Merge tag 'for-3.8' of git://openrisc.net/~jonas/linux
[linux-2.6-block.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145         struct inet_sock *inet = inet_sk(sk);
146         struct tcp_sock *tp = tcp_sk(sk);
147         __be16 orig_sport, orig_dport;
148         __be32 daddr, nexthop;
149         struct flowi4 *fl4;
150         struct rtable *rt;
151         int err;
152         struct ip_options_rcu *inet_opt;
153
154         if (addr_len < sizeof(struct sockaddr_in))
155                 return -EINVAL;
156
157         if (usin->sin_family != AF_INET)
158                 return -EAFNOSUPPORT;
159
160         nexthop = daddr = usin->sin_addr.s_addr;
161         inet_opt = rcu_dereference_protected(inet->inet_opt,
162                                              sock_owned_by_user(sk));
163         if (inet_opt && inet_opt->opt.srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet_opt->opt.faddr;
167         }
168
169         orig_sport = inet->inet_sport;
170         orig_dport = usin->sin_port;
171         fl4 = &inet->cork.fl.u.ip4;
172         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174                               IPPROTO_TCP,
175                               orig_sport, orig_dport, sk, true);
176         if (IS_ERR(rt)) {
177                 err = PTR_ERR(rt);
178                 if (err == -ENETUNREACH)
179                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180                 return err;
181         }
182
183         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184                 ip_rt_put(rt);
185                 return -ENETUNREACH;
186         }
187
188         if (!inet_opt || !inet_opt->opt.srr)
189                 daddr = fl4->daddr;
190
191         if (!inet->inet_saddr)
192                 inet->inet_saddr = fl4->saddr;
193         inet->inet_rcv_saddr = inet->inet_saddr;
194
195         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196                 /* Reset inherited state */
197                 tp->rx_opt.ts_recent       = 0;
198                 tp->rx_opt.ts_recent_stamp = 0;
199                 if (likely(!tp->repair))
200                         tp->write_seq      = 0;
201         }
202
203         if (tcp_death_row.sysctl_tw_recycle &&
204             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205                 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207         inet->inet_dport = usin->sin_port;
208         inet->inet_daddr = daddr;
209
210         inet_csk(sk)->icsk_ext_hdr_len = 0;
211         if (inet_opt)
212                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216         /* Socket identity is still unknown (sport may be zero).
217          * However we set state to SYN-SENT and not releasing socket
218          * lock select source port, enter ourselves into the hash tables and
219          * complete initialization after this.
220          */
221         tcp_set_state(sk, TCP_SYN_SENT);
222         err = inet_hash_connect(&tcp_death_row, sk);
223         if (err)
224                 goto failure;
225
226         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227                                inet->inet_sport, inet->inet_dport, sk);
228         if (IS_ERR(rt)) {
229                 err = PTR_ERR(rt);
230                 rt = NULL;
231                 goto failure;
232         }
233         /* OK, now commit destination to socket.  */
234         sk->sk_gso_type = SKB_GSO_TCPV4;
235         sk_setup_caps(sk, &rt->dst);
236
237         if (!tp->write_seq && likely(!tp->repair))
238                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239                                                            inet->inet_daddr,
240                                                            inet->inet_sport,
241                                                            usin->sin_port);
242
243         inet->inet_id = tp->write_seq ^ jiffies;
244
245         err = tcp_connect(sk);
246
247         rt = NULL;
248         if (err)
249                 goto failure;
250
251         return 0;
252
253 failure:
254         /*
255          * This unhashes the socket and releases the local port,
256          * if necessary.
257          */
258         tcp_set_state(sk, TCP_CLOSE);
259         ip_rt_put(rt);
260         sk->sk_route_caps = 0;
261         inet->inet_dport = 0;
262         return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268  * It can be called through tcp_release_cb() if socket was owned by user
269  * at the time tcp_v4_err() was called to handle ICMP message.
270  */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273         struct dst_entry *dst;
274         struct inet_sock *inet = inet_sk(sk);
275         u32 mtu = tcp_sk(sk)->mtu_info;
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         dst = inet_csk_update_pmtu(sk, mtu);
285         if (!dst)
286                 return;
287
288         /* Something is about to be wrong... Remember soft error
289          * for the case, if this connection will not able to recover.
290          */
291         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292                 sk->sk_err_soft = EMSGSIZE;
293
294         mtu = dst_mtu(dst);
295
296         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298                 tcp_sync_mss(sk, mtu);
299
300                 /* Resend the TCP packet because it's
301                  * clear that the old packet has been
302                  * dropped. This is the new "fast" path mtu
303                  * discovery.
304                  */
305                 tcp_simple_retransmit(sk);
306         } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311         struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313         if (dst)
314                 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337         struct inet_connection_sock *icsk;
338         struct tcp_sock *tp;
339         struct inet_sock *inet;
340         const int type = icmp_hdr(icmp_skb)->type;
341         const int code = icmp_hdr(icmp_skb)->code;
342         struct sock *sk;
343         struct sk_buff *skb;
344         struct request_sock *req;
345         __u32 seq;
346         __u32 remaining;
347         int err;
348         struct net *net = dev_net(icmp_skb->dev);
349
350         if (icmp_skb->len < (iph->ihl << 2) + 8) {
351                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352                 return;
353         }
354
355         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356                         iph->saddr, th->source, inet_iif(icmp_skb));
357         if (!sk) {
358                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359                 return;
360         }
361         if (sk->sk_state == TCP_TIME_WAIT) {
362                 inet_twsk_put(inet_twsk(sk));
363                 return;
364         }
365
366         bh_lock_sock(sk);
367         /* If too many ICMPs get dropped on busy
368          * servers this needs to be solved differently.
369          * We do take care of PMTU discovery (RFC1191) special case :
370          * we can receive locally generated ICMP messages while socket is held.
371          */
372         if (sock_owned_by_user(sk) &&
373             type != ICMP_DEST_UNREACH &&
374             code != ICMP_FRAG_NEEDED)
375                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
376
377         if (sk->sk_state == TCP_CLOSE)
378                 goto out;
379
380         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
381                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
382                 goto out;
383         }
384
385         icsk = inet_csk(sk);
386         tp = tcp_sk(sk);
387         req = tp->fastopen_rsk;
388         seq = ntohl(th->seq);
389         if (sk->sk_state != TCP_LISTEN &&
390             !between(seq, tp->snd_una, tp->snd_nxt) &&
391             (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
392                 /* For a Fast Open socket, allow seq to be snt_isn. */
393                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
394                 goto out;
395         }
396
397         switch (type) {
398         case ICMP_REDIRECT:
399                 do_redirect(icmp_skb, sk);
400                 goto out;
401         case ICMP_SOURCE_QUENCH:
402                 /* Just silently ignore these. */
403                 goto out;
404         case ICMP_PARAMETERPROB:
405                 err = EPROTO;
406                 break;
407         case ICMP_DEST_UNREACH:
408                 if (code > NR_ICMP_UNREACH)
409                         goto out;
410
411                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
412                         tp->mtu_info = info;
413                         if (!sock_owned_by_user(sk)) {
414                                 tcp_v4_mtu_reduced(sk);
415                         } else {
416                                 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417                                         sock_hold(sk);
418                         }
419                         goto out;
420                 }
421
422                 err = icmp_err_convert[code].errno;
423                 /* check if icmp_skb allows revert of backoff
424                  * (see draft-zimmermann-tcp-lcd) */
425                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426                         break;
427                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
428                     !icsk->icsk_backoff)
429                         break;
430
431                 /* XXX (TFO) - revisit the following logic for TFO */
432
433                 if (sock_owned_by_user(sk))
434                         break;
435
436                 icsk->icsk_backoff--;
437                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439                 tcp_bound_rto(sk);
440
441                 skb = tcp_write_queue_head(sk);
442                 BUG_ON(!skb);
443
444                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
446
447                 if (remaining) {
448                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449                                                   remaining, TCP_RTO_MAX);
450                 } else {
451                         /* RTO revert clocked out retransmission.
452                          * Will retransmit now */
453                         tcp_retransmit_timer(sk);
454                 }
455
456                 break;
457         case ICMP_TIME_EXCEEDED:
458                 err = EHOSTUNREACH;
459                 break;
460         default:
461                 goto out;
462         }
463
464         /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465          * than following the TCP_SYN_RECV case and closing the socket,
466          * we ignore the ICMP error and keep trying like a fully established
467          * socket. Is this the right thing to do?
468          */
469         if (req && req->sk == NULL)
470                 goto out;
471
472         switch (sk->sk_state) {
473                 struct request_sock *req, **prev;
474         case TCP_LISTEN:
475                 if (sock_owned_by_user(sk))
476                         goto out;
477
478                 req = inet_csk_search_req(sk, &prev, th->dest,
479                                           iph->daddr, iph->saddr);
480                 if (!req)
481                         goto out;
482
483                 /* ICMPs are not backlogged, hence we cannot get
484                    an established socket here.
485                  */
486                 WARN_ON(req->sk);
487
488                 if (seq != tcp_rsk(req)->snt_isn) {
489                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490                         goto out;
491                 }
492
493                 /*
494                  * Still in SYN_RECV, just remove it silently.
495                  * There is no good way to pass the error to the newly
496                  * created socket, and POSIX does not want network
497                  * errors returned from accept().
498                  */
499                 inet_csk_reqsk_queue_drop(sk, req, prev);
500                 goto out;
501
502         case TCP_SYN_SENT:
503         case TCP_SYN_RECV:  /* Cannot happen.
504                                It can f.e. if SYNs crossed,
505                                or Fast Open.
506                              */
507                 if (!sock_owned_by_user(sk)) {
508                         sk->sk_err = err;
509
510                         sk->sk_error_report(sk);
511
512                         tcp_done(sk);
513                 } else {
514                         sk->sk_err_soft = err;
515                 }
516                 goto out;
517         }
518
519         /* If we've already connected we will keep trying
520          * until we time out, or the user gives up.
521          *
522          * rfc1122 4.2.3.9 allows to consider as hard errors
523          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524          * but it is obsoleted by pmtu discovery).
525          *
526          * Note, that in modern internet, where routing is unreliable
527          * and in each dark corner broken firewalls sit, sending random
528          * errors ordered by their masters even this two messages finally lose
529          * their original sense (even Linux sends invalid PORT_UNREACHs)
530          *
531          * Now we are in compliance with RFCs.
532          *                                                      --ANK (980905)
533          */
534
535         inet = inet_sk(sk);
536         if (!sock_owned_by_user(sk) && inet->recverr) {
537                 sk->sk_err = err;
538                 sk->sk_error_report(sk);
539         } else  { /* Only an error on timeout */
540                 sk->sk_err_soft = err;
541         }
542
543 out:
544         bh_unlock_sock(sk);
545         sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549                                 __be32 saddr, __be32 daddr)
550 {
551         struct tcphdr *th = tcp_hdr(skb);
552
553         if (skb->ip_summed == CHECKSUM_PARTIAL) {
554                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555                 skb->csum_start = skb_transport_header(skb) - skb->head;
556                 skb->csum_offset = offsetof(struct tcphdr, check);
557         } else {
558                 th->check = tcp_v4_check(skb->len, saddr, daddr,
559                                          csum_partial(th,
560                                                       th->doff << 2,
561                                                       skb->csum));
562         }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568         const struct inet_sock *inet = inet_sk(sk);
569
570         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576         const struct iphdr *iph;
577         struct tcphdr *th;
578
579         if (!pskb_may_pull(skb, sizeof(*th)))
580                 return -EINVAL;
581
582         iph = ip_hdr(skb);
583         th = tcp_hdr(skb);
584
585         th->check = 0;
586         skb->ip_summed = CHECKSUM_PARTIAL;
587         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588         return 0;
589 }
590
591 /*
592  *      This routine will send an RST to the other tcp.
593  *
594  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595  *                    for reset.
596  *      Answer: if a packet caused RST, it is not for a socket
597  *              existing in our system, if it is matched to a socket,
598  *              it is just duplicate segment or bug in other side's TCP.
599  *              So that we build reply only basing on parameters
600  *              arrived with segment.
601  *      Exception: precedence violation. We do not implement it in any case.
602  */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606         const struct tcphdr *th = tcp_hdr(skb);
607         struct {
608                 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612         } rep;
613         struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615         struct tcp_md5sig_key *key;
616         const __u8 *hash_location = NULL;
617         unsigned char newhash[16];
618         int genhash;
619         struct sock *sk1 = NULL;
620 #endif
621         struct net *net;
622
623         /* Never send a reset in response to a reset. */
624         if (th->rst)
625                 return;
626
627         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628                 return;
629
630         /* Swap the send and the receive. */
631         memset(&rep, 0, sizeof(rep));
632         rep.th.dest   = th->source;
633         rep.th.source = th->dest;
634         rep.th.doff   = sizeof(struct tcphdr) / 4;
635         rep.th.rst    = 1;
636
637         if (th->ack) {
638                 rep.th.seq = th->ack_seq;
639         } else {
640                 rep.th.ack = 1;
641                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642                                        skb->len - (th->doff << 2));
643         }
644
645         memset(&arg, 0, sizeof(arg));
646         arg.iov[0].iov_base = (unsigned char *)&rep;
647         arg.iov[0].iov_len  = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650         hash_location = tcp_parse_md5sig_option(th);
651         if (!sk && hash_location) {
652                 /*
653                  * active side is lost. Try to find listening socket through
654                  * source port, and then find md5 key through listening socket.
655                  * we are not loose security here:
656                  * Incoming packet is checked with md5 hash with finding key,
657                  * no RST generated if md5 hash doesn't match.
658                  */
659                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660                                              &tcp_hashinfo, ip_hdr(skb)->daddr,
661                                              ntohs(th->source), inet_iif(skb));
662                 /* don't send rst if it can't find key */
663                 if (!sk1)
664                         return;
665                 rcu_read_lock();
666                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
667                                         &ip_hdr(skb)->saddr, AF_INET);
668                 if (!key)
669                         goto release_sk1;
670
671                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
672                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
673                         goto release_sk1;
674         } else {
675                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
676                                              &ip_hdr(skb)->saddr,
677                                              AF_INET) : NULL;
678         }
679
680         if (key) {
681                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
682                                    (TCPOPT_NOP << 16) |
683                                    (TCPOPT_MD5SIG << 8) |
684                                    TCPOLEN_MD5SIG);
685                 /* Update length and the length the header thinks exists */
686                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
687                 rep.th.doff = arg.iov[0].iov_len / 4;
688
689                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
690                                      key, ip_hdr(skb)->saddr,
691                                      ip_hdr(skb)->daddr, &rep.th);
692         }
693 #endif
694         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
695                                       ip_hdr(skb)->saddr, /* XXX */
696                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
697         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
698         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
699         /* When socket is gone, all binding information is lost.
700          * routing might fail in this case. No choice here, if we choose to force
701          * input interface, we will misroute in case of asymmetric route.
702          */
703         if (sk)
704                 arg.bound_dev_if = sk->sk_bound_dev_if;
705
706         net = dev_net(skb_dst(skb)->dev);
707         arg.tos = ip_hdr(skb)->tos;
708         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
709                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
710
711         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
712         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
713
714 #ifdef CONFIG_TCP_MD5SIG
715 release_sk1:
716         if (sk1) {
717                 rcu_read_unlock();
718                 sock_put(sk1);
719         }
720 #endif
721 }
722
723 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
724    outside socket context is ugly, certainly. What can I do?
725  */
726
727 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
728                             u32 win, u32 ts, int oif,
729                             struct tcp_md5sig_key *key,
730                             int reply_flags, u8 tos)
731 {
732         const struct tcphdr *th = tcp_hdr(skb);
733         struct {
734                 struct tcphdr th;
735                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
736 #ifdef CONFIG_TCP_MD5SIG
737                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
738 #endif
739                         ];
740         } rep;
741         struct ip_reply_arg arg;
742         struct net *net = dev_net(skb_dst(skb)->dev);
743
744         memset(&rep.th, 0, sizeof(struct tcphdr));
745         memset(&arg, 0, sizeof(arg));
746
747         arg.iov[0].iov_base = (unsigned char *)&rep;
748         arg.iov[0].iov_len  = sizeof(rep.th);
749         if (ts) {
750                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
751                                    (TCPOPT_TIMESTAMP << 8) |
752                                    TCPOLEN_TIMESTAMP);
753                 rep.opt[1] = htonl(tcp_time_stamp);
754                 rep.opt[2] = htonl(ts);
755                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
756         }
757
758         /* Swap the send and the receive. */
759         rep.th.dest    = th->source;
760         rep.th.source  = th->dest;
761         rep.th.doff    = arg.iov[0].iov_len / 4;
762         rep.th.seq     = htonl(seq);
763         rep.th.ack_seq = htonl(ack);
764         rep.th.ack     = 1;
765         rep.th.window  = htons(win);
766
767 #ifdef CONFIG_TCP_MD5SIG
768         if (key) {
769                 int offset = (ts) ? 3 : 0;
770
771                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
772                                           (TCPOPT_NOP << 16) |
773                                           (TCPOPT_MD5SIG << 8) |
774                                           TCPOLEN_MD5SIG);
775                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
776                 rep.th.doff = arg.iov[0].iov_len/4;
777
778                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
779                                     key, ip_hdr(skb)->saddr,
780                                     ip_hdr(skb)->daddr, &rep.th);
781         }
782 #endif
783         arg.flags = reply_flags;
784         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
785                                       ip_hdr(skb)->saddr, /* XXX */
786                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
787         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
788         if (oif)
789                 arg.bound_dev_if = oif;
790         arg.tos = tos;
791         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
792                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
793
794         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
795 }
796
797 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
798 {
799         struct inet_timewait_sock *tw = inet_twsk(sk);
800         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
801
802         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
803                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
804                         tcptw->tw_ts_recent,
805                         tw->tw_bound_dev_if,
806                         tcp_twsk_md5_key(tcptw),
807                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
808                         tw->tw_tos
809                         );
810
811         inet_twsk_put(tw);
812 }
813
814 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
815                                   struct request_sock *req)
816 {
817         /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
818          * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
819          */
820         tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
821                         tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
822                         tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
823                         req->ts_recent,
824                         0,
825                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
826                                           AF_INET),
827                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
828                         ip_hdr(skb)->tos);
829 }
830
831 /*
832  *      Send a SYN-ACK after having received a SYN.
833  *      This still operates on a request_sock only, not on a big
834  *      socket.
835  */
836 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
837                               struct request_sock *req,
838                               struct request_values *rvp,
839                               u16 queue_mapping,
840                               bool nocache)
841 {
842         const struct inet_request_sock *ireq = inet_rsk(req);
843         struct flowi4 fl4;
844         int err = -1;
845         struct sk_buff * skb;
846
847         /* First, grab a route. */
848         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
849                 return -1;
850
851         skb = tcp_make_synack(sk, dst, req, rvp, NULL);
852
853         if (skb) {
854                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
855
856                 skb_set_queue_mapping(skb, queue_mapping);
857                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
858                                             ireq->rmt_addr,
859                                             ireq->opt);
860                 err = net_xmit_eval(err);
861                 if (!tcp_rsk(req)->snt_synack && !err)
862                         tcp_rsk(req)->snt_synack = tcp_time_stamp;
863         }
864
865         return err;
866 }
867
868 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
869                              struct request_values *rvp)
870 {
871         int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
872
873         if (!res)
874                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
875         return res;
876 }
877
878 /*
879  *      IPv4 request_sock destructor.
880  */
881 static void tcp_v4_reqsk_destructor(struct request_sock *req)
882 {
883         kfree(inet_rsk(req)->opt);
884 }
885
886 /*
887  * Return true if a syncookie should be sent
888  */
889 bool tcp_syn_flood_action(struct sock *sk,
890                          const struct sk_buff *skb,
891                          const char *proto)
892 {
893         const char *msg = "Dropping request";
894         bool want_cookie = false;
895         struct listen_sock *lopt;
896
897
898
899 #ifdef CONFIG_SYN_COOKIES
900         if (sysctl_tcp_syncookies) {
901                 msg = "Sending cookies";
902                 want_cookie = true;
903                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
904         } else
905 #endif
906                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
907
908         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
909         if (!lopt->synflood_warned) {
910                 lopt->synflood_warned = 1;
911                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
912                         proto, ntohs(tcp_hdr(skb)->dest), msg);
913         }
914         return want_cookie;
915 }
916 EXPORT_SYMBOL(tcp_syn_flood_action);
917
918 /*
919  * Save and compile IPv4 options into the request_sock if needed.
920  */
921 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
922 {
923         const struct ip_options *opt = &(IPCB(skb)->opt);
924         struct ip_options_rcu *dopt = NULL;
925
926         if (opt && opt->optlen) {
927                 int opt_size = sizeof(*dopt) + opt->optlen;
928
929                 dopt = kmalloc(opt_size, GFP_ATOMIC);
930                 if (dopt) {
931                         if (ip_options_echo(&dopt->opt, skb)) {
932                                 kfree(dopt);
933                                 dopt = NULL;
934                         }
935                 }
936         }
937         return dopt;
938 }
939
940 #ifdef CONFIG_TCP_MD5SIG
941 /*
942  * RFC2385 MD5 checksumming requires a mapping of
943  * IP address->MD5 Key.
944  * We need to maintain these in the sk structure.
945  */
946
947 /* Find the Key structure for an address.  */
948 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
949                                          const union tcp_md5_addr *addr,
950                                          int family)
951 {
952         struct tcp_sock *tp = tcp_sk(sk);
953         struct tcp_md5sig_key *key;
954         struct hlist_node *pos;
955         unsigned int size = sizeof(struct in_addr);
956         struct tcp_md5sig_info *md5sig;
957
958         /* caller either holds rcu_read_lock() or socket lock */
959         md5sig = rcu_dereference_check(tp->md5sig_info,
960                                        sock_owned_by_user(sk) ||
961                                        lockdep_is_held(&sk->sk_lock.slock));
962         if (!md5sig)
963                 return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965         if (family == AF_INET6)
966                 size = sizeof(struct in6_addr);
967 #endif
968         hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
969                 if (key->family != family)
970                         continue;
971                 if (!memcmp(&key->addr, addr, size))
972                         return key;
973         }
974         return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979                                          struct sock *addr_sk)
980 {
981         union tcp_md5_addr *addr;
982
983         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984         return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989                                                       struct request_sock *req)
990 {
991         union tcp_md5_addr *addr;
992
993         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994         return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001         /* Add Key to the list */
1002         struct tcp_md5sig_key *key;
1003         struct tcp_sock *tp = tcp_sk(sk);
1004         struct tcp_md5sig_info *md5sig;
1005
1006         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1007         if (key) {
1008                 /* Pre-existing entry - just update that one. */
1009                 memcpy(key->key, newkey, newkeylen);
1010                 key->keylen = newkeylen;
1011                 return 0;
1012         }
1013
1014         md5sig = rcu_dereference_protected(tp->md5sig_info,
1015                                            sock_owned_by_user(sk));
1016         if (!md5sig) {
1017                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1018                 if (!md5sig)
1019                         return -ENOMEM;
1020
1021                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022                 INIT_HLIST_HEAD(&md5sig->head);
1023                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1024         }
1025
1026         key = sock_kmalloc(sk, sizeof(*key), gfp);
1027         if (!key)
1028                 return -ENOMEM;
1029         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030                 sock_kfree_s(sk, key, sizeof(*key));
1031                 return -ENOMEM;
1032         }
1033
1034         memcpy(key->key, newkey, newkeylen);
1035         key->keylen = newkeylen;
1036         key->family = family;
1037         memcpy(&key->addr, addr,
1038                (family == AF_INET6) ? sizeof(struct in6_addr) :
1039                                       sizeof(struct in_addr));
1040         hlist_add_head_rcu(&key->node, &md5sig->head);
1041         return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047         struct tcp_sock *tp = tcp_sk(sk);
1048         struct tcp_md5sig_key *key;
1049         struct tcp_md5sig_info *md5sig;
1050
1051         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1052         if (!key)
1053                 return -ENOENT;
1054         hlist_del_rcu(&key->node);
1055         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056         kfree_rcu(key, rcu);
1057         md5sig = rcu_dereference_protected(tp->md5sig_info,
1058                                            sock_owned_by_user(sk));
1059         if (hlist_empty(&md5sig->head))
1060                 tcp_free_md5sig_pool();
1061         return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067         struct tcp_sock *tp = tcp_sk(sk);
1068         struct tcp_md5sig_key *key;
1069         struct hlist_node *pos, *n;
1070         struct tcp_md5sig_info *md5sig;
1071
1072         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073
1074         if (!hlist_empty(&md5sig->head))
1075                 tcp_free_md5sig_pool();
1076         hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1077                 hlist_del_rcu(&key->node);
1078                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079                 kfree_rcu(key, rcu);
1080         }
1081 }
1082
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084                                  int optlen)
1085 {
1086         struct tcp_md5sig cmd;
1087         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088
1089         if (optlen < sizeof(cmd))
1090                 return -EINVAL;
1091
1092         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093                 return -EFAULT;
1094
1095         if (sin->sin_family != AF_INET)
1096                 return -EINVAL;
1097
1098         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100                                       AF_INET);
1101
1102         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103                 return -EINVAL;
1104
1105         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107                               GFP_KERNEL);
1108 }
1109
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111                                         __be32 daddr, __be32 saddr, int nbytes)
1112 {
1113         struct tcp4_pseudohdr *bp;
1114         struct scatterlist sg;
1115
1116         bp = &hp->md5_blk.ip4;
1117
1118         /*
1119          * 1. the TCP pseudo-header (in the order: source IP address,
1120          * destination IP address, zero-padded protocol number, and
1121          * segment length)
1122          */
1123         bp->saddr = saddr;
1124         bp->daddr = daddr;
1125         bp->pad = 0;
1126         bp->protocol = IPPROTO_TCP;
1127         bp->len = cpu_to_be16(nbytes);
1128
1129         sg_init_one(&sg, bp, sizeof(*bp));
1130         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136         struct tcp_md5sig_pool *hp;
1137         struct hash_desc *desc;
1138
1139         hp = tcp_get_md5sig_pool();
1140         if (!hp)
1141                 goto clear_hash_noput;
1142         desc = &hp->md5_desc;
1143
1144         if (crypto_hash_init(desc))
1145                 goto clear_hash;
1146         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147                 goto clear_hash;
1148         if (tcp_md5_hash_header(hp, th))
1149                 goto clear_hash;
1150         if (tcp_md5_hash_key(hp, key))
1151                 goto clear_hash;
1152         if (crypto_hash_final(desc, md5_hash))
1153                 goto clear_hash;
1154
1155         tcp_put_md5sig_pool();
1156         return 0;
1157
1158 clear_hash:
1159         tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161         memset(md5_hash, 0, 16);
1162         return 1;
1163 }
1164
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166                         const struct sock *sk, const struct request_sock *req,
1167                         const struct sk_buff *skb)
1168 {
1169         struct tcp_md5sig_pool *hp;
1170         struct hash_desc *desc;
1171         const struct tcphdr *th = tcp_hdr(skb);
1172         __be32 saddr, daddr;
1173
1174         if (sk) {
1175                 saddr = inet_sk(sk)->inet_saddr;
1176                 daddr = inet_sk(sk)->inet_daddr;
1177         } else if (req) {
1178                 saddr = inet_rsk(req)->loc_addr;
1179                 daddr = inet_rsk(req)->rmt_addr;
1180         } else {
1181                 const struct iphdr *iph = ip_hdr(skb);
1182                 saddr = iph->saddr;
1183                 daddr = iph->daddr;
1184         }
1185
1186         hp = tcp_get_md5sig_pool();
1187         if (!hp)
1188                 goto clear_hash_noput;
1189         desc = &hp->md5_desc;
1190
1191         if (crypto_hash_init(desc))
1192                 goto clear_hash;
1193
1194         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195                 goto clear_hash;
1196         if (tcp_md5_hash_header(hp, th))
1197                 goto clear_hash;
1198         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199                 goto clear_hash;
1200         if (tcp_md5_hash_key(hp, key))
1201                 goto clear_hash;
1202         if (crypto_hash_final(desc, md5_hash))
1203                 goto clear_hash;
1204
1205         tcp_put_md5sig_pool();
1206         return 0;
1207
1208 clear_hash:
1209         tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211         memset(md5_hash, 0, 16);
1212         return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218         /*
1219          * This gets called for each TCP segment that arrives
1220          * so we want to be efficient.
1221          * We have 3 drop cases:
1222          * o No MD5 hash and one expected.
1223          * o MD5 hash and we're not expecting one.
1224          * o MD5 hash and its wrong.
1225          */
1226         const __u8 *hash_location = NULL;
1227         struct tcp_md5sig_key *hash_expected;
1228         const struct iphdr *iph = ip_hdr(skb);
1229         const struct tcphdr *th = tcp_hdr(skb);
1230         int genhash;
1231         unsigned char newhash[16];
1232
1233         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234                                           AF_INET);
1235         hash_location = tcp_parse_md5sig_option(th);
1236
1237         /* We've parsed the options - do we have a hash? */
1238         if (!hash_expected && !hash_location)
1239                 return false;
1240
1241         if (hash_expected && !hash_location) {
1242                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243                 return true;
1244         }
1245
1246         if (!hash_expected && hash_location) {
1247                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248                 return true;
1249         }
1250
1251         /* Okay, so this is hash_expected and hash_location -
1252          * so we need to calculate the checksum.
1253          */
1254         genhash = tcp_v4_md5_hash_skb(newhash,
1255                                       hash_expected,
1256                                       NULL, NULL, skb);
1257
1258         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260                                      &iph->saddr, ntohs(th->source),
1261                                      &iph->daddr, ntohs(th->dest),
1262                                      genhash ? " tcp_v4_calc_md5_hash failed"
1263                                      : "");
1264                 return true;
1265         }
1266         return false;
1267 }
1268
1269 #endif
1270
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272         .family         =       PF_INET,
1273         .obj_size       =       sizeof(struct tcp_request_sock),
1274         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1275         .send_ack       =       tcp_v4_reqsk_send_ack,
1276         .destructor     =       tcp_v4_reqsk_destructor,
1277         .send_reset     =       tcp_v4_send_reset,
1278         .syn_ack_timeout =      tcp_syn_ack_timeout,
1279 };
1280
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1284         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289                                struct request_sock *req,
1290                                struct tcp_fastopen_cookie *foc,
1291                                struct tcp_fastopen_cookie *valid_foc)
1292 {
1293         bool skip_cookie = false;
1294         struct fastopen_queue *fastopenq;
1295
1296         if (likely(!fastopen_cookie_present(foc))) {
1297                 /* See include/net/tcp.h for the meaning of these knobs */
1298                 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299                     ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300                     (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301                         skip_cookie = true; /* no cookie to validate */
1302                 else
1303                         return false;
1304         }
1305         fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306         /* A FO option is present; bump the counter. */
1307         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308
1309         /* Make sure the listener has enabled fastopen, and we don't
1310          * exceed the max # of pending TFO requests allowed before trying
1311          * to validating the cookie in order to avoid burning CPU cycles
1312          * unnecessarily.
1313          *
1314          * XXX (TFO) - The implication of checking the max_qlen before
1315          * processing a cookie request is that clients can't differentiate
1316          * between qlen overflow causing Fast Open to be disabled
1317          * temporarily vs a server not supporting Fast Open at all.
1318          */
1319         if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320             fastopenq == NULL || fastopenq->max_qlen == 0)
1321                 return false;
1322
1323         if (fastopenq->qlen >= fastopenq->max_qlen) {
1324                 struct request_sock *req1;
1325                 spin_lock(&fastopenq->lock);
1326                 req1 = fastopenq->rskq_rst_head;
1327                 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328                         spin_unlock(&fastopenq->lock);
1329                         NET_INC_STATS_BH(sock_net(sk),
1330                             LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331                         /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332                         foc->len = -1;
1333                         return false;
1334                 }
1335                 fastopenq->rskq_rst_head = req1->dl_next;
1336                 fastopenq->qlen--;
1337                 spin_unlock(&fastopenq->lock);
1338                 reqsk_free(req1);
1339         }
1340         if (skip_cookie) {
1341                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342                 return true;
1343         }
1344         if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345                 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346                         tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347                         if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348                             memcmp(&foc->val[0], &valid_foc->val[0],
1349                             TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350                                 return false;
1351                         valid_foc->len = -1;
1352                 }
1353                 /* Acknowledge the data received from the peer. */
1354                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355                 return true;
1356         } else if (foc->len == 0) { /* Client requesting a cookie */
1357                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358                 NET_INC_STATS_BH(sock_net(sk),
1359                     LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360         } else {
1361                 /* Client sent a cookie with wrong size. Treat it
1362                  * the same as invalid and return a valid one.
1363                  */
1364                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365         }
1366         return false;
1367 }
1368
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370                                     struct sk_buff *skb,
1371                                     struct sk_buff *skb_synack,
1372                                     struct request_sock *req,
1373                                     struct request_values *rvp)
1374 {
1375         struct tcp_sock *tp = tcp_sk(sk);
1376         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1377         const struct inet_request_sock *ireq = inet_rsk(req);
1378         struct sock *child;
1379         int err;
1380
1381         req->num_retrans = 0;
1382         req->num_timeout = 0;
1383         req->sk = NULL;
1384
1385         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1386         if (child == NULL) {
1387                 NET_INC_STATS_BH(sock_net(sk),
1388                                  LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1389                 kfree_skb(skb_synack);
1390                 return -1;
1391         }
1392         err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1393                                     ireq->rmt_addr, ireq->opt);
1394         err = net_xmit_eval(err);
1395         if (!err)
1396                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1397         /* XXX (TFO) - is it ok to ignore error and continue? */
1398
1399         spin_lock(&queue->fastopenq->lock);
1400         queue->fastopenq->qlen++;
1401         spin_unlock(&queue->fastopenq->lock);
1402
1403         /* Initialize the child socket. Have to fix some values to take
1404          * into account the child is a Fast Open socket and is created
1405          * only out of the bits carried in the SYN packet.
1406          */
1407         tp = tcp_sk(child);
1408
1409         tp->fastopen_rsk = req;
1410         /* Do a hold on the listner sk so that if the listener is being
1411          * closed, the child that has been accepted can live on and still
1412          * access listen_lock.
1413          */
1414         sock_hold(sk);
1415         tcp_rsk(req)->listener = sk;
1416
1417         /* RFC1323: The window in SYN & SYN/ACK segments is never
1418          * scaled. So correct it appropriately.
1419          */
1420         tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1421
1422         /* Activate the retrans timer so that SYNACK can be retransmitted.
1423          * The request socket is not added to the SYN table of the parent
1424          * because it's been added to the accept queue directly.
1425          */
1426         inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1427             TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1428
1429         /* Add the child socket directly into the accept queue */
1430         inet_csk_reqsk_queue_add(sk, req, child);
1431
1432         /* Now finish processing the fastopen child socket. */
1433         inet_csk(child)->icsk_af_ops->rebuild_header(child);
1434         tcp_init_congestion_control(child);
1435         tcp_mtup_init(child);
1436         tcp_init_buffer_space(child);
1437         tcp_init_metrics(child);
1438
1439         /* Queue the data carried in the SYN packet. We need to first
1440          * bump skb's refcnt because the caller will attempt to free it.
1441          *
1442          * XXX (TFO) - we honor a zero-payload TFO request for now.
1443          * (Any reason not to?)
1444          */
1445         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1446                 /* Don't queue the skb if there is no payload in SYN.
1447                  * XXX (TFO) - How about SYN+FIN?
1448                  */
1449                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1450         } else {
1451                 skb = skb_get(skb);
1452                 skb_dst_drop(skb);
1453                 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1454                 skb_set_owner_r(skb, child);
1455                 __skb_queue_tail(&child->sk_receive_queue, skb);
1456                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457                 tp->syn_data_acked = 1;
1458         }
1459         sk->sk_data_ready(sk, 0);
1460         bh_unlock_sock(child);
1461         sock_put(child);
1462         WARN_ON(req->sk == NULL);
1463         return 0;
1464 }
1465
1466 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1467 {
1468         struct tcp_extend_values tmp_ext;
1469         struct tcp_options_received tmp_opt;
1470         const u8 *hash_location;
1471         struct request_sock *req;
1472         struct inet_request_sock *ireq;
1473         struct tcp_sock *tp = tcp_sk(sk);
1474         struct dst_entry *dst = NULL;
1475         __be32 saddr = ip_hdr(skb)->saddr;
1476         __be32 daddr = ip_hdr(skb)->daddr;
1477         __u32 isn = TCP_SKB_CB(skb)->when;
1478         bool want_cookie = false;
1479         struct flowi4 fl4;
1480         struct tcp_fastopen_cookie foc = { .len = -1 };
1481         struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1482         struct sk_buff *skb_synack;
1483         int do_fastopen;
1484
1485         /* Never answer to SYNs send to broadcast or multicast */
1486         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1487                 goto drop;
1488
1489         /* TW buckets are converted to open requests without
1490          * limitations, they conserve resources and peer is
1491          * evidently real one.
1492          */
1493         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1494                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1495                 if (!want_cookie)
1496                         goto drop;
1497         }
1498
1499         /* Accept backlog is full. If we have already queued enough
1500          * of warm entries in syn queue, drop request. It is better than
1501          * clogging syn queue with openreqs with exponentially increasing
1502          * timeout.
1503          */
1504         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1505                 goto drop;
1506
1507         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1508         if (!req)
1509                 goto drop;
1510
1511 #ifdef CONFIG_TCP_MD5SIG
1512         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1513 #endif
1514
1515         tcp_clear_options(&tmp_opt);
1516         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1517         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1518         tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1519             want_cookie ? NULL : &foc);
1520
1521         if (tmp_opt.cookie_plus > 0 &&
1522             tmp_opt.saw_tstamp &&
1523             !tp->rx_opt.cookie_out_never &&
1524             (sysctl_tcp_cookie_size > 0 ||
1525              (tp->cookie_values != NULL &&
1526               tp->cookie_values->cookie_desired > 0))) {
1527                 u8 *c;
1528                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1529                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1530
1531                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1532                         goto drop_and_release;
1533
1534                 /* Secret recipe starts with IP addresses */
1535                 *mess++ ^= (__force u32)daddr;
1536                 *mess++ ^= (__force u32)saddr;
1537
1538                 /* plus variable length Initiator Cookie */
1539                 c = (u8 *)mess;
1540                 while (l-- > 0)
1541                         *c++ ^= *hash_location++;
1542
1543                 want_cookie = false;    /* not our kind of cookie */
1544                 tmp_ext.cookie_out_never = 0; /* false */
1545                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1546         } else if (!tp->rx_opt.cookie_in_always) {
1547                 /* redundant indications, but ensure initialization. */
1548                 tmp_ext.cookie_out_never = 1; /* true */
1549                 tmp_ext.cookie_plus = 0;
1550         } else {
1551                 goto drop_and_release;
1552         }
1553         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1554
1555         if (want_cookie && !tmp_opt.saw_tstamp)
1556                 tcp_clear_options(&tmp_opt);
1557
1558         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1559         tcp_openreq_init(req, &tmp_opt, skb);
1560
1561         ireq = inet_rsk(req);
1562         ireq->loc_addr = daddr;
1563         ireq->rmt_addr = saddr;
1564         ireq->no_srccheck = inet_sk(sk)->transparent;
1565         ireq->opt = tcp_v4_save_options(skb);
1566
1567         if (security_inet_conn_request(sk, skb, req))
1568                 goto drop_and_free;
1569
1570         if (!want_cookie || tmp_opt.tstamp_ok)
1571                 TCP_ECN_create_request(req, skb);
1572
1573         if (want_cookie) {
1574                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1575                 req->cookie_ts = tmp_opt.tstamp_ok;
1576         } else if (!isn) {
1577                 /* VJ's idea. We save last timestamp seen
1578                  * from the destination in peer table, when entering
1579                  * state TIME-WAIT, and check against it before
1580                  * accepting new connection request.
1581                  *
1582                  * If "isn" is not zero, this request hit alive
1583                  * timewait bucket, so that all the necessary checks
1584                  * are made in the function processing timewait state.
1585                  */
1586                 if (tmp_opt.saw_tstamp &&
1587                     tcp_death_row.sysctl_tw_recycle &&
1588                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1589                     fl4.daddr == saddr) {
1590                         if (!tcp_peer_is_proven(req, dst, true)) {
1591                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1592                                 goto drop_and_release;
1593                         }
1594                 }
1595                 /* Kill the following clause, if you dislike this way. */
1596                 else if (!sysctl_tcp_syncookies &&
1597                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1598                           (sysctl_max_syn_backlog >> 2)) &&
1599                          !tcp_peer_is_proven(req, dst, false)) {
1600                         /* Without syncookies last quarter of
1601                          * backlog is filled with destinations,
1602                          * proven to be alive.
1603                          * It means that we continue to communicate
1604                          * to destinations, already remembered
1605                          * to the moment of synflood.
1606                          */
1607                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1608                                        &saddr, ntohs(tcp_hdr(skb)->source));
1609                         goto drop_and_release;
1610                 }
1611
1612                 isn = tcp_v4_init_sequence(skb);
1613         }
1614         tcp_rsk(req)->snt_isn = isn;
1615
1616         if (dst == NULL) {
1617                 dst = inet_csk_route_req(sk, &fl4, req);
1618                 if (dst == NULL)
1619                         goto drop_and_free;
1620         }
1621         do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1622
1623         /* We don't call tcp_v4_send_synack() directly because we need
1624          * to make sure a child socket can be created successfully before
1625          * sending back synack!
1626          *
1627          * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1628          * (or better yet, call tcp_send_synack() in the child context
1629          * directly, but will have to fix bunch of other code first)
1630          * after syn_recv_sock() except one will need to first fix the
1631          * latter to remove its dependency on the current implementation
1632          * of tcp_v4_send_synack()->tcp_select_initial_window().
1633          */
1634         skb_synack = tcp_make_synack(sk, dst, req,
1635             (struct request_values *)&tmp_ext,
1636             fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1637
1638         if (skb_synack) {
1639                 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1640                 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1641         } else
1642                 goto drop_and_free;
1643
1644         if (likely(!do_fastopen)) {
1645                 int err;
1646                 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1647                      ireq->rmt_addr, ireq->opt);
1648                 err = net_xmit_eval(err);
1649                 if (err || want_cookie)
1650                         goto drop_and_free;
1651
1652                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1653                 tcp_rsk(req)->listener = NULL;
1654                 /* Add the request_sock to the SYN table */
1655                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1656                 if (fastopen_cookie_present(&foc) && foc.len != 0)
1657                         NET_INC_STATS_BH(sock_net(sk),
1658                             LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1659         } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1660             (struct request_values *)&tmp_ext))
1661                 goto drop_and_free;
1662
1663         return 0;
1664
1665 drop_and_release:
1666         dst_release(dst);
1667 drop_and_free:
1668         reqsk_free(req);
1669 drop:
1670         return 0;
1671 }
1672 EXPORT_SYMBOL(tcp_v4_conn_request);
1673
1674
1675 /*
1676  * The three way handshake has completed - we got a valid synack -
1677  * now create the new socket.
1678  */
1679 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1680                                   struct request_sock *req,
1681                                   struct dst_entry *dst)
1682 {
1683         struct inet_request_sock *ireq;
1684         struct inet_sock *newinet;
1685         struct tcp_sock *newtp;
1686         struct sock *newsk;
1687 #ifdef CONFIG_TCP_MD5SIG
1688         struct tcp_md5sig_key *key;
1689 #endif
1690         struct ip_options_rcu *inet_opt;
1691
1692         if (sk_acceptq_is_full(sk))
1693                 goto exit_overflow;
1694
1695         newsk = tcp_create_openreq_child(sk, req, skb);
1696         if (!newsk)
1697                 goto exit_nonewsk;
1698
1699         newsk->sk_gso_type = SKB_GSO_TCPV4;
1700         inet_sk_rx_dst_set(newsk, skb);
1701
1702         newtp                 = tcp_sk(newsk);
1703         newinet               = inet_sk(newsk);
1704         ireq                  = inet_rsk(req);
1705         newinet->inet_daddr   = ireq->rmt_addr;
1706         newinet->inet_rcv_saddr = ireq->loc_addr;
1707         newinet->inet_saddr           = ireq->loc_addr;
1708         inet_opt              = ireq->opt;
1709         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1710         ireq->opt             = NULL;
1711         newinet->mc_index     = inet_iif(skb);
1712         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1713         newinet->rcv_tos      = ip_hdr(skb)->tos;
1714         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1715         if (inet_opt)
1716                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1717         newinet->inet_id = newtp->write_seq ^ jiffies;
1718
1719         if (!dst) {
1720                 dst = inet_csk_route_child_sock(sk, newsk, req);
1721                 if (!dst)
1722                         goto put_and_exit;
1723         } else {
1724                 /* syncookie case : see end of cookie_v4_check() */
1725         }
1726         sk_setup_caps(newsk, dst);
1727
1728         tcp_mtup_init(newsk);
1729         tcp_sync_mss(newsk, dst_mtu(dst));
1730         newtp->advmss = dst_metric_advmss(dst);
1731         if (tcp_sk(sk)->rx_opt.user_mss &&
1732             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1733                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1734
1735         tcp_initialize_rcv_mss(newsk);
1736         tcp_synack_rtt_meas(newsk, req);
1737         newtp->total_retrans = req->num_retrans;
1738
1739 #ifdef CONFIG_TCP_MD5SIG
1740         /* Copy over the MD5 key from the original socket */
1741         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1742                                 AF_INET);
1743         if (key != NULL) {
1744                 /*
1745                  * We're using one, so create a matching key
1746                  * on the newsk structure. If we fail to get
1747                  * memory, then we end up not copying the key
1748                  * across. Shucks.
1749                  */
1750                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1751                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1752                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1753         }
1754 #endif
1755
1756         if (__inet_inherit_port(sk, newsk) < 0)
1757                 goto put_and_exit;
1758         __inet_hash_nolisten(newsk, NULL);
1759
1760         return newsk;
1761
1762 exit_overflow:
1763         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1764 exit_nonewsk:
1765         dst_release(dst);
1766 exit:
1767         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1768         return NULL;
1769 put_and_exit:
1770         tcp_clear_xmit_timers(newsk);
1771         tcp_cleanup_congestion_control(newsk);
1772         bh_unlock_sock(newsk);
1773         sock_put(newsk);
1774         goto exit;
1775 }
1776 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1777
1778 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1779 {
1780         struct tcphdr *th = tcp_hdr(skb);
1781         const struct iphdr *iph = ip_hdr(skb);
1782         struct sock *nsk;
1783         struct request_sock **prev;
1784         /* Find possible connection requests. */
1785         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1786                                                        iph->saddr, iph->daddr);
1787         if (req)
1788                 return tcp_check_req(sk, skb, req, prev, false);
1789
1790         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1791                         th->source, iph->daddr, th->dest, inet_iif(skb));
1792
1793         if (nsk) {
1794                 if (nsk->sk_state != TCP_TIME_WAIT) {
1795                         bh_lock_sock(nsk);
1796                         return nsk;
1797                 }
1798                 inet_twsk_put(inet_twsk(nsk));
1799                 return NULL;
1800         }
1801
1802 #ifdef CONFIG_SYN_COOKIES
1803         if (!th->syn)
1804                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1805 #endif
1806         return sk;
1807 }
1808
1809 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1810 {
1811         const struct iphdr *iph = ip_hdr(skb);
1812
1813         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1814                 if (!tcp_v4_check(skb->len, iph->saddr,
1815                                   iph->daddr, skb->csum)) {
1816                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1817                         return 0;
1818                 }
1819         }
1820
1821         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1822                                        skb->len, IPPROTO_TCP, 0);
1823
1824         if (skb->len <= 76) {
1825                 return __skb_checksum_complete(skb);
1826         }
1827         return 0;
1828 }
1829
1830
1831 /* The socket must have it's spinlock held when we get
1832  * here.
1833  *
1834  * We have a potential double-lock case here, so even when
1835  * doing backlog processing we use the BH locking scheme.
1836  * This is because we cannot sleep with the original spinlock
1837  * held.
1838  */
1839 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1840 {
1841         struct sock *rsk;
1842 #ifdef CONFIG_TCP_MD5SIG
1843         /*
1844          * We really want to reject the packet as early as possible
1845          * if:
1846          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1847          *  o There is an MD5 option and we're not expecting one
1848          */
1849         if (tcp_v4_inbound_md5_hash(sk, skb))
1850                 goto discard;
1851 #endif
1852
1853         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1854                 struct dst_entry *dst = sk->sk_rx_dst;
1855
1856                 sock_rps_save_rxhash(sk, skb);
1857                 if (dst) {
1858                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1859                             dst->ops->check(dst, 0) == NULL) {
1860                                 dst_release(dst);
1861                                 sk->sk_rx_dst = NULL;
1862                         }
1863                 }
1864                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1865                         rsk = sk;
1866                         goto reset;
1867                 }
1868                 return 0;
1869         }
1870
1871         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1872                 goto csum_err;
1873
1874         if (sk->sk_state == TCP_LISTEN) {
1875                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1876                 if (!nsk)
1877                         goto discard;
1878
1879                 if (nsk != sk) {
1880                         sock_rps_save_rxhash(nsk, skb);
1881                         if (tcp_child_process(sk, nsk, skb)) {
1882                                 rsk = nsk;
1883                                 goto reset;
1884                         }
1885                         return 0;
1886                 }
1887         } else
1888                 sock_rps_save_rxhash(sk, skb);
1889
1890         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1891                 rsk = sk;
1892                 goto reset;
1893         }
1894         return 0;
1895
1896 reset:
1897         tcp_v4_send_reset(rsk, skb);
1898 discard:
1899         kfree_skb(skb);
1900         /* Be careful here. If this function gets more complicated and
1901          * gcc suffers from register pressure on the x86, sk (in %ebx)
1902          * might be destroyed here. This current version compiles correctly,
1903          * but you have been warned.
1904          */
1905         return 0;
1906
1907 csum_err:
1908         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1909         goto discard;
1910 }
1911 EXPORT_SYMBOL(tcp_v4_do_rcv);
1912
1913 void tcp_v4_early_demux(struct sk_buff *skb)
1914 {
1915         const struct iphdr *iph;
1916         const struct tcphdr *th;
1917         struct sock *sk;
1918
1919         if (skb->pkt_type != PACKET_HOST)
1920                 return;
1921
1922         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1923                 return;
1924
1925         iph = ip_hdr(skb);
1926         th = tcp_hdr(skb);
1927
1928         if (th->doff < sizeof(struct tcphdr) / 4)
1929                 return;
1930
1931         sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1932                                        iph->saddr, th->source,
1933                                        iph->daddr, ntohs(th->dest),
1934                                        skb->skb_iif);
1935         if (sk) {
1936                 skb->sk = sk;
1937                 skb->destructor = sock_edemux;
1938                 if (sk->sk_state != TCP_TIME_WAIT) {
1939                         struct dst_entry *dst = sk->sk_rx_dst;
1940
1941                         if (dst)
1942                                 dst = dst_check(dst, 0);
1943                         if (dst &&
1944                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1945                                 skb_dst_set_noref(skb, dst);
1946                 }
1947         }
1948 }
1949
1950 /*
1951  *      From tcp_input.c
1952  */
1953
1954 int tcp_v4_rcv(struct sk_buff *skb)
1955 {
1956         const struct iphdr *iph;
1957         const struct tcphdr *th;
1958         struct sock *sk;
1959         int ret;
1960         struct net *net = dev_net(skb->dev);
1961
1962         if (skb->pkt_type != PACKET_HOST)
1963                 goto discard_it;
1964
1965         /* Count it even if it's bad */
1966         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1967
1968         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1969                 goto discard_it;
1970
1971         th = tcp_hdr(skb);
1972
1973         if (th->doff < sizeof(struct tcphdr) / 4)
1974                 goto bad_packet;
1975         if (!pskb_may_pull(skb, th->doff * 4))
1976                 goto discard_it;
1977
1978         /* An explanation is required here, I think.
1979          * Packet length and doff are validated by header prediction,
1980          * provided case of th->doff==0 is eliminated.
1981          * So, we defer the checks. */
1982         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1983                 goto bad_packet;
1984
1985         th = tcp_hdr(skb);
1986         iph = ip_hdr(skb);
1987         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1988         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1989                                     skb->len - th->doff * 4);
1990         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1991         TCP_SKB_CB(skb)->when    = 0;
1992         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1993         TCP_SKB_CB(skb)->sacked  = 0;
1994
1995         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1996         if (!sk)
1997                 goto no_tcp_socket;
1998
1999 process:
2000         if (sk->sk_state == TCP_TIME_WAIT)
2001                 goto do_time_wait;
2002
2003         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2004                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2005                 goto discard_and_relse;
2006         }
2007
2008         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2009                 goto discard_and_relse;
2010         nf_reset(skb);
2011
2012         if (sk_filter(sk, skb))
2013                 goto discard_and_relse;
2014
2015         skb->dev = NULL;
2016
2017         bh_lock_sock_nested(sk);
2018         ret = 0;
2019         if (!sock_owned_by_user(sk)) {
2020 #ifdef CONFIG_NET_DMA
2021                 struct tcp_sock *tp = tcp_sk(sk);
2022                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2023                         tp->ucopy.dma_chan = net_dma_find_channel();
2024                 if (tp->ucopy.dma_chan)
2025                         ret = tcp_v4_do_rcv(sk, skb);
2026                 else
2027 #endif
2028                 {
2029                         if (!tcp_prequeue(sk, skb))
2030                                 ret = tcp_v4_do_rcv(sk, skb);
2031                 }
2032         } else if (unlikely(sk_add_backlog(sk, skb,
2033                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
2034                 bh_unlock_sock(sk);
2035                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2036                 goto discard_and_relse;
2037         }
2038         bh_unlock_sock(sk);
2039
2040         sock_put(sk);
2041
2042         return ret;
2043
2044 no_tcp_socket:
2045         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2046                 goto discard_it;
2047
2048         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2049 bad_packet:
2050                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2051         } else {
2052                 tcp_v4_send_reset(NULL, skb);
2053         }
2054
2055 discard_it:
2056         /* Discard frame. */
2057         kfree_skb(skb);
2058         return 0;
2059
2060 discard_and_relse:
2061         sock_put(sk);
2062         goto discard_it;
2063
2064 do_time_wait:
2065         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2066                 inet_twsk_put(inet_twsk(sk));
2067                 goto discard_it;
2068         }
2069
2070         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2071                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2072                 inet_twsk_put(inet_twsk(sk));
2073                 goto discard_it;
2074         }
2075         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2076         case TCP_TW_SYN: {
2077                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2078                                                         &tcp_hashinfo,
2079                                                         iph->daddr, th->dest,
2080                                                         inet_iif(skb));
2081                 if (sk2) {
2082                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2083                         inet_twsk_put(inet_twsk(sk));
2084                         sk = sk2;
2085                         goto process;
2086                 }
2087                 /* Fall through to ACK */
2088         }
2089         case TCP_TW_ACK:
2090                 tcp_v4_timewait_ack(sk, skb);
2091                 break;
2092         case TCP_TW_RST:
2093                 goto no_tcp_socket;
2094         case TCP_TW_SUCCESS:;
2095         }
2096         goto discard_it;
2097 }
2098
2099 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2100         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
2101         .twsk_unique    = tcp_twsk_unique,
2102         .twsk_destructor= tcp_twsk_destructor,
2103 };
2104
2105 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2106 {
2107         struct dst_entry *dst = skb_dst(skb);
2108
2109         dst_hold(dst);
2110         sk->sk_rx_dst = dst;
2111         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2112 }
2113 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2114
2115 const struct inet_connection_sock_af_ops ipv4_specific = {
2116         .queue_xmit        = ip_queue_xmit,
2117         .send_check        = tcp_v4_send_check,
2118         .rebuild_header    = inet_sk_rebuild_header,
2119         .sk_rx_dst_set     = inet_sk_rx_dst_set,
2120         .conn_request      = tcp_v4_conn_request,
2121         .syn_recv_sock     = tcp_v4_syn_recv_sock,
2122         .net_header_len    = sizeof(struct iphdr),
2123         .setsockopt        = ip_setsockopt,
2124         .getsockopt        = ip_getsockopt,
2125         .addr2sockaddr     = inet_csk_addr2sockaddr,
2126         .sockaddr_len      = sizeof(struct sockaddr_in),
2127         .bind_conflict     = inet_csk_bind_conflict,
2128 #ifdef CONFIG_COMPAT
2129         .compat_setsockopt = compat_ip_setsockopt,
2130         .compat_getsockopt = compat_ip_getsockopt,
2131 #endif
2132 };
2133 EXPORT_SYMBOL(ipv4_specific);
2134
2135 #ifdef CONFIG_TCP_MD5SIG
2136 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2137         .md5_lookup             = tcp_v4_md5_lookup,
2138         .calc_md5_hash          = tcp_v4_md5_hash_skb,
2139         .md5_parse              = tcp_v4_parse_md5_keys,
2140 };
2141 #endif
2142
2143 /* NOTE: A lot of things set to zero explicitly by call to
2144  *       sk_alloc() so need not be done here.
2145  */
2146 static int tcp_v4_init_sock(struct sock *sk)
2147 {
2148         struct inet_connection_sock *icsk = inet_csk(sk);
2149
2150         tcp_init_sock(sk);
2151
2152         icsk->icsk_af_ops = &ipv4_specific;
2153
2154 #ifdef CONFIG_TCP_MD5SIG
2155         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2156 #endif
2157
2158         return 0;
2159 }
2160
2161 void tcp_v4_destroy_sock(struct sock *sk)
2162 {
2163         struct tcp_sock *tp = tcp_sk(sk);
2164
2165         tcp_clear_xmit_timers(sk);
2166
2167         tcp_cleanup_congestion_control(sk);
2168
2169         /* Cleanup up the write buffer. */
2170         tcp_write_queue_purge(sk);
2171
2172         /* Cleans up our, hopefully empty, out_of_order_queue. */
2173         __skb_queue_purge(&tp->out_of_order_queue);
2174
2175 #ifdef CONFIG_TCP_MD5SIG
2176         /* Clean up the MD5 key list, if any */
2177         if (tp->md5sig_info) {
2178                 tcp_clear_md5_list(sk);
2179                 kfree_rcu(tp->md5sig_info, rcu);
2180                 tp->md5sig_info = NULL;
2181         }
2182 #endif
2183
2184 #ifdef CONFIG_NET_DMA
2185         /* Cleans up our sk_async_wait_queue */
2186         __skb_queue_purge(&sk->sk_async_wait_queue);
2187 #endif
2188
2189         /* Clean prequeue, it must be empty really */
2190         __skb_queue_purge(&tp->ucopy.prequeue);
2191
2192         /* Clean up a referenced TCP bind bucket. */
2193         if (inet_csk(sk)->icsk_bind_hash)
2194                 inet_put_port(sk);
2195
2196         /* TCP Cookie Transactions */
2197         if (tp->cookie_values != NULL) {
2198                 kref_put(&tp->cookie_values->kref,
2199                          tcp_cookie_values_release);
2200                 tp->cookie_values = NULL;
2201         }
2202         BUG_ON(tp->fastopen_rsk != NULL);
2203
2204         /* If socket is aborted during connect operation */
2205         tcp_free_fastopen_req(tp);
2206
2207         sk_sockets_allocated_dec(sk);
2208         sock_release_memcg(sk);
2209 }
2210 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2211
2212 #ifdef CONFIG_PROC_FS
2213 /* Proc filesystem TCP sock list dumping. */
2214
2215 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2216 {
2217         return hlist_nulls_empty(head) ? NULL :
2218                 list_entry(head->first, struct inet_timewait_sock, tw_node);
2219 }
2220
2221 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2222 {
2223         return !is_a_nulls(tw->tw_node.next) ?
2224                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2225 }
2226
2227 /*
2228  * Get next listener socket follow cur.  If cur is NULL, get first socket
2229  * starting from bucket given in st->bucket; when st->bucket is zero the
2230  * very first socket in the hash table is returned.
2231  */
2232 static void *listening_get_next(struct seq_file *seq, void *cur)
2233 {
2234         struct inet_connection_sock *icsk;
2235         struct hlist_nulls_node *node;
2236         struct sock *sk = cur;
2237         struct inet_listen_hashbucket *ilb;
2238         struct tcp_iter_state *st = seq->private;
2239         struct net *net = seq_file_net(seq);
2240
2241         if (!sk) {
2242                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2243                 spin_lock_bh(&ilb->lock);
2244                 sk = sk_nulls_head(&ilb->head);
2245                 st->offset = 0;
2246                 goto get_sk;
2247         }
2248         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2249         ++st->num;
2250         ++st->offset;
2251
2252         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2253                 struct request_sock *req = cur;
2254
2255                 icsk = inet_csk(st->syn_wait_sk);
2256                 req = req->dl_next;
2257                 while (1) {
2258                         while (req) {
2259                                 if (req->rsk_ops->family == st->family) {
2260                                         cur = req;
2261                                         goto out;
2262                                 }
2263                                 req = req->dl_next;
2264                         }
2265                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2266                                 break;
2267 get_req:
2268                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2269                 }
2270                 sk        = sk_nulls_next(st->syn_wait_sk);
2271                 st->state = TCP_SEQ_STATE_LISTENING;
2272                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2273         } else {
2274                 icsk = inet_csk(sk);
2275                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2276                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2277                         goto start_req;
2278                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2279                 sk = sk_nulls_next(sk);
2280         }
2281 get_sk:
2282         sk_nulls_for_each_from(sk, node) {
2283                 if (!net_eq(sock_net(sk), net))
2284                         continue;
2285                 if (sk->sk_family == st->family) {
2286                         cur = sk;
2287                         goto out;
2288                 }
2289                 icsk = inet_csk(sk);
2290                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2291                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2292 start_req:
2293                         st->uid         = sock_i_uid(sk);
2294                         st->syn_wait_sk = sk;
2295                         st->state       = TCP_SEQ_STATE_OPENREQ;
2296                         st->sbucket     = 0;
2297                         goto get_req;
2298                 }
2299                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2300         }
2301         spin_unlock_bh(&ilb->lock);
2302         st->offset = 0;
2303         if (++st->bucket < INET_LHTABLE_SIZE) {
2304                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2305                 spin_lock_bh(&ilb->lock);
2306                 sk = sk_nulls_head(&ilb->head);
2307                 goto get_sk;
2308         }
2309         cur = NULL;
2310 out:
2311         return cur;
2312 }
2313
2314 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2315 {
2316         struct tcp_iter_state *st = seq->private;
2317         void *rc;
2318
2319         st->bucket = 0;
2320         st->offset = 0;
2321         rc = listening_get_next(seq, NULL);
2322
2323         while (rc && *pos) {
2324                 rc = listening_get_next(seq, rc);
2325                 --*pos;
2326         }
2327         return rc;
2328 }
2329
2330 static inline bool empty_bucket(struct tcp_iter_state *st)
2331 {
2332         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2333                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2334 }
2335
2336 /*
2337  * Get first established socket starting from bucket given in st->bucket.
2338  * If st->bucket is zero, the very first socket in the hash is returned.
2339  */
2340 static void *established_get_first(struct seq_file *seq)
2341 {
2342         struct tcp_iter_state *st = seq->private;
2343         struct net *net = seq_file_net(seq);
2344         void *rc = NULL;
2345
2346         st->offset = 0;
2347         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2348                 struct sock *sk;
2349                 struct hlist_nulls_node *node;
2350                 struct inet_timewait_sock *tw;
2351                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2352
2353                 /* Lockless fast path for the common case of empty buckets */
2354                 if (empty_bucket(st))
2355                         continue;
2356
2357                 spin_lock_bh(lock);
2358                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2359                         if (sk->sk_family != st->family ||
2360                             !net_eq(sock_net(sk), net)) {
2361                                 continue;
2362                         }
2363                         rc = sk;
2364                         goto out;
2365                 }
2366                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2367                 inet_twsk_for_each(tw, node,
2368                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2369                         if (tw->tw_family != st->family ||
2370                             !net_eq(twsk_net(tw), net)) {
2371                                 continue;
2372                         }
2373                         rc = tw;
2374                         goto out;
2375                 }
2376                 spin_unlock_bh(lock);
2377                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2378         }
2379 out:
2380         return rc;
2381 }
2382
2383 static void *established_get_next(struct seq_file *seq, void *cur)
2384 {
2385         struct sock *sk = cur;
2386         struct inet_timewait_sock *tw;
2387         struct hlist_nulls_node *node;
2388         struct tcp_iter_state *st = seq->private;
2389         struct net *net = seq_file_net(seq);
2390
2391         ++st->num;
2392         ++st->offset;
2393
2394         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2395                 tw = cur;
2396                 tw = tw_next(tw);
2397 get_tw:
2398                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2399                         tw = tw_next(tw);
2400                 }
2401                 if (tw) {
2402                         cur = tw;
2403                         goto out;
2404                 }
2405                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2406                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2407
2408                 /* Look for next non empty bucket */
2409                 st->offset = 0;
2410                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2411                                 empty_bucket(st))
2412                         ;
2413                 if (st->bucket > tcp_hashinfo.ehash_mask)
2414                         return NULL;
2415
2416                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2417                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2418         } else
2419                 sk = sk_nulls_next(sk);
2420
2421         sk_nulls_for_each_from(sk, node) {
2422                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2423                         goto found;
2424         }
2425
2426         st->state = TCP_SEQ_STATE_TIME_WAIT;
2427         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2428         goto get_tw;
2429 found:
2430         cur = sk;
2431 out:
2432         return cur;
2433 }
2434
2435 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2436 {
2437         struct tcp_iter_state *st = seq->private;
2438         void *rc;
2439
2440         st->bucket = 0;
2441         rc = established_get_first(seq);
2442
2443         while (rc && pos) {
2444                 rc = established_get_next(seq, rc);
2445                 --pos;
2446         }
2447         return rc;
2448 }
2449
2450 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2451 {
2452         void *rc;
2453         struct tcp_iter_state *st = seq->private;
2454
2455         st->state = TCP_SEQ_STATE_LISTENING;
2456         rc        = listening_get_idx(seq, &pos);
2457
2458         if (!rc) {
2459                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2460                 rc        = established_get_idx(seq, pos);
2461         }
2462
2463         return rc;
2464 }
2465
2466 static void *tcp_seek_last_pos(struct seq_file *seq)
2467 {
2468         struct tcp_iter_state *st = seq->private;
2469         int offset = st->offset;
2470         int orig_num = st->num;
2471         void *rc = NULL;
2472
2473         switch (st->state) {
2474         case TCP_SEQ_STATE_OPENREQ:
2475         case TCP_SEQ_STATE_LISTENING:
2476                 if (st->bucket >= INET_LHTABLE_SIZE)
2477                         break;
2478                 st->state = TCP_SEQ_STATE_LISTENING;
2479                 rc = listening_get_next(seq, NULL);
2480                 while (offset-- && rc)
2481                         rc = listening_get_next(seq, rc);
2482                 if (rc)
2483                         break;
2484                 st->bucket = 0;
2485                 /* Fallthrough */
2486         case TCP_SEQ_STATE_ESTABLISHED:
2487         case TCP_SEQ_STATE_TIME_WAIT:
2488                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2489                 if (st->bucket > tcp_hashinfo.ehash_mask)
2490                         break;
2491                 rc = established_get_first(seq);
2492                 while (offset-- && rc)
2493                         rc = established_get_next(seq, rc);
2494         }
2495
2496         st->num = orig_num;
2497
2498         return rc;
2499 }
2500
2501 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2502 {
2503         struct tcp_iter_state *st = seq->private;
2504         void *rc;
2505
2506         if (*pos && *pos == st->last_pos) {
2507                 rc = tcp_seek_last_pos(seq);
2508                 if (rc)
2509                         goto out;
2510         }
2511
2512         st->state = TCP_SEQ_STATE_LISTENING;
2513         st->num = 0;
2514         st->bucket = 0;
2515         st->offset = 0;
2516         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2517
2518 out:
2519         st->last_pos = *pos;
2520         return rc;
2521 }
2522
2523 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2524 {
2525         struct tcp_iter_state *st = seq->private;
2526         void *rc = NULL;
2527
2528         if (v == SEQ_START_TOKEN) {
2529                 rc = tcp_get_idx(seq, 0);
2530                 goto out;
2531         }
2532
2533         switch (st->state) {
2534         case TCP_SEQ_STATE_OPENREQ:
2535         case TCP_SEQ_STATE_LISTENING:
2536                 rc = listening_get_next(seq, v);
2537                 if (!rc) {
2538                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2539                         st->bucket = 0;
2540                         st->offset = 0;
2541                         rc        = established_get_first(seq);
2542                 }
2543                 break;
2544         case TCP_SEQ_STATE_ESTABLISHED:
2545         case TCP_SEQ_STATE_TIME_WAIT:
2546                 rc = established_get_next(seq, v);
2547                 break;
2548         }
2549 out:
2550         ++*pos;
2551         st->last_pos = *pos;
2552         return rc;
2553 }
2554
2555 static void tcp_seq_stop(struct seq_file *seq, void *v)
2556 {
2557         struct tcp_iter_state *st = seq->private;
2558
2559         switch (st->state) {
2560         case TCP_SEQ_STATE_OPENREQ:
2561                 if (v) {
2562                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2563                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2564                 }
2565         case TCP_SEQ_STATE_LISTENING:
2566                 if (v != SEQ_START_TOKEN)
2567                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2568                 break;
2569         case TCP_SEQ_STATE_TIME_WAIT:
2570         case TCP_SEQ_STATE_ESTABLISHED:
2571                 if (v)
2572                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2573                 break;
2574         }
2575 }
2576
2577 int tcp_seq_open(struct inode *inode, struct file *file)
2578 {
2579         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2580         struct tcp_iter_state *s;
2581         int err;
2582
2583         err = seq_open_net(inode, file, &afinfo->seq_ops,
2584                           sizeof(struct tcp_iter_state));
2585         if (err < 0)
2586                 return err;
2587
2588         s = ((struct seq_file *)file->private_data)->private;
2589         s->family               = afinfo->family;
2590         s->last_pos             = 0;
2591         return 0;
2592 }
2593 EXPORT_SYMBOL(tcp_seq_open);
2594
2595 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2596 {
2597         int rc = 0;
2598         struct proc_dir_entry *p;
2599
2600         afinfo->seq_ops.start           = tcp_seq_start;
2601         afinfo->seq_ops.next            = tcp_seq_next;
2602         afinfo->seq_ops.stop            = tcp_seq_stop;
2603
2604         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2605                              afinfo->seq_fops, afinfo);
2606         if (!p)
2607                 rc = -ENOMEM;
2608         return rc;
2609 }
2610 EXPORT_SYMBOL(tcp_proc_register);
2611
2612 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2613 {
2614         proc_net_remove(net, afinfo->name);
2615 }
2616 EXPORT_SYMBOL(tcp_proc_unregister);
2617
2618 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2619                          struct seq_file *f, int i, kuid_t uid, int *len)
2620 {
2621         const struct inet_request_sock *ireq = inet_rsk(req);
2622         long delta = req->expires - jiffies;
2623
2624         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2625                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2626                 i,
2627                 ireq->loc_addr,
2628                 ntohs(inet_sk(sk)->inet_sport),
2629                 ireq->rmt_addr,
2630                 ntohs(ireq->rmt_port),
2631                 TCP_SYN_RECV,
2632                 0, 0, /* could print option size, but that is af dependent. */
2633                 1,    /* timers active (only the expire timer) */
2634                 jiffies_delta_to_clock_t(delta),
2635                 req->num_timeout,
2636                 from_kuid_munged(seq_user_ns(f), uid),
2637                 0,  /* non standard timer */
2638                 0, /* open_requests have no inode */
2639                 atomic_read(&sk->sk_refcnt),
2640                 req,
2641                 len);
2642 }
2643
2644 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2645 {
2646         int timer_active;
2647         unsigned long timer_expires;
2648         const struct tcp_sock *tp = tcp_sk(sk);
2649         const struct inet_connection_sock *icsk = inet_csk(sk);
2650         const struct inet_sock *inet = inet_sk(sk);
2651         struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2652         __be32 dest = inet->inet_daddr;
2653         __be32 src = inet->inet_rcv_saddr;
2654         __u16 destp = ntohs(inet->inet_dport);
2655         __u16 srcp = ntohs(inet->inet_sport);
2656         int rx_queue;
2657
2658         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2659                 timer_active    = 1;
2660                 timer_expires   = icsk->icsk_timeout;
2661         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2662                 timer_active    = 4;
2663                 timer_expires   = icsk->icsk_timeout;
2664         } else if (timer_pending(&sk->sk_timer)) {
2665                 timer_active    = 2;
2666                 timer_expires   = sk->sk_timer.expires;
2667         } else {
2668                 timer_active    = 0;
2669                 timer_expires = jiffies;
2670         }
2671
2672         if (sk->sk_state == TCP_LISTEN)
2673                 rx_queue = sk->sk_ack_backlog;
2674         else
2675                 /*
2676                  * because we dont lock socket, we might find a transient negative value
2677                  */
2678                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2679
2680         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2681                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2682                 i, src, srcp, dest, destp, sk->sk_state,
2683                 tp->write_seq - tp->snd_una,
2684                 rx_queue,
2685                 timer_active,
2686                 jiffies_delta_to_clock_t(timer_expires - jiffies),
2687                 icsk->icsk_retransmits,
2688                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2689                 icsk->icsk_probes_out,
2690                 sock_i_ino(sk),
2691                 atomic_read(&sk->sk_refcnt), sk,
2692                 jiffies_to_clock_t(icsk->icsk_rto),
2693                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2694                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2695                 tp->snd_cwnd,
2696                 sk->sk_state == TCP_LISTEN ?
2697                     (fastopenq ? fastopenq->max_qlen : 0) :
2698                     (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2699                 len);
2700 }
2701
2702 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2703                                struct seq_file *f, int i, int *len)
2704 {
2705         __be32 dest, src;
2706         __u16 destp, srcp;
2707         long delta = tw->tw_ttd - jiffies;
2708
2709         dest  = tw->tw_daddr;
2710         src   = tw->tw_rcv_saddr;
2711         destp = ntohs(tw->tw_dport);
2712         srcp  = ntohs(tw->tw_sport);
2713
2714         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2715                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2716                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2717                 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2718                 atomic_read(&tw->tw_refcnt), tw, len);
2719 }
2720
2721 #define TMPSZ 150
2722
2723 static int tcp4_seq_show(struct seq_file *seq, void *v)
2724 {
2725         struct tcp_iter_state *st;
2726         int len;
2727
2728         if (v == SEQ_START_TOKEN) {
2729                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2730                            "  sl  local_address rem_address   st tx_queue "
2731                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2732                            "inode");
2733                 goto out;
2734         }
2735         st = seq->private;
2736
2737         switch (st->state) {
2738         case TCP_SEQ_STATE_LISTENING:
2739         case TCP_SEQ_STATE_ESTABLISHED:
2740                 get_tcp4_sock(v, seq, st->num, &len);
2741                 break;
2742         case TCP_SEQ_STATE_OPENREQ:
2743                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2744                 break;
2745         case TCP_SEQ_STATE_TIME_WAIT:
2746                 get_timewait4_sock(v, seq, st->num, &len);
2747                 break;
2748         }
2749         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2750 out:
2751         return 0;
2752 }
2753
2754 static const struct file_operations tcp_afinfo_seq_fops = {
2755         .owner   = THIS_MODULE,
2756         .open    = tcp_seq_open,
2757         .read    = seq_read,
2758         .llseek  = seq_lseek,
2759         .release = seq_release_net
2760 };
2761
2762 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2763         .name           = "tcp",
2764         .family         = AF_INET,
2765         .seq_fops       = &tcp_afinfo_seq_fops,
2766         .seq_ops        = {
2767                 .show           = tcp4_seq_show,
2768         },
2769 };
2770
2771 static int __net_init tcp4_proc_init_net(struct net *net)
2772 {
2773         return tcp_proc_register(net, &tcp4_seq_afinfo);
2774 }
2775
2776 static void __net_exit tcp4_proc_exit_net(struct net *net)
2777 {
2778         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2779 }
2780
2781 static struct pernet_operations tcp4_net_ops = {
2782         .init = tcp4_proc_init_net,
2783         .exit = tcp4_proc_exit_net,
2784 };
2785
2786 int __init tcp4_proc_init(void)
2787 {
2788         return register_pernet_subsys(&tcp4_net_ops);
2789 }
2790
2791 void tcp4_proc_exit(void)
2792 {
2793         unregister_pernet_subsys(&tcp4_net_ops);
2794 }
2795 #endif /* CONFIG_PROC_FS */
2796
2797 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2798 {
2799         const struct iphdr *iph = skb_gro_network_header(skb);
2800         __wsum wsum;
2801         __sum16 sum;
2802
2803         switch (skb->ip_summed) {
2804         case CHECKSUM_COMPLETE:
2805                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2806                                   skb->csum)) {
2807                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2808                         break;
2809                 }
2810 flush:
2811                 NAPI_GRO_CB(skb)->flush = 1;
2812                 return NULL;
2813
2814         case CHECKSUM_NONE:
2815                 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2816                                           skb_gro_len(skb), IPPROTO_TCP, 0);
2817                 sum = csum_fold(skb_checksum(skb,
2818                                              skb_gro_offset(skb),
2819                                              skb_gro_len(skb),
2820                                              wsum));
2821                 if (sum)
2822                         goto flush;
2823
2824                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2825                 break;
2826         }
2827
2828         return tcp_gro_receive(head, skb);
2829 }
2830
2831 int tcp4_gro_complete(struct sk_buff *skb)
2832 {
2833         const struct iphdr *iph = ip_hdr(skb);
2834         struct tcphdr *th = tcp_hdr(skb);
2835
2836         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2837                                   iph->saddr, iph->daddr, 0);
2838         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2839
2840         return tcp_gro_complete(skb);
2841 }
2842
2843 struct proto tcp_prot = {
2844         .name                   = "TCP",
2845         .owner                  = THIS_MODULE,
2846         .close                  = tcp_close,
2847         .connect                = tcp_v4_connect,
2848         .disconnect             = tcp_disconnect,
2849         .accept                 = inet_csk_accept,
2850         .ioctl                  = tcp_ioctl,
2851         .init                   = tcp_v4_init_sock,
2852         .destroy                = tcp_v4_destroy_sock,
2853         .shutdown               = tcp_shutdown,
2854         .setsockopt             = tcp_setsockopt,
2855         .getsockopt             = tcp_getsockopt,
2856         .recvmsg                = tcp_recvmsg,
2857         .sendmsg                = tcp_sendmsg,
2858         .sendpage               = tcp_sendpage,
2859         .backlog_rcv            = tcp_v4_do_rcv,
2860         .release_cb             = tcp_release_cb,
2861         .mtu_reduced            = tcp_v4_mtu_reduced,
2862         .hash                   = inet_hash,
2863         .unhash                 = inet_unhash,
2864         .get_port               = inet_csk_get_port,
2865         .enter_memory_pressure  = tcp_enter_memory_pressure,
2866         .sockets_allocated      = &tcp_sockets_allocated,
2867         .orphan_count           = &tcp_orphan_count,
2868         .memory_allocated       = &tcp_memory_allocated,
2869         .memory_pressure        = &tcp_memory_pressure,
2870         .sysctl_wmem            = sysctl_tcp_wmem,
2871         .sysctl_rmem            = sysctl_tcp_rmem,
2872         .max_header             = MAX_TCP_HEADER,
2873         .obj_size               = sizeof(struct tcp_sock),
2874         .slab_flags             = SLAB_DESTROY_BY_RCU,
2875         .twsk_prot              = &tcp_timewait_sock_ops,
2876         .rsk_prot               = &tcp_request_sock_ops,
2877         .h.hashinfo             = &tcp_hashinfo,
2878         .no_autobind            = true,
2879 #ifdef CONFIG_COMPAT
2880         .compat_setsockopt      = compat_tcp_setsockopt,
2881         .compat_getsockopt      = compat_tcp_getsockopt,
2882 #endif
2883 #ifdef CONFIG_MEMCG_KMEM
2884         .init_cgroup            = tcp_init_cgroup,
2885         .destroy_cgroup         = tcp_destroy_cgroup,
2886         .proto_cgroup           = tcp_proto_cgroup,
2887 #endif
2888 };
2889 EXPORT_SYMBOL(tcp_prot);
2890
2891 static int __net_init tcp_sk_init(struct net *net)
2892 {
2893         return 0;
2894 }
2895
2896 static void __net_exit tcp_sk_exit(struct net *net)
2897 {
2898 }
2899
2900 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2901 {
2902         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2903 }
2904
2905 static struct pernet_operations __net_initdata tcp_sk_ops = {
2906        .init       = tcp_sk_init,
2907        .exit       = tcp_sk_exit,
2908        .exit_batch = tcp_sk_exit_batch,
2909 };
2910
2911 void __init tcp_v4_init(void)
2912 {
2913         inet_hashinfo_init(&tcp_hashinfo);
2914         if (register_pernet_subsys(&tcp_sk_ops))
2915                 panic("Failed to create the TCP control socket.\n");
2916 }