Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-block.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83
84 #include <linux/crypto.h>
85 #include <linux/scatterlist.h>
86
87 int sysctl_tcp_tw_reuse __read_mostly;
88 int sysctl_tcp_low_latency __read_mostly;
89 EXPORT_SYMBOL(sysctl_tcp_low_latency);
90
91
92 #ifdef CONFIG_TCP_MD5SIG
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
94                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
95 #endif
96
97 struct inet_hashinfo tcp_hashinfo;
98 EXPORT_SYMBOL(tcp_hashinfo);
99
100 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
101 {
102         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
103                                           ip_hdr(skb)->saddr,
104                                           tcp_hdr(skb)->dest,
105                                           tcp_hdr(skb)->source);
106 }
107
108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
109 {
110         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111         struct tcp_sock *tp = tcp_sk(sk);
112
113         /* With PAWS, it is safe from the viewpoint
114            of data integrity. Even without PAWS it is safe provided sequence
115            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
116
117            Actually, the idea is close to VJ's one, only timestamp cache is
118            held not per host, but per port pair and TW bucket is used as state
119            holder.
120
121            If TW bucket has been already destroyed we fall back to VJ's scheme
122            and use initial timestamp retrieved from peer table.
123          */
124         if (tcptw->tw_ts_recent_stamp &&
125             (twp == NULL || (sysctl_tcp_tw_reuse &&
126                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
127                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
128                 if (tp->write_seq == 0)
129                         tp->write_seq = 1;
130                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
131                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
132                 sock_hold(sktw);
133                 return 1;
134         }
135
136         return 0;
137 }
138 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
139
140 /* This will initiate an outgoing connection. */
141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
142 {
143         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
144         struct inet_sock *inet = inet_sk(sk);
145         struct tcp_sock *tp = tcp_sk(sk);
146         __be16 orig_sport, orig_dport;
147         __be32 daddr, nexthop;
148         struct flowi4 *fl4;
149         struct rtable *rt;
150         int err;
151         struct ip_options_rcu *inet_opt;
152
153         if (addr_len < sizeof(struct sockaddr_in))
154                 return -EINVAL;
155
156         if (usin->sin_family != AF_INET)
157                 return -EAFNOSUPPORT;
158
159         nexthop = daddr = usin->sin_addr.s_addr;
160         inet_opt = rcu_dereference_protected(inet->inet_opt,
161                                              sock_owned_by_user(sk));
162         if (inet_opt && inet_opt->opt.srr) {
163                 if (!daddr)
164                         return -EINVAL;
165                 nexthop = inet_opt->opt.faddr;
166         }
167
168         orig_sport = inet->inet_sport;
169         orig_dport = usin->sin_port;
170         fl4 = &inet->cork.fl.u.ip4;
171         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
172                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173                               IPPROTO_TCP,
174                               orig_sport, orig_dport, sk, true);
175         if (IS_ERR(rt)) {
176                 err = PTR_ERR(rt);
177                 if (err == -ENETUNREACH)
178                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
179                 return err;
180         }
181
182         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183                 ip_rt_put(rt);
184                 return -ENETUNREACH;
185         }
186
187         if (!inet_opt || !inet_opt->opt.srr)
188                 daddr = fl4->daddr;
189
190         if (!inet->inet_saddr)
191                 inet->inet_saddr = fl4->saddr;
192         inet->inet_rcv_saddr = inet->inet_saddr;
193
194         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
195                 /* Reset inherited state */
196                 tp->rx_opt.ts_recent       = 0;
197                 tp->rx_opt.ts_recent_stamp = 0;
198                 tp->write_seq              = 0;
199         }
200
201         if (tcp_death_row.sysctl_tw_recycle &&
202             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
203                 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
204                 /*
205                  * VJ's idea. We save last timestamp seen from
206                  * the destination in peer table, when entering state
207                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
208                  * when trying new connection.
209                  */
210                 if (peer) {
211                         inet_peer_refcheck(peer);
212                         if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
213                                 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
214                                 tp->rx_opt.ts_recent = peer->tcp_ts;
215                         }
216                 }
217         }
218
219         inet->inet_dport = usin->sin_port;
220         inet->inet_daddr = daddr;
221
222         inet_csk(sk)->icsk_ext_hdr_len = 0;
223         if (inet_opt)
224                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
225
226         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
227
228         /* Socket identity is still unknown (sport may be zero).
229          * However we set state to SYN-SENT and not releasing socket
230          * lock select source port, enter ourselves into the hash tables and
231          * complete initialization after this.
232          */
233         tcp_set_state(sk, TCP_SYN_SENT);
234         err = inet_hash_connect(&tcp_death_row, sk);
235         if (err)
236                 goto failure;
237
238         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
239                                inet->inet_sport, inet->inet_dport, sk);
240         if (IS_ERR(rt)) {
241                 err = PTR_ERR(rt);
242                 rt = NULL;
243                 goto failure;
244         }
245         /* OK, now commit destination to socket.  */
246         sk->sk_gso_type = SKB_GSO_TCPV4;
247         sk_setup_caps(sk, &rt->dst);
248
249         if (!tp->write_seq)
250                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
251                                                            inet->inet_daddr,
252                                                            inet->inet_sport,
253                                                            usin->sin_port);
254
255         inet->inet_id = tp->write_seq ^ jiffies;
256
257         err = tcp_connect(sk);
258         rt = NULL;
259         if (err)
260                 goto failure;
261
262         return 0;
263
264 failure:
265         /*
266          * This unhashes the socket and releases the local port,
267          * if necessary.
268          */
269         tcp_set_state(sk, TCP_CLOSE);
270         ip_rt_put(rt);
271         sk->sk_route_caps = 0;
272         inet->inet_dport = 0;
273         return err;
274 }
275 EXPORT_SYMBOL(tcp_v4_connect);
276
277 /*
278  * This routine does path mtu discovery as defined in RFC1191.
279  */
280 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
281 {
282         struct dst_entry *dst;
283         struct inet_sock *inet = inet_sk(sk);
284
285         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
286          * send out by Linux are always <576bytes so they should go through
287          * unfragmented).
288          */
289         if (sk->sk_state == TCP_LISTEN)
290                 return;
291
292         /* We don't check in the destentry if pmtu discovery is forbidden
293          * on this route. We just assume that no packet_to_big packets
294          * are send back when pmtu discovery is not active.
295          * There is a small race when the user changes this flag in the
296          * route, but I think that's acceptable.
297          */
298         if ((dst = __sk_dst_check(sk, 0)) == NULL)
299                 return;
300
301         dst->ops->update_pmtu(dst, mtu);
302
303         /* Something is about to be wrong... Remember soft error
304          * for the case, if this connection will not able to recover.
305          */
306         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
307                 sk->sk_err_soft = EMSGSIZE;
308
309         mtu = dst_mtu(dst);
310
311         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
312             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
313                 tcp_sync_mss(sk, mtu);
314
315                 /* Resend the TCP packet because it's
316                  * clear that the old packet has been
317                  * dropped. This is the new "fast" path mtu
318                  * discovery.
319                  */
320                 tcp_simple_retransmit(sk);
321         } /* else let the usual retransmit timer handle it */
322 }
323
324 /*
325  * This routine is called by the ICMP module when it gets some
326  * sort of error condition.  If err < 0 then the socket should
327  * be closed and the error returned to the user.  If err > 0
328  * it's just the icmp type << 8 | icmp code.  After adjustment
329  * header points to the first 8 bytes of the tcp header.  We need
330  * to find the appropriate port.
331  *
332  * The locking strategy used here is very "optimistic". When
333  * someone else accesses the socket the ICMP is just dropped
334  * and for some paths there is no check at all.
335  * A more general error queue to queue errors for later handling
336  * is probably better.
337  *
338  */
339
340 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
341 {
342         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
343         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
344         struct inet_connection_sock *icsk;
345         struct tcp_sock *tp;
346         struct inet_sock *inet;
347         const int type = icmp_hdr(icmp_skb)->type;
348         const int code = icmp_hdr(icmp_skb)->code;
349         struct sock *sk;
350         struct sk_buff *skb;
351         __u32 seq;
352         __u32 remaining;
353         int err;
354         struct net *net = dev_net(icmp_skb->dev);
355
356         if (icmp_skb->len < (iph->ihl << 2) + 8) {
357                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
358                 return;
359         }
360
361         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
362                         iph->saddr, th->source, inet_iif(icmp_skb));
363         if (!sk) {
364                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
365                 return;
366         }
367         if (sk->sk_state == TCP_TIME_WAIT) {
368                 inet_twsk_put(inet_twsk(sk));
369                 return;
370         }
371
372         bh_lock_sock(sk);
373         /* If too many ICMPs get dropped on busy
374          * servers this needs to be solved differently.
375          */
376         if (sock_owned_by_user(sk))
377                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
378
379         if (sk->sk_state == TCP_CLOSE)
380                 goto out;
381
382         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
383                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
384                 goto out;
385         }
386
387         icsk = inet_csk(sk);
388         tp = tcp_sk(sk);
389         seq = ntohl(th->seq);
390         if (sk->sk_state != TCP_LISTEN &&
391             !between(seq, tp->snd_una, tp->snd_nxt)) {
392                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
393                 goto out;
394         }
395
396         switch (type) {
397         case ICMP_SOURCE_QUENCH:
398                 /* Just silently ignore these. */
399                 goto out;
400         case ICMP_PARAMETERPROB:
401                 err = EPROTO;
402                 break;
403         case ICMP_DEST_UNREACH:
404                 if (code > NR_ICMP_UNREACH)
405                         goto out;
406
407                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
408                         if (!sock_owned_by_user(sk))
409                                 do_pmtu_discovery(sk, iph, info);
410                         goto out;
411                 }
412
413                 err = icmp_err_convert[code].errno;
414                 /* check if icmp_skb allows revert of backoff
415                  * (see draft-zimmermann-tcp-lcd) */
416                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
417                         break;
418                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
419                     !icsk->icsk_backoff)
420                         break;
421
422                 if (sock_owned_by_user(sk))
423                         break;
424
425                 icsk->icsk_backoff--;
426                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
427                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
428                 tcp_bound_rto(sk);
429
430                 skb = tcp_write_queue_head(sk);
431                 BUG_ON(!skb);
432
433                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
434                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
435
436                 if (remaining) {
437                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
438                                                   remaining, TCP_RTO_MAX);
439                 } else {
440                         /* RTO revert clocked out retransmission.
441                          * Will retransmit now */
442                         tcp_retransmit_timer(sk);
443                 }
444
445                 break;
446         case ICMP_TIME_EXCEEDED:
447                 err = EHOSTUNREACH;
448                 break;
449         default:
450                 goto out;
451         }
452
453         switch (sk->sk_state) {
454                 struct request_sock *req, **prev;
455         case TCP_LISTEN:
456                 if (sock_owned_by_user(sk))
457                         goto out;
458
459                 req = inet_csk_search_req(sk, &prev, th->dest,
460                                           iph->daddr, iph->saddr);
461                 if (!req)
462                         goto out;
463
464                 /* ICMPs are not backlogged, hence we cannot get
465                    an established socket here.
466                  */
467                 WARN_ON(req->sk);
468
469                 if (seq != tcp_rsk(req)->snt_isn) {
470                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
471                         goto out;
472                 }
473
474                 /*
475                  * Still in SYN_RECV, just remove it silently.
476                  * There is no good way to pass the error to the newly
477                  * created socket, and POSIX does not want network
478                  * errors returned from accept().
479                  */
480                 inet_csk_reqsk_queue_drop(sk, req, prev);
481                 goto out;
482
483         case TCP_SYN_SENT:
484         case TCP_SYN_RECV:  /* Cannot happen.
485                                It can f.e. if SYNs crossed.
486                              */
487                 if (!sock_owned_by_user(sk)) {
488                         sk->sk_err = err;
489
490                         sk->sk_error_report(sk);
491
492                         tcp_done(sk);
493                 } else {
494                         sk->sk_err_soft = err;
495                 }
496                 goto out;
497         }
498
499         /* If we've already connected we will keep trying
500          * until we time out, or the user gives up.
501          *
502          * rfc1122 4.2.3.9 allows to consider as hard errors
503          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
504          * but it is obsoleted by pmtu discovery).
505          *
506          * Note, that in modern internet, where routing is unreliable
507          * and in each dark corner broken firewalls sit, sending random
508          * errors ordered by their masters even this two messages finally lose
509          * their original sense (even Linux sends invalid PORT_UNREACHs)
510          *
511          * Now we are in compliance with RFCs.
512          *                                                      --ANK (980905)
513          */
514
515         inet = inet_sk(sk);
516         if (!sock_owned_by_user(sk) && inet->recverr) {
517                 sk->sk_err = err;
518                 sk->sk_error_report(sk);
519         } else  { /* Only an error on timeout */
520                 sk->sk_err_soft = err;
521         }
522
523 out:
524         bh_unlock_sock(sk);
525         sock_put(sk);
526 }
527
528 static void __tcp_v4_send_check(struct sk_buff *skb,
529                                 __be32 saddr, __be32 daddr)
530 {
531         struct tcphdr *th = tcp_hdr(skb);
532
533         if (skb->ip_summed == CHECKSUM_PARTIAL) {
534                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
535                 skb->csum_start = skb_transport_header(skb) - skb->head;
536                 skb->csum_offset = offsetof(struct tcphdr, check);
537         } else {
538                 th->check = tcp_v4_check(skb->len, saddr, daddr,
539                                          csum_partial(th,
540                                                       th->doff << 2,
541                                                       skb->csum));
542         }
543 }
544
545 /* This routine computes an IPv4 TCP checksum. */
546 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
547 {
548         const struct inet_sock *inet = inet_sk(sk);
549
550         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
551 }
552 EXPORT_SYMBOL(tcp_v4_send_check);
553
554 int tcp_v4_gso_send_check(struct sk_buff *skb)
555 {
556         const struct iphdr *iph;
557         struct tcphdr *th;
558
559         if (!pskb_may_pull(skb, sizeof(*th)))
560                 return -EINVAL;
561
562         iph = ip_hdr(skb);
563         th = tcp_hdr(skb);
564
565         th->check = 0;
566         skb->ip_summed = CHECKSUM_PARTIAL;
567         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
568         return 0;
569 }
570
571 /*
572  *      This routine will send an RST to the other tcp.
573  *
574  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
575  *                    for reset.
576  *      Answer: if a packet caused RST, it is not for a socket
577  *              existing in our system, if it is matched to a socket,
578  *              it is just duplicate segment or bug in other side's TCP.
579  *              So that we build reply only basing on parameters
580  *              arrived with segment.
581  *      Exception: precedence violation. We do not implement it in any case.
582  */
583
584 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
585 {
586         const struct tcphdr *th = tcp_hdr(skb);
587         struct {
588                 struct tcphdr th;
589 #ifdef CONFIG_TCP_MD5SIG
590                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
591 #endif
592         } rep;
593         struct ip_reply_arg arg;
594 #ifdef CONFIG_TCP_MD5SIG
595         struct tcp_md5sig_key *key;
596         const __u8 *hash_location = NULL;
597         unsigned char newhash[16];
598         int genhash;
599         struct sock *sk1 = NULL;
600 #endif
601         struct net *net;
602
603         /* Never send a reset in response to a reset. */
604         if (th->rst)
605                 return;
606
607         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
608                 return;
609
610         /* Swap the send and the receive. */
611         memset(&rep, 0, sizeof(rep));
612         rep.th.dest   = th->source;
613         rep.th.source = th->dest;
614         rep.th.doff   = sizeof(struct tcphdr) / 4;
615         rep.th.rst    = 1;
616
617         if (th->ack) {
618                 rep.th.seq = th->ack_seq;
619         } else {
620                 rep.th.ack = 1;
621                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
622                                        skb->len - (th->doff << 2));
623         }
624
625         memset(&arg, 0, sizeof(arg));
626         arg.iov[0].iov_base = (unsigned char *)&rep;
627         arg.iov[0].iov_len  = sizeof(rep.th);
628
629 #ifdef CONFIG_TCP_MD5SIG
630         hash_location = tcp_parse_md5sig_option(th);
631         if (!sk && hash_location) {
632                 /*
633                  * active side is lost. Try to find listening socket through
634                  * source port, and then find md5 key through listening socket.
635                  * we are not loose security here:
636                  * Incoming packet is checked with md5 hash with finding key,
637                  * no RST generated if md5 hash doesn't match.
638                  */
639                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
640                                              &tcp_hashinfo, ip_hdr(skb)->daddr,
641                                              ntohs(th->source), inet_iif(skb));
642                 /* don't send rst if it can't find key */
643                 if (!sk1)
644                         return;
645                 rcu_read_lock();
646                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
647                                         &ip_hdr(skb)->saddr, AF_INET);
648                 if (!key)
649                         goto release_sk1;
650
651                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
652                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
653                         goto release_sk1;
654         } else {
655                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
656                                              &ip_hdr(skb)->saddr,
657                                              AF_INET) : NULL;
658         }
659
660         if (key) {
661                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
662                                    (TCPOPT_NOP << 16) |
663                                    (TCPOPT_MD5SIG << 8) |
664                                    TCPOLEN_MD5SIG);
665                 /* Update length and the length the header thinks exists */
666                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
667                 rep.th.doff = arg.iov[0].iov_len / 4;
668
669                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
670                                      key, ip_hdr(skb)->saddr,
671                                      ip_hdr(skb)->daddr, &rep.th);
672         }
673 #endif
674         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
675                                       ip_hdr(skb)->saddr, /* XXX */
676                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
677         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
678         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
679         /* When socket is gone, all binding information is lost.
680          * routing might fail in this case. using iif for oif to
681          * make sure we can deliver it
682          */
683         arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
684
685         net = dev_net(skb_dst(skb)->dev);
686         arg.tos = ip_hdr(skb)->tos;
687         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
688                       &arg, arg.iov[0].iov_len);
689
690         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
691         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
692
693 #ifdef CONFIG_TCP_MD5SIG
694 release_sk1:
695         if (sk1) {
696                 rcu_read_unlock();
697                 sock_put(sk1);
698         }
699 #endif
700 }
701
702 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
703    outside socket context is ugly, certainly. What can I do?
704  */
705
706 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
707                             u32 win, u32 ts, int oif,
708                             struct tcp_md5sig_key *key,
709                             int reply_flags, u8 tos)
710 {
711         const struct tcphdr *th = tcp_hdr(skb);
712         struct {
713                 struct tcphdr th;
714                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
715 #ifdef CONFIG_TCP_MD5SIG
716                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
717 #endif
718                         ];
719         } rep;
720         struct ip_reply_arg arg;
721         struct net *net = dev_net(skb_dst(skb)->dev);
722
723         memset(&rep.th, 0, sizeof(struct tcphdr));
724         memset(&arg, 0, sizeof(arg));
725
726         arg.iov[0].iov_base = (unsigned char *)&rep;
727         arg.iov[0].iov_len  = sizeof(rep.th);
728         if (ts) {
729                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
730                                    (TCPOPT_TIMESTAMP << 8) |
731                                    TCPOLEN_TIMESTAMP);
732                 rep.opt[1] = htonl(tcp_time_stamp);
733                 rep.opt[2] = htonl(ts);
734                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
735         }
736
737         /* Swap the send and the receive. */
738         rep.th.dest    = th->source;
739         rep.th.source  = th->dest;
740         rep.th.doff    = arg.iov[0].iov_len / 4;
741         rep.th.seq     = htonl(seq);
742         rep.th.ack_seq = htonl(ack);
743         rep.th.ack     = 1;
744         rep.th.window  = htons(win);
745
746 #ifdef CONFIG_TCP_MD5SIG
747         if (key) {
748                 int offset = (ts) ? 3 : 0;
749
750                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
751                                           (TCPOPT_NOP << 16) |
752                                           (TCPOPT_MD5SIG << 8) |
753                                           TCPOLEN_MD5SIG);
754                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
755                 rep.th.doff = arg.iov[0].iov_len/4;
756
757                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
758                                     key, ip_hdr(skb)->saddr,
759                                     ip_hdr(skb)->daddr, &rep.th);
760         }
761 #endif
762         arg.flags = reply_flags;
763         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
764                                       ip_hdr(skb)->saddr, /* XXX */
765                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
766         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
767         if (oif)
768                 arg.bound_dev_if = oif;
769         arg.tos = tos;
770         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
771                       &arg, arg.iov[0].iov_len);
772
773         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
774 }
775
776 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
777 {
778         struct inet_timewait_sock *tw = inet_twsk(sk);
779         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
780
781         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
782                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
783                         tcptw->tw_ts_recent,
784                         tw->tw_bound_dev_if,
785                         tcp_twsk_md5_key(tcptw),
786                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
787                         tw->tw_tos
788                         );
789
790         inet_twsk_put(tw);
791 }
792
793 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
794                                   struct request_sock *req)
795 {
796         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
797                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
798                         req->ts_recent,
799                         0,
800                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
801                                           AF_INET),
802                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
803                         ip_hdr(skb)->tos);
804 }
805
806 /*
807  *      Send a SYN-ACK after having received a SYN.
808  *      This still operates on a request_sock only, not on a big
809  *      socket.
810  */
811 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
812                               struct request_sock *req,
813                               struct request_values *rvp)
814 {
815         const struct inet_request_sock *ireq = inet_rsk(req);
816         struct flowi4 fl4;
817         int err = -1;
818         struct sk_buff * skb;
819
820         /* First, grab a route. */
821         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
822                 return -1;
823
824         skb = tcp_make_synack(sk, dst, req, rvp);
825
826         if (skb) {
827                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
828
829                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
830                                             ireq->rmt_addr,
831                                             ireq->opt);
832                 err = net_xmit_eval(err);
833         }
834
835         dst_release(dst);
836         return err;
837 }
838
839 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
840                               struct request_values *rvp)
841 {
842         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
843         return tcp_v4_send_synack(sk, NULL, req, rvp);
844 }
845
846 /*
847  *      IPv4 request_sock destructor.
848  */
849 static void tcp_v4_reqsk_destructor(struct request_sock *req)
850 {
851         kfree(inet_rsk(req)->opt);
852 }
853
854 /*
855  * Return 1 if a syncookie should be sent
856  */
857 int tcp_syn_flood_action(struct sock *sk,
858                          const struct sk_buff *skb,
859                          const char *proto)
860 {
861         const char *msg = "Dropping request";
862         int want_cookie = 0;
863         struct listen_sock *lopt;
864
865
866
867 #ifdef CONFIG_SYN_COOKIES
868         if (sysctl_tcp_syncookies) {
869                 msg = "Sending cookies";
870                 want_cookie = 1;
871                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
872         } else
873 #endif
874                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
875
876         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
877         if (!lopt->synflood_warned) {
878                 lopt->synflood_warned = 1;
879                 pr_info("%s: Possible SYN flooding on port %d. %s. "
880                         " Check SNMP counters.\n",
881                         proto, ntohs(tcp_hdr(skb)->dest), msg);
882         }
883         return want_cookie;
884 }
885 EXPORT_SYMBOL(tcp_syn_flood_action);
886
887 /*
888  * Save and compile IPv4 options into the request_sock if needed.
889  */
890 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
891                                                   struct sk_buff *skb)
892 {
893         const struct ip_options *opt = &(IPCB(skb)->opt);
894         struct ip_options_rcu *dopt = NULL;
895
896         if (opt && opt->optlen) {
897                 int opt_size = sizeof(*dopt) + opt->optlen;
898
899                 dopt = kmalloc(opt_size, GFP_ATOMIC);
900                 if (dopt) {
901                         if (ip_options_echo(&dopt->opt, skb)) {
902                                 kfree(dopt);
903                                 dopt = NULL;
904                         }
905                 }
906         }
907         return dopt;
908 }
909
910 #ifdef CONFIG_TCP_MD5SIG
911 /*
912  * RFC2385 MD5 checksumming requires a mapping of
913  * IP address->MD5 Key.
914  * We need to maintain these in the sk structure.
915  */
916
917 /* Find the Key structure for an address.  */
918 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
919                                          const union tcp_md5_addr *addr,
920                                          int family)
921 {
922         struct tcp_sock *tp = tcp_sk(sk);
923         struct tcp_md5sig_key *key;
924         struct hlist_node *pos;
925         unsigned int size = sizeof(struct in_addr);
926         struct tcp_md5sig_info *md5sig;
927
928         /* caller either holds rcu_read_lock() or socket lock */
929         md5sig = rcu_dereference_check(tp->md5sig_info,
930                                        sock_owned_by_user(sk));
931         if (!md5sig)
932                 return NULL;
933 #if IS_ENABLED(CONFIG_IPV6)
934         if (family == AF_INET6)
935                 size = sizeof(struct in6_addr);
936 #endif
937         hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
938                 if (key->family != family)
939                         continue;
940                 if (!memcmp(&key->addr, addr, size))
941                         return key;
942         }
943         return NULL;
944 }
945 EXPORT_SYMBOL(tcp_md5_do_lookup);
946
947 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
948                                          struct sock *addr_sk)
949 {
950         union tcp_md5_addr *addr;
951
952         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
953         return tcp_md5_do_lookup(sk, addr, AF_INET);
954 }
955 EXPORT_SYMBOL(tcp_v4_md5_lookup);
956
957 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
958                                                       struct request_sock *req)
959 {
960         union tcp_md5_addr *addr;
961
962         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
963         return tcp_md5_do_lookup(sk, addr, AF_INET);
964 }
965
966 /* This can be called on a newly created socket, from other files */
967 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
968                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
969 {
970         /* Add Key to the list */
971         struct tcp_md5sig_key *key;
972         struct tcp_sock *tp = tcp_sk(sk);
973         struct tcp_md5sig_info *md5sig;
974
975         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
976         if (key) {
977                 /* Pre-existing entry - just update that one. */
978                 memcpy(key->key, newkey, newkeylen);
979                 key->keylen = newkeylen;
980                 return 0;
981         }
982
983         md5sig = rcu_dereference_protected(tp->md5sig_info,
984                                            sock_owned_by_user(sk));
985         if (!md5sig) {
986                 md5sig = kmalloc(sizeof(*md5sig), gfp);
987                 if (!md5sig)
988                         return -ENOMEM;
989
990                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
991                 INIT_HLIST_HEAD(&md5sig->head);
992                 rcu_assign_pointer(tp->md5sig_info, md5sig);
993         }
994
995         key = sock_kmalloc(sk, sizeof(*key), gfp);
996         if (!key)
997                 return -ENOMEM;
998         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
999                 sock_kfree_s(sk, key, sizeof(*key));
1000                 return -ENOMEM;
1001         }
1002
1003         memcpy(key->key, newkey, newkeylen);
1004         key->keylen = newkeylen;
1005         key->family = family;
1006         memcpy(&key->addr, addr,
1007                (family == AF_INET6) ? sizeof(struct in6_addr) :
1008                                       sizeof(struct in_addr));
1009         hlist_add_head_rcu(&key->node, &md5sig->head);
1010         return 0;
1011 }
1012 EXPORT_SYMBOL(tcp_md5_do_add);
1013
1014 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1015 {
1016         struct tcp_sock *tp = tcp_sk(sk);
1017         struct tcp_md5sig_key *key;
1018         struct tcp_md5sig_info *md5sig;
1019
1020         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1021         if (!key)
1022                 return -ENOENT;
1023         hlist_del_rcu(&key->node);
1024         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1025         kfree_rcu(key, rcu);
1026         md5sig = rcu_dereference_protected(tp->md5sig_info,
1027                                            sock_owned_by_user(sk));
1028         if (hlist_empty(&md5sig->head))
1029                 tcp_free_md5sig_pool();
1030         return 0;
1031 }
1032 EXPORT_SYMBOL(tcp_md5_do_del);
1033
1034 void tcp_clear_md5_list(struct sock *sk)
1035 {
1036         struct tcp_sock *tp = tcp_sk(sk);
1037         struct tcp_md5sig_key *key;
1038         struct hlist_node *pos, *n;
1039         struct tcp_md5sig_info *md5sig;
1040
1041         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1042
1043         if (!hlist_empty(&md5sig->head))
1044                 tcp_free_md5sig_pool();
1045         hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1046                 hlist_del_rcu(&key->node);
1047                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1048                 kfree_rcu(key, rcu);
1049         }
1050 }
1051
1052 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1053                                  int optlen)
1054 {
1055         struct tcp_md5sig cmd;
1056         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1057
1058         if (optlen < sizeof(cmd))
1059                 return -EINVAL;
1060
1061         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1062                 return -EFAULT;
1063
1064         if (sin->sin_family != AF_INET)
1065                 return -EINVAL;
1066
1067         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1068                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1069                                       AF_INET);
1070
1071         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1072                 return -EINVAL;
1073
1074         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1076                               GFP_KERNEL);
1077 }
1078
1079 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1080                                         __be32 daddr, __be32 saddr, int nbytes)
1081 {
1082         struct tcp4_pseudohdr *bp;
1083         struct scatterlist sg;
1084
1085         bp = &hp->md5_blk.ip4;
1086
1087         /*
1088          * 1. the TCP pseudo-header (in the order: source IP address,
1089          * destination IP address, zero-padded protocol number, and
1090          * segment length)
1091          */
1092         bp->saddr = saddr;
1093         bp->daddr = daddr;
1094         bp->pad = 0;
1095         bp->protocol = IPPROTO_TCP;
1096         bp->len = cpu_to_be16(nbytes);
1097
1098         sg_init_one(&sg, bp, sizeof(*bp));
1099         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1100 }
1101
1102 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1103                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1104 {
1105         struct tcp_md5sig_pool *hp;
1106         struct hash_desc *desc;
1107
1108         hp = tcp_get_md5sig_pool();
1109         if (!hp)
1110                 goto clear_hash_noput;
1111         desc = &hp->md5_desc;
1112
1113         if (crypto_hash_init(desc))
1114                 goto clear_hash;
1115         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1116                 goto clear_hash;
1117         if (tcp_md5_hash_header(hp, th))
1118                 goto clear_hash;
1119         if (tcp_md5_hash_key(hp, key))
1120                 goto clear_hash;
1121         if (crypto_hash_final(desc, md5_hash))
1122                 goto clear_hash;
1123
1124         tcp_put_md5sig_pool();
1125         return 0;
1126
1127 clear_hash:
1128         tcp_put_md5sig_pool();
1129 clear_hash_noput:
1130         memset(md5_hash, 0, 16);
1131         return 1;
1132 }
1133
1134 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1135                         const struct sock *sk, const struct request_sock *req,
1136                         const struct sk_buff *skb)
1137 {
1138         struct tcp_md5sig_pool *hp;
1139         struct hash_desc *desc;
1140         const struct tcphdr *th = tcp_hdr(skb);
1141         __be32 saddr, daddr;
1142
1143         if (sk) {
1144                 saddr = inet_sk(sk)->inet_saddr;
1145                 daddr = inet_sk(sk)->inet_daddr;
1146         } else if (req) {
1147                 saddr = inet_rsk(req)->loc_addr;
1148                 daddr = inet_rsk(req)->rmt_addr;
1149         } else {
1150                 const struct iphdr *iph = ip_hdr(skb);
1151                 saddr = iph->saddr;
1152                 daddr = iph->daddr;
1153         }
1154
1155         hp = tcp_get_md5sig_pool();
1156         if (!hp)
1157                 goto clear_hash_noput;
1158         desc = &hp->md5_desc;
1159
1160         if (crypto_hash_init(desc))
1161                 goto clear_hash;
1162
1163         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1164                 goto clear_hash;
1165         if (tcp_md5_hash_header(hp, th))
1166                 goto clear_hash;
1167         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1168                 goto clear_hash;
1169         if (tcp_md5_hash_key(hp, key))
1170                 goto clear_hash;
1171         if (crypto_hash_final(desc, md5_hash))
1172                 goto clear_hash;
1173
1174         tcp_put_md5sig_pool();
1175         return 0;
1176
1177 clear_hash:
1178         tcp_put_md5sig_pool();
1179 clear_hash_noput:
1180         memset(md5_hash, 0, 16);
1181         return 1;
1182 }
1183 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1184
1185 static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1186 {
1187         /*
1188          * This gets called for each TCP segment that arrives
1189          * so we want to be efficient.
1190          * We have 3 drop cases:
1191          * o No MD5 hash and one expected.
1192          * o MD5 hash and we're not expecting one.
1193          * o MD5 hash and its wrong.
1194          */
1195         const __u8 *hash_location = NULL;
1196         struct tcp_md5sig_key *hash_expected;
1197         const struct iphdr *iph = ip_hdr(skb);
1198         const struct tcphdr *th = tcp_hdr(skb);
1199         int genhash;
1200         unsigned char newhash[16];
1201
1202         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1203                                           AF_INET);
1204         hash_location = tcp_parse_md5sig_option(th);
1205
1206         /* We've parsed the options - do we have a hash? */
1207         if (!hash_expected && !hash_location)
1208                 return 0;
1209
1210         if (hash_expected && !hash_location) {
1211                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1212                 return 1;
1213         }
1214
1215         if (!hash_expected && hash_location) {
1216                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1217                 return 1;
1218         }
1219
1220         /* Okay, so this is hash_expected and hash_location -
1221          * so we need to calculate the checksum.
1222          */
1223         genhash = tcp_v4_md5_hash_skb(newhash,
1224                                       hash_expected,
1225                                       NULL, NULL, skb);
1226
1227         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1228                 if (net_ratelimit()) {
1229                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1230                                &iph->saddr, ntohs(th->source),
1231                                &iph->daddr, ntohs(th->dest),
1232                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1233                 }
1234                 return 1;
1235         }
1236         return 0;
1237 }
1238
1239 #endif
1240
1241 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1242         .family         =       PF_INET,
1243         .obj_size       =       sizeof(struct tcp_request_sock),
1244         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1245         .send_ack       =       tcp_v4_reqsk_send_ack,
1246         .destructor     =       tcp_v4_reqsk_destructor,
1247         .send_reset     =       tcp_v4_send_reset,
1248         .syn_ack_timeout =      tcp_syn_ack_timeout,
1249 };
1250
1251 #ifdef CONFIG_TCP_MD5SIG
1252 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1253         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1254         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1255 };
1256 #endif
1257
1258 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1259 {
1260         struct tcp_extend_values tmp_ext;
1261         struct tcp_options_received tmp_opt;
1262         const u8 *hash_location;
1263         struct request_sock *req;
1264         struct inet_request_sock *ireq;
1265         struct tcp_sock *tp = tcp_sk(sk);
1266         struct dst_entry *dst = NULL;
1267         __be32 saddr = ip_hdr(skb)->saddr;
1268         __be32 daddr = ip_hdr(skb)->daddr;
1269         __u32 isn = TCP_SKB_CB(skb)->when;
1270         int want_cookie = 0;
1271
1272         /* Never answer to SYNs send to broadcast or multicast */
1273         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1274                 goto drop;
1275
1276         /* TW buckets are converted to open requests without
1277          * limitations, they conserve resources and peer is
1278          * evidently real one.
1279          */
1280         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1281                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1282                 if (!want_cookie)
1283                         goto drop;
1284         }
1285
1286         /* Accept backlog is full. If we have already queued enough
1287          * of warm entries in syn queue, drop request. It is better than
1288          * clogging syn queue with openreqs with exponentially increasing
1289          * timeout.
1290          */
1291         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1292                 goto drop;
1293
1294         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1295         if (!req)
1296                 goto drop;
1297
1298 #ifdef CONFIG_TCP_MD5SIG
1299         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1300 #endif
1301
1302         tcp_clear_options(&tmp_opt);
1303         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1304         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1305         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1306
1307         if (tmp_opt.cookie_plus > 0 &&
1308             tmp_opt.saw_tstamp &&
1309             !tp->rx_opt.cookie_out_never &&
1310             (sysctl_tcp_cookie_size > 0 ||
1311              (tp->cookie_values != NULL &&
1312               tp->cookie_values->cookie_desired > 0))) {
1313                 u8 *c;
1314                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1315                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1316
1317                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1318                         goto drop_and_release;
1319
1320                 /* Secret recipe starts with IP addresses */
1321                 *mess++ ^= (__force u32)daddr;
1322                 *mess++ ^= (__force u32)saddr;
1323
1324                 /* plus variable length Initiator Cookie */
1325                 c = (u8 *)mess;
1326                 while (l-- > 0)
1327                         *c++ ^= *hash_location++;
1328
1329                 want_cookie = 0;        /* not our kind of cookie */
1330                 tmp_ext.cookie_out_never = 0; /* false */
1331                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1332         } else if (!tp->rx_opt.cookie_in_always) {
1333                 /* redundant indications, but ensure initialization. */
1334                 tmp_ext.cookie_out_never = 1; /* true */
1335                 tmp_ext.cookie_plus = 0;
1336         } else {
1337                 goto drop_and_release;
1338         }
1339         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1340
1341         if (want_cookie && !tmp_opt.saw_tstamp)
1342                 tcp_clear_options(&tmp_opt);
1343
1344         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1345         tcp_openreq_init(req, &tmp_opt, skb);
1346
1347         ireq = inet_rsk(req);
1348         ireq->loc_addr = daddr;
1349         ireq->rmt_addr = saddr;
1350         ireq->no_srccheck = inet_sk(sk)->transparent;
1351         ireq->opt = tcp_v4_save_options(sk, skb);
1352
1353         if (security_inet_conn_request(sk, skb, req))
1354                 goto drop_and_free;
1355
1356         if (!want_cookie || tmp_opt.tstamp_ok)
1357                 TCP_ECN_create_request(req, tcp_hdr(skb));
1358
1359         if (want_cookie) {
1360                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1361                 req->cookie_ts = tmp_opt.tstamp_ok;
1362         } else if (!isn) {
1363                 struct inet_peer *peer = NULL;
1364                 struct flowi4 fl4;
1365
1366                 /* VJ's idea. We save last timestamp seen
1367                  * from the destination in peer table, when entering
1368                  * state TIME-WAIT, and check against it before
1369                  * accepting new connection request.
1370                  *
1371                  * If "isn" is not zero, this request hit alive
1372                  * timewait bucket, so that all the necessary checks
1373                  * are made in the function processing timewait state.
1374                  */
1375                 if (tmp_opt.saw_tstamp &&
1376                     tcp_death_row.sysctl_tw_recycle &&
1377                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1378                     fl4.daddr == saddr &&
1379                     (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1380                         inet_peer_refcheck(peer);
1381                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1382                             (s32)(peer->tcp_ts - req->ts_recent) >
1383                                                         TCP_PAWS_WINDOW) {
1384                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1385                                 goto drop_and_release;
1386                         }
1387                 }
1388                 /* Kill the following clause, if you dislike this way. */
1389                 else if (!sysctl_tcp_syncookies &&
1390                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1391                           (sysctl_max_syn_backlog >> 2)) &&
1392                          (!peer || !peer->tcp_ts_stamp) &&
1393                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1394                         /* Without syncookies last quarter of
1395                          * backlog is filled with destinations,
1396                          * proven to be alive.
1397                          * It means that we continue to communicate
1398                          * to destinations, already remembered
1399                          * to the moment of synflood.
1400                          */
1401                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1402                                        &saddr, ntohs(tcp_hdr(skb)->source));
1403                         goto drop_and_release;
1404                 }
1405
1406                 isn = tcp_v4_init_sequence(skb);
1407         }
1408         tcp_rsk(req)->snt_isn = isn;
1409         tcp_rsk(req)->snt_synack = tcp_time_stamp;
1410
1411         if (tcp_v4_send_synack(sk, dst, req,
1412                                (struct request_values *)&tmp_ext) ||
1413             want_cookie)
1414                 goto drop_and_free;
1415
1416         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1417         return 0;
1418
1419 drop_and_release:
1420         dst_release(dst);
1421 drop_and_free:
1422         reqsk_free(req);
1423 drop:
1424         return 0;
1425 }
1426 EXPORT_SYMBOL(tcp_v4_conn_request);
1427
1428
1429 /*
1430  * The three way handshake has completed - we got a valid synack -
1431  * now create the new socket.
1432  */
1433 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1434                                   struct request_sock *req,
1435                                   struct dst_entry *dst)
1436 {
1437         struct inet_request_sock *ireq;
1438         struct inet_sock *newinet;
1439         struct tcp_sock *newtp;
1440         struct sock *newsk;
1441 #ifdef CONFIG_TCP_MD5SIG
1442         struct tcp_md5sig_key *key;
1443 #endif
1444         struct ip_options_rcu *inet_opt;
1445
1446         if (sk_acceptq_is_full(sk))
1447                 goto exit_overflow;
1448
1449         newsk = tcp_create_openreq_child(sk, req, skb);
1450         if (!newsk)
1451                 goto exit_nonewsk;
1452
1453         newsk->sk_gso_type = SKB_GSO_TCPV4;
1454
1455         newtp                 = tcp_sk(newsk);
1456         newinet               = inet_sk(newsk);
1457         ireq                  = inet_rsk(req);
1458         newinet->inet_daddr   = ireq->rmt_addr;
1459         newinet->inet_rcv_saddr = ireq->loc_addr;
1460         newinet->inet_saddr           = ireq->loc_addr;
1461         inet_opt              = ireq->opt;
1462         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1463         ireq->opt             = NULL;
1464         newinet->mc_index     = inet_iif(skb);
1465         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1466         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1467         if (inet_opt)
1468                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1469         newinet->inet_id = newtp->write_seq ^ jiffies;
1470
1471         if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1472                 goto put_and_exit;
1473
1474         sk_setup_caps(newsk, dst);
1475
1476         tcp_mtup_init(newsk);
1477         tcp_sync_mss(newsk, dst_mtu(dst));
1478         newtp->advmss = dst_metric_advmss(dst);
1479         if (tcp_sk(sk)->rx_opt.user_mss &&
1480             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1481                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1482
1483         tcp_initialize_rcv_mss(newsk);
1484         if (tcp_rsk(req)->snt_synack)
1485                 tcp_valid_rtt_meas(newsk,
1486                     tcp_time_stamp - tcp_rsk(req)->snt_synack);
1487         newtp->total_retrans = req->retrans;
1488
1489 #ifdef CONFIG_TCP_MD5SIG
1490         /* Copy over the MD5 key from the original socket */
1491         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1492                                 AF_INET);
1493         if (key != NULL) {
1494                 /*
1495                  * We're using one, so create a matching key
1496                  * on the newsk structure. If we fail to get
1497                  * memory, then we end up not copying the key
1498                  * across. Shucks.
1499                  */
1500                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1501                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1502                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1503         }
1504 #endif
1505
1506         if (__inet_inherit_port(sk, newsk) < 0)
1507                 goto put_and_exit;
1508         __inet_hash_nolisten(newsk, NULL);
1509
1510         return newsk;
1511
1512 exit_overflow:
1513         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1514 exit_nonewsk:
1515         dst_release(dst);
1516 exit:
1517         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1518         return NULL;
1519 put_and_exit:
1520         tcp_clear_xmit_timers(newsk);
1521         tcp_cleanup_congestion_control(newsk);
1522         bh_unlock_sock(newsk);
1523         sock_put(newsk);
1524         goto exit;
1525 }
1526 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1527
1528 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1529 {
1530         struct tcphdr *th = tcp_hdr(skb);
1531         const struct iphdr *iph = ip_hdr(skb);
1532         struct sock *nsk;
1533         struct request_sock **prev;
1534         /* Find possible connection requests. */
1535         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1536                                                        iph->saddr, iph->daddr);
1537         if (req)
1538                 return tcp_check_req(sk, skb, req, prev);
1539
1540         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1541                         th->source, iph->daddr, th->dest, inet_iif(skb));
1542
1543         if (nsk) {
1544                 if (nsk->sk_state != TCP_TIME_WAIT) {
1545                         bh_lock_sock(nsk);
1546                         return nsk;
1547                 }
1548                 inet_twsk_put(inet_twsk(nsk));
1549                 return NULL;
1550         }
1551
1552 #ifdef CONFIG_SYN_COOKIES
1553         if (!th->syn)
1554                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1555 #endif
1556         return sk;
1557 }
1558
1559 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1560 {
1561         const struct iphdr *iph = ip_hdr(skb);
1562
1563         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1564                 if (!tcp_v4_check(skb->len, iph->saddr,
1565                                   iph->daddr, skb->csum)) {
1566                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1567                         return 0;
1568                 }
1569         }
1570
1571         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1572                                        skb->len, IPPROTO_TCP, 0);
1573
1574         if (skb->len <= 76) {
1575                 return __skb_checksum_complete(skb);
1576         }
1577         return 0;
1578 }
1579
1580
1581 /* The socket must have it's spinlock held when we get
1582  * here.
1583  *
1584  * We have a potential double-lock case here, so even when
1585  * doing backlog processing we use the BH locking scheme.
1586  * This is because we cannot sleep with the original spinlock
1587  * held.
1588  */
1589 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1590 {
1591         struct sock *rsk;
1592 #ifdef CONFIG_TCP_MD5SIG
1593         /*
1594          * We really want to reject the packet as early as possible
1595          * if:
1596          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1597          *  o There is an MD5 option and we're not expecting one
1598          */
1599         if (tcp_v4_inbound_md5_hash(sk, skb))
1600                 goto discard;
1601 #endif
1602
1603         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1604                 sock_rps_save_rxhash(sk, skb);
1605                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1606                         rsk = sk;
1607                         goto reset;
1608                 }
1609                 return 0;
1610         }
1611
1612         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1613                 goto csum_err;
1614
1615         if (sk->sk_state == TCP_LISTEN) {
1616                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1617                 if (!nsk)
1618                         goto discard;
1619
1620                 if (nsk != sk) {
1621                         sock_rps_save_rxhash(nsk, skb);
1622                         if (tcp_child_process(sk, nsk, skb)) {
1623                                 rsk = nsk;
1624                                 goto reset;
1625                         }
1626                         return 0;
1627                 }
1628         } else
1629                 sock_rps_save_rxhash(sk, skb);
1630
1631         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1632                 rsk = sk;
1633                 goto reset;
1634         }
1635         return 0;
1636
1637 reset:
1638         tcp_v4_send_reset(rsk, skb);
1639 discard:
1640         kfree_skb(skb);
1641         /* Be careful here. If this function gets more complicated and
1642          * gcc suffers from register pressure on the x86, sk (in %ebx)
1643          * might be destroyed here. This current version compiles correctly,
1644          * but you have been warned.
1645          */
1646         return 0;
1647
1648 csum_err:
1649         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1650         goto discard;
1651 }
1652 EXPORT_SYMBOL(tcp_v4_do_rcv);
1653
1654 /*
1655  *      From tcp_input.c
1656  */
1657
1658 int tcp_v4_rcv(struct sk_buff *skb)
1659 {
1660         const struct iphdr *iph;
1661         const struct tcphdr *th;
1662         struct sock *sk;
1663         int ret;
1664         struct net *net = dev_net(skb->dev);
1665
1666         if (skb->pkt_type != PACKET_HOST)
1667                 goto discard_it;
1668
1669         /* Count it even if it's bad */
1670         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1671
1672         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1673                 goto discard_it;
1674
1675         th = tcp_hdr(skb);
1676
1677         if (th->doff < sizeof(struct tcphdr) / 4)
1678                 goto bad_packet;
1679         if (!pskb_may_pull(skb, th->doff * 4))
1680                 goto discard_it;
1681
1682         /* An explanation is required here, I think.
1683          * Packet length and doff are validated by header prediction,
1684          * provided case of th->doff==0 is eliminated.
1685          * So, we defer the checks. */
1686         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1687                 goto bad_packet;
1688
1689         th = tcp_hdr(skb);
1690         iph = ip_hdr(skb);
1691         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1692         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1693                                     skb->len - th->doff * 4);
1694         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1695         TCP_SKB_CB(skb)->when    = 0;
1696         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1697         TCP_SKB_CB(skb)->sacked  = 0;
1698
1699         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1700         if (!sk)
1701                 goto no_tcp_socket;
1702
1703 process:
1704         if (sk->sk_state == TCP_TIME_WAIT)
1705                 goto do_time_wait;
1706
1707         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1708                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1709                 goto discard_and_relse;
1710         }
1711
1712         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1713                 goto discard_and_relse;
1714         nf_reset(skb);
1715
1716         if (sk_filter(sk, skb))
1717                 goto discard_and_relse;
1718
1719         skb->dev = NULL;
1720
1721         bh_lock_sock_nested(sk);
1722         ret = 0;
1723         if (!sock_owned_by_user(sk)) {
1724 #ifdef CONFIG_NET_DMA
1725                 struct tcp_sock *tp = tcp_sk(sk);
1726                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1727                         tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1728                 if (tp->ucopy.dma_chan)
1729                         ret = tcp_v4_do_rcv(sk, skb);
1730                 else
1731 #endif
1732                 {
1733                         if (!tcp_prequeue(sk, skb))
1734                                 ret = tcp_v4_do_rcv(sk, skb);
1735                 }
1736         } else if (unlikely(sk_add_backlog(sk, skb))) {
1737                 bh_unlock_sock(sk);
1738                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1739                 goto discard_and_relse;
1740         }
1741         bh_unlock_sock(sk);
1742
1743         sock_put(sk);
1744
1745         return ret;
1746
1747 no_tcp_socket:
1748         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1749                 goto discard_it;
1750
1751         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1752 bad_packet:
1753                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1754         } else {
1755                 tcp_v4_send_reset(NULL, skb);
1756         }
1757
1758 discard_it:
1759         /* Discard frame. */
1760         kfree_skb(skb);
1761         return 0;
1762
1763 discard_and_relse:
1764         sock_put(sk);
1765         goto discard_it;
1766
1767 do_time_wait:
1768         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1769                 inet_twsk_put(inet_twsk(sk));
1770                 goto discard_it;
1771         }
1772
1773         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1774                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1775                 inet_twsk_put(inet_twsk(sk));
1776                 goto discard_it;
1777         }
1778         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1779         case TCP_TW_SYN: {
1780                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1781                                                         &tcp_hashinfo,
1782                                                         iph->daddr, th->dest,
1783                                                         inet_iif(skb));
1784                 if (sk2) {
1785                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1786                         inet_twsk_put(inet_twsk(sk));
1787                         sk = sk2;
1788                         goto process;
1789                 }
1790                 /* Fall through to ACK */
1791         }
1792         case TCP_TW_ACK:
1793                 tcp_v4_timewait_ack(sk, skb);
1794                 break;
1795         case TCP_TW_RST:
1796                 goto no_tcp_socket;
1797         case TCP_TW_SUCCESS:;
1798         }
1799         goto discard_it;
1800 }
1801
1802 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1803 {
1804         struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1805         struct inet_sock *inet = inet_sk(sk);
1806         struct inet_peer *peer;
1807
1808         if (!rt ||
1809             inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1810                 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1811                 *release_it = true;
1812         } else {
1813                 if (!rt->peer)
1814                         rt_bind_peer(rt, inet->inet_daddr, 1);
1815                 peer = rt->peer;
1816                 *release_it = false;
1817         }
1818
1819         return peer;
1820 }
1821 EXPORT_SYMBOL(tcp_v4_get_peer);
1822
1823 void *tcp_v4_tw_get_peer(struct sock *sk)
1824 {
1825         const struct inet_timewait_sock *tw = inet_twsk(sk);
1826
1827         return inet_getpeer_v4(tw->tw_daddr, 1);
1828 }
1829 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1830
1831 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1832         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1833         .twsk_unique    = tcp_twsk_unique,
1834         .twsk_destructor= tcp_twsk_destructor,
1835         .twsk_getpeer   = tcp_v4_tw_get_peer,
1836 };
1837
1838 const struct inet_connection_sock_af_ops ipv4_specific = {
1839         .queue_xmit        = ip_queue_xmit,
1840         .send_check        = tcp_v4_send_check,
1841         .rebuild_header    = inet_sk_rebuild_header,
1842         .conn_request      = tcp_v4_conn_request,
1843         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1844         .get_peer          = tcp_v4_get_peer,
1845         .net_header_len    = sizeof(struct iphdr),
1846         .setsockopt        = ip_setsockopt,
1847         .getsockopt        = ip_getsockopt,
1848         .addr2sockaddr     = inet_csk_addr2sockaddr,
1849         .sockaddr_len      = sizeof(struct sockaddr_in),
1850         .bind_conflict     = inet_csk_bind_conflict,
1851 #ifdef CONFIG_COMPAT
1852         .compat_setsockopt = compat_ip_setsockopt,
1853         .compat_getsockopt = compat_ip_getsockopt,
1854 #endif
1855 };
1856 EXPORT_SYMBOL(ipv4_specific);
1857
1858 #ifdef CONFIG_TCP_MD5SIG
1859 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1860         .md5_lookup             = tcp_v4_md5_lookup,
1861         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1862         .md5_parse              = tcp_v4_parse_md5_keys,
1863 };
1864 #endif
1865
1866 /* NOTE: A lot of things set to zero explicitly by call to
1867  *       sk_alloc() so need not be done here.
1868  */
1869 static int tcp_v4_init_sock(struct sock *sk)
1870 {
1871         struct inet_connection_sock *icsk = inet_csk(sk);
1872         struct tcp_sock *tp = tcp_sk(sk);
1873
1874         skb_queue_head_init(&tp->out_of_order_queue);
1875         tcp_init_xmit_timers(sk);
1876         tcp_prequeue_init(tp);
1877
1878         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1879         tp->mdev = TCP_TIMEOUT_INIT;
1880
1881         /* So many TCP implementations out there (incorrectly) count the
1882          * initial SYN frame in their delayed-ACK and congestion control
1883          * algorithms that we must have the following bandaid to talk
1884          * efficiently to them.  -DaveM
1885          */
1886         tp->snd_cwnd = TCP_INIT_CWND;
1887
1888         /* See draft-stevens-tcpca-spec-01 for discussion of the
1889          * initialization of these values.
1890          */
1891         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1892         tp->snd_cwnd_clamp = ~0;
1893         tp->mss_cache = TCP_MSS_DEFAULT;
1894
1895         tp->reordering = sysctl_tcp_reordering;
1896         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1897
1898         sk->sk_state = TCP_CLOSE;
1899
1900         sk->sk_write_space = sk_stream_write_space;
1901         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1902
1903         icsk->icsk_af_ops = &ipv4_specific;
1904         icsk->icsk_sync_mss = tcp_sync_mss;
1905 #ifdef CONFIG_TCP_MD5SIG
1906         tp->af_specific = &tcp_sock_ipv4_specific;
1907 #endif
1908
1909         /* TCP Cookie Transactions */
1910         if (sysctl_tcp_cookie_size > 0) {
1911                 /* Default, cookies without s_data_payload. */
1912                 tp->cookie_values =
1913                         kzalloc(sizeof(*tp->cookie_values),
1914                                 sk->sk_allocation);
1915                 if (tp->cookie_values != NULL)
1916                         kref_init(&tp->cookie_values->kref);
1917         }
1918         /* Presumed zeroed, in order of appearance:
1919          *      cookie_in_always, cookie_out_never,
1920          *      s_data_constant, s_data_in, s_data_out
1921          */
1922         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1923         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1924
1925         local_bh_disable();
1926         sock_update_memcg(sk);
1927         sk_sockets_allocated_inc(sk);
1928         local_bh_enable();
1929
1930         return 0;
1931 }
1932
1933 void tcp_v4_destroy_sock(struct sock *sk)
1934 {
1935         struct tcp_sock *tp = tcp_sk(sk);
1936
1937         tcp_clear_xmit_timers(sk);
1938
1939         tcp_cleanup_congestion_control(sk);
1940
1941         /* Cleanup up the write buffer. */
1942         tcp_write_queue_purge(sk);
1943
1944         /* Cleans up our, hopefully empty, out_of_order_queue. */
1945         __skb_queue_purge(&tp->out_of_order_queue);
1946
1947 #ifdef CONFIG_TCP_MD5SIG
1948         /* Clean up the MD5 key list, if any */
1949         if (tp->md5sig_info) {
1950                 tcp_clear_md5_list(sk);
1951                 kfree_rcu(tp->md5sig_info, rcu);
1952                 tp->md5sig_info = NULL;
1953         }
1954 #endif
1955
1956 #ifdef CONFIG_NET_DMA
1957         /* Cleans up our sk_async_wait_queue */
1958         __skb_queue_purge(&sk->sk_async_wait_queue);
1959 #endif
1960
1961         /* Clean prequeue, it must be empty really */
1962         __skb_queue_purge(&tp->ucopy.prequeue);
1963
1964         /* Clean up a referenced TCP bind bucket. */
1965         if (inet_csk(sk)->icsk_bind_hash)
1966                 inet_put_port(sk);
1967
1968         /*
1969          * If sendmsg cached page exists, toss it.
1970          */
1971         if (sk->sk_sndmsg_page) {
1972                 __free_page(sk->sk_sndmsg_page);
1973                 sk->sk_sndmsg_page = NULL;
1974         }
1975
1976         /* TCP Cookie Transactions */
1977         if (tp->cookie_values != NULL) {
1978                 kref_put(&tp->cookie_values->kref,
1979                          tcp_cookie_values_release);
1980                 tp->cookie_values = NULL;
1981         }
1982
1983         sk_sockets_allocated_dec(sk);
1984         sock_release_memcg(sk);
1985 }
1986 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1987
1988 #ifdef CONFIG_PROC_FS
1989 /* Proc filesystem TCP sock list dumping. */
1990
1991 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1992 {
1993         return hlist_nulls_empty(head) ? NULL :
1994                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1995 }
1996
1997 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1998 {
1999         return !is_a_nulls(tw->tw_node.next) ?
2000                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2001 }
2002
2003 /*
2004  * Get next listener socket follow cur.  If cur is NULL, get first socket
2005  * starting from bucket given in st->bucket; when st->bucket is zero the
2006  * very first socket in the hash table is returned.
2007  */
2008 static void *listening_get_next(struct seq_file *seq, void *cur)
2009 {
2010         struct inet_connection_sock *icsk;
2011         struct hlist_nulls_node *node;
2012         struct sock *sk = cur;
2013         struct inet_listen_hashbucket *ilb;
2014         struct tcp_iter_state *st = seq->private;
2015         struct net *net = seq_file_net(seq);
2016
2017         if (!sk) {
2018                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2019                 spin_lock_bh(&ilb->lock);
2020                 sk = sk_nulls_head(&ilb->head);
2021                 st->offset = 0;
2022                 goto get_sk;
2023         }
2024         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2025         ++st->num;
2026         ++st->offset;
2027
2028         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2029                 struct request_sock *req = cur;
2030
2031                 icsk = inet_csk(st->syn_wait_sk);
2032                 req = req->dl_next;
2033                 while (1) {
2034                         while (req) {
2035                                 if (req->rsk_ops->family == st->family) {
2036                                         cur = req;
2037                                         goto out;
2038                                 }
2039                                 req = req->dl_next;
2040                         }
2041                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2042                                 break;
2043 get_req:
2044                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2045                 }
2046                 sk        = sk_nulls_next(st->syn_wait_sk);
2047                 st->state = TCP_SEQ_STATE_LISTENING;
2048                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2049         } else {
2050                 icsk = inet_csk(sk);
2051                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2052                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2053                         goto start_req;
2054                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2055                 sk = sk_nulls_next(sk);
2056         }
2057 get_sk:
2058         sk_nulls_for_each_from(sk, node) {
2059                 if (!net_eq(sock_net(sk), net))
2060                         continue;
2061                 if (sk->sk_family == st->family) {
2062                         cur = sk;
2063                         goto out;
2064                 }
2065                 icsk = inet_csk(sk);
2066                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2067                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2068 start_req:
2069                         st->uid         = sock_i_uid(sk);
2070                         st->syn_wait_sk = sk;
2071                         st->state       = TCP_SEQ_STATE_OPENREQ;
2072                         st->sbucket     = 0;
2073                         goto get_req;
2074                 }
2075                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2076         }
2077         spin_unlock_bh(&ilb->lock);
2078         st->offset = 0;
2079         if (++st->bucket < INET_LHTABLE_SIZE) {
2080                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2081                 spin_lock_bh(&ilb->lock);
2082                 sk = sk_nulls_head(&ilb->head);
2083                 goto get_sk;
2084         }
2085         cur = NULL;
2086 out:
2087         return cur;
2088 }
2089
2090 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2091 {
2092         struct tcp_iter_state *st = seq->private;
2093         void *rc;
2094
2095         st->bucket = 0;
2096         st->offset = 0;
2097         rc = listening_get_next(seq, NULL);
2098
2099         while (rc && *pos) {
2100                 rc = listening_get_next(seq, rc);
2101                 --*pos;
2102         }
2103         return rc;
2104 }
2105
2106 static inline int empty_bucket(struct tcp_iter_state *st)
2107 {
2108         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2109                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2110 }
2111
2112 /*
2113  * Get first established socket starting from bucket given in st->bucket.
2114  * If st->bucket is zero, the very first socket in the hash is returned.
2115  */
2116 static void *established_get_first(struct seq_file *seq)
2117 {
2118         struct tcp_iter_state *st = seq->private;
2119         struct net *net = seq_file_net(seq);
2120         void *rc = NULL;
2121
2122         st->offset = 0;
2123         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2124                 struct sock *sk;
2125                 struct hlist_nulls_node *node;
2126                 struct inet_timewait_sock *tw;
2127                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2128
2129                 /* Lockless fast path for the common case of empty buckets */
2130                 if (empty_bucket(st))
2131                         continue;
2132
2133                 spin_lock_bh(lock);
2134                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2135                         if (sk->sk_family != st->family ||
2136                             !net_eq(sock_net(sk), net)) {
2137                                 continue;
2138                         }
2139                         rc = sk;
2140                         goto out;
2141                 }
2142                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2143                 inet_twsk_for_each(tw, node,
2144                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2145                         if (tw->tw_family != st->family ||
2146                             !net_eq(twsk_net(tw), net)) {
2147                                 continue;
2148                         }
2149                         rc = tw;
2150                         goto out;
2151                 }
2152                 spin_unlock_bh(lock);
2153                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2154         }
2155 out:
2156         return rc;
2157 }
2158
2159 static void *established_get_next(struct seq_file *seq, void *cur)
2160 {
2161         struct sock *sk = cur;
2162         struct inet_timewait_sock *tw;
2163         struct hlist_nulls_node *node;
2164         struct tcp_iter_state *st = seq->private;
2165         struct net *net = seq_file_net(seq);
2166
2167         ++st->num;
2168         ++st->offset;
2169
2170         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2171                 tw = cur;
2172                 tw = tw_next(tw);
2173 get_tw:
2174                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2175                         tw = tw_next(tw);
2176                 }
2177                 if (tw) {
2178                         cur = tw;
2179                         goto out;
2180                 }
2181                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2182                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2183
2184                 /* Look for next non empty bucket */
2185                 st->offset = 0;
2186                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2187                                 empty_bucket(st))
2188                         ;
2189                 if (st->bucket > tcp_hashinfo.ehash_mask)
2190                         return NULL;
2191
2192                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2193                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2194         } else
2195                 sk = sk_nulls_next(sk);
2196
2197         sk_nulls_for_each_from(sk, node) {
2198                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2199                         goto found;
2200         }
2201
2202         st->state = TCP_SEQ_STATE_TIME_WAIT;
2203         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2204         goto get_tw;
2205 found:
2206         cur = sk;
2207 out:
2208         return cur;
2209 }
2210
2211 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2212 {
2213         struct tcp_iter_state *st = seq->private;
2214         void *rc;
2215
2216         st->bucket = 0;
2217         rc = established_get_first(seq);
2218
2219         while (rc && pos) {
2220                 rc = established_get_next(seq, rc);
2221                 --pos;
2222         }
2223         return rc;
2224 }
2225
2226 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2227 {
2228         void *rc;
2229         struct tcp_iter_state *st = seq->private;
2230
2231         st->state = TCP_SEQ_STATE_LISTENING;
2232         rc        = listening_get_idx(seq, &pos);
2233
2234         if (!rc) {
2235                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2236                 rc        = established_get_idx(seq, pos);
2237         }
2238
2239         return rc;
2240 }
2241
2242 static void *tcp_seek_last_pos(struct seq_file *seq)
2243 {
2244         struct tcp_iter_state *st = seq->private;
2245         int offset = st->offset;
2246         int orig_num = st->num;
2247         void *rc = NULL;
2248
2249         switch (st->state) {
2250         case TCP_SEQ_STATE_OPENREQ:
2251         case TCP_SEQ_STATE_LISTENING:
2252                 if (st->bucket >= INET_LHTABLE_SIZE)
2253                         break;
2254                 st->state = TCP_SEQ_STATE_LISTENING;
2255                 rc = listening_get_next(seq, NULL);
2256                 while (offset-- && rc)
2257                         rc = listening_get_next(seq, rc);
2258                 if (rc)
2259                         break;
2260                 st->bucket = 0;
2261                 /* Fallthrough */
2262         case TCP_SEQ_STATE_ESTABLISHED:
2263         case TCP_SEQ_STATE_TIME_WAIT:
2264                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2265                 if (st->bucket > tcp_hashinfo.ehash_mask)
2266                         break;
2267                 rc = established_get_first(seq);
2268                 while (offset-- && rc)
2269                         rc = established_get_next(seq, rc);
2270         }
2271
2272         st->num = orig_num;
2273
2274         return rc;
2275 }
2276
2277 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2278 {
2279         struct tcp_iter_state *st = seq->private;
2280         void *rc;
2281
2282         if (*pos && *pos == st->last_pos) {
2283                 rc = tcp_seek_last_pos(seq);
2284                 if (rc)
2285                         goto out;
2286         }
2287
2288         st->state = TCP_SEQ_STATE_LISTENING;
2289         st->num = 0;
2290         st->bucket = 0;
2291         st->offset = 0;
2292         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2293
2294 out:
2295         st->last_pos = *pos;
2296         return rc;
2297 }
2298
2299 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2300 {
2301         struct tcp_iter_state *st = seq->private;
2302         void *rc = NULL;
2303
2304         if (v == SEQ_START_TOKEN) {
2305                 rc = tcp_get_idx(seq, 0);
2306                 goto out;
2307         }
2308
2309         switch (st->state) {
2310         case TCP_SEQ_STATE_OPENREQ:
2311         case TCP_SEQ_STATE_LISTENING:
2312                 rc = listening_get_next(seq, v);
2313                 if (!rc) {
2314                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2315                         st->bucket = 0;
2316                         st->offset = 0;
2317                         rc        = established_get_first(seq);
2318                 }
2319                 break;
2320         case TCP_SEQ_STATE_ESTABLISHED:
2321         case TCP_SEQ_STATE_TIME_WAIT:
2322                 rc = established_get_next(seq, v);
2323                 break;
2324         }
2325 out:
2326         ++*pos;
2327         st->last_pos = *pos;
2328         return rc;
2329 }
2330
2331 static void tcp_seq_stop(struct seq_file *seq, void *v)
2332 {
2333         struct tcp_iter_state *st = seq->private;
2334
2335         switch (st->state) {
2336         case TCP_SEQ_STATE_OPENREQ:
2337                 if (v) {
2338                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2339                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2340                 }
2341         case TCP_SEQ_STATE_LISTENING:
2342                 if (v != SEQ_START_TOKEN)
2343                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2344                 break;
2345         case TCP_SEQ_STATE_TIME_WAIT:
2346         case TCP_SEQ_STATE_ESTABLISHED:
2347                 if (v)
2348                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2349                 break;
2350         }
2351 }
2352
2353 int tcp_seq_open(struct inode *inode, struct file *file)
2354 {
2355         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2356         struct tcp_iter_state *s;
2357         int err;
2358
2359         err = seq_open_net(inode, file, &afinfo->seq_ops,
2360                           sizeof(struct tcp_iter_state));
2361         if (err < 0)
2362                 return err;
2363
2364         s = ((struct seq_file *)file->private_data)->private;
2365         s->family               = afinfo->family;
2366         s->last_pos             = 0;
2367         return 0;
2368 }
2369 EXPORT_SYMBOL(tcp_seq_open);
2370
2371 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2372 {
2373         int rc = 0;
2374         struct proc_dir_entry *p;
2375
2376         afinfo->seq_ops.start           = tcp_seq_start;
2377         afinfo->seq_ops.next            = tcp_seq_next;
2378         afinfo->seq_ops.stop            = tcp_seq_stop;
2379
2380         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2381                              afinfo->seq_fops, afinfo);
2382         if (!p)
2383                 rc = -ENOMEM;
2384         return rc;
2385 }
2386 EXPORT_SYMBOL(tcp_proc_register);
2387
2388 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2389 {
2390         proc_net_remove(net, afinfo->name);
2391 }
2392 EXPORT_SYMBOL(tcp_proc_unregister);
2393
2394 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2395                          struct seq_file *f, int i, int uid, int *len)
2396 {
2397         const struct inet_request_sock *ireq = inet_rsk(req);
2398         int ttd = req->expires - jiffies;
2399
2400         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2401                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2402                 i,
2403                 ireq->loc_addr,
2404                 ntohs(inet_sk(sk)->inet_sport),
2405                 ireq->rmt_addr,
2406                 ntohs(ireq->rmt_port),
2407                 TCP_SYN_RECV,
2408                 0, 0, /* could print option size, but that is af dependent. */
2409                 1,    /* timers active (only the expire timer) */
2410                 jiffies_to_clock_t(ttd),
2411                 req->retrans,
2412                 uid,
2413                 0,  /* non standard timer */
2414                 0, /* open_requests have no inode */
2415                 atomic_read(&sk->sk_refcnt),
2416                 req,
2417                 len);
2418 }
2419
2420 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2421 {
2422         int timer_active;
2423         unsigned long timer_expires;
2424         const struct tcp_sock *tp = tcp_sk(sk);
2425         const struct inet_connection_sock *icsk = inet_csk(sk);
2426         const struct inet_sock *inet = inet_sk(sk);
2427         __be32 dest = inet->inet_daddr;
2428         __be32 src = inet->inet_rcv_saddr;
2429         __u16 destp = ntohs(inet->inet_dport);
2430         __u16 srcp = ntohs(inet->inet_sport);
2431         int rx_queue;
2432
2433         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2434                 timer_active    = 1;
2435                 timer_expires   = icsk->icsk_timeout;
2436         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2437                 timer_active    = 4;
2438                 timer_expires   = icsk->icsk_timeout;
2439         } else if (timer_pending(&sk->sk_timer)) {
2440                 timer_active    = 2;
2441                 timer_expires   = sk->sk_timer.expires;
2442         } else {
2443                 timer_active    = 0;
2444                 timer_expires = jiffies;
2445         }
2446
2447         if (sk->sk_state == TCP_LISTEN)
2448                 rx_queue = sk->sk_ack_backlog;
2449         else
2450                 /*
2451                  * because we dont lock socket, we might find a transient negative value
2452                  */
2453                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2454
2455         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2456                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2457                 i, src, srcp, dest, destp, sk->sk_state,
2458                 tp->write_seq - tp->snd_una,
2459                 rx_queue,
2460                 timer_active,
2461                 jiffies_to_clock_t(timer_expires - jiffies),
2462                 icsk->icsk_retransmits,
2463                 sock_i_uid(sk),
2464                 icsk->icsk_probes_out,
2465                 sock_i_ino(sk),
2466                 atomic_read(&sk->sk_refcnt), sk,
2467                 jiffies_to_clock_t(icsk->icsk_rto),
2468                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2469                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2470                 tp->snd_cwnd,
2471                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2472                 len);
2473 }
2474
2475 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2476                                struct seq_file *f, int i, int *len)
2477 {
2478         __be32 dest, src;
2479         __u16 destp, srcp;
2480         int ttd = tw->tw_ttd - jiffies;
2481
2482         if (ttd < 0)
2483                 ttd = 0;
2484
2485         dest  = tw->tw_daddr;
2486         src   = tw->tw_rcv_saddr;
2487         destp = ntohs(tw->tw_dport);
2488         srcp  = ntohs(tw->tw_sport);
2489
2490         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2491                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2492                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2493                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2494                 atomic_read(&tw->tw_refcnt), tw, len);
2495 }
2496
2497 #define TMPSZ 150
2498
2499 static int tcp4_seq_show(struct seq_file *seq, void *v)
2500 {
2501         struct tcp_iter_state *st;
2502         int len;
2503
2504         if (v == SEQ_START_TOKEN) {
2505                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2506                            "  sl  local_address rem_address   st tx_queue "
2507                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2508                            "inode");
2509                 goto out;
2510         }
2511         st = seq->private;
2512
2513         switch (st->state) {
2514         case TCP_SEQ_STATE_LISTENING:
2515         case TCP_SEQ_STATE_ESTABLISHED:
2516                 get_tcp4_sock(v, seq, st->num, &len);
2517                 break;
2518         case TCP_SEQ_STATE_OPENREQ:
2519                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2520                 break;
2521         case TCP_SEQ_STATE_TIME_WAIT:
2522                 get_timewait4_sock(v, seq, st->num, &len);
2523                 break;
2524         }
2525         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2526 out:
2527         return 0;
2528 }
2529
2530 static const struct file_operations tcp_afinfo_seq_fops = {
2531         .owner   = THIS_MODULE,
2532         .open    = tcp_seq_open,
2533         .read    = seq_read,
2534         .llseek  = seq_lseek,
2535         .release = seq_release_net
2536 };
2537
2538 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2539         .name           = "tcp",
2540         .family         = AF_INET,
2541         .seq_fops       = &tcp_afinfo_seq_fops,
2542         .seq_ops        = {
2543                 .show           = tcp4_seq_show,
2544         },
2545 };
2546
2547 static int __net_init tcp4_proc_init_net(struct net *net)
2548 {
2549         return tcp_proc_register(net, &tcp4_seq_afinfo);
2550 }
2551
2552 static void __net_exit tcp4_proc_exit_net(struct net *net)
2553 {
2554         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2555 }
2556
2557 static struct pernet_operations tcp4_net_ops = {
2558         .init = tcp4_proc_init_net,
2559         .exit = tcp4_proc_exit_net,
2560 };
2561
2562 int __init tcp4_proc_init(void)
2563 {
2564         return register_pernet_subsys(&tcp4_net_ops);
2565 }
2566
2567 void tcp4_proc_exit(void)
2568 {
2569         unregister_pernet_subsys(&tcp4_net_ops);
2570 }
2571 #endif /* CONFIG_PROC_FS */
2572
2573 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2574 {
2575         const struct iphdr *iph = skb_gro_network_header(skb);
2576
2577         switch (skb->ip_summed) {
2578         case CHECKSUM_COMPLETE:
2579                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2580                                   skb->csum)) {
2581                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2582                         break;
2583                 }
2584
2585                 /* fall through */
2586         case CHECKSUM_NONE:
2587                 NAPI_GRO_CB(skb)->flush = 1;
2588                 return NULL;
2589         }
2590
2591         return tcp_gro_receive(head, skb);
2592 }
2593
2594 int tcp4_gro_complete(struct sk_buff *skb)
2595 {
2596         const struct iphdr *iph = ip_hdr(skb);
2597         struct tcphdr *th = tcp_hdr(skb);
2598
2599         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2600                                   iph->saddr, iph->daddr, 0);
2601         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2602
2603         return tcp_gro_complete(skb);
2604 }
2605
2606 struct proto tcp_prot = {
2607         .name                   = "TCP",
2608         .owner                  = THIS_MODULE,
2609         .close                  = tcp_close,
2610         .connect                = tcp_v4_connect,
2611         .disconnect             = tcp_disconnect,
2612         .accept                 = inet_csk_accept,
2613         .ioctl                  = tcp_ioctl,
2614         .init                   = tcp_v4_init_sock,
2615         .destroy                = tcp_v4_destroy_sock,
2616         .shutdown               = tcp_shutdown,
2617         .setsockopt             = tcp_setsockopt,
2618         .getsockopt             = tcp_getsockopt,
2619         .recvmsg                = tcp_recvmsg,
2620         .sendmsg                = tcp_sendmsg,
2621         .sendpage               = tcp_sendpage,
2622         .backlog_rcv            = tcp_v4_do_rcv,
2623         .hash                   = inet_hash,
2624         .unhash                 = inet_unhash,
2625         .get_port               = inet_csk_get_port,
2626         .enter_memory_pressure  = tcp_enter_memory_pressure,
2627         .sockets_allocated      = &tcp_sockets_allocated,
2628         .orphan_count           = &tcp_orphan_count,
2629         .memory_allocated       = &tcp_memory_allocated,
2630         .memory_pressure        = &tcp_memory_pressure,
2631         .sysctl_wmem            = sysctl_tcp_wmem,
2632         .sysctl_rmem            = sysctl_tcp_rmem,
2633         .max_header             = MAX_TCP_HEADER,
2634         .obj_size               = sizeof(struct tcp_sock),
2635         .slab_flags             = SLAB_DESTROY_BY_RCU,
2636         .twsk_prot              = &tcp_timewait_sock_ops,
2637         .rsk_prot               = &tcp_request_sock_ops,
2638         .h.hashinfo             = &tcp_hashinfo,
2639         .no_autobind            = true,
2640 #ifdef CONFIG_COMPAT
2641         .compat_setsockopt      = compat_tcp_setsockopt,
2642         .compat_getsockopt      = compat_tcp_getsockopt,
2643 #endif
2644 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2645         .init_cgroup            = tcp_init_cgroup,
2646         .destroy_cgroup         = tcp_destroy_cgroup,
2647         .proto_cgroup           = tcp_proto_cgroup,
2648 #endif
2649 };
2650 EXPORT_SYMBOL(tcp_prot);
2651
2652 static int __net_init tcp_sk_init(struct net *net)
2653 {
2654         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2655                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2656 }
2657
2658 static void __net_exit tcp_sk_exit(struct net *net)
2659 {
2660         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2661 }
2662
2663 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2664 {
2665         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2666 }
2667
2668 static struct pernet_operations __net_initdata tcp_sk_ops = {
2669        .init       = tcp_sk_init,
2670        .exit       = tcp_sk_exit,
2671        .exit_batch = tcp_sk_exit_batch,
2672 };
2673
2674 void __init tcp_v4_init(void)
2675 {
2676         inet_hashinfo_init(&tcp_hashinfo);
2677         if (register_pernet_subsys(&tcp_sk_ops))
2678                 panic("Failed to create the TCP control socket.\n");
2679 }