Merge branch 'testing' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert...
[linux-2.6-block.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145         struct inet_sock *inet = inet_sk(sk);
146         struct tcp_sock *tp = tcp_sk(sk);
147         __be16 orig_sport, orig_dport;
148         __be32 daddr, nexthop;
149         struct flowi4 *fl4;
150         struct rtable *rt;
151         int err;
152         struct ip_options_rcu *inet_opt;
153
154         if (addr_len < sizeof(struct sockaddr_in))
155                 return -EINVAL;
156
157         if (usin->sin_family != AF_INET)
158                 return -EAFNOSUPPORT;
159
160         nexthop = daddr = usin->sin_addr.s_addr;
161         inet_opt = rcu_dereference_protected(inet->inet_opt,
162                                              sock_owned_by_user(sk));
163         if (inet_opt && inet_opt->opt.srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet_opt->opt.faddr;
167         }
168
169         orig_sport = inet->inet_sport;
170         orig_dport = usin->sin_port;
171         fl4 = &inet->cork.fl.u.ip4;
172         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174                               IPPROTO_TCP,
175                               orig_sport, orig_dport, sk, true);
176         if (IS_ERR(rt)) {
177                 err = PTR_ERR(rt);
178                 if (err == -ENETUNREACH)
179                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180                 return err;
181         }
182
183         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184                 ip_rt_put(rt);
185                 return -ENETUNREACH;
186         }
187
188         if (!inet_opt || !inet_opt->opt.srr)
189                 daddr = fl4->daddr;
190
191         if (!inet->inet_saddr)
192                 inet->inet_saddr = fl4->saddr;
193         inet->inet_rcv_saddr = inet->inet_saddr;
194
195         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196                 /* Reset inherited state */
197                 tp->rx_opt.ts_recent       = 0;
198                 tp->rx_opt.ts_recent_stamp = 0;
199                 if (likely(!tp->repair))
200                         tp->write_seq      = 0;
201         }
202
203         if (tcp_death_row.sysctl_tw_recycle &&
204             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205                 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207         inet->inet_dport = usin->sin_port;
208         inet->inet_daddr = daddr;
209
210         inet_csk(sk)->icsk_ext_hdr_len = 0;
211         if (inet_opt)
212                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213
214         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215
216         /* Socket identity is still unknown (sport may be zero).
217          * However we set state to SYN-SENT and not releasing socket
218          * lock select source port, enter ourselves into the hash tables and
219          * complete initialization after this.
220          */
221         tcp_set_state(sk, TCP_SYN_SENT);
222         err = inet_hash_connect(&tcp_death_row, sk);
223         if (err)
224                 goto failure;
225
226         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227                                inet->inet_sport, inet->inet_dport, sk);
228         if (IS_ERR(rt)) {
229                 err = PTR_ERR(rt);
230                 rt = NULL;
231                 goto failure;
232         }
233         /* OK, now commit destination to socket.  */
234         sk->sk_gso_type = SKB_GSO_TCPV4;
235         sk_setup_caps(sk, &rt->dst);
236
237         if (!tp->write_seq && likely(!tp->repair))
238                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239                                                            inet->inet_daddr,
240                                                            inet->inet_sport,
241                                                            usin->sin_port);
242
243         inet->inet_id = tp->write_seq ^ jiffies;
244
245         err = tcp_connect(sk);
246
247         rt = NULL;
248         if (err)
249                 goto failure;
250
251         return 0;
252
253 failure:
254         /*
255          * This unhashes the socket and releases the local port,
256          * if necessary.
257          */
258         tcp_set_state(sk, TCP_CLOSE);
259         ip_rt_put(rt);
260         sk->sk_route_caps = 0;
261         inet->inet_dport = 0;
262         return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265
266 /*
267  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268  * It can be called through tcp_release_cb() if socket was owned by user
269  * at the time tcp_v4_err() was called to handle ICMP message.
270  */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273         struct dst_entry *dst;
274         struct inet_sock *inet = inet_sk(sk);
275         u32 mtu = tcp_sk(sk)->mtu_info;
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         dst = inet_csk_update_pmtu(sk, mtu);
285         if (!dst)
286                 return;
287
288         /* Something is about to be wrong... Remember soft error
289          * for the case, if this connection will not able to recover.
290          */
291         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292                 sk->sk_err_soft = EMSGSIZE;
293
294         mtu = dst_mtu(dst);
295
296         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298                 tcp_sync_mss(sk, mtu);
299
300                 /* Resend the TCP packet because it's
301                  * clear that the old packet has been
302                  * dropped. This is the new "fast" path mtu
303                  * discovery.
304                  */
305                 tcp_simple_retransmit(sk);
306         } /* else let the usual retransmit timer handle it */
307 }
308
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311         struct dst_entry *dst = __sk_dst_check(sk, 0);
312
313         if (dst)
314                 dst->ops->redirect(dst, sk, skb);
315 }
316
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337         struct inet_connection_sock *icsk;
338         struct tcp_sock *tp;
339         struct inet_sock *inet;
340         const int type = icmp_hdr(icmp_skb)->type;
341         const int code = icmp_hdr(icmp_skb)->code;
342         struct sock *sk;
343         struct sk_buff *skb;
344         struct request_sock *req;
345         __u32 seq;
346         __u32 remaining;
347         int err;
348         struct net *net = dev_net(icmp_skb->dev);
349
350         if (icmp_skb->len < (iph->ihl << 2) + 8) {
351                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352                 return;
353         }
354
355         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356                         iph->saddr, th->source, inet_iif(icmp_skb));
357         if (!sk) {
358                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359                 return;
360         }
361         if (sk->sk_state == TCP_TIME_WAIT) {
362                 inet_twsk_put(inet_twsk(sk));
363                 return;
364         }
365
366         bh_lock_sock(sk);
367         /* If too many ICMPs get dropped on busy
368          * servers this needs to be solved differently.
369          * We do take care of PMTU discovery (RFC1191) special case :
370          * we can receive locally generated ICMP messages while socket is held.
371          */
372         if (sock_owned_by_user(sk) &&
373             type != ICMP_DEST_UNREACH &&
374             code != ICMP_FRAG_NEEDED)
375                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
376
377         if (sk->sk_state == TCP_CLOSE)
378                 goto out;
379
380         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
381                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
382                 goto out;
383         }
384
385         icsk = inet_csk(sk);
386         tp = tcp_sk(sk);
387         req = tp->fastopen_rsk;
388         seq = ntohl(th->seq);
389         if (sk->sk_state != TCP_LISTEN &&
390             !between(seq, tp->snd_una, tp->snd_nxt) &&
391             (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
392                 /* For a Fast Open socket, allow seq to be snt_isn. */
393                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
394                 goto out;
395         }
396
397         switch (type) {
398         case ICMP_REDIRECT:
399                 do_redirect(icmp_skb, sk);
400                 goto out;
401         case ICMP_SOURCE_QUENCH:
402                 /* Just silently ignore these. */
403                 goto out;
404         case ICMP_PARAMETERPROB:
405                 err = EPROTO;
406                 break;
407         case ICMP_DEST_UNREACH:
408                 if (code > NR_ICMP_UNREACH)
409                         goto out;
410
411                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
412                         tp->mtu_info = info;
413                         if (!sock_owned_by_user(sk)) {
414                                 tcp_v4_mtu_reduced(sk);
415                         } else {
416                                 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417                                         sock_hold(sk);
418                         }
419                         goto out;
420                 }
421
422                 err = icmp_err_convert[code].errno;
423                 /* check if icmp_skb allows revert of backoff
424                  * (see draft-zimmermann-tcp-lcd) */
425                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426                         break;
427                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
428                     !icsk->icsk_backoff)
429                         break;
430
431                 /* XXX (TFO) - revisit the following logic for TFO */
432
433                 if (sock_owned_by_user(sk))
434                         break;
435
436                 icsk->icsk_backoff--;
437                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439                 tcp_bound_rto(sk);
440
441                 skb = tcp_write_queue_head(sk);
442                 BUG_ON(!skb);
443
444                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
446
447                 if (remaining) {
448                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449                                                   remaining, TCP_RTO_MAX);
450                 } else {
451                         /* RTO revert clocked out retransmission.
452                          * Will retransmit now */
453                         tcp_retransmit_timer(sk);
454                 }
455
456                 break;
457         case ICMP_TIME_EXCEEDED:
458                 err = EHOSTUNREACH;
459                 break;
460         default:
461                 goto out;
462         }
463
464         /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465          * than following the TCP_SYN_RECV case and closing the socket,
466          * we ignore the ICMP error and keep trying like a fully established
467          * socket. Is this the right thing to do?
468          */
469         if (req && req->sk == NULL)
470                 goto out;
471
472         switch (sk->sk_state) {
473                 struct request_sock *req, **prev;
474         case TCP_LISTEN:
475                 if (sock_owned_by_user(sk))
476                         goto out;
477
478                 req = inet_csk_search_req(sk, &prev, th->dest,
479                                           iph->daddr, iph->saddr);
480                 if (!req)
481                         goto out;
482
483                 /* ICMPs are not backlogged, hence we cannot get
484                    an established socket here.
485                  */
486                 WARN_ON(req->sk);
487
488                 if (seq != tcp_rsk(req)->snt_isn) {
489                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490                         goto out;
491                 }
492
493                 /*
494                  * Still in SYN_RECV, just remove it silently.
495                  * There is no good way to pass the error to the newly
496                  * created socket, and POSIX does not want network
497                  * errors returned from accept().
498                  */
499                 inet_csk_reqsk_queue_drop(sk, req, prev);
500                 goto out;
501
502         case TCP_SYN_SENT:
503         case TCP_SYN_RECV:  /* Cannot happen.
504                                It can f.e. if SYNs crossed,
505                                or Fast Open.
506                              */
507                 if (!sock_owned_by_user(sk)) {
508                         sk->sk_err = err;
509
510                         sk->sk_error_report(sk);
511
512                         tcp_done(sk);
513                 } else {
514                         sk->sk_err_soft = err;
515                 }
516                 goto out;
517         }
518
519         /* If we've already connected we will keep trying
520          * until we time out, or the user gives up.
521          *
522          * rfc1122 4.2.3.9 allows to consider as hard errors
523          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524          * but it is obsoleted by pmtu discovery).
525          *
526          * Note, that in modern internet, where routing is unreliable
527          * and in each dark corner broken firewalls sit, sending random
528          * errors ordered by their masters even this two messages finally lose
529          * their original sense (even Linux sends invalid PORT_UNREACHs)
530          *
531          * Now we are in compliance with RFCs.
532          *                                                      --ANK (980905)
533          */
534
535         inet = inet_sk(sk);
536         if (!sock_owned_by_user(sk) && inet->recverr) {
537                 sk->sk_err = err;
538                 sk->sk_error_report(sk);
539         } else  { /* Only an error on timeout */
540                 sk->sk_err_soft = err;
541         }
542
543 out:
544         bh_unlock_sock(sk);
545         sock_put(sk);
546 }
547
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549                                 __be32 saddr, __be32 daddr)
550 {
551         struct tcphdr *th = tcp_hdr(skb);
552
553         if (skb->ip_summed == CHECKSUM_PARTIAL) {
554                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555                 skb->csum_start = skb_transport_header(skb) - skb->head;
556                 skb->csum_offset = offsetof(struct tcphdr, check);
557         } else {
558                 th->check = tcp_v4_check(skb->len, saddr, daddr,
559                                          csum_partial(th,
560                                                       th->doff << 2,
561                                                       skb->csum));
562         }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568         const struct inet_sock *inet = inet_sk(sk);
569
570         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576         const struct iphdr *iph;
577         struct tcphdr *th;
578
579         if (!pskb_may_pull(skb, sizeof(*th)))
580                 return -EINVAL;
581
582         iph = ip_hdr(skb);
583         th = tcp_hdr(skb);
584
585         th->check = 0;
586         skb->ip_summed = CHECKSUM_PARTIAL;
587         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588         return 0;
589 }
590
591 /*
592  *      This routine will send an RST to the other tcp.
593  *
594  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595  *                    for reset.
596  *      Answer: if a packet caused RST, it is not for a socket
597  *              existing in our system, if it is matched to a socket,
598  *              it is just duplicate segment or bug in other side's TCP.
599  *              So that we build reply only basing on parameters
600  *              arrived with segment.
601  *      Exception: precedence violation. We do not implement it in any case.
602  */
603
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606         const struct tcphdr *th = tcp_hdr(skb);
607         struct {
608                 struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612         } rep;
613         struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615         struct tcp_md5sig_key *key;
616         const __u8 *hash_location = NULL;
617         unsigned char newhash[16];
618         int genhash;
619         struct sock *sk1 = NULL;
620 #endif
621         struct net *net;
622
623         /* Never send a reset in response to a reset. */
624         if (th->rst)
625                 return;
626
627         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628                 return;
629
630         /* Swap the send and the receive. */
631         memset(&rep, 0, sizeof(rep));
632         rep.th.dest   = th->source;
633         rep.th.source = th->dest;
634         rep.th.doff   = sizeof(struct tcphdr) / 4;
635         rep.th.rst    = 1;
636
637         if (th->ack) {
638                 rep.th.seq = th->ack_seq;
639         } else {
640                 rep.th.ack = 1;
641                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642                                        skb->len - (th->doff << 2));
643         }
644
645         memset(&arg, 0, sizeof(arg));
646         arg.iov[0].iov_base = (unsigned char *)&rep;
647         arg.iov[0].iov_len  = sizeof(rep.th);
648
649 #ifdef CONFIG_TCP_MD5SIG
650         hash_location = tcp_parse_md5sig_option(th);
651         if (!sk && hash_location) {
652                 /*
653                  * active side is lost. Try to find listening socket through
654                  * source port, and then find md5 key through listening socket.
655                  * we are not loose security here:
656                  * Incoming packet is checked with md5 hash with finding key,
657                  * no RST generated if md5 hash doesn't match.
658                  */
659                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660                                              &tcp_hashinfo, ip_hdr(skb)->saddr,
661                                              th->source, ip_hdr(skb)->daddr,
662                                              ntohs(th->source), inet_iif(skb));
663                 /* don't send rst if it can't find key */
664                 if (!sk1)
665                         return;
666                 rcu_read_lock();
667                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
668                                         &ip_hdr(skb)->saddr, AF_INET);
669                 if (!key)
670                         goto release_sk1;
671
672                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
673                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
674                         goto release_sk1;
675         } else {
676                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
677                                              &ip_hdr(skb)->saddr,
678                                              AF_INET) : NULL;
679         }
680
681         if (key) {
682                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
683                                    (TCPOPT_NOP << 16) |
684                                    (TCPOPT_MD5SIG << 8) |
685                                    TCPOLEN_MD5SIG);
686                 /* Update length and the length the header thinks exists */
687                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
688                 rep.th.doff = arg.iov[0].iov_len / 4;
689
690                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
691                                      key, ip_hdr(skb)->saddr,
692                                      ip_hdr(skb)->daddr, &rep.th);
693         }
694 #endif
695         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
696                                       ip_hdr(skb)->saddr, /* XXX */
697                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
698         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
699         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
700         /* When socket is gone, all binding information is lost.
701          * routing might fail in this case. No choice here, if we choose to force
702          * input interface, we will misroute in case of asymmetric route.
703          */
704         if (sk)
705                 arg.bound_dev_if = sk->sk_bound_dev_if;
706
707         net = dev_net(skb_dst(skb)->dev);
708         arg.tos = ip_hdr(skb)->tos;
709         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
710                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
711
712         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
714
715 #ifdef CONFIG_TCP_MD5SIG
716 release_sk1:
717         if (sk1) {
718                 rcu_read_unlock();
719                 sock_put(sk1);
720         }
721 #endif
722 }
723
724 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
725    outside socket context is ugly, certainly. What can I do?
726  */
727
728 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
729                             u32 win, u32 ts, int oif,
730                             struct tcp_md5sig_key *key,
731                             int reply_flags, u8 tos)
732 {
733         const struct tcphdr *th = tcp_hdr(skb);
734         struct {
735                 struct tcphdr th;
736                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
737 #ifdef CONFIG_TCP_MD5SIG
738                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
739 #endif
740                         ];
741         } rep;
742         struct ip_reply_arg arg;
743         struct net *net = dev_net(skb_dst(skb)->dev);
744
745         memset(&rep.th, 0, sizeof(struct tcphdr));
746         memset(&arg, 0, sizeof(arg));
747
748         arg.iov[0].iov_base = (unsigned char *)&rep;
749         arg.iov[0].iov_len  = sizeof(rep.th);
750         if (ts) {
751                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
752                                    (TCPOPT_TIMESTAMP << 8) |
753                                    TCPOLEN_TIMESTAMP);
754                 rep.opt[1] = htonl(tcp_time_stamp);
755                 rep.opt[2] = htonl(ts);
756                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
757         }
758
759         /* Swap the send and the receive. */
760         rep.th.dest    = th->source;
761         rep.th.source  = th->dest;
762         rep.th.doff    = arg.iov[0].iov_len / 4;
763         rep.th.seq     = htonl(seq);
764         rep.th.ack_seq = htonl(ack);
765         rep.th.ack     = 1;
766         rep.th.window  = htons(win);
767
768 #ifdef CONFIG_TCP_MD5SIG
769         if (key) {
770                 int offset = (ts) ? 3 : 0;
771
772                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
773                                           (TCPOPT_NOP << 16) |
774                                           (TCPOPT_MD5SIG << 8) |
775                                           TCPOLEN_MD5SIG);
776                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
777                 rep.th.doff = arg.iov[0].iov_len/4;
778
779                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
780                                     key, ip_hdr(skb)->saddr,
781                                     ip_hdr(skb)->daddr, &rep.th);
782         }
783 #endif
784         arg.flags = reply_flags;
785         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
786                                       ip_hdr(skb)->saddr, /* XXX */
787                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
788         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
789         if (oif)
790                 arg.bound_dev_if = oif;
791         arg.tos = tos;
792         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
793                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
794
795         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
796 }
797
798 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
799 {
800         struct inet_timewait_sock *tw = inet_twsk(sk);
801         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
802
803         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
804                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
805                         tcptw->tw_ts_recent,
806                         tw->tw_bound_dev_if,
807                         tcp_twsk_md5_key(tcptw),
808                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
809                         tw->tw_tos
810                         );
811
812         inet_twsk_put(tw);
813 }
814
815 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
816                                   struct request_sock *req)
817 {
818         /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
819          * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
820          */
821         tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
822                         tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
823                         tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
824                         req->ts_recent,
825                         0,
826                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
827                                           AF_INET),
828                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
829                         ip_hdr(skb)->tos);
830 }
831
832 /*
833  *      Send a SYN-ACK after having received a SYN.
834  *      This still operates on a request_sock only, not on a big
835  *      socket.
836  */
837 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
838                               struct request_sock *req,
839                               struct request_values *rvp,
840                               u16 queue_mapping,
841                               bool nocache)
842 {
843         const struct inet_request_sock *ireq = inet_rsk(req);
844         struct flowi4 fl4;
845         int err = -1;
846         struct sk_buff * skb;
847
848         /* First, grab a route. */
849         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
850                 return -1;
851
852         skb = tcp_make_synack(sk, dst, req, rvp, NULL);
853
854         if (skb) {
855                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
856
857                 skb_set_queue_mapping(skb, queue_mapping);
858                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
859                                             ireq->rmt_addr,
860                                             ireq->opt);
861                 err = net_xmit_eval(err);
862                 if (!tcp_rsk(req)->snt_synack && !err)
863                         tcp_rsk(req)->snt_synack = tcp_time_stamp;
864         }
865
866         return err;
867 }
868
869 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
870                              struct request_values *rvp)
871 {
872         int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
873
874         if (!res)
875                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
876         return res;
877 }
878
879 /*
880  *      IPv4 request_sock destructor.
881  */
882 static void tcp_v4_reqsk_destructor(struct request_sock *req)
883 {
884         kfree(inet_rsk(req)->opt);
885 }
886
887 /*
888  * Return true if a syncookie should be sent
889  */
890 bool tcp_syn_flood_action(struct sock *sk,
891                          const struct sk_buff *skb,
892                          const char *proto)
893 {
894         const char *msg = "Dropping request";
895         bool want_cookie = false;
896         struct listen_sock *lopt;
897
898
899
900 #ifdef CONFIG_SYN_COOKIES
901         if (sysctl_tcp_syncookies) {
902                 msg = "Sending cookies";
903                 want_cookie = true;
904                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
905         } else
906 #endif
907                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
908
909         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
910         if (!lopt->synflood_warned) {
911                 lopt->synflood_warned = 1;
912                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
913                         proto, ntohs(tcp_hdr(skb)->dest), msg);
914         }
915         return want_cookie;
916 }
917 EXPORT_SYMBOL(tcp_syn_flood_action);
918
919 /*
920  * Save and compile IPv4 options into the request_sock if needed.
921  */
922 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
923 {
924         const struct ip_options *opt = &(IPCB(skb)->opt);
925         struct ip_options_rcu *dopt = NULL;
926
927         if (opt && opt->optlen) {
928                 int opt_size = sizeof(*dopt) + opt->optlen;
929
930                 dopt = kmalloc(opt_size, GFP_ATOMIC);
931                 if (dopt) {
932                         if (ip_options_echo(&dopt->opt, skb)) {
933                                 kfree(dopt);
934                                 dopt = NULL;
935                         }
936                 }
937         }
938         return dopt;
939 }
940
941 #ifdef CONFIG_TCP_MD5SIG
942 /*
943  * RFC2385 MD5 checksumming requires a mapping of
944  * IP address->MD5 Key.
945  * We need to maintain these in the sk structure.
946  */
947
948 /* Find the Key structure for an address.  */
949 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
950                                          const union tcp_md5_addr *addr,
951                                          int family)
952 {
953         struct tcp_sock *tp = tcp_sk(sk);
954         struct tcp_md5sig_key *key;
955         struct hlist_node *pos;
956         unsigned int size = sizeof(struct in_addr);
957         struct tcp_md5sig_info *md5sig;
958
959         /* caller either holds rcu_read_lock() or socket lock */
960         md5sig = rcu_dereference_check(tp->md5sig_info,
961                                        sock_owned_by_user(sk) ||
962                                        lockdep_is_held(&sk->sk_lock.slock));
963         if (!md5sig)
964                 return NULL;
965 #if IS_ENABLED(CONFIG_IPV6)
966         if (family == AF_INET6)
967                 size = sizeof(struct in6_addr);
968 #endif
969         hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
970                 if (key->family != family)
971                         continue;
972                 if (!memcmp(&key->addr, addr, size))
973                         return key;
974         }
975         return NULL;
976 }
977 EXPORT_SYMBOL(tcp_md5_do_lookup);
978
979 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
980                                          struct sock *addr_sk)
981 {
982         union tcp_md5_addr *addr;
983
984         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
985         return tcp_md5_do_lookup(sk, addr, AF_INET);
986 }
987 EXPORT_SYMBOL(tcp_v4_md5_lookup);
988
989 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
990                                                       struct request_sock *req)
991 {
992         union tcp_md5_addr *addr;
993
994         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
995         return tcp_md5_do_lookup(sk, addr, AF_INET);
996 }
997
998 /* This can be called on a newly created socket, from other files */
999 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1000                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1001 {
1002         /* Add Key to the list */
1003         struct tcp_md5sig_key *key;
1004         struct tcp_sock *tp = tcp_sk(sk);
1005         struct tcp_md5sig_info *md5sig;
1006
1007         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1008         if (key) {
1009                 /* Pre-existing entry - just update that one. */
1010                 memcpy(key->key, newkey, newkeylen);
1011                 key->keylen = newkeylen;
1012                 return 0;
1013         }
1014
1015         md5sig = rcu_dereference_protected(tp->md5sig_info,
1016                                            sock_owned_by_user(sk));
1017         if (!md5sig) {
1018                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1019                 if (!md5sig)
1020                         return -ENOMEM;
1021
1022                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1023                 INIT_HLIST_HEAD(&md5sig->head);
1024                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1025         }
1026
1027         key = sock_kmalloc(sk, sizeof(*key), gfp);
1028         if (!key)
1029                 return -ENOMEM;
1030         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1031                 sock_kfree_s(sk, key, sizeof(*key));
1032                 return -ENOMEM;
1033         }
1034
1035         memcpy(key->key, newkey, newkeylen);
1036         key->keylen = newkeylen;
1037         key->family = family;
1038         memcpy(&key->addr, addr,
1039                (family == AF_INET6) ? sizeof(struct in6_addr) :
1040                                       sizeof(struct in_addr));
1041         hlist_add_head_rcu(&key->node, &md5sig->head);
1042         return 0;
1043 }
1044 EXPORT_SYMBOL(tcp_md5_do_add);
1045
1046 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1047 {
1048         struct tcp_sock *tp = tcp_sk(sk);
1049         struct tcp_md5sig_key *key;
1050         struct tcp_md5sig_info *md5sig;
1051
1052         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1053         if (!key)
1054                 return -ENOENT;
1055         hlist_del_rcu(&key->node);
1056         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1057         kfree_rcu(key, rcu);
1058         md5sig = rcu_dereference_protected(tp->md5sig_info,
1059                                            sock_owned_by_user(sk));
1060         if (hlist_empty(&md5sig->head))
1061                 tcp_free_md5sig_pool();
1062         return 0;
1063 }
1064 EXPORT_SYMBOL(tcp_md5_do_del);
1065
1066 static void tcp_clear_md5_list(struct sock *sk)
1067 {
1068         struct tcp_sock *tp = tcp_sk(sk);
1069         struct tcp_md5sig_key *key;
1070         struct hlist_node *pos, *n;
1071         struct tcp_md5sig_info *md5sig;
1072
1073         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1074
1075         if (!hlist_empty(&md5sig->head))
1076                 tcp_free_md5sig_pool();
1077         hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1078                 hlist_del_rcu(&key->node);
1079                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1080                 kfree_rcu(key, rcu);
1081         }
1082 }
1083
1084 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1085                                  int optlen)
1086 {
1087         struct tcp_md5sig cmd;
1088         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1089
1090         if (optlen < sizeof(cmd))
1091                 return -EINVAL;
1092
1093         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1094                 return -EFAULT;
1095
1096         if (sin->sin_family != AF_INET)
1097                 return -EINVAL;
1098
1099         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1100                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1101                                       AF_INET);
1102
1103         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1104                 return -EINVAL;
1105
1106         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1107                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1108                               GFP_KERNEL);
1109 }
1110
1111 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1112                                         __be32 daddr, __be32 saddr, int nbytes)
1113 {
1114         struct tcp4_pseudohdr *bp;
1115         struct scatterlist sg;
1116
1117         bp = &hp->md5_blk.ip4;
1118
1119         /*
1120          * 1. the TCP pseudo-header (in the order: source IP address,
1121          * destination IP address, zero-padded protocol number, and
1122          * segment length)
1123          */
1124         bp->saddr = saddr;
1125         bp->daddr = daddr;
1126         bp->pad = 0;
1127         bp->protocol = IPPROTO_TCP;
1128         bp->len = cpu_to_be16(nbytes);
1129
1130         sg_init_one(&sg, bp, sizeof(*bp));
1131         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1132 }
1133
1134 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1135                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1136 {
1137         struct tcp_md5sig_pool *hp;
1138         struct hash_desc *desc;
1139
1140         hp = tcp_get_md5sig_pool();
1141         if (!hp)
1142                 goto clear_hash_noput;
1143         desc = &hp->md5_desc;
1144
1145         if (crypto_hash_init(desc))
1146                 goto clear_hash;
1147         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1148                 goto clear_hash;
1149         if (tcp_md5_hash_header(hp, th))
1150                 goto clear_hash;
1151         if (tcp_md5_hash_key(hp, key))
1152                 goto clear_hash;
1153         if (crypto_hash_final(desc, md5_hash))
1154                 goto clear_hash;
1155
1156         tcp_put_md5sig_pool();
1157         return 0;
1158
1159 clear_hash:
1160         tcp_put_md5sig_pool();
1161 clear_hash_noput:
1162         memset(md5_hash, 0, 16);
1163         return 1;
1164 }
1165
1166 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1167                         const struct sock *sk, const struct request_sock *req,
1168                         const struct sk_buff *skb)
1169 {
1170         struct tcp_md5sig_pool *hp;
1171         struct hash_desc *desc;
1172         const struct tcphdr *th = tcp_hdr(skb);
1173         __be32 saddr, daddr;
1174
1175         if (sk) {
1176                 saddr = inet_sk(sk)->inet_saddr;
1177                 daddr = inet_sk(sk)->inet_daddr;
1178         } else if (req) {
1179                 saddr = inet_rsk(req)->loc_addr;
1180                 daddr = inet_rsk(req)->rmt_addr;
1181         } else {
1182                 const struct iphdr *iph = ip_hdr(skb);
1183                 saddr = iph->saddr;
1184                 daddr = iph->daddr;
1185         }
1186
1187         hp = tcp_get_md5sig_pool();
1188         if (!hp)
1189                 goto clear_hash_noput;
1190         desc = &hp->md5_desc;
1191
1192         if (crypto_hash_init(desc))
1193                 goto clear_hash;
1194
1195         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1196                 goto clear_hash;
1197         if (tcp_md5_hash_header(hp, th))
1198                 goto clear_hash;
1199         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1200                 goto clear_hash;
1201         if (tcp_md5_hash_key(hp, key))
1202                 goto clear_hash;
1203         if (crypto_hash_final(desc, md5_hash))
1204                 goto clear_hash;
1205
1206         tcp_put_md5sig_pool();
1207         return 0;
1208
1209 clear_hash:
1210         tcp_put_md5sig_pool();
1211 clear_hash_noput:
1212         memset(md5_hash, 0, 16);
1213         return 1;
1214 }
1215 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1216
1217 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1218 {
1219         /*
1220          * This gets called for each TCP segment that arrives
1221          * so we want to be efficient.
1222          * We have 3 drop cases:
1223          * o No MD5 hash and one expected.
1224          * o MD5 hash and we're not expecting one.
1225          * o MD5 hash and its wrong.
1226          */
1227         const __u8 *hash_location = NULL;
1228         struct tcp_md5sig_key *hash_expected;
1229         const struct iphdr *iph = ip_hdr(skb);
1230         const struct tcphdr *th = tcp_hdr(skb);
1231         int genhash;
1232         unsigned char newhash[16];
1233
1234         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1235                                           AF_INET);
1236         hash_location = tcp_parse_md5sig_option(th);
1237
1238         /* We've parsed the options - do we have a hash? */
1239         if (!hash_expected && !hash_location)
1240                 return false;
1241
1242         if (hash_expected && !hash_location) {
1243                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1244                 return true;
1245         }
1246
1247         if (!hash_expected && hash_location) {
1248                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1249                 return true;
1250         }
1251
1252         /* Okay, so this is hash_expected and hash_location -
1253          * so we need to calculate the checksum.
1254          */
1255         genhash = tcp_v4_md5_hash_skb(newhash,
1256                                       hash_expected,
1257                                       NULL, NULL, skb);
1258
1259         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1260                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1261                                      &iph->saddr, ntohs(th->source),
1262                                      &iph->daddr, ntohs(th->dest),
1263                                      genhash ? " tcp_v4_calc_md5_hash failed"
1264                                      : "");
1265                 return true;
1266         }
1267         return false;
1268 }
1269
1270 #endif
1271
1272 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1273         .family         =       PF_INET,
1274         .obj_size       =       sizeof(struct tcp_request_sock),
1275         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1276         .send_ack       =       tcp_v4_reqsk_send_ack,
1277         .destructor     =       tcp_v4_reqsk_destructor,
1278         .send_reset     =       tcp_v4_send_reset,
1279         .syn_ack_timeout =      tcp_syn_ack_timeout,
1280 };
1281
1282 #ifdef CONFIG_TCP_MD5SIG
1283 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1284         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1285         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1286 };
1287 #endif
1288
1289 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1290                                struct request_sock *req,
1291                                struct tcp_fastopen_cookie *foc,
1292                                struct tcp_fastopen_cookie *valid_foc)
1293 {
1294         bool skip_cookie = false;
1295         struct fastopen_queue *fastopenq;
1296
1297         if (likely(!fastopen_cookie_present(foc))) {
1298                 /* See include/net/tcp.h for the meaning of these knobs */
1299                 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1300                     ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1301                     (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1302                         skip_cookie = true; /* no cookie to validate */
1303                 else
1304                         return false;
1305         }
1306         fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1307         /* A FO option is present; bump the counter. */
1308         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1309
1310         /* Make sure the listener has enabled fastopen, and we don't
1311          * exceed the max # of pending TFO requests allowed before trying
1312          * to validating the cookie in order to avoid burning CPU cycles
1313          * unnecessarily.
1314          *
1315          * XXX (TFO) - The implication of checking the max_qlen before
1316          * processing a cookie request is that clients can't differentiate
1317          * between qlen overflow causing Fast Open to be disabled
1318          * temporarily vs a server not supporting Fast Open at all.
1319          */
1320         if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1321             fastopenq == NULL || fastopenq->max_qlen == 0)
1322                 return false;
1323
1324         if (fastopenq->qlen >= fastopenq->max_qlen) {
1325                 struct request_sock *req1;
1326                 spin_lock(&fastopenq->lock);
1327                 req1 = fastopenq->rskq_rst_head;
1328                 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1329                         spin_unlock(&fastopenq->lock);
1330                         NET_INC_STATS_BH(sock_net(sk),
1331                             LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1332                         /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1333                         foc->len = -1;
1334                         return false;
1335                 }
1336                 fastopenq->rskq_rst_head = req1->dl_next;
1337                 fastopenq->qlen--;
1338                 spin_unlock(&fastopenq->lock);
1339                 reqsk_free(req1);
1340         }
1341         if (skip_cookie) {
1342                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1343                 return true;
1344         }
1345         if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1346                 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1347                         tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1348                         if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1349                             memcmp(&foc->val[0], &valid_foc->val[0],
1350                             TCP_FASTOPEN_COOKIE_SIZE) != 0)
1351                                 return false;
1352                         valid_foc->len = -1;
1353                 }
1354                 /* Acknowledge the data received from the peer. */
1355                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1356                 return true;
1357         } else if (foc->len == 0) { /* Client requesting a cookie */
1358                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1359                 NET_INC_STATS_BH(sock_net(sk),
1360                     LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1361         } else {
1362                 /* Client sent a cookie with wrong size. Treat it
1363                  * the same as invalid and return a valid one.
1364                  */
1365                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1366         }
1367         return false;
1368 }
1369
1370 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1371                                     struct sk_buff *skb,
1372                                     struct sk_buff *skb_synack,
1373                                     struct request_sock *req,
1374                                     struct request_values *rvp)
1375 {
1376         struct tcp_sock *tp = tcp_sk(sk);
1377         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1378         const struct inet_request_sock *ireq = inet_rsk(req);
1379         struct sock *child;
1380         int err;
1381
1382         req->num_retrans = 0;
1383         req->num_timeout = 0;
1384         req->sk = NULL;
1385
1386         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1387         if (child == NULL) {
1388                 NET_INC_STATS_BH(sock_net(sk),
1389                                  LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1390                 kfree_skb(skb_synack);
1391                 return -1;
1392         }
1393         err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1394                                     ireq->rmt_addr, ireq->opt);
1395         err = net_xmit_eval(err);
1396         if (!err)
1397                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1398         /* XXX (TFO) - is it ok to ignore error and continue? */
1399
1400         spin_lock(&queue->fastopenq->lock);
1401         queue->fastopenq->qlen++;
1402         spin_unlock(&queue->fastopenq->lock);
1403
1404         /* Initialize the child socket. Have to fix some values to take
1405          * into account the child is a Fast Open socket and is created
1406          * only out of the bits carried in the SYN packet.
1407          */
1408         tp = tcp_sk(child);
1409
1410         tp->fastopen_rsk = req;
1411         /* Do a hold on the listner sk so that if the listener is being
1412          * closed, the child that has been accepted can live on and still
1413          * access listen_lock.
1414          */
1415         sock_hold(sk);
1416         tcp_rsk(req)->listener = sk;
1417
1418         /* RFC1323: The window in SYN & SYN/ACK segments is never
1419          * scaled. So correct it appropriately.
1420          */
1421         tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1422
1423         /* Activate the retrans timer so that SYNACK can be retransmitted.
1424          * The request socket is not added to the SYN table of the parent
1425          * because it's been added to the accept queue directly.
1426          */
1427         inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1428             TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1429
1430         /* Add the child socket directly into the accept queue */
1431         inet_csk_reqsk_queue_add(sk, req, child);
1432
1433         /* Now finish processing the fastopen child socket. */
1434         inet_csk(child)->icsk_af_ops->rebuild_header(child);
1435         tcp_init_congestion_control(child);
1436         tcp_mtup_init(child);
1437         tcp_init_buffer_space(child);
1438         tcp_init_metrics(child);
1439
1440         /* Queue the data carried in the SYN packet. We need to first
1441          * bump skb's refcnt because the caller will attempt to free it.
1442          *
1443          * XXX (TFO) - we honor a zero-payload TFO request for now.
1444          * (Any reason not to?)
1445          */
1446         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1447                 /* Don't queue the skb if there is no payload in SYN.
1448                  * XXX (TFO) - How about SYN+FIN?
1449                  */
1450                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1451         } else {
1452                 skb = skb_get(skb);
1453                 skb_dst_drop(skb);
1454                 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1455                 skb_set_owner_r(skb, child);
1456                 __skb_queue_tail(&child->sk_receive_queue, skb);
1457                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1458                 tp->syn_data_acked = 1;
1459         }
1460         sk->sk_data_ready(sk, 0);
1461         bh_unlock_sock(child);
1462         sock_put(child);
1463         WARN_ON(req->sk == NULL);
1464         return 0;
1465 }
1466
1467 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1468 {
1469         struct tcp_extend_values tmp_ext;
1470         struct tcp_options_received tmp_opt;
1471         const u8 *hash_location;
1472         struct request_sock *req;
1473         struct inet_request_sock *ireq;
1474         struct tcp_sock *tp = tcp_sk(sk);
1475         struct dst_entry *dst = NULL;
1476         __be32 saddr = ip_hdr(skb)->saddr;
1477         __be32 daddr = ip_hdr(skb)->daddr;
1478         __u32 isn = TCP_SKB_CB(skb)->when;
1479         bool want_cookie = false;
1480         struct flowi4 fl4;
1481         struct tcp_fastopen_cookie foc = { .len = -1 };
1482         struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1483         struct sk_buff *skb_synack;
1484         int do_fastopen;
1485
1486         /* Never answer to SYNs send to broadcast or multicast */
1487         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1488                 goto drop;
1489
1490         /* TW buckets are converted to open requests without
1491          * limitations, they conserve resources and peer is
1492          * evidently real one.
1493          */
1494         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1495                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1496                 if (!want_cookie)
1497                         goto drop;
1498         }
1499
1500         /* Accept backlog is full. If we have already queued enough
1501          * of warm entries in syn queue, drop request. It is better than
1502          * clogging syn queue with openreqs with exponentially increasing
1503          * timeout.
1504          */
1505         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1506                 goto drop;
1507
1508         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1509         if (!req)
1510                 goto drop;
1511
1512 #ifdef CONFIG_TCP_MD5SIG
1513         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1514 #endif
1515
1516         tcp_clear_options(&tmp_opt);
1517         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1518         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1519         tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1520             want_cookie ? NULL : &foc);
1521
1522         if (tmp_opt.cookie_plus > 0 &&
1523             tmp_opt.saw_tstamp &&
1524             !tp->rx_opt.cookie_out_never &&
1525             (sysctl_tcp_cookie_size > 0 ||
1526              (tp->cookie_values != NULL &&
1527               tp->cookie_values->cookie_desired > 0))) {
1528                 u8 *c;
1529                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1530                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1531
1532                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1533                         goto drop_and_release;
1534
1535                 /* Secret recipe starts with IP addresses */
1536                 *mess++ ^= (__force u32)daddr;
1537                 *mess++ ^= (__force u32)saddr;
1538
1539                 /* plus variable length Initiator Cookie */
1540                 c = (u8 *)mess;
1541                 while (l-- > 0)
1542                         *c++ ^= *hash_location++;
1543
1544                 want_cookie = false;    /* not our kind of cookie */
1545                 tmp_ext.cookie_out_never = 0; /* false */
1546                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1547         } else if (!tp->rx_opt.cookie_in_always) {
1548                 /* redundant indications, but ensure initialization. */
1549                 tmp_ext.cookie_out_never = 1; /* true */
1550                 tmp_ext.cookie_plus = 0;
1551         } else {
1552                 goto drop_and_release;
1553         }
1554         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1555
1556         if (want_cookie && !tmp_opt.saw_tstamp)
1557                 tcp_clear_options(&tmp_opt);
1558
1559         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1560         tcp_openreq_init(req, &tmp_opt, skb);
1561
1562         ireq = inet_rsk(req);
1563         ireq->loc_addr = daddr;
1564         ireq->rmt_addr = saddr;
1565         ireq->no_srccheck = inet_sk(sk)->transparent;
1566         ireq->opt = tcp_v4_save_options(skb);
1567
1568         if (security_inet_conn_request(sk, skb, req))
1569                 goto drop_and_free;
1570
1571         if (!want_cookie || tmp_opt.tstamp_ok)
1572                 TCP_ECN_create_request(req, skb, sock_net(sk));
1573
1574         if (want_cookie) {
1575                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1576                 req->cookie_ts = tmp_opt.tstamp_ok;
1577         } else if (!isn) {
1578                 /* VJ's idea. We save last timestamp seen
1579                  * from the destination in peer table, when entering
1580                  * state TIME-WAIT, and check against it before
1581                  * accepting new connection request.
1582                  *
1583                  * If "isn" is not zero, this request hit alive
1584                  * timewait bucket, so that all the necessary checks
1585                  * are made in the function processing timewait state.
1586                  */
1587                 if (tmp_opt.saw_tstamp &&
1588                     tcp_death_row.sysctl_tw_recycle &&
1589                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1590                     fl4.daddr == saddr) {
1591                         if (!tcp_peer_is_proven(req, dst, true)) {
1592                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1593                                 goto drop_and_release;
1594                         }
1595                 }
1596                 /* Kill the following clause, if you dislike this way. */
1597                 else if (!sysctl_tcp_syncookies &&
1598                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1599                           (sysctl_max_syn_backlog >> 2)) &&
1600                          !tcp_peer_is_proven(req, dst, false)) {
1601                         /* Without syncookies last quarter of
1602                          * backlog is filled with destinations,
1603                          * proven to be alive.
1604                          * It means that we continue to communicate
1605                          * to destinations, already remembered
1606                          * to the moment of synflood.
1607                          */
1608                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1609                                        &saddr, ntohs(tcp_hdr(skb)->source));
1610                         goto drop_and_release;
1611                 }
1612
1613                 isn = tcp_v4_init_sequence(skb);
1614         }
1615         tcp_rsk(req)->snt_isn = isn;
1616
1617         if (dst == NULL) {
1618                 dst = inet_csk_route_req(sk, &fl4, req);
1619                 if (dst == NULL)
1620                         goto drop_and_free;
1621         }
1622         do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1623
1624         /* We don't call tcp_v4_send_synack() directly because we need
1625          * to make sure a child socket can be created successfully before
1626          * sending back synack!
1627          *
1628          * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1629          * (or better yet, call tcp_send_synack() in the child context
1630          * directly, but will have to fix bunch of other code first)
1631          * after syn_recv_sock() except one will need to first fix the
1632          * latter to remove its dependency on the current implementation
1633          * of tcp_v4_send_synack()->tcp_select_initial_window().
1634          */
1635         skb_synack = tcp_make_synack(sk, dst, req,
1636             (struct request_values *)&tmp_ext,
1637             fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1638
1639         if (skb_synack) {
1640                 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1641                 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1642         } else
1643                 goto drop_and_free;
1644
1645         if (likely(!do_fastopen)) {
1646                 int err;
1647                 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1648                      ireq->rmt_addr, ireq->opt);
1649                 err = net_xmit_eval(err);
1650                 if (err || want_cookie)
1651                         goto drop_and_free;
1652
1653                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1654                 tcp_rsk(req)->listener = NULL;
1655                 /* Add the request_sock to the SYN table */
1656                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1657                 if (fastopen_cookie_present(&foc) && foc.len != 0)
1658                         NET_INC_STATS_BH(sock_net(sk),
1659                             LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1660         } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1661             (struct request_values *)&tmp_ext))
1662                 goto drop_and_free;
1663
1664         return 0;
1665
1666 drop_and_release:
1667         dst_release(dst);
1668 drop_and_free:
1669         reqsk_free(req);
1670 drop:
1671         return 0;
1672 }
1673 EXPORT_SYMBOL(tcp_v4_conn_request);
1674
1675
1676 /*
1677  * The three way handshake has completed - we got a valid synack -
1678  * now create the new socket.
1679  */
1680 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1681                                   struct request_sock *req,
1682                                   struct dst_entry *dst)
1683 {
1684         struct inet_request_sock *ireq;
1685         struct inet_sock *newinet;
1686         struct tcp_sock *newtp;
1687         struct sock *newsk;
1688 #ifdef CONFIG_TCP_MD5SIG
1689         struct tcp_md5sig_key *key;
1690 #endif
1691         struct ip_options_rcu *inet_opt;
1692
1693         if (sk_acceptq_is_full(sk))
1694                 goto exit_overflow;
1695
1696         newsk = tcp_create_openreq_child(sk, req, skb);
1697         if (!newsk)
1698                 goto exit_nonewsk;
1699
1700         newsk->sk_gso_type = SKB_GSO_TCPV4;
1701         inet_sk_rx_dst_set(newsk, skb);
1702
1703         newtp                 = tcp_sk(newsk);
1704         newinet               = inet_sk(newsk);
1705         ireq                  = inet_rsk(req);
1706         newinet->inet_daddr   = ireq->rmt_addr;
1707         newinet->inet_rcv_saddr = ireq->loc_addr;
1708         newinet->inet_saddr           = ireq->loc_addr;
1709         inet_opt              = ireq->opt;
1710         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1711         ireq->opt             = NULL;
1712         newinet->mc_index     = inet_iif(skb);
1713         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1714         newinet->rcv_tos      = ip_hdr(skb)->tos;
1715         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1716         if (inet_opt)
1717                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1718         newinet->inet_id = newtp->write_seq ^ jiffies;
1719
1720         if (!dst) {
1721                 dst = inet_csk_route_child_sock(sk, newsk, req);
1722                 if (!dst)
1723                         goto put_and_exit;
1724         } else {
1725                 /* syncookie case : see end of cookie_v4_check() */
1726         }
1727         sk_setup_caps(newsk, dst);
1728
1729         tcp_mtup_init(newsk);
1730         tcp_sync_mss(newsk, dst_mtu(dst));
1731         newtp->advmss = dst_metric_advmss(dst);
1732         if (tcp_sk(sk)->rx_opt.user_mss &&
1733             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1734                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1735
1736         tcp_initialize_rcv_mss(newsk);
1737         tcp_synack_rtt_meas(newsk, req);
1738         newtp->total_retrans = req->num_retrans;
1739
1740 #ifdef CONFIG_TCP_MD5SIG
1741         /* Copy over the MD5 key from the original socket */
1742         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1743                                 AF_INET);
1744         if (key != NULL) {
1745                 /*
1746                  * We're using one, so create a matching key
1747                  * on the newsk structure. If we fail to get
1748                  * memory, then we end up not copying the key
1749                  * across. Shucks.
1750                  */
1751                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1752                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1753                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1754         }
1755 #endif
1756
1757         if (__inet_inherit_port(sk, newsk) < 0)
1758                 goto put_and_exit;
1759         __inet_hash_nolisten(newsk, NULL);
1760
1761         return newsk;
1762
1763 exit_overflow:
1764         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1765 exit_nonewsk:
1766         dst_release(dst);
1767 exit:
1768         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1769         return NULL;
1770 put_and_exit:
1771         inet_csk_prepare_forced_close(newsk);
1772         tcp_done(newsk);
1773         goto exit;
1774 }
1775 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1776
1777 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1778 {
1779         struct tcphdr *th = tcp_hdr(skb);
1780         const struct iphdr *iph = ip_hdr(skb);
1781         struct sock *nsk;
1782         struct request_sock **prev;
1783         /* Find possible connection requests. */
1784         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1785                                                        iph->saddr, iph->daddr);
1786         if (req)
1787                 return tcp_check_req(sk, skb, req, prev, false);
1788
1789         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1790                         th->source, iph->daddr, th->dest, inet_iif(skb));
1791
1792         if (nsk) {
1793                 if (nsk->sk_state != TCP_TIME_WAIT) {
1794                         bh_lock_sock(nsk);
1795                         return nsk;
1796                 }
1797                 inet_twsk_put(inet_twsk(nsk));
1798                 return NULL;
1799         }
1800
1801 #ifdef CONFIG_SYN_COOKIES
1802         if (!th->syn)
1803                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1804 #endif
1805         return sk;
1806 }
1807
1808 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1809 {
1810         const struct iphdr *iph = ip_hdr(skb);
1811
1812         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1813                 if (!tcp_v4_check(skb->len, iph->saddr,
1814                                   iph->daddr, skb->csum)) {
1815                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1816                         return 0;
1817                 }
1818         }
1819
1820         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1821                                        skb->len, IPPROTO_TCP, 0);
1822
1823         if (skb->len <= 76) {
1824                 return __skb_checksum_complete(skb);
1825         }
1826         return 0;
1827 }
1828
1829
1830 /* The socket must have it's spinlock held when we get
1831  * here.
1832  *
1833  * We have a potential double-lock case here, so even when
1834  * doing backlog processing we use the BH locking scheme.
1835  * This is because we cannot sleep with the original spinlock
1836  * held.
1837  */
1838 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1839 {
1840         struct sock *rsk;
1841 #ifdef CONFIG_TCP_MD5SIG
1842         /*
1843          * We really want to reject the packet as early as possible
1844          * if:
1845          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1846          *  o There is an MD5 option and we're not expecting one
1847          */
1848         if (tcp_v4_inbound_md5_hash(sk, skb))
1849                 goto discard;
1850 #endif
1851
1852         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1853                 struct dst_entry *dst = sk->sk_rx_dst;
1854
1855                 sock_rps_save_rxhash(sk, skb);
1856                 if (dst) {
1857                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1858                             dst->ops->check(dst, 0) == NULL) {
1859                                 dst_release(dst);
1860                                 sk->sk_rx_dst = NULL;
1861                         }
1862                 }
1863                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1864                         rsk = sk;
1865                         goto reset;
1866                 }
1867                 return 0;
1868         }
1869
1870         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1871                 goto csum_err;
1872
1873         if (sk->sk_state == TCP_LISTEN) {
1874                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1875                 if (!nsk)
1876                         goto discard;
1877
1878                 if (nsk != sk) {
1879                         sock_rps_save_rxhash(nsk, skb);
1880                         if (tcp_child_process(sk, nsk, skb)) {
1881                                 rsk = nsk;
1882                                 goto reset;
1883                         }
1884                         return 0;
1885                 }
1886         } else
1887                 sock_rps_save_rxhash(sk, skb);
1888
1889         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1890                 rsk = sk;
1891                 goto reset;
1892         }
1893         return 0;
1894
1895 reset:
1896         tcp_v4_send_reset(rsk, skb);
1897 discard:
1898         kfree_skb(skb);
1899         /* Be careful here. If this function gets more complicated and
1900          * gcc suffers from register pressure on the x86, sk (in %ebx)
1901          * might be destroyed here. This current version compiles correctly,
1902          * but you have been warned.
1903          */
1904         return 0;
1905
1906 csum_err:
1907         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1908         goto discard;
1909 }
1910 EXPORT_SYMBOL(tcp_v4_do_rcv);
1911
1912 void tcp_v4_early_demux(struct sk_buff *skb)
1913 {
1914         const struct iphdr *iph;
1915         const struct tcphdr *th;
1916         struct sock *sk;
1917
1918         if (skb->pkt_type != PACKET_HOST)
1919                 return;
1920
1921         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1922                 return;
1923
1924         iph = ip_hdr(skb);
1925         th = tcp_hdr(skb);
1926
1927         if (th->doff < sizeof(struct tcphdr) / 4)
1928                 return;
1929
1930         sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1931                                        iph->saddr, th->source,
1932                                        iph->daddr, ntohs(th->dest),
1933                                        skb->skb_iif);
1934         if (sk) {
1935                 skb->sk = sk;
1936                 skb->destructor = sock_edemux;
1937                 if (sk->sk_state != TCP_TIME_WAIT) {
1938                         struct dst_entry *dst = sk->sk_rx_dst;
1939
1940                         if (dst)
1941                                 dst = dst_check(dst, 0);
1942                         if (dst &&
1943                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1944                                 skb_dst_set_noref(skb, dst);
1945                 }
1946         }
1947 }
1948
1949 /*
1950  *      From tcp_input.c
1951  */
1952
1953 int tcp_v4_rcv(struct sk_buff *skb)
1954 {
1955         const struct iphdr *iph;
1956         const struct tcphdr *th;
1957         struct sock *sk;
1958         int ret;
1959         struct net *net = dev_net(skb->dev);
1960
1961         if (skb->pkt_type != PACKET_HOST)
1962                 goto discard_it;
1963
1964         /* Count it even if it's bad */
1965         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1966
1967         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1968                 goto discard_it;
1969
1970         th = tcp_hdr(skb);
1971
1972         if (th->doff < sizeof(struct tcphdr) / 4)
1973                 goto bad_packet;
1974         if (!pskb_may_pull(skb, th->doff * 4))
1975                 goto discard_it;
1976
1977         /* An explanation is required here, I think.
1978          * Packet length and doff are validated by header prediction,
1979          * provided case of th->doff==0 is eliminated.
1980          * So, we defer the checks. */
1981         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1982                 goto bad_packet;
1983
1984         th = tcp_hdr(skb);
1985         iph = ip_hdr(skb);
1986         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1987         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1988                                     skb->len - th->doff * 4);
1989         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1990         TCP_SKB_CB(skb)->when    = 0;
1991         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1992         TCP_SKB_CB(skb)->sacked  = 0;
1993
1994         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1995         if (!sk)
1996                 goto no_tcp_socket;
1997
1998 process:
1999         if (sk->sk_state == TCP_TIME_WAIT)
2000                 goto do_time_wait;
2001
2002         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2003                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2004                 goto discard_and_relse;
2005         }
2006
2007         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2008                 goto discard_and_relse;
2009         nf_reset(skb);
2010
2011         if (sk_filter(sk, skb))
2012                 goto discard_and_relse;
2013
2014         skb->dev = NULL;
2015
2016         bh_lock_sock_nested(sk);
2017         ret = 0;
2018         if (!sock_owned_by_user(sk)) {
2019 #ifdef CONFIG_NET_DMA
2020                 struct tcp_sock *tp = tcp_sk(sk);
2021                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2022                         tp->ucopy.dma_chan = net_dma_find_channel();
2023                 if (tp->ucopy.dma_chan)
2024                         ret = tcp_v4_do_rcv(sk, skb);
2025                 else
2026 #endif
2027                 {
2028                         if (!tcp_prequeue(sk, skb))
2029                                 ret = tcp_v4_do_rcv(sk, skb);
2030                 }
2031         } else if (unlikely(sk_add_backlog(sk, skb,
2032                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
2033                 bh_unlock_sock(sk);
2034                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2035                 goto discard_and_relse;
2036         }
2037         bh_unlock_sock(sk);
2038
2039         sock_put(sk);
2040
2041         return ret;
2042
2043 no_tcp_socket:
2044         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2045                 goto discard_it;
2046
2047         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2048 bad_packet:
2049                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2050         } else {
2051                 tcp_v4_send_reset(NULL, skb);
2052         }
2053
2054 discard_it:
2055         /* Discard frame. */
2056         kfree_skb(skb);
2057         return 0;
2058
2059 discard_and_relse:
2060         sock_put(sk);
2061         goto discard_it;
2062
2063 do_time_wait:
2064         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2065                 inet_twsk_put(inet_twsk(sk));
2066                 goto discard_it;
2067         }
2068
2069         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2070                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2071                 inet_twsk_put(inet_twsk(sk));
2072                 goto discard_it;
2073         }
2074         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2075         case TCP_TW_SYN: {
2076                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2077                                                         &tcp_hashinfo,
2078                                                         iph->saddr, th->source,
2079                                                         iph->daddr, th->dest,
2080                                                         inet_iif(skb));
2081                 if (sk2) {
2082                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2083                         inet_twsk_put(inet_twsk(sk));
2084                         sk = sk2;
2085                         goto process;
2086                 }
2087                 /* Fall through to ACK */
2088         }
2089         case TCP_TW_ACK:
2090                 tcp_v4_timewait_ack(sk, skb);
2091                 break;
2092         case TCP_TW_RST:
2093                 goto no_tcp_socket;
2094         case TCP_TW_SUCCESS:;
2095         }
2096         goto discard_it;
2097 }
2098
2099 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2100         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
2101         .twsk_unique    = tcp_twsk_unique,
2102         .twsk_destructor= tcp_twsk_destructor,
2103 };
2104
2105 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2106 {
2107         struct dst_entry *dst = skb_dst(skb);
2108
2109         dst_hold(dst);
2110         sk->sk_rx_dst = dst;
2111         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2112 }
2113 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2114
2115 const struct inet_connection_sock_af_ops ipv4_specific = {
2116         .queue_xmit        = ip_queue_xmit,
2117         .send_check        = tcp_v4_send_check,
2118         .rebuild_header    = inet_sk_rebuild_header,
2119         .sk_rx_dst_set     = inet_sk_rx_dst_set,
2120         .conn_request      = tcp_v4_conn_request,
2121         .syn_recv_sock     = tcp_v4_syn_recv_sock,
2122         .net_header_len    = sizeof(struct iphdr),
2123         .setsockopt        = ip_setsockopt,
2124         .getsockopt        = ip_getsockopt,
2125         .addr2sockaddr     = inet_csk_addr2sockaddr,
2126         .sockaddr_len      = sizeof(struct sockaddr_in),
2127         .bind_conflict     = inet_csk_bind_conflict,
2128 #ifdef CONFIG_COMPAT
2129         .compat_setsockopt = compat_ip_setsockopt,
2130         .compat_getsockopt = compat_ip_getsockopt,
2131 #endif
2132 };
2133 EXPORT_SYMBOL(ipv4_specific);
2134
2135 #ifdef CONFIG_TCP_MD5SIG
2136 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2137         .md5_lookup             = tcp_v4_md5_lookup,
2138         .calc_md5_hash          = tcp_v4_md5_hash_skb,
2139         .md5_parse              = tcp_v4_parse_md5_keys,
2140 };
2141 #endif
2142
2143 /* NOTE: A lot of things set to zero explicitly by call to
2144  *       sk_alloc() so need not be done here.
2145  */
2146 static int tcp_v4_init_sock(struct sock *sk)
2147 {
2148         struct inet_connection_sock *icsk = inet_csk(sk);
2149
2150         tcp_init_sock(sk);
2151
2152         icsk->icsk_af_ops = &ipv4_specific;
2153
2154 #ifdef CONFIG_TCP_MD5SIG
2155         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2156 #endif
2157
2158         return 0;
2159 }
2160
2161 void tcp_v4_destroy_sock(struct sock *sk)
2162 {
2163         struct tcp_sock *tp = tcp_sk(sk);
2164
2165         tcp_clear_xmit_timers(sk);
2166
2167         tcp_cleanup_congestion_control(sk);
2168
2169         /* Cleanup up the write buffer. */
2170         tcp_write_queue_purge(sk);
2171
2172         /* Cleans up our, hopefully empty, out_of_order_queue. */
2173         __skb_queue_purge(&tp->out_of_order_queue);
2174
2175 #ifdef CONFIG_TCP_MD5SIG
2176         /* Clean up the MD5 key list, if any */
2177         if (tp->md5sig_info) {
2178                 tcp_clear_md5_list(sk);
2179                 kfree_rcu(tp->md5sig_info, rcu);
2180                 tp->md5sig_info = NULL;
2181         }
2182 #endif
2183
2184 #ifdef CONFIG_NET_DMA
2185         /* Cleans up our sk_async_wait_queue */
2186         __skb_queue_purge(&sk->sk_async_wait_queue);
2187 #endif
2188
2189         /* Clean prequeue, it must be empty really */
2190         __skb_queue_purge(&tp->ucopy.prequeue);
2191
2192         /* Clean up a referenced TCP bind bucket. */
2193         if (inet_csk(sk)->icsk_bind_hash)
2194                 inet_put_port(sk);
2195
2196         /* TCP Cookie Transactions */
2197         if (tp->cookie_values != NULL) {
2198                 kref_put(&tp->cookie_values->kref,
2199                          tcp_cookie_values_release);
2200                 tp->cookie_values = NULL;
2201         }
2202         BUG_ON(tp->fastopen_rsk != NULL);
2203
2204         /* If socket is aborted during connect operation */
2205         tcp_free_fastopen_req(tp);
2206
2207         sk_sockets_allocated_dec(sk);
2208         sock_release_memcg(sk);
2209 }
2210 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2211
2212 #ifdef CONFIG_PROC_FS
2213 /* Proc filesystem TCP sock list dumping. */
2214
2215 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2216 {
2217         return hlist_nulls_empty(head) ? NULL :
2218                 list_entry(head->first, struct inet_timewait_sock, tw_node);
2219 }
2220
2221 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2222 {
2223         return !is_a_nulls(tw->tw_node.next) ?
2224                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2225 }
2226
2227 /*
2228  * Get next listener socket follow cur.  If cur is NULL, get first socket
2229  * starting from bucket given in st->bucket; when st->bucket is zero the
2230  * very first socket in the hash table is returned.
2231  */
2232 static void *listening_get_next(struct seq_file *seq, void *cur)
2233 {
2234         struct inet_connection_sock *icsk;
2235         struct hlist_nulls_node *node;
2236         struct sock *sk = cur;
2237         struct inet_listen_hashbucket *ilb;
2238         struct tcp_iter_state *st = seq->private;
2239         struct net *net = seq_file_net(seq);
2240
2241         if (!sk) {
2242                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2243                 spin_lock_bh(&ilb->lock);
2244                 sk = sk_nulls_head(&ilb->head);
2245                 st->offset = 0;
2246                 goto get_sk;
2247         }
2248         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2249         ++st->num;
2250         ++st->offset;
2251
2252         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2253                 struct request_sock *req = cur;
2254
2255                 icsk = inet_csk(st->syn_wait_sk);
2256                 req = req->dl_next;
2257                 while (1) {
2258                         while (req) {
2259                                 if (req->rsk_ops->family == st->family) {
2260                                         cur = req;
2261                                         goto out;
2262                                 }
2263                                 req = req->dl_next;
2264                         }
2265                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2266                                 break;
2267 get_req:
2268                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2269                 }
2270                 sk        = sk_nulls_next(st->syn_wait_sk);
2271                 st->state = TCP_SEQ_STATE_LISTENING;
2272                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2273         } else {
2274                 icsk = inet_csk(sk);
2275                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2276                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2277                         goto start_req;
2278                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2279                 sk = sk_nulls_next(sk);
2280         }
2281 get_sk:
2282         sk_nulls_for_each_from(sk, node) {
2283                 if (!net_eq(sock_net(sk), net))
2284                         continue;
2285                 if (sk->sk_family == st->family) {
2286                         cur = sk;
2287                         goto out;
2288                 }
2289                 icsk = inet_csk(sk);
2290                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2291                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2292 start_req:
2293                         st->uid         = sock_i_uid(sk);
2294                         st->syn_wait_sk = sk;
2295                         st->state       = TCP_SEQ_STATE_OPENREQ;
2296                         st->sbucket     = 0;
2297                         goto get_req;
2298                 }
2299                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2300         }
2301         spin_unlock_bh(&ilb->lock);
2302         st->offset = 0;
2303         if (++st->bucket < INET_LHTABLE_SIZE) {
2304                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2305                 spin_lock_bh(&ilb->lock);
2306                 sk = sk_nulls_head(&ilb->head);
2307                 goto get_sk;
2308         }
2309         cur = NULL;
2310 out:
2311         return cur;
2312 }
2313
2314 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2315 {
2316         struct tcp_iter_state *st = seq->private;
2317         void *rc;
2318
2319         st->bucket = 0;
2320         st->offset = 0;
2321         rc = listening_get_next(seq, NULL);
2322
2323         while (rc && *pos) {
2324                 rc = listening_get_next(seq, rc);
2325                 --*pos;
2326         }
2327         return rc;
2328 }
2329
2330 static inline bool empty_bucket(struct tcp_iter_state *st)
2331 {
2332         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2333                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2334 }
2335
2336 /*
2337  * Get first established socket starting from bucket given in st->bucket.
2338  * If st->bucket is zero, the very first socket in the hash is returned.
2339  */
2340 static void *established_get_first(struct seq_file *seq)
2341 {
2342         struct tcp_iter_state *st = seq->private;
2343         struct net *net = seq_file_net(seq);
2344         void *rc = NULL;
2345
2346         st->offset = 0;
2347         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2348                 struct sock *sk;
2349                 struct hlist_nulls_node *node;
2350                 struct inet_timewait_sock *tw;
2351                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2352
2353                 /* Lockless fast path for the common case of empty buckets */
2354                 if (empty_bucket(st))
2355                         continue;
2356
2357                 spin_lock_bh(lock);
2358                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2359                         if (sk->sk_family != st->family ||
2360                             !net_eq(sock_net(sk), net)) {
2361                                 continue;
2362                         }
2363                         rc = sk;
2364                         goto out;
2365                 }
2366                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2367                 inet_twsk_for_each(tw, node,
2368                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2369                         if (tw->tw_family != st->family ||
2370                             !net_eq(twsk_net(tw), net)) {
2371                                 continue;
2372                         }
2373                         rc = tw;
2374                         goto out;
2375                 }
2376                 spin_unlock_bh(lock);
2377                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2378         }
2379 out:
2380         return rc;
2381 }
2382
2383 static void *established_get_next(struct seq_file *seq, void *cur)
2384 {
2385         struct sock *sk = cur;
2386         struct inet_timewait_sock *tw;
2387         struct hlist_nulls_node *node;
2388         struct tcp_iter_state *st = seq->private;
2389         struct net *net = seq_file_net(seq);
2390
2391         ++st->num;
2392         ++st->offset;
2393
2394         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2395                 tw = cur;
2396                 tw = tw_next(tw);
2397 get_tw:
2398                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2399                         tw = tw_next(tw);
2400                 }
2401                 if (tw) {
2402                         cur = tw;
2403                         goto out;
2404                 }
2405                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2406                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2407
2408                 /* Look for next non empty bucket */
2409                 st->offset = 0;
2410                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2411                                 empty_bucket(st))
2412                         ;
2413                 if (st->bucket > tcp_hashinfo.ehash_mask)
2414                         return NULL;
2415
2416                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2417                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2418         } else
2419                 sk = sk_nulls_next(sk);
2420
2421         sk_nulls_for_each_from(sk, node) {
2422                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2423                         goto found;
2424         }
2425
2426         st->state = TCP_SEQ_STATE_TIME_WAIT;
2427         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2428         goto get_tw;
2429 found:
2430         cur = sk;
2431 out:
2432         return cur;
2433 }
2434
2435 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2436 {
2437         struct tcp_iter_state *st = seq->private;
2438         void *rc;
2439
2440         st->bucket = 0;
2441         rc = established_get_first(seq);
2442
2443         while (rc && pos) {
2444                 rc = established_get_next(seq, rc);
2445                 --pos;
2446         }
2447         return rc;
2448 }
2449
2450 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2451 {
2452         void *rc;
2453         struct tcp_iter_state *st = seq->private;
2454
2455         st->state = TCP_SEQ_STATE_LISTENING;
2456         rc        = listening_get_idx(seq, &pos);
2457
2458         if (!rc) {
2459                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2460                 rc        = established_get_idx(seq, pos);
2461         }
2462
2463         return rc;
2464 }
2465
2466 static void *tcp_seek_last_pos(struct seq_file *seq)
2467 {
2468         struct tcp_iter_state *st = seq->private;
2469         int offset = st->offset;
2470         int orig_num = st->num;
2471         void *rc = NULL;
2472
2473         switch (st->state) {
2474         case TCP_SEQ_STATE_OPENREQ:
2475         case TCP_SEQ_STATE_LISTENING:
2476                 if (st->bucket >= INET_LHTABLE_SIZE)
2477                         break;
2478                 st->state = TCP_SEQ_STATE_LISTENING;
2479                 rc = listening_get_next(seq, NULL);
2480                 while (offset-- && rc)
2481                         rc = listening_get_next(seq, rc);
2482                 if (rc)
2483                         break;
2484                 st->bucket = 0;
2485                 /* Fallthrough */
2486         case TCP_SEQ_STATE_ESTABLISHED:
2487         case TCP_SEQ_STATE_TIME_WAIT:
2488                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2489                 if (st->bucket > tcp_hashinfo.ehash_mask)
2490                         break;
2491                 rc = established_get_first(seq);
2492                 while (offset-- && rc)
2493                         rc = established_get_next(seq, rc);
2494         }
2495
2496         st->num = orig_num;
2497
2498         return rc;
2499 }
2500
2501 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2502 {
2503         struct tcp_iter_state *st = seq->private;
2504         void *rc;
2505
2506         if (*pos && *pos == st->last_pos) {
2507                 rc = tcp_seek_last_pos(seq);
2508                 if (rc)
2509                         goto out;
2510         }
2511
2512         st->state = TCP_SEQ_STATE_LISTENING;
2513         st->num = 0;
2514         st->bucket = 0;
2515         st->offset = 0;
2516         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2517
2518 out:
2519         st->last_pos = *pos;
2520         return rc;
2521 }
2522
2523 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2524 {
2525         struct tcp_iter_state *st = seq->private;
2526         void *rc = NULL;
2527
2528         if (v == SEQ_START_TOKEN) {
2529                 rc = tcp_get_idx(seq, 0);
2530                 goto out;
2531         }
2532
2533         switch (st->state) {
2534         case TCP_SEQ_STATE_OPENREQ:
2535         case TCP_SEQ_STATE_LISTENING:
2536                 rc = listening_get_next(seq, v);
2537                 if (!rc) {
2538                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2539                         st->bucket = 0;
2540                         st->offset = 0;
2541                         rc        = established_get_first(seq);
2542                 }
2543                 break;
2544         case TCP_SEQ_STATE_ESTABLISHED:
2545         case TCP_SEQ_STATE_TIME_WAIT:
2546                 rc = established_get_next(seq, v);
2547                 break;
2548         }
2549 out:
2550         ++*pos;
2551         st->last_pos = *pos;
2552         return rc;
2553 }
2554
2555 static void tcp_seq_stop(struct seq_file *seq, void *v)
2556 {
2557         struct tcp_iter_state *st = seq->private;
2558
2559         switch (st->state) {
2560         case TCP_SEQ_STATE_OPENREQ:
2561                 if (v) {
2562                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2563                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2564                 }
2565         case TCP_SEQ_STATE_LISTENING:
2566                 if (v != SEQ_START_TOKEN)
2567                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2568                 break;
2569         case TCP_SEQ_STATE_TIME_WAIT:
2570         case TCP_SEQ_STATE_ESTABLISHED:
2571                 if (v)
2572                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2573                 break;
2574         }
2575 }
2576
2577 int tcp_seq_open(struct inode *inode, struct file *file)
2578 {
2579         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2580         struct tcp_iter_state *s;
2581         int err;
2582
2583         err = seq_open_net(inode, file, &afinfo->seq_ops,
2584                           sizeof(struct tcp_iter_state));
2585         if (err < 0)
2586                 return err;
2587
2588         s = ((struct seq_file *)file->private_data)->private;
2589         s->family               = afinfo->family;
2590         s->last_pos             = 0;
2591         return 0;
2592 }
2593 EXPORT_SYMBOL(tcp_seq_open);
2594
2595 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2596 {
2597         int rc = 0;
2598         struct proc_dir_entry *p;
2599
2600         afinfo->seq_ops.start           = tcp_seq_start;
2601         afinfo->seq_ops.next            = tcp_seq_next;
2602         afinfo->seq_ops.stop            = tcp_seq_stop;
2603
2604         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2605                              afinfo->seq_fops, afinfo);
2606         if (!p)
2607                 rc = -ENOMEM;
2608         return rc;
2609 }
2610 EXPORT_SYMBOL(tcp_proc_register);
2611
2612 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2613 {
2614         proc_net_remove(net, afinfo->name);
2615 }
2616 EXPORT_SYMBOL(tcp_proc_unregister);
2617
2618 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2619                          struct seq_file *f, int i, kuid_t uid, int *len)
2620 {
2621         const struct inet_request_sock *ireq = inet_rsk(req);
2622         long delta = req->expires - jiffies;
2623
2624         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2625                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2626                 i,
2627                 ireq->loc_addr,
2628                 ntohs(inet_sk(sk)->inet_sport),
2629                 ireq->rmt_addr,
2630                 ntohs(ireq->rmt_port),
2631                 TCP_SYN_RECV,
2632                 0, 0, /* could print option size, but that is af dependent. */
2633                 1,    /* timers active (only the expire timer) */
2634                 jiffies_delta_to_clock_t(delta),
2635                 req->num_timeout,
2636                 from_kuid_munged(seq_user_ns(f), uid),
2637                 0,  /* non standard timer */
2638                 0, /* open_requests have no inode */
2639                 atomic_read(&sk->sk_refcnt),
2640                 req,
2641                 len);
2642 }
2643
2644 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2645 {
2646         int timer_active;
2647         unsigned long timer_expires;
2648         const struct tcp_sock *tp = tcp_sk(sk);
2649         const struct inet_connection_sock *icsk = inet_csk(sk);
2650         const struct inet_sock *inet = inet_sk(sk);
2651         struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2652         __be32 dest = inet->inet_daddr;
2653         __be32 src = inet->inet_rcv_saddr;
2654         __u16 destp = ntohs(inet->inet_dport);
2655         __u16 srcp = ntohs(inet->inet_sport);
2656         int rx_queue;
2657
2658         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2659                 timer_active    = 1;
2660                 timer_expires   = icsk->icsk_timeout;
2661         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2662                 timer_active    = 4;
2663                 timer_expires   = icsk->icsk_timeout;
2664         } else if (timer_pending(&sk->sk_timer)) {
2665                 timer_active    = 2;
2666                 timer_expires   = sk->sk_timer.expires;
2667         } else {
2668                 timer_active    = 0;
2669                 timer_expires = jiffies;
2670         }
2671
2672         if (sk->sk_state == TCP_LISTEN)
2673                 rx_queue = sk->sk_ack_backlog;
2674         else
2675                 /*
2676                  * because we dont lock socket, we might find a transient negative value
2677                  */
2678                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2679
2680         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2681                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2682                 i, src, srcp, dest, destp, sk->sk_state,
2683                 tp->write_seq - tp->snd_una,
2684                 rx_queue,
2685                 timer_active,
2686                 jiffies_delta_to_clock_t(timer_expires - jiffies),
2687                 icsk->icsk_retransmits,
2688                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2689                 icsk->icsk_probes_out,
2690                 sock_i_ino(sk),
2691                 atomic_read(&sk->sk_refcnt), sk,
2692                 jiffies_to_clock_t(icsk->icsk_rto),
2693                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2694                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2695                 tp->snd_cwnd,
2696                 sk->sk_state == TCP_LISTEN ?
2697                     (fastopenq ? fastopenq->max_qlen : 0) :
2698                     (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2699                 len);
2700 }
2701
2702 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2703                                struct seq_file *f, int i, int *len)
2704 {
2705         __be32 dest, src;
2706         __u16 destp, srcp;
2707         long delta = tw->tw_ttd - jiffies;
2708
2709         dest  = tw->tw_daddr;
2710         src   = tw->tw_rcv_saddr;
2711         destp = ntohs(tw->tw_dport);
2712         srcp  = ntohs(tw->tw_sport);
2713
2714         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2715                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2716                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2717                 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2718                 atomic_read(&tw->tw_refcnt), tw, len);
2719 }
2720
2721 #define TMPSZ 150
2722
2723 static int tcp4_seq_show(struct seq_file *seq, void *v)
2724 {
2725         struct tcp_iter_state *st;
2726         int len;
2727
2728         if (v == SEQ_START_TOKEN) {
2729                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2730                            "  sl  local_address rem_address   st tx_queue "
2731                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2732                            "inode");
2733                 goto out;
2734         }
2735         st = seq->private;
2736
2737         switch (st->state) {
2738         case TCP_SEQ_STATE_LISTENING:
2739         case TCP_SEQ_STATE_ESTABLISHED:
2740                 get_tcp4_sock(v, seq, st->num, &len);
2741                 break;
2742         case TCP_SEQ_STATE_OPENREQ:
2743                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2744                 break;
2745         case TCP_SEQ_STATE_TIME_WAIT:
2746                 get_timewait4_sock(v, seq, st->num, &len);
2747                 break;
2748         }
2749         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2750 out:
2751         return 0;
2752 }
2753
2754 static const struct file_operations tcp_afinfo_seq_fops = {
2755         .owner   = THIS_MODULE,
2756         .open    = tcp_seq_open,
2757         .read    = seq_read,
2758         .llseek  = seq_lseek,
2759         .release = seq_release_net
2760 };
2761
2762 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2763         .name           = "tcp",
2764         .family         = AF_INET,
2765         .seq_fops       = &tcp_afinfo_seq_fops,
2766         .seq_ops        = {
2767                 .show           = tcp4_seq_show,
2768         },
2769 };
2770
2771 static int __net_init tcp4_proc_init_net(struct net *net)
2772 {
2773         return tcp_proc_register(net, &tcp4_seq_afinfo);
2774 }
2775
2776 static void __net_exit tcp4_proc_exit_net(struct net *net)
2777 {
2778         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2779 }
2780
2781 static struct pernet_operations tcp4_net_ops = {
2782         .init = tcp4_proc_init_net,
2783         .exit = tcp4_proc_exit_net,
2784 };
2785
2786 int __init tcp4_proc_init(void)
2787 {
2788         return register_pernet_subsys(&tcp4_net_ops);
2789 }
2790
2791 void tcp4_proc_exit(void)
2792 {
2793         unregister_pernet_subsys(&tcp4_net_ops);
2794 }
2795 #endif /* CONFIG_PROC_FS */
2796
2797 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2798 {
2799         const struct iphdr *iph = skb_gro_network_header(skb);
2800         __wsum wsum;
2801         __sum16 sum;
2802
2803         switch (skb->ip_summed) {
2804         case CHECKSUM_COMPLETE:
2805                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2806                                   skb->csum)) {
2807                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2808                         break;
2809                 }
2810 flush:
2811                 NAPI_GRO_CB(skb)->flush = 1;
2812                 return NULL;
2813
2814         case CHECKSUM_NONE:
2815                 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2816                                           skb_gro_len(skb), IPPROTO_TCP, 0);
2817                 sum = csum_fold(skb_checksum(skb,
2818                                              skb_gro_offset(skb),
2819                                              skb_gro_len(skb),
2820                                              wsum));
2821                 if (sum)
2822                         goto flush;
2823
2824                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2825                 break;
2826         }
2827
2828         return tcp_gro_receive(head, skb);
2829 }
2830
2831 int tcp4_gro_complete(struct sk_buff *skb)
2832 {
2833         const struct iphdr *iph = ip_hdr(skb);
2834         struct tcphdr *th = tcp_hdr(skb);
2835
2836         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2837                                   iph->saddr, iph->daddr, 0);
2838         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2839
2840         return tcp_gro_complete(skb);
2841 }
2842
2843 struct proto tcp_prot = {
2844         .name                   = "TCP",
2845         .owner                  = THIS_MODULE,
2846         .close                  = tcp_close,
2847         .connect                = tcp_v4_connect,
2848         .disconnect             = tcp_disconnect,
2849         .accept                 = inet_csk_accept,
2850         .ioctl                  = tcp_ioctl,
2851         .init                   = tcp_v4_init_sock,
2852         .destroy                = tcp_v4_destroy_sock,
2853         .shutdown               = tcp_shutdown,
2854         .setsockopt             = tcp_setsockopt,
2855         .getsockopt             = tcp_getsockopt,
2856         .recvmsg                = tcp_recvmsg,
2857         .sendmsg                = tcp_sendmsg,
2858         .sendpage               = tcp_sendpage,
2859         .backlog_rcv            = tcp_v4_do_rcv,
2860         .release_cb             = tcp_release_cb,
2861         .mtu_reduced            = tcp_v4_mtu_reduced,
2862         .hash                   = inet_hash,
2863         .unhash                 = inet_unhash,
2864         .get_port               = inet_csk_get_port,
2865         .enter_memory_pressure  = tcp_enter_memory_pressure,
2866         .sockets_allocated      = &tcp_sockets_allocated,
2867         .orphan_count           = &tcp_orphan_count,
2868         .memory_allocated       = &tcp_memory_allocated,
2869         .memory_pressure        = &tcp_memory_pressure,
2870         .sysctl_wmem            = sysctl_tcp_wmem,
2871         .sysctl_rmem            = sysctl_tcp_rmem,
2872         .max_header             = MAX_TCP_HEADER,
2873         .obj_size               = sizeof(struct tcp_sock),
2874         .slab_flags             = SLAB_DESTROY_BY_RCU,
2875         .twsk_prot              = &tcp_timewait_sock_ops,
2876         .rsk_prot               = &tcp_request_sock_ops,
2877         .h.hashinfo             = &tcp_hashinfo,
2878         .no_autobind            = true,
2879 #ifdef CONFIG_COMPAT
2880         .compat_setsockopt      = compat_tcp_setsockopt,
2881         .compat_getsockopt      = compat_tcp_getsockopt,
2882 #endif
2883 #ifdef CONFIG_MEMCG_KMEM
2884         .init_cgroup            = tcp_init_cgroup,
2885         .destroy_cgroup         = tcp_destroy_cgroup,
2886         .proto_cgroup           = tcp_proto_cgroup,
2887 #endif
2888 };
2889 EXPORT_SYMBOL(tcp_prot);
2890
2891 static int __net_init tcp_sk_init(struct net *net)
2892 {
2893         net->ipv4.sysctl_tcp_ecn = 2;
2894         return 0;
2895 }
2896
2897 static void __net_exit tcp_sk_exit(struct net *net)
2898 {
2899 }
2900
2901 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2902 {
2903         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2904 }
2905
2906 static struct pernet_operations __net_initdata tcp_sk_ops = {
2907        .init       = tcp_sk_init,
2908        .exit       = tcp_sk_exit,
2909        .exit_batch = tcp_sk_exit_batch,
2910 };
2911
2912 void __init tcp_v4_init(void)
2913 {
2914         inet_hashinfo_init(&tcp_hashinfo);
2915         if (register_pernet_subsys(&tcp_sk_ops))
2916                 panic("Failed to create the TCP control socket.\n");
2917 }