = nf_ct_net(ignored_conntrack);
1297         const struct nf_conntrack_zone *zone;
1298         struct nf_conntrack_tuple_hash *h;
1299         struct hlist_nulls_head *ct_hash;
1300         unsigned int hash, hsize;
1301         struct hlist_nulls_node *n;
1302         struct nf_conn *ct;
1303
1304         zone = nf_ct_zone(ignored_conntrack);
1305
1306         rcu_read_lock();
1307  begin:
1308         nf_conntrack_get_ht(&ct_hash, &hsize);
1309         hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1310
1311         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1312                 ct = nf_ct_tuplehash_to_ctrack(h);
1313
1314                 if (ct == ignored_conntrack)
1315                         continue;
1316
1317                 if (nf_ct_is_expired(ct)) {
1318                         nf_ct_gc_expired(ct);
1319                         continue;
1320                 }
1321
1322                 if (nf_ct_key_equal(h, tuple, zone, net)) {
1323                         /* Tuple is taken already, so caller will need to find
1324                          * a new source port to use.
1325                          *
1326                          * Only exception:
1327                          * If the *original tuples* are identical, then both
1328                          * conntracks refer to the same flow.
1329                          * This is a rare situation, it can occur e.g. when
1330                          * more than one UDP packet is sent from same socket
1331                          * in different threads.
1332                          *
1333                          * Let nf_ct_resolve_clash() deal with this later.
1334                          */
1335                         if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1336                                               &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1337                                               nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1338                                 continue;
1339
1340                         NF_CT_STAT_INC_ATOMIC(net, found);
1341                         rcu_read_unlock();
1342                         return 1;
1343                 }
1344         }
1345
1346         if (get_nulls_value(n) != hash) {
1347                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1348                 goto begin;
1349         }
1350
1351         rcu_read_unlock();
1352
1353         return 0;
1354 }
1355 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1356
1357 #define NF_CT_EVICTION_RANGE    8
1358
1359 /* There's a small race here where we may free a just-assured
1360    connection.  Too bad: we're in trouble anyway. */
1361 static unsigned int early_drop_list(struct net *net,
1362                                     struct hlist_nulls_head *head)
1363 {
1364         struct nf_conntrack_tuple_hash *h;
1365         struct hlist_nulls_node *n;
1366         unsigned int drops = 0;
1367         struct nf_conn *tmp;
1368
1369         hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1370                 tmp = nf_ct_tuplehash_to_ctrack(h);
1371
1372                 if (nf_ct_is_expired(tmp)) {
1373                         nf_ct_gc_expired(tmp);
1374                         continue;
1375                 }
1376
1377                 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1378                     !net_eq(nf_ct_net(tmp), net) ||
1379                     nf_ct_is_dying(tmp))
1380                         continue;
1381
1382                 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1383                         continue;
1384
1385                 /* load ->ct_net and ->status after refcount increase */
1386                 smp_acquire__after_ctrl_dep();
1387
1388                 /* kill only if still in same netns -- might have moved due to
1389                  * SLAB_TYPESAFE_BY_RCU rules.
1390                  *
1391                  * We steal the timer reference.  If that fails timer has
1392                  * already fired or someone else deleted it. Just drop ref
1393                  * and move to next entry.
1394                  */
1395                 if (net_eq(nf_ct_net(tmp), net) &&
1396                     nf_ct_is_confirmed(tmp) &&
1397                     nf_ct_delete(tmp, 0, 0))
1398                         drops++;
1399
1400                 nf_ct_put(tmp);
1401         }
1402
1403         return drops;
1404 }
1405
1406 static noinline int early_drop(struct net *net, unsigned int hash)
1407 {
1408         unsigned int i, bucket;
1409
1410         for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1411                 struct hlist_nulls_head *ct_hash;
1412                 unsigned int hsize, drops;
1413
1414                 rcu_read_lock();
1415                 nf_conntrack_get_ht(&ct_hash, &hsize);
1416                 if (!i)
1417                         bucket = reciprocal_scale(hash, hsize);
1418                 else
1419                         bucket = (bucket + 1) % hsize;
1420
1421                 drops = early_drop_list(net, &ct_hash[bucket]);
1422                 rcu_read_unlock();
1423
1424                 if (drops) {
1425                         NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1426                         return true;
1427                 }
1428         }
1429
1430         return false;
1431 }
1432
1433 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1434 {
1435         return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1436 }
1437
1438 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1439 {
1440         const struct nf_conntrack_l4proto *l4proto;
1441         u8 protonum = nf_ct_protonum(ct);
1442
1443         if (test_bit(IPS_OFFLOAD_BIT, &ct->status) && protonum != IPPROTO_UDP)
1444                 return false;
1445         if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1446                 return true;
1447
1448         l4proto = nf_ct_l4proto_find(protonum);
1449         if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1450                 return true;
1451
1452         return false;
1453 }
1454
1455 static void gc_worker(struct work_struct *work)
1456 {
1457         unsigned int i, hashsz, nf_conntrack_max95 = 0;
1458         u32 end_time, start_time = nfct_time_stamp;
1459         struct conntrack_gc_work *gc_work;
1460         unsigned int expired_count = 0;
1461         unsigned long next_run;
1462         s32 delta_time;
1463         long count;
1464
1465         gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1466
1467         i = gc_work->next_bucket;
1468         if (gc_work->early_drop)
1469                 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1470
1471         if (i == 0) {
1472                 gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1473                 gc_work->count = GC_SCAN_INITIAL_COUNT;
1474                 gc_work->start_time = start_time;
1475         }
1476
1477         next_run = gc_work->avg_timeout;
1478         count = gc_work->count;
1479
1480         end_time = start_time + GC_SCAN_MAX_DURATION;
1481
1482         do {
1483                 struct nf_conntrack_tuple_hash *h;
1484                 struct hlist_nulls_head *ct_hash;
1485                 struct hlist_nulls_node *n;
1486                 struct nf_conn *tmp;
1487
1488                 rcu_read_lock();
1489
1490                 nf_conntrack_get_ht(&ct_hash, &hashsz);
1491                 if (i >= hashsz) {
1492                         rcu_read_unlock();
1493                         break;
1494                 }
1495
1496                 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1497                         struct nf_conntrack_net *cnet;
1498                         struct net *net;
1499                         long expires;
1500
1501                         tmp = nf_ct_tuplehash_to_ctrack(h);
1502
1503                         if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1504                                 nf_ct_offload_timeout(tmp);
1505                                 if (!nf_conntrack_max95)
1506                                         continue;
1507                         }
1508
1509                         if (expired_count > GC_SCAN_EXPIRED_MAX) {
1510                                 rcu_read_unlock();
1511
1512                                 gc_work->next_bucket = i;
1513                                 gc_work->avg_timeout = next_run;
1514                                 gc_work->count = count;
1515
1516                                 delta_time = nfct_time_stamp - gc_work->start_time;
1517
1518                                 /* re-sched immediately if total cycle time is exceeded */
1519                                 next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1520                                 goto early_exit;
1521                         }
1522
1523                         if (nf_ct_is_expired(tmp)) {
1524                                 nf_ct_gc_expired(tmp);
1525                                 expired_count++;
1526                                 continue;
1527                         }
1528
1529                         expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1530                         expires = (expires - (long)next_run) / ++count;
1531                         next_run += expires;
1532
1533                         if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1534                                 continue;
1535
1536                         net = nf_ct_net(tmp);
1537                         cnet = nf_ct_pernet(net);
1538                         if (atomic_read(&cnet->count) < nf_conntrack_max95)
1539                                 continue;
1540
1541                         /* need to take reference to avoid possible races */
1542                         if (!refcount_inc_not_zero(&tmp->ct_general.use))
1543                                 continue;
1544
1545                         /* load ->status after refcount increase */
1546                         smp_acquire__after_ctrl_dep();
1547
1548                         if (gc_worker_skip_ct(tmp)) {
1549                                 nf_ct_put(tmp);
1550                                 continue;
1551                         }
1552
1553                         if (gc_worker_can_early_drop(tmp)) {
1554                                 nf_ct_kill(tmp);
1555                                 expired_count++;
1556                         }
1557
1558                         nf_ct_put(tmp);
1559                 }
1560
1561                 /* could check get_nulls_value() here and restart if ct
1562                  * was moved to another chain.  But given gc is best-effort
1563                  * we will just continue with next hash slot.
1564                  */
1565                 rcu_read_unlock();
1566                 cond_resched();
1567                 i++;
1568
1569                 delta_time = nfct_time_stamp - end_time;
1570                 if (delta_time > 0 && i < hashsz) {
1571                         gc_work->avg_timeout = next_run;
1572                         gc_work->count = count;
1573                         gc_work->next_bucket = i;
1574                         next_run = 0;
1575                         goto early_exit;
1576                 }
1577         } while (i < hashsz);
1578
1579         gc_work->next_bucket = 0;
1580
1581         next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1582
1583         delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1584         if (next_run > (unsigned long)delta_time)
1585                 next_run -= delta_time;
1586         else
1587                 next_run = 1;
1588
1589 early_exit:
1590         if (gc_work->exiting)
1591                 return;
1592
1593         if (next_run)
1594                 gc_work->early_drop = false;
1595
1596         queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1597 }
1598
1599 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1600 {
1601         INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1602         gc_work->exiting = false;
1603 }
1604
1605 static struct nf_conn *
1606 __nf_conntrack_alloc(struct net *net,
1607                      const struct nf_conntrack_zone *zone,
1608                      const struct nf_conntrack_tuple *orig,
1609                      const struct nf_conntrack_tuple *repl,
1610                      gfp_t gfp, u32 hash)
1611 {
1612         struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1613         unsigned int ct_count;
1614         struct nf_conn *ct;
1615
1616         /* We don't want any race condition at early drop stage */
1617         ct_count = atomic_inc_return(&cnet->count);
1618
1619         if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1620                 if (!early_drop(net, hash)) {
1621                         if (!conntrack_gc_work.early_drop)
1622                                 conntrack_gc_work.early_drop = true;
1623                         atomic_dec(&cnet->count);
1624                         net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1625                         return ERR_PTR(-ENOMEM);
1626                 }
1627         }
1628
1629         /*
1630          * Do not use kmem_cache_zalloc(), as this cache uses
1631          * SLAB_TYPESAFE_BY_RCU.
1632          */
1633         ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1634         if (ct == NULL)
1635                 goto out;
1636
1637         spin_lock_init(&ct->lock);
1638         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1639         ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1640         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1641         /* save hash for reusing when confirming */
1642         *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1643         ct->status = 0;
1644         WRITE_ONCE(ct->timeout, 0);
1645         write_pnet(&ct->ct_net, net);
1646         memset_after(ct, 0, __nfct_init_offset);
1647
1648         nf_ct_zone_add(ct, zone);
1649
1650         /* Because we use RCU lookups, we set ct_general.use to zero before
1651          * this is inserted in any list.
1652          */
1653         refcount_set(&ct->ct_general.use, 0);
1654         return ct;
1655 out:
1656         atomic_dec(&cnet->count);
1657         return ERR_PTR(-ENOMEM);
1658 }
1659
1660 struct nf_conn *nf_conntrack_alloc(struct net *net,
1661                                    const struct nf_conntrack_zone *zone,
1662                                    const struct nf_conntrack_tuple *orig,
1663                                    const struct nf_conntrack_tuple *repl,
1664                                    gfp_t gfp)
1665 {
1666         return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1667 }
1668 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1669
1670 void nf_conntrack_free(struct nf_conn *ct)
1671 {
1672         struct net *net = nf_ct_net(ct);
1673         struct nf_conntrack_net *cnet;
1674
1675         /* A freed object has refcnt == 0, that's
1676          * the golden rule for SLAB_TYPESAFE_BY_RCU
1677          */
1678         WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1679
1680         if (ct->status & IPS_SRC_NAT_DONE) {
1681                 const struct nf_nat_hook *nat_hook;
1682
1683                 rcu_read_lock();
1684                 nat_hook = rcu_dereference(nf_nat_hook);
1685                 if (nat_hook)
1686                         nat_hook->remove_nat_bysrc(ct);
1687                 rcu_read_unlock();
1688         }
1689
1690         kfree(ct->ext);
1691         kmem_cache_free(nf_conntrack_cachep, ct);
1692         cnet = nf_ct_pernet(net);
1693
1694         smp_mb__before_atomic();
1695         atomic_dec(&cnet->count);
1696 }
1697 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1698
1699
1700 /* Allocate a new conntrack: we return -ENOMEM if classification
1701    failed due to stress.  Otherwise it really is unclassifiable. */
1702 static noinline struct nf_conntrack_tuple_hash *
1703 init_conntrack(struct net *net, struct nf_conn *tmpl,
1704                const struct nf_conntrack_tuple *tuple,
1705                struct sk_buff *skb,
1706                unsigned int dataoff, u32 hash)
1707 {
1708         struct nf_conn *ct;
1709         struct nf_conn_help *help;
1710         struct nf_conntrack_tuple repl_tuple;
1711 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1712         struct nf_conntrack_ecache *ecache;
1713 #endif
1714         struct nf_conntrack_expect *exp = NULL;
1715         const struct nf_conntrack_zone *zone;
1716         struct nf_conn_timeout *timeout_ext;
1717         struct nf_conntrack_zone tmp;
1718         struct nf_conntrack_net *cnet;
1719
1720         if (!nf_ct_invert_tuple(&repl_tuple, tuple))
1721                 return NULL;
1722
1723         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1724         ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1725                                   hash);
1726         if (IS_ERR(ct))
1727                 return (struct nf_conntrack_tuple_hash *)ct;
1728
1729         if (!nf_ct_add_synproxy(ct, tmpl)) {
1730                 nf_conntrack_free(ct);
1731                 return ERR_PTR(-ENOMEM);
1732         }
1733
1734         timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1735
1736         if (timeout_ext)
1737                 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1738                                       GFP_ATOMIC);
1739
1740         nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1741         nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1742         nf_ct_labels_ext_add(ct);
1743
1744 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1745         ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1746
1747         if ((ecache || net->ct.sysctl_events) &&
1748             !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1749                                   ecache ? ecache->expmask : 0,
1750                                   GFP_ATOMIC)) {
1751                 nf_conntrack_free(ct);
1752                 return ERR_PTR(-ENOMEM);
1753         }
1754 #endif
1755
1756         cnet = nf_ct_pernet(net);
1757         if (cnet->expect_count) {
1758                 spin_lock_bh(&nf_conntrack_expect_lock);
1759                 exp = nf_ct_find_expectation(net, zone, tuple);
1760                 if (exp) {
1761                         /* Welcome, Mr. Bond.  We've been expecting you... */
1762                         __set_bit(IPS_EXPECTED_BIT, &ct->status);
1763                         /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1764                         ct->master = exp->master;
1765                         if (exp->helper) {
1766                                 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1767                                 if (help)
1768                                         rcu_assign_pointer(help->helper, exp->helper);
1769                         }
1770
1771 #ifdef CONFIG_NF_CONNTRACK_MARK
1772                         ct->mark = READ_ONCE(exp->master->mark);
1773 #endif
1774 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1775                         ct->secmark = exp->master->secmark;
1776 #endif
1777                         NF_CT_STAT_INC(net, expect_new);
1778                 }
1779                 spin_unlock_bh(&nf_conntrack_expect_lock);
1780         }
1781         if (!exp && tmpl)
1782                 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1783
1784         /* Other CPU might have obtained a pointer to this object before it was
1785          * released.  Because refcount is 0, refcount_inc_not_zero() will fail.
1786          *
1787          * After refcount_set(1) it will succeed; ensure that zeroing of
1788          * ct->status and the correct ct->net pointer are visible; else other
1789          * core might observe CONFIRMED bit which means the entry is valid and
1790          * in the hash table, but its not (anymore).
1791          */
1792         smp_wmb();
1793
1794         /* Now it is going to be associated with an sk_buff, set refcount to 1. */
1795         refcount_set(&ct->ct_general.use, 1);
1796
1797         if (exp) {
1798                 if (exp->expectfn)
1799                         exp->expectfn(ct, exp);
1800                 nf_ct_expect_put(exp);
1801         }
1802
1803         return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1804 }
1805
1806 /* On success, returns 0, sets skb->_nfct | ctinfo */
1807 static int
1808 resolve_normal_ct(struct nf_conn *tmpl,
1809                   struct sk_buff *skb,
1810                   unsigned int dataoff,
1811                   u_int8_t protonum,
1812                   const struct nf_hook_state *state)
1813 {
1814         const struct nf_conntrack_zone *zone;
1815         struct nf_conntrack_tuple tuple;
1816         struct nf_conntrack_tuple_hash *h;
1817         enum ip_conntrack_info ctinfo;
1818         struct nf_conntrack_zone tmp;
1819         u32 hash, zone_id, rid;
1820         struct nf_conn *ct;
1821
1822         if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1823                              dataoff, state->pf, protonum, state->net,
1824                              &tuple))
1825                 return 0;
1826
1827         /* look for tuple match */
1828         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1829
1830         zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1831         hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1832         h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1833
1834         if (!h) {
1835                 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1836                 if (zone_id != rid) {
1837                         u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1838
1839                         h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1840                 }
1841         }
1842
1843         if (!h) {
1844                 h = init_conntrack(state->net, tmpl, &tuple,
1845                                    skb, dataoff, hash);
1846                 if (!h)
1847                         return 0;
1848                 if (IS_ERR(h))
1849                         return PTR_ERR(h);
1850         }
1851         ct = nf_ct_tuplehash_to_ctrack(h);
1852
1853         /* It exists; we have (non-exclusive) reference. */
1854         if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1855                 ctinfo = IP_CT_ESTABLISHED_REPLY;
1856         } else {
1857                 unsigned long status = READ_ONCE(ct->status);
1858
1859                 /* Once we've had two way comms, always ESTABLISHED. */
1860                 if (likely(status & IPS_SEEN_REPLY))
1861                         ctinfo = IP_CT_ESTABLISHED;
1862                 else if (status & IPS_EXPECTED)
1863                         ctinfo = IP_CT_RELATED;
1864                 else
1865                         ctinfo = IP_CT_NEW;
1866         }
1867         nf_ct_set(skb, ct, ctinfo);
1868         return 0;
1869 }
1870
1871 /*
1872  * icmp packets need special treatment to handle error messages that are
1873  * related to a connection.
1874  *
1875  * Callers need to check if skb has a conntrack assigned when this
1876  * helper returns; in such case skb belongs to an already known connection.
1877  */
1878 static unsigned int __cold
1879 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1880                          struct sk_buff *skb,
1881                          unsigned int dataoff,
1882                          u8 protonum,
1883                          const struct nf_hook_state *state)
1884 {
1885         int ret;
1886
1887         if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1888                 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1889 #if IS_ENABLED(CONFIG_IPV6)
1890         else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1891                 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1892 #endif
1893         else
1894                 return NF_ACCEPT;
1895
1896         if (ret <= 0)
1897                 NF_CT_STAT_INC_ATOMIC(state->net, error);
1898
1899         return ret;
1900 }
1901
1902 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1903                           enum ip_conntrack_info ctinfo)
1904 {
1905         const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1906
1907         if (!timeout)
1908                 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1909
1910         nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1911         return NF_ACCEPT;
1912 }
1913
1914 /* Returns verdict for packet, or -1 for invalid. */
1915 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1916                                       struct sk_buff *skb,
1917                                       unsigned int dataoff,
1918                                       enum ip_conntrack_info ctinfo,
1919                                       const struct nf_hook_state *state)
1920 {
1921         switch (nf_ct_protonum(ct)) {
1922         case IPPROTO_TCP:
1923                 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1924                                                ctinfo, state);
1925         case IPPROTO_UDP:
1926                 return nf_conntrack_udp_packet(ct, skb, dataoff,
1927                                                ctinfo, state);
1928         case IPPROTO_ICMP:
1929                 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1930 #if IS_ENABLED(CONFIG_IPV6)
1931         case IPPROTO_ICMPV6:
1932                 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1933 #endif
1934 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1935         case IPPROTO_UDPLITE:
1936                 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1937                                                    ctinfo, state);
1938 #endif
1939 #ifdef CONFIG_NF_CT_PROTO_SCTP
1940         case IPPROTO_SCTP:
1941                 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1942                                                 ctinfo, state);
1943 #endif
1944 #ifdef CONFIG_NF_CT_PROTO_DCCP
1945         case IPPROTO_DCCP:
1946                 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1947                                                 ctinfo, state);
1948 #endif
1949 #ifdef CONFIG_NF_CT_PROTO_GRE
1950         case IPPROTO_GRE:
1951                 return nf_conntrack_gre_packet(ct, skb, dataoff,
1952                                                ctinfo, state);
1953 #endif
1954         }
1955
1956         return generic_packet(ct, skb, ctinfo);
1957 }
1958
1959 unsigned int
1960 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1961 {
1962         enum ip_conntrack_info ctinfo;
1963         struct nf_conn *ct, *tmpl;
1964         u_int8_t protonum;
1965         int dataoff, ret;
1966
1967         tmpl = nf_ct_get(skb, &ctinfo);
1968         if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1969                 /* Previously seen (loopback or untracked)?  Ignore. */
1970                 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1971                      ctinfo == IP_CT_UNTRACKED)
1972                         return NF_ACCEPT;
1973                 skb->_nfct = 0;
1974         }
1975
1976         /* rcu_read_lock()ed by nf_hook_thresh */
1977         dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1978         if (dataoff <= 0) {
1979                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1980                 ret = NF_ACCEPT;
1981                 goto out;
1982         }
1983
1984         if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1985                 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1986                                                protonum, state);
1987                 if (ret <= 0) {
1988                         ret = -ret;
1989                         goto out;
1990                 }
1991                 /* ICMP[v6] protocol trackers may assign one conntrack. */
1992                 if (skb->_nfct)
1993                         goto out;
1994         }
1995 repeat:
1996         ret = resolve_normal_ct(tmpl, skb, dataoff,
1997                                 protonum, state);
1998         if (ret < 0) {
1999                 /* Too stressed to deal. */
2000                 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2001                 ret = NF_DROP;
2002                 goto out;
2003         }
2004
2005         ct = nf_ct_get(skb, &ctinfo);
2006         if (!ct) {
2007                 /* Not valid part of a connection */
2008                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2009                 ret = NF_ACCEPT;
2010                 goto out;
2011         }
2012
2013         ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2014         if (ret <= 0) {
2015                 /* Invalid: inverse of the return code tells
2016                  * the netfilter core what to do */
2017                 nf_ct_put(ct);
2018                 skb->_nfct = 0;
2019                 /* Special case: TCP tracker reports an attempt to reopen a
2020                  * closed/aborted connection. We have to go back and create a
2021                  * fresh conntrack.
2022                  */
2023                 if (ret == -NF_REPEAT)
2024                         goto repeat;
2025
2026                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2027                 if (ret == -NF_DROP)
2028                         NF_CT_STAT_INC_ATOMIC(state->net, drop);
2029
2030                 ret = -ret;
2031                 goto out;
2032         }
2033
2034         if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2035             !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2036                 nf_conntrack_event_cache(IPCT_REPLY, ct);
2037 out:
2038         if (tmpl)
2039                 nf_ct_put(tmpl);
2040
2041         return ret;
2042 }
2043 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2044
2045 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
2046    implicitly racy: see __nf_conntrack_confirm */
2047 void nf_conntrack_alter_reply(struct nf_conn *ct,
2048                               const struct nf_conntrack_tuple *newreply)
2049 {
2050         struct nf_conn_help *help = nfct_help(ct);
2051
2052         /* Should be unconfirmed, so not in hash table yet */
2053         WARN_ON(nf_ct_is_confirmed(ct));
2054
2055         nf_ct_dump_tuple(newreply);
2056
2057         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2058         if (ct->master || (help && !hlist_empty(&help->expectations)))
2059                 return;
2060 }
2061 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2062
2063 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
2064 void __nf_ct_refresh_acct(struct nf_conn *ct,
2065                           enum ip_conntrack_info ctinfo,
2066                           const struct sk_buff *skb,
2067                           u32 extra_jiffies,
2068                           bool do_acct)
2069 {
2070         /* Only update if this is not a fixed timeout */
2071         if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2072                 goto acct;
2073
2074         /* If not in hash table, timer will not be active yet */
2075         if (nf_ct_is_confirmed(ct))
2076                 extra_jiffies += nfct_time_stamp;
2077
2078         if (READ_ONCE(ct->timeout) != extra_jiffies)
2079                 WRITE_ONCE(ct->timeout, extra_jiffies);
2080 acct:
2081         if (do_acct)
2082                 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2083 }
2084 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2085
2086 bool nf_ct_kill_acct(struct nf_conn *ct,
2087                      enum ip_conntrack_info ctinfo,
2088                      const struct sk_buff *skb)
2089 {
2090         nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2091
2092         return nf_ct_delete(ct, 0, 0);
2093 }
2094 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2095
2096 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2097
2098 #include <linux/netfilter/nfnetlink.h>
2099 #include <linux/netfilter/nfnetlink_conntrack.h>
2100 #include <linux/mutex.h>
2101
2102 /* Generic function for tcp/udp/sctp/dccp and alike. */
2103 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2104                                const struct nf_conntrack_tuple *tuple)
2105 {
2106         if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2107             nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2108                 goto nla_put_failure;
2109         return 0;
2110
2111 nla_put_failure:
2112         return -1;
2113 }
2114 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2115
2116 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2117         [CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2118         [CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2119 };
2120 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2121
2122 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2123                                struct nf_conntrack_tuple *t,
2124                                u_int32_t flags)
2125 {
2126         if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2127                 if (!tb[CTA_PROTO_SRC_PORT])
2128                         return -EINVAL;
2129
2130                 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2131         }
2132
2133         if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2134                 if (!tb[CTA_PROTO_DST_PORT])
2135                         return -EINVAL;
2136
2137                 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2138         }
2139
2140         return 0;
2141 }
2142 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2143
2144 unsigned int nf_ct_port_nlattr_tuple_size(void)
2145 {
2146         static unsigned int size __read_mostly;
2147
2148         if (!size)
2149                 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2150
2151         return size;
2152 }
2153 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2154 #endif
2155
2156 /* Used by ipt_REJECT and ip6t_REJECT. */
2157 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2158 {
2159         struct nf_conn *ct;
2160         enum ip_conntrack_info ctinfo;
2161
2162         /* This ICMP is in reverse direction to the packet which caused it */
2163         ct = nf_ct_get(skb, &ctinfo);
2164         if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2165                 ctinfo = IP_CT_RELATED_REPLY;
2166         else
2167                 ctinfo = IP_CT_RELATED;
2168
2169         /* Attach to new skbuff, and increment count */
2170         nf_ct_set(nskb, ct, ctinfo);
2171         nf_conntrack_get(skb_nfct(nskb));
2172 }
2173
2174 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2175                                  struct nf_conn *ct,
2176                                  enum ip_conntrack_info ctinfo)
2177 {
2178         const struct nf_nat_hook *nat_hook;
2179         struct nf_conntrack_tuple_hash *h;
2180         struct nf_conntrack_tuple tuple;
2181         unsigned int status;
2182         int dataoff;
2183         u16 l3num;
2184         u8 l4num;
2185
2186         l3num = nf_ct_l3num(ct);
2187
2188         dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2189         if (dataoff <= 0)
2190                 return -1;
2191
2192         if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2193                              l4num, net, &tuple))
2194                 return -1;
2195
2196         if (ct->status & IPS_SRC_NAT) {
2197                 memcpy(tuple.src.u3.all,
2198                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2199                        sizeof(tuple.src.u3.all));
2200                 tuple.src.u.all =
2201                         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2202         }
2203
2204         if (ct->status & IPS_DST_NAT) {
2205                 memcpy(tuple.dst.u3.all,
2206                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2207                        sizeof(tuple.dst.u3.all));
2208                 tuple.dst.u.all =
2209                         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2210         }
2211
2212         h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2213         if (!h)
2214                 return 0;
2215
2216         /* Store status bits of the conntrack that is clashing to re-do NAT
2217          * mangling according to what it has been done already to this packet.
2218          */
2219         status = ct->status;
2220
2221         nf_ct_put(ct);
2222         ct = nf_ct_tuplehash_to_ctrack(h);
2223         nf_ct_set(skb, ct, ctinfo);
2224
2225         nat_hook = rcu_dereference(nf_nat_hook);
2226         if (!nat_hook)
2227                 return 0;
2228
2229         if (status & IPS_SRC_NAT &&
2230             nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2231                                 IP_CT_DIR_ORIGINAL) == NF_DROP)
2232                 return -1;
2233
2234         if (status & IPS_DST_NAT &&
2235             nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2236                                 IP_CT_DIR_ORIGINAL) == NF_DROP)
2237                 return -1;
2238
2239         return 0;
2240 }
2241
2242 /* This packet is coming from userspace via nf_queue, complete the packet
2243  * processing after the helper invocation in nf_confirm().
2244  */
2245 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2246                                enum ip_conntrack_info ctinfo)
2247 {
2248         const struct nf_conntrack_helper *helper;
2249         const struct nf_conn_help *help;
2250         int protoff;
2251
2252         help = nfct_help(ct);
2253         if (!help)
2254                 return 0;
2255
2256         helper = rcu_dereference(help->helper);
2257         if (!helper)
2258                 return 0;
2259
2260         if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2261                 return 0;
2262
2263         switch (nf_ct_l3num(ct)) {
2264         case NFPROTO_IPV4:
2265                 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2266                 break;
2267 #if IS_ENABLED(CONFIG_IPV6)
2268         case NFPROTO_IPV6: {
2269                 __be16 frag_off;
2270                 u8 pnum;
2271
2272                 pnum = ipv6_hdr(skb)->nexthdr;
2273                 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2274                                            &frag_off);
2275                 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2276                         return 0;
2277                 break;
2278         }
2279 #endif
2280         default:
2281                 return 0;
2282         }
2283
2284         if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2285             !nf_is_loopback_packet(skb)) {
2286                 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2287                         NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2288                         return -1;
2289                 }
2290         }
2291
2292         /* We've seen it coming out the other side: confirm it */
2293         return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2294 }
2295
2296 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2297 {
2298         enum ip_conntrack_info ctinfo;
2299         struct nf_conn *ct;
2300         int err;
2301
2302         ct = nf_ct_get(skb, &ctinfo);
2303         if (!ct)
2304                 return 0;
2305
2306         if (!nf_ct_is_confirmed(ct)) {
2307                 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2308                 if (err < 0)
2309                         return err;
2310
2311                 ct = nf_ct_get(skb, &ctinfo);
2312         }
2313
2314         return nf_confirm_cthelper(skb, ct, ctinfo);
2315 }
2316
2317 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2318                                        const struct sk_buff *skb)
2319 {
2320         const struct nf_conntrack_tuple *src_tuple;
2321         const struct nf_conntrack_tuple_hash *hash;
2322         struct nf_conntrack_tuple srctuple;
2323         enum ip_conntrack_info ctinfo;
2324         struct nf_conn *ct;
2325
2326         ct = nf_ct_get(skb, &ctinfo);
2327         if (ct) {
2328                 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2329                 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2330                 return true;
2331         }
2332
2333         if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2334                                NFPROTO_IPV4, dev_net(skb->dev),
2335                                &srctuple))
2336                 return false;
2337
2338         hash = nf_conntrack_find_get(dev_net(skb->dev),
2339                                      &nf_ct_zone_dflt,
2340                                      &srctuple);
2341         if (!hash)
2342                 return false;
2343
2344         ct = nf_ct_tuplehash_to_ctrack(hash);
2345         src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2346         memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2347         nf_ct_put(ct);
2348
2349         return true;
2350 }
2351
2352 /* Bring out ya dead! */
2353 static struct nf_conn *
2354 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2355                 const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2356 {
2357         struct nf_conntrack_tuple_hash *h;
2358         struct nf_conn *ct;
2359         struct hlist_nulls_node *n;
2360         spinlock_t *lockp;
2361
2362         for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2363                 struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2364
2365                 if (hlist_nulls_empty(hslot))
2366                         continue;
2367
2368                 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2369                 local_bh_disable();
2370                 nf_conntrack_lock(lockp);
2371                 hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2372                         if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2373                                 continue;
2374                         /* All nf_conn objects are added to hash table twice, one
2375                          * for original direction tuple, once for the reply tuple.
2376                          *
2377                          * Exception: In the IPS_NAT_CLASH case, only the reply
2378                          * tuple is added (the original tuple already existed for
2379                          * a different object).
2380                          *
2381                          * We only need to call the iterator once for each
2382                          * conntrack, so we just use the 'reply' direction
2383                          * tuple while iterating.
2384                          */
2385                         ct = nf_ct_tuplehash_to_ctrack(h);
2386
2387                         if (iter_data->net &&
2388                             !net_eq(iter_data->net, nf_ct_net(ct)))
2389                                 continue;
2390
2391                         if (iter(ct, iter_data->data))
2392                                 goto found;
2393                 }
2394                 spin_unlock(lockp);
2395                 local_bh_enable();
2396                 cond_resched();
2397         }
2398
2399         return NULL;
2400 found:
2401         refcount_inc(&ct->ct_general.use);
2402         spin_unlock(lockp);
2403         local_bh_enable();
2404         return ct;
2405 }
2406
2407 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2408                                   const struct nf_ct_iter_data *iter_data)
2409 {
2410         unsigned int bucket = 0;
2411         struct nf_conn *ct;
2412
2413         might_sleep();
2414
2415         mutex_lock(&nf_conntrack_mutex);
2416         while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2417                 /* Time to push up daises... */
2418
2419                 nf_ct_delete(ct, iter_data->portid, iter_data->report);
2420                 nf_ct_put(ct);
2421                 cond_resched();
2422         }
2423         mutex_unlock(&nf_conntrack_mutex);
2424 }
2425
2426 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2427                                const struct nf_ct_iter_data *iter_data)
2428 {
2429         struct net *net = iter_data->net;
2430         struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2431
2432         might_sleep();
2433
2434         if (atomic_read(&cnet->count) == 0)
2435                 return;
2436
2437         nf_ct_iterate_cleanup(iter, iter_data);
2438 }
2439 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2440
2441 /**
2442  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2443  * @iter: callback to invoke for each conntrack
2444  * @data: data to pass to @iter
2445  *
2446  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2447  * unconfirmed list as dying (so they will not be inserted into
2448  * main table).
2449  *
2450  * Can only be called in module exit path.
2451  */
2452 void
2453 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2454 {
2455         struct nf_ct_iter_data iter_data = {};
2456         struct net *net;
2457
2458         down_read(&net_rwsem);
2459         for_each_net(net) {
2460                 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2461
2462                 if (atomic_read(&cnet->count) == 0)
2463                         continue;
2464                 nf_queue_nf_hook_drop(net);
2465         }
2466         up_read(&net_rwsem);
2467
2468         /* Need to wait for netns cleanup worker to finish, if its
2469          * running -- it might have deleted a net namespace from
2470          * the global list, so hook drop above might not have
2471          * affected all namespaces.
2472          */
2473         net_ns_barrier();
2474
2475         /* a skb w. unconfirmed conntrack could have been reinjected just
2476          * before we called nf_queue_nf_hook_drop().
2477          *
2478          * This makes sure its inserted into conntrack table.
2479          */
2480         synchronize_net();
2481
2482         nf_ct_ext_bump_genid();
2483         iter_data.data = data;
2484         nf_ct_iterate_cleanup(iter, &iter_data);
2485
2486         /* Another cpu might be in a rcu read section with
2487          * rcu protected pointer cleared in iter callback
2488          * or hidden via nf_ct_ext_bump_genid() above.
2489          *
2490          * Wait until those are done.
2491          */
2492         synchronize_rcu();
2493 }
2494 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2495
2496 static int kill_all(struct nf_conn *i, void *data)
2497 {
2498         return 1;
2499 }
2500
2501 void nf_conntrack_cleanup_start(void)
2502 {
2503         cleanup_nf_conntrack_bpf();
2504         conntrack_gc_work.exiting = true;
2505 }
2506
2507 void nf_conntrack_cleanup_end(void)
2508 {
2509         RCU_INIT_POINTER(nf_ct_hook, NULL);
2510         cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2511         kvfree(nf_conntrack_hash);
2512
2513         nf_conntrack_proto_fini();
2514         nf_conntrack_helper_fini();
2515         nf_conntrack_expect_fini();
2516
2517         kmem_cache_destroy(nf_conntrack_cachep);
2518 }
2519
2520 /*
2521  * Mishearing the voices in his head, our hero wonders how he's
2522  * supposed to kill the mall.
2523  */
2524 void nf_conntrack_cleanup_net(struct net *net)
2525 {
2526         LIST_HEAD(single);
2527
2528         list_add(&net->exit_list, &single);
2529         nf_conntrack_cleanup_net_list(&single);
2530 }
2531
2532 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2533 {
2534         struct nf_ct_iter_data iter_data = {};
2535         struct net *net;
2536         int busy;
2537
2538         /*
2539          * This makes sure all current packets have passed through
2540          *  netfilter framework.  Roll on, two-stage module
2541          *  delete...
2542          */
2543         synchronize_net();
2544 i_see_dead_people:
2545         busy = 0;
2546         list_for_each_entry(net, net_exit_list, exit_list) {
2547                 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2548
2549                 iter_data.net = net;
2550                 nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2551                 if (atomic_read(&cnet->count) != 0)
2552                         busy = 1;
2553         }
2554         if (busy) {
2555                 schedule();
2556                 goto i_see_dead_people;
2557         }
2558
2559         list_for_each_entry(net, net_exit_list, exit_list) {
2560                 nf_conntrack_ecache_pernet_fini(net);
2561                 nf_conntrack_expect_pernet_fini(net);
2562                 free_percpu(net->ct.stat);
2563         }
2564 }
2565
2566 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2567 {
2568         struct hlist_nulls_head *hash;
2569         unsigned int nr_slots, i;
2570
2571         if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2572                 return NULL;
2573
2574         BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2575         nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2576
2577         hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2578
2579         if (hash && nulls)
2580                 for (i = 0; i < nr_slots; i++)
2581                         INIT_HLIST_NULLS_HEAD(&hash[i], i);
2582
2583         return hash;
2584 }
2585 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2586
2587 int nf_conntrack_hash_resize(unsigned int hashsize)
2588 {
2589         int i, bucket;
2590         unsigned int old_size;
2591         struct hlist_nulls_head *hash, *old_hash;
2592         struct nf_conntrack_tuple_hash *h;
2593         struct nf_conn *ct;
2594
2595         if (!hashsize)
2596                 return -EINVAL;
2597
2598         hash = nf_ct_alloc_hashtable(&hashsize, 1);
2599         if (!hash)
2600                 return -ENOMEM;
2601
2602         mutex_lock(&nf_conntrack_mutex);
2603         old_size = nf_conntrack_htable_size;
2604         if (old_size == hashsize) {
2605                 mutex_unlock(&nf_conntrack_mutex);
2606                 kvfree(hash);
2607                 return 0;
2608         }
2609
2610         local_bh_disable();
2611         nf_conntrack_all_lock();
2612         write_seqcount_begin(&nf_conntrack_generation);
2613
2614         /* Lookups in the old hash might happen in parallel, which means we
2615          * might get false negatives during connection lookup. New connections
2616          * created because of a false negative won't make it into the hash
2617          * though since that required taking the locks.
2618          */
2619
2620         for (i = 0; i < nf_conntrack_htable_size; i++) {
2621                 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2622                         unsigned int zone_id;
2623
2624                         h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2625                                               struct nf_conntrack_tuple_hash, hnnode);
2626                         ct = nf_ct_tuplehash_to_ctrack(h);
2627                         hlist_nulls_del_rcu(&h->hnnode);
2628
2629                         zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2630                         bucket = __hash_conntrack(nf_ct_net(ct),
2631                                                   &h->tuple, zone_id, hashsize);
2632                         hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2633                 }
2634         }
2635         old_hash = nf_conntrack_hash;
2636
2637         nf_conntrack_hash = hash;
2638         nf_conntrack_htable_size = hashsize;
2639
2640         write_seqcount_end(&nf_conntrack_generation);
2641         nf_conntrack_all_unlock();
2642         local_bh_enable();
2643
2644         mutex_unlock(&nf_conntrack_mutex);
2645
2646         synchronize_net();
2647         kvfree(old_hash);
2648         return 0;
2649 }
2650
2651 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2652 {
2653         unsigned int hashsize;
2654         int rc;
2655
2656         if (current->nsproxy->net_ns != &init_net)
2657                 return -EOPNOTSUPP;
2658
2659         /* On boot, we can set this without any fancy locking. */
2660         if (!nf_conntrack_hash)
2661                 return param_set_uint(val, kp);
2662
2663         rc = kstrtouint(val, 0, &hashsize);
2664         if (rc)
2665                 return rc;
2666
2667         return nf_conntrack_hash_resize(hashsize);
2668 }
2669
2670 int nf_conntrack_init_start(void)
2671 {
2672         unsigned long nr_pages = totalram_pages();
2673         int max_factor = 8;
2674         int ret = -ENOMEM;
2675         int i;
2676
2677         seqcount_spinlock_init(&nf_conntrack_generation,
2678                                &nf_conntrack_locks_all_lock);
2679
2680         for (i = 0; i < CONNTRACK_LOCKS; i++)
2681                 spin_lock_init(&nf_conntrack_locks[i]);
2682
2683         if (!nf_conntrack_htable_size) {
2684                 nf_conntrack_htable_size
2685                         = (((nr_pages << PAGE_SHIFT) / 16384)
2686                            / sizeof(struct hlist_head));
2687                 if (BITS_PER_LONG >= 64 &&
2688                     nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2689                         nf_conntrack_htable_size = 262144;
2690                 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2691                         nf_conntrack_htable_size = 65536;
2692
2693                 if (nf_conntrack_htable_size < 1024)
2694                         nf_conntrack_htable_size = 1024;
2695                 /* Use a max. factor of one by default to keep the average
2696                  * hash chain length at 2 entries.  Each entry has to be added
2697                  * twice (once for original direction, once for reply).
2698                  * When a table size is given we use the old value of 8 to
2699                  * avoid implicit reduction of the max entries setting.
2700                  */
2701                 max_factor = 1;
2702         }
2703
2704         nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2705         if (!nf_conntrack_hash)
2706                 return -ENOMEM;
2707
2708         nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2709
2710         nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2711                                                 sizeof(struct nf_conn),
2712                                                 NFCT_INFOMASK + 1,
2713                                                 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2714         if (!nf_conntrack_cachep)
2715                 goto err_cachep;
2716
2717         ret = nf_conntrack_expect_init();
2718         if (ret < 0)
2719                 goto err_expect;
2720
2721         ret = nf_conntrack_helper_init();
2722         if (ret < 0)
2723                 goto err_helper;
2724
2725         ret = nf_conntrack_proto_init();
2726         if (ret < 0)
2727                 goto err_proto;
2728
2729         conntrack_gc_work_init(&conntrack_gc_work);
2730         queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2731
2732         ret = register_nf_conntrack_bpf();
2733         if (ret < 0)
2734                 goto err_kfunc;
2735
2736         return 0;
2737
2738 err_kfunc:
2739         cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2740         nf_conntrack_proto_fini();
2741 err_proto:
2742         nf_conntrack_helper_fini();
2743 err_helper:
2744         nf_conntrack_expect_fini();
2745 err_expect:
2746         kmem_cache_destroy(nf_conntrack_cachep);
2747 err_cachep:
2748         kvfree(nf_conntrack_hash);
2749         return ret;
2750 }
2751
2752 static void nf_conntrack_set_closing(struct nf_conntrack *nfct)
2753 {
2754         struct nf_conn *ct = nf_ct_to_nf_conn(nfct);
2755
2756         switch (nf_ct_protonum(ct)) {
2757         case IPPROTO_TCP:
2758                 nf_conntrack_tcp_set_closing(ct);
2759                 break;
2760         }
2761 }
2762
2763 static const struct nf_ct_hook nf_conntrack_hook = {
2764         .update         = nf_conntrack_update,
2765         .destroy        = nf_ct_destroy,
2766         .get_tuple_skb  = nf_conntrack_get_tuple_skb,
2767         .attach         = nf_conntrack_attach,
2768         .set_closing    = nf_conntrack_set_closing,
2769 };
2770
2771 void nf_conntrack_init_end(void)
2772 {
2773         RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2774 }
2775
2776 /*
2777  * We need to use special "null" values, not used in hash table
2778  */
2779 #define UNCONFIRMED_NULLS_VAL   ((1<<30)+0)
2780
2781 int nf_conntrack_init_net(struct net *net)
2782 {
2783         struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2784         int ret = -ENOMEM;
2785
2786         BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2787         BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2788         atomic_set(&cnet->count, 0);
2789
2790         net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2791         if (!net->ct.stat)
2792                 return ret;
2793
2794         ret = nf_conntrack_expect_pernet_init(net);
2795         if (ret < 0)
2796                 goto err_expect;
2797
2798         nf_conntrack_acct_pernet_init(net);
2799         nf_conntrack_tstamp_pernet_init(net);
2800         nf_conntrack_ecache_pernet_init(net);
2801         nf_conntrack_proto_pernet_init(net);
2802
2803         return 0;
2804
2805 err_expect:
2806         free_percpu(net->ct.stat);
2807         return ret;
2808 }
2809
2810 /* ctnetlink code shared by both ctnetlink and nf_conntrack_bpf */
2811
2812 int __nf_ct_change_timeout(struct nf_conn *ct, u64 timeout)
2813 {
2814         if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2815                 return -EPERM;
2816
2817         __nf_ct_set_timeout(ct, timeout);
2818
2819         if (test_bit(IPS_DYING_BIT, &ct->status))
2820                 return -ETIME;
2821
2822         return 0;
2823 }
2824 EXPORT_SYMBOL_GPL(__nf_ct_change_timeout);
2825
2826 void __nf_ct_change_status(struct nf_conn *ct, unsigned long on, unsigned long off)
2827 {
2828         unsigned int bit;
2829
2830         /* Ignore these unchangable bits */
2831         on &= ~IPS_UNCHANGEABLE_MASK;
2832         off &= ~IPS_UNCHANGEABLE_MASK;
2833
2834         for (bit = 0; bit < __IPS_MAX_BIT; bit++) {
2835                 if (on & (1 << bit))
2836                         set_bit(bit, &ct->status);
2837                 else if (off & (1 << bit))
2838                         clear_bit(bit, &ct->status);
2839         }
2840 }
2841 EXPORT_SYMBOL_GPL(__nf_ct_change_status);
2842
2843 int nf_ct_change_status_common(struct nf_conn *ct, unsigned int status)
2844 {
2845         unsigned long d;
2846
2847         d = ct->status ^ status;
2848
2849         if (d & (IPS_EXPECTED|IPS_CONFIRMED|IPS_DYING))
2850                 /* unchangeable */
2851                 return -EBUSY;
2852
2853         if (d & IPS_SEEN_REPLY && !(status & IPS_SEEN_REPLY))
2854                 /* SEEN_REPLY bit can only be set */
2855                 return -EBUSY;
2856
2857         if (d & IPS_ASSURED && !(status & IPS_ASSURED))
2858                 /* ASSURED bit can only be set */
2859                 return -EBUSY;
2860
2861         __nf_ct_change_status(ct, status, 0);
2862         return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(nf_ct_change_status_common);