tcp: reflect SYN queue_mapping into SYNACK packets
[linux-2.6-block.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104                                           ip_hdr(skb)->saddr,
105                                           tcp_hdr(skb)->dest,
106                                           tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112         struct tcp_sock *tp = tcp_sk(sk);
113
114         /* With PAWS, it is safe from the viewpoint
115            of data integrity. Even without PAWS it is safe provided sequence
116            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118            Actually, the idea is close to VJ's one, only timestamp cache is
119            held not per host, but per port pair and TW bucket is used as state
120            holder.
121
122            If TW bucket has been already destroyed we fall back to VJ's scheme
123            and use initial timestamp retrieved from peer table.
124          */
125         if (tcptw->tw_ts_recent_stamp &&
126             (twp == NULL || (sysctl_tcp_tw_reuse &&
127                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129                 if (tp->write_seq == 0)
130                         tp->write_seq = 1;
131                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
132                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133                 sock_hold(sktw);
134                 return 1;
135         }
136
137         return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 static int tcp_repair_connect(struct sock *sk)
142 {
143         tcp_connect_init(sk);
144         tcp_finish_connect(sk, NULL);
145
146         return 0;
147 }
148
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153         struct inet_sock *inet = inet_sk(sk);
154         struct tcp_sock *tp = tcp_sk(sk);
155         __be16 orig_sport, orig_dport;
156         __be32 daddr, nexthop;
157         struct flowi4 *fl4;
158         struct rtable *rt;
159         int err;
160         struct ip_options_rcu *inet_opt;
161
162         if (addr_len < sizeof(struct sockaddr_in))
163                 return -EINVAL;
164
165         if (usin->sin_family != AF_INET)
166                 return -EAFNOSUPPORT;
167
168         nexthop = daddr = usin->sin_addr.s_addr;
169         inet_opt = rcu_dereference_protected(inet->inet_opt,
170                                              sock_owned_by_user(sk));
171         if (inet_opt && inet_opt->opt.srr) {
172                 if (!daddr)
173                         return -EINVAL;
174                 nexthop = inet_opt->opt.faddr;
175         }
176
177         orig_sport = inet->inet_sport;
178         orig_dport = usin->sin_port;
179         fl4 = &inet->cork.fl.u.ip4;
180         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182                               IPPROTO_TCP,
183                               orig_sport, orig_dport, sk, true);
184         if (IS_ERR(rt)) {
185                 err = PTR_ERR(rt);
186                 if (err == -ENETUNREACH)
187                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188                 return err;
189         }
190
191         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192                 ip_rt_put(rt);
193                 return -ENETUNREACH;
194         }
195
196         if (!inet_opt || !inet_opt->opt.srr)
197                 daddr = fl4->daddr;
198
199         if (!inet->inet_saddr)
200                 inet->inet_saddr = fl4->saddr;
201         inet->inet_rcv_saddr = inet->inet_saddr;
202
203         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204                 /* Reset inherited state */
205                 tp->rx_opt.ts_recent       = 0;
206                 tp->rx_opt.ts_recent_stamp = 0;
207                 if (likely(!tp->repair))
208                         tp->write_seq      = 0;
209         }
210
211         if (tcp_death_row.sysctl_tw_recycle &&
212             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
213                 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
214                 /*
215                  * VJ's idea. We save last timestamp seen from
216                  * the destination in peer table, when entering state
217                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
218                  * when trying new connection.
219                  */
220                 if (peer) {
221                         inet_peer_refcheck(peer);
222                         if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
223                                 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
224                                 tp->rx_opt.ts_recent = peer->tcp_ts;
225                         }
226                 }
227         }
228
229         inet->inet_dport = usin->sin_port;
230         inet->inet_daddr = daddr;
231
232         inet_csk(sk)->icsk_ext_hdr_len = 0;
233         if (inet_opt)
234                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
235
236         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
237
238         /* Socket identity is still unknown (sport may be zero).
239          * However we set state to SYN-SENT and not releasing socket
240          * lock select source port, enter ourselves into the hash tables and
241          * complete initialization after this.
242          */
243         tcp_set_state(sk, TCP_SYN_SENT);
244         err = inet_hash_connect(&tcp_death_row, sk);
245         if (err)
246                 goto failure;
247
248         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
249                                inet->inet_sport, inet->inet_dport, sk);
250         if (IS_ERR(rt)) {
251                 err = PTR_ERR(rt);
252                 rt = NULL;
253                 goto failure;
254         }
255         /* OK, now commit destination to socket.  */
256         sk->sk_gso_type = SKB_GSO_TCPV4;
257         sk_setup_caps(sk, &rt->dst);
258
259         if (!tp->write_seq && likely(!tp->repair))
260                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
261                                                            inet->inet_daddr,
262                                                            inet->inet_sport,
263                                                            usin->sin_port);
264
265         inet->inet_id = tp->write_seq ^ jiffies;
266
267         if (likely(!tp->repair))
268                 err = tcp_connect(sk);
269         else
270                 err = tcp_repair_connect(sk);
271
272         rt = NULL;
273         if (err)
274                 goto failure;
275
276         return 0;
277
278 failure:
279         /*
280          * This unhashes the socket and releases the local port,
281          * if necessary.
282          */
283         tcp_set_state(sk, TCP_CLOSE);
284         ip_rt_put(rt);
285         sk->sk_route_caps = 0;
286         inet->inet_dport = 0;
287         return err;
288 }
289 EXPORT_SYMBOL(tcp_v4_connect);
290
291 /*
292  * This routine does path mtu discovery as defined in RFC1191.
293  */
294 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
295 {
296         struct dst_entry *dst;
297         struct inet_sock *inet = inet_sk(sk);
298
299         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
300          * send out by Linux are always <576bytes so they should go through
301          * unfragmented).
302          */
303         if (sk->sk_state == TCP_LISTEN)
304                 return;
305
306         /* We don't check in the destentry if pmtu discovery is forbidden
307          * on this route. We just assume that no packet_to_big packets
308          * are send back when pmtu discovery is not active.
309          * There is a small race when the user changes this flag in the
310          * route, but I think that's acceptable.
311          */
312         if ((dst = __sk_dst_check(sk, 0)) == NULL)
313                 return;
314
315         dst->ops->update_pmtu(dst, mtu);
316
317         /* Something is about to be wrong... Remember soft error
318          * for the case, if this connection will not able to recover.
319          */
320         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
321                 sk->sk_err_soft = EMSGSIZE;
322
323         mtu = dst_mtu(dst);
324
325         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
326             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
327                 tcp_sync_mss(sk, mtu);
328
329                 /* Resend the TCP packet because it's
330                  * clear that the old packet has been
331                  * dropped. This is the new "fast" path mtu
332                  * discovery.
333                  */
334                 tcp_simple_retransmit(sk);
335         } /* else let the usual retransmit timer handle it */
336 }
337
338 /*
339  * This routine is called by the ICMP module when it gets some
340  * sort of error condition.  If err < 0 then the socket should
341  * be closed and the error returned to the user.  If err > 0
342  * it's just the icmp type << 8 | icmp code.  After adjustment
343  * header points to the first 8 bytes of the tcp header.  We need
344  * to find the appropriate port.
345  *
346  * The locking strategy used here is very "optimistic". When
347  * someone else accesses the socket the ICMP is just dropped
348  * and for some paths there is no check at all.
349  * A more general error queue to queue errors for later handling
350  * is probably better.
351  *
352  */
353
354 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355 {
356         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358         struct inet_connection_sock *icsk;
359         struct tcp_sock *tp;
360         struct inet_sock *inet;
361         const int type = icmp_hdr(icmp_skb)->type;
362         const int code = icmp_hdr(icmp_skb)->code;
363         struct sock *sk;
364         struct sk_buff *skb;
365         __u32 seq;
366         __u32 remaining;
367         int err;
368         struct net *net = dev_net(icmp_skb->dev);
369
370         if (icmp_skb->len < (iph->ihl << 2) + 8) {
371                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372                 return;
373         }
374
375         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
376                         iph->saddr, th->source, inet_iif(icmp_skb));
377         if (!sk) {
378                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379                 return;
380         }
381         if (sk->sk_state == TCP_TIME_WAIT) {
382                 inet_twsk_put(inet_twsk(sk));
383                 return;
384         }
385
386         bh_lock_sock(sk);
387         /* If too many ICMPs get dropped on busy
388          * servers this needs to be solved differently.
389          */
390         if (sock_owned_by_user(sk))
391                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
392
393         if (sk->sk_state == TCP_CLOSE)
394                 goto out;
395
396         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
397                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
398                 goto out;
399         }
400
401         icsk = inet_csk(sk);
402         tp = tcp_sk(sk);
403         seq = ntohl(th->seq);
404         if (sk->sk_state != TCP_LISTEN &&
405             !between(seq, tp->snd_una, tp->snd_nxt)) {
406                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
407                 goto out;
408         }
409
410         switch (type) {
411         case ICMP_SOURCE_QUENCH:
412                 /* Just silently ignore these. */
413                 goto out;
414         case ICMP_PARAMETERPROB:
415                 err = EPROTO;
416                 break;
417         case ICMP_DEST_UNREACH:
418                 if (code > NR_ICMP_UNREACH)
419                         goto out;
420
421                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
422                         if (!sock_owned_by_user(sk))
423                                 do_pmtu_discovery(sk, iph, info);
424                         goto out;
425                 }
426
427                 err = icmp_err_convert[code].errno;
428                 /* check if icmp_skb allows revert of backoff
429                  * (see draft-zimmermann-tcp-lcd) */
430                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431                         break;
432                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
433                     !icsk->icsk_backoff)
434                         break;
435
436                 if (sock_owned_by_user(sk))
437                         break;
438
439                 icsk->icsk_backoff--;
440                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442                 tcp_bound_rto(sk);
443
444                 skb = tcp_write_queue_head(sk);
445                 BUG_ON(!skb);
446
447                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450                 if (remaining) {
451                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452                                                   remaining, TCP_RTO_MAX);
453                 } else {
454                         /* RTO revert clocked out retransmission.
455                          * Will retransmit now */
456                         tcp_retransmit_timer(sk);
457                 }
458
459                 break;
460         case ICMP_TIME_EXCEEDED:
461                 err = EHOSTUNREACH;
462                 break;
463         default:
464                 goto out;
465         }
466
467         switch (sk->sk_state) {
468                 struct request_sock *req, **prev;
469         case TCP_LISTEN:
470                 if (sock_owned_by_user(sk))
471                         goto out;
472
473                 req = inet_csk_search_req(sk, &prev, th->dest,
474                                           iph->daddr, iph->saddr);
475                 if (!req)
476                         goto out;
477
478                 /* ICMPs are not backlogged, hence we cannot get
479                    an established socket here.
480                  */
481                 WARN_ON(req->sk);
482
483                 if (seq != tcp_rsk(req)->snt_isn) {
484                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485                         goto out;
486                 }
487
488                 /*
489                  * Still in SYN_RECV, just remove it silently.
490                  * There is no good way to pass the error to the newly
491                  * created socket, and POSIX does not want network
492                  * errors returned from accept().
493                  */
494                 inet_csk_reqsk_queue_drop(sk, req, prev);
495                 goto out;
496
497         case TCP_SYN_SENT:
498         case TCP_SYN_RECV:  /* Cannot happen.
499                                It can f.e. if SYNs crossed.
500                              */
501                 if (!sock_owned_by_user(sk)) {
502                         sk->sk_err = err;
503
504                         sk->sk_error_report(sk);
505
506                         tcp_done(sk);
507                 } else {
508                         sk->sk_err_soft = err;
509                 }
510                 goto out;
511         }
512
513         /* If we've already connected we will keep trying
514          * until we time out, or the user gives up.
515          *
516          * rfc1122 4.2.3.9 allows to consider as hard errors
517          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518          * but it is obsoleted by pmtu discovery).
519          *
520          * Note, that in modern internet, where routing is unreliable
521          * and in each dark corner broken firewalls sit, sending random
522          * errors ordered by their masters even this two messages finally lose
523          * their original sense (even Linux sends invalid PORT_UNREACHs)
524          *
525          * Now we are in compliance with RFCs.
526          *                                                      --ANK (980905)
527          */
528
529         inet = inet_sk(sk);
530         if (!sock_owned_by_user(sk) && inet->recverr) {
531                 sk->sk_err = err;
532                 sk->sk_error_report(sk);
533         } else  { /* Only an error on timeout */
534                 sk->sk_err_soft = err;
535         }
536
537 out:
538         bh_unlock_sock(sk);
539         sock_put(sk);
540 }
541
542 static void __tcp_v4_send_check(struct sk_buff *skb,
543                                 __be32 saddr, __be32 daddr)
544 {
545         struct tcphdr *th = tcp_hdr(skb);
546
547         if (skb->ip_summed == CHECKSUM_PARTIAL) {
548                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549                 skb->csum_start = skb_transport_header(skb) - skb->head;
550                 skb->csum_offset = offsetof(struct tcphdr, check);
551         } else {
552                 th->check = tcp_v4_check(skb->len, saddr, daddr,
553                                          csum_partial(th,
554                                                       th->doff << 2,
555                                                       skb->csum));
556         }
557 }
558
559 /* This routine computes an IPv4 TCP checksum. */
560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561 {
562         const struct inet_sock *inet = inet_sk(sk);
563
564         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565 }
566 EXPORT_SYMBOL(tcp_v4_send_check);
567
568 int tcp_v4_gso_send_check(struct sk_buff *skb)
569 {
570         const struct iphdr *iph;
571         struct tcphdr *th;
572
573         if (!pskb_may_pull(skb, sizeof(*th)))
574                 return -EINVAL;
575
576         iph = ip_hdr(skb);
577         th = tcp_hdr(skb);
578
579         th->check = 0;
580         skb->ip_summed = CHECKSUM_PARTIAL;
581         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582         return 0;
583 }
584
585 /*
586  *      This routine will send an RST to the other tcp.
587  *
588  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589  *                    for reset.
590  *      Answer: if a packet caused RST, it is not for a socket
591  *              existing in our system, if it is matched to a socket,
592  *              it is just duplicate segment or bug in other side's TCP.
593  *              So that we build reply only basing on parameters
594  *              arrived with segment.
595  *      Exception: precedence violation. We do not implement it in any case.
596  */
597
598 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599 {
600         const struct tcphdr *th = tcp_hdr(skb);
601         struct {
602                 struct tcphdr th;
603 #ifdef CONFIG_TCP_MD5SIG
604                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605 #endif
606         } rep;
607         struct ip_reply_arg arg;
608 #ifdef CONFIG_TCP_MD5SIG
609         struct tcp_md5sig_key *key;
610         const __u8 *hash_location = NULL;
611         unsigned char newhash[16];
612         int genhash;
613         struct sock *sk1 = NULL;
614 #endif
615         struct net *net;
616
617         /* Never send a reset in response to a reset. */
618         if (th->rst)
619                 return;
620
621         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622                 return;
623
624         /* Swap the send and the receive. */
625         memset(&rep, 0, sizeof(rep));
626         rep.th.dest   = th->source;
627         rep.th.source = th->dest;
628         rep.th.doff   = sizeof(struct tcphdr) / 4;
629         rep.th.rst    = 1;
630
631         if (th->ack) {
632                 rep.th.seq = th->ack_seq;
633         } else {
634                 rep.th.ack = 1;
635                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636                                        skb->len - (th->doff << 2));
637         }
638
639         memset(&arg, 0, sizeof(arg));
640         arg.iov[0].iov_base = (unsigned char *)&rep;
641         arg.iov[0].iov_len  = sizeof(rep.th);
642
643 #ifdef CONFIG_TCP_MD5SIG
644         hash_location = tcp_parse_md5sig_option(th);
645         if (!sk && hash_location) {
646                 /*
647                  * active side is lost. Try to find listening socket through
648                  * source port, and then find md5 key through listening socket.
649                  * we are not loose security here:
650                  * Incoming packet is checked with md5 hash with finding key,
651                  * no RST generated if md5 hash doesn't match.
652                  */
653                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654                                              &tcp_hashinfo, ip_hdr(skb)->daddr,
655                                              ntohs(th->source), inet_iif(skb));
656                 /* don't send rst if it can't find key */
657                 if (!sk1)
658                         return;
659                 rcu_read_lock();
660                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661                                         &ip_hdr(skb)->saddr, AF_INET);
662                 if (!key)
663                         goto release_sk1;
664
665                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667                         goto release_sk1;
668         } else {
669                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670                                              &ip_hdr(skb)->saddr,
671                                              AF_INET) : NULL;
672         }
673
674         if (key) {
675                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676                                    (TCPOPT_NOP << 16) |
677                                    (TCPOPT_MD5SIG << 8) |
678                                    TCPOLEN_MD5SIG);
679                 /* Update length and the length the header thinks exists */
680                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681                 rep.th.doff = arg.iov[0].iov_len / 4;
682
683                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684                                      key, ip_hdr(skb)->saddr,
685                                      ip_hdr(skb)->daddr, &rep.th);
686         }
687 #endif
688         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689                                       ip_hdr(skb)->saddr, /* XXX */
690                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
691         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693         /* When socket is gone, all binding information is lost.
694          * routing might fail in this case. using iif for oif to
695          * make sure we can deliver it
696          */
697         arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699         net = dev_net(skb_dst(skb)->dev);
700         arg.tos = ip_hdr(skb)->tos;
701         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
702                       &arg, arg.iov[0].iov_len);
703
704         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707 #ifdef CONFIG_TCP_MD5SIG
708 release_sk1:
709         if (sk1) {
710                 rcu_read_unlock();
711                 sock_put(sk1);
712         }
713 #endif
714 }
715
716 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717    outside socket context is ugly, certainly. What can I do?
718  */
719
720 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721                             u32 win, u32 ts, int oif,
722                             struct tcp_md5sig_key *key,
723                             int reply_flags, u8 tos)
724 {
725         const struct tcphdr *th = tcp_hdr(skb);
726         struct {
727                 struct tcphdr th;
728                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729 #ifdef CONFIG_TCP_MD5SIG
730                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731 #endif
732                         ];
733         } rep;
734         struct ip_reply_arg arg;
735         struct net *net = dev_net(skb_dst(skb)->dev);
736
737         memset(&rep.th, 0, sizeof(struct tcphdr));
738         memset(&arg, 0, sizeof(arg));
739
740         arg.iov[0].iov_base = (unsigned char *)&rep;
741         arg.iov[0].iov_len  = sizeof(rep.th);
742         if (ts) {
743                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744                                    (TCPOPT_TIMESTAMP << 8) |
745                                    TCPOLEN_TIMESTAMP);
746                 rep.opt[1] = htonl(tcp_time_stamp);
747                 rep.opt[2] = htonl(ts);
748                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749         }
750
751         /* Swap the send and the receive. */
752         rep.th.dest    = th->source;
753         rep.th.source  = th->dest;
754         rep.th.doff    = arg.iov[0].iov_len / 4;
755         rep.th.seq     = htonl(seq);
756         rep.th.ack_seq = htonl(ack);
757         rep.th.ack     = 1;
758         rep.th.window  = htons(win);
759
760 #ifdef CONFIG_TCP_MD5SIG
761         if (key) {
762                 int offset = (ts) ? 3 : 0;
763
764                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765                                           (TCPOPT_NOP << 16) |
766                                           (TCPOPT_MD5SIG << 8) |
767                                           TCPOLEN_MD5SIG);
768                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769                 rep.th.doff = arg.iov[0].iov_len/4;
770
771                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772                                     key, ip_hdr(skb)->saddr,
773                                     ip_hdr(skb)->daddr, &rep.th);
774         }
775 #endif
776         arg.flags = reply_flags;
777         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778                                       ip_hdr(skb)->saddr, /* XXX */
779                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
780         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781         if (oif)
782                 arg.bound_dev_if = oif;
783         arg.tos = tos;
784         ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
785                       &arg, arg.iov[0].iov_len);
786
787         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788 }
789
790 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791 {
792         struct inet_timewait_sock *tw = inet_twsk(sk);
793         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797                         tcptw->tw_ts_recent,
798                         tw->tw_bound_dev_if,
799                         tcp_twsk_md5_key(tcptw),
800                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801                         tw->tw_tos
802                         );
803
804         inet_twsk_put(tw);
805 }
806
807 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808                                   struct request_sock *req)
809 {
810         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812                         req->ts_recent,
813                         0,
814                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815                                           AF_INET),
816                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817                         ip_hdr(skb)->tos);
818 }
819
820 /*
821  *      Send a SYN-ACK after having received a SYN.
822  *      This still operates on a request_sock only, not on a big
823  *      socket.
824  */
825 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826                               struct request_sock *req,
827                               struct request_values *rvp,
828                               u16 queue_mapping)
829 {
830         const struct inet_request_sock *ireq = inet_rsk(req);
831         struct flowi4 fl4;
832         int err = -1;
833         struct sk_buff * skb;
834
835         /* First, grab a route. */
836         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
837                 return -1;
838
839         skb = tcp_make_synack(sk, dst, req, rvp);
840
841         if (skb) {
842                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
843
844                 skb_set_queue_mapping(skb, queue_mapping);
845                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
846                                             ireq->rmt_addr,
847                                             ireq->opt);
848                 err = net_xmit_eval(err);
849         }
850
851         dst_release(dst);
852         return err;
853 }
854
855 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
856                               struct request_values *rvp)
857 {
858         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859         return tcp_v4_send_synack(sk, NULL, req, rvp, 0);
860 }
861
862 /*
863  *      IPv4 request_sock destructor.
864  */
865 static void tcp_v4_reqsk_destructor(struct request_sock *req)
866 {
867         kfree(inet_rsk(req)->opt);
868 }
869
870 /*
871  * Return true if a syncookie should be sent
872  */
873 bool tcp_syn_flood_action(struct sock *sk,
874                          const struct sk_buff *skb,
875                          const char *proto)
876 {
877         const char *msg = "Dropping request";
878         bool want_cookie = false;
879         struct listen_sock *lopt;
880
881
882
883 #ifdef CONFIG_SYN_COOKIES
884         if (sysctl_tcp_syncookies) {
885                 msg = "Sending cookies";
886                 want_cookie = true;
887                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888         } else
889 #endif
890                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893         if (!lopt->synflood_warned) {
894                 lopt->synflood_warned = 1;
895                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
896                         proto, ntohs(tcp_hdr(skb)->dest), msg);
897         }
898         return want_cookie;
899 }
900 EXPORT_SYMBOL(tcp_syn_flood_action);
901
902 /*
903  * Save and compile IPv4 options into the request_sock if needed.
904  */
905 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
906                                                   struct sk_buff *skb)
907 {
908         const struct ip_options *opt = &(IPCB(skb)->opt);
909         struct ip_options_rcu *dopt = NULL;
910
911         if (opt && opt->optlen) {
912                 int opt_size = sizeof(*dopt) + opt->optlen;
913
914                 dopt = kmalloc(opt_size, GFP_ATOMIC);
915                 if (dopt) {
916                         if (ip_options_echo(&dopt->opt, skb)) {
917                                 kfree(dopt);
918                                 dopt = NULL;
919                         }
920                 }
921         }
922         return dopt;
923 }
924
925 #ifdef CONFIG_TCP_MD5SIG
926 /*
927  * RFC2385 MD5 checksumming requires a mapping of
928  * IP address->MD5 Key.
929  * We need to maintain these in the sk structure.
930  */
931
932 /* Find the Key structure for an address.  */
933 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
934                                          const union tcp_md5_addr *addr,
935                                          int family)
936 {
937         struct tcp_sock *tp = tcp_sk(sk);
938         struct tcp_md5sig_key *key;
939         struct hlist_node *pos;
940         unsigned int size = sizeof(struct in_addr);
941         struct tcp_md5sig_info *md5sig;
942
943         /* caller either holds rcu_read_lock() or socket lock */
944         md5sig = rcu_dereference_check(tp->md5sig_info,
945                                        sock_owned_by_user(sk) ||
946                                        lockdep_is_held(&sk->sk_lock.slock));
947         if (!md5sig)
948                 return NULL;
949 #if IS_ENABLED(CONFIG_IPV6)
950         if (family == AF_INET6)
951                 size = sizeof(struct in6_addr);
952 #endif
953         hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
954                 if (key->family != family)
955                         continue;
956                 if (!memcmp(&key->addr, addr, size))
957                         return key;
958         }
959         return NULL;
960 }
961 EXPORT_SYMBOL(tcp_md5_do_lookup);
962
963 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
964                                          struct sock *addr_sk)
965 {
966         union tcp_md5_addr *addr;
967
968         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
969         return tcp_md5_do_lookup(sk, addr, AF_INET);
970 }
971 EXPORT_SYMBOL(tcp_v4_md5_lookup);
972
973 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
974                                                       struct request_sock *req)
975 {
976         union tcp_md5_addr *addr;
977
978         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
979         return tcp_md5_do_lookup(sk, addr, AF_INET);
980 }
981
982 /* This can be called on a newly created socket, from other files */
983 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
984                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
985 {
986         /* Add Key to the list */
987         struct tcp_md5sig_key *key;
988         struct tcp_sock *tp = tcp_sk(sk);
989         struct tcp_md5sig_info *md5sig;
990
991         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
992         if (key) {
993                 /* Pre-existing entry - just update that one. */
994                 memcpy(key->key, newkey, newkeylen);
995                 key->keylen = newkeylen;
996                 return 0;
997         }
998
999         md5sig = rcu_dereference_protected(tp->md5sig_info,
1000                                            sock_owned_by_user(sk));
1001         if (!md5sig) {
1002                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1003                 if (!md5sig)
1004                         return -ENOMEM;
1005
1006                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007                 INIT_HLIST_HEAD(&md5sig->head);
1008                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1009         }
1010
1011         key = sock_kmalloc(sk, sizeof(*key), gfp);
1012         if (!key)
1013                 return -ENOMEM;
1014         if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015                 sock_kfree_s(sk, key, sizeof(*key));
1016                 return -ENOMEM;
1017         }
1018
1019         memcpy(key->key, newkey, newkeylen);
1020         key->keylen = newkeylen;
1021         key->family = family;
1022         memcpy(&key->addr, addr,
1023                (family == AF_INET6) ? sizeof(struct in6_addr) :
1024                                       sizeof(struct in_addr));
1025         hlist_add_head_rcu(&key->node, &md5sig->head);
1026         return 0;
1027 }
1028 EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1031 {
1032         struct tcp_sock *tp = tcp_sk(sk);
1033         struct tcp_md5sig_key *key;
1034         struct tcp_md5sig_info *md5sig;
1035
1036         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037         if (!key)
1038                 return -ENOENT;
1039         hlist_del_rcu(&key->node);
1040         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041         kfree_rcu(key, rcu);
1042         md5sig = rcu_dereference_protected(tp->md5sig_info,
1043                                            sock_owned_by_user(sk));
1044         if (hlist_empty(&md5sig->head))
1045                 tcp_free_md5sig_pool();
1046         return 0;
1047 }
1048 EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050 void tcp_clear_md5_list(struct sock *sk)
1051 {
1052         struct tcp_sock *tp = tcp_sk(sk);
1053         struct tcp_md5sig_key *key;
1054         struct hlist_node *pos, *n;
1055         struct tcp_md5sig_info *md5sig;
1056
1057         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059         if (!hlist_empty(&md5sig->head))
1060                 tcp_free_md5sig_pool();
1061         hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062                 hlist_del_rcu(&key->node);
1063                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064                 kfree_rcu(key, rcu);
1065         }
1066 }
1067
1068 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069                                  int optlen)
1070 {
1071         struct tcp_md5sig cmd;
1072         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1073
1074         if (optlen < sizeof(cmd))
1075                 return -EINVAL;
1076
1077         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078                 return -EFAULT;
1079
1080         if (sin->sin_family != AF_INET)
1081                 return -EINVAL;
1082
1083         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085                                       AF_INET);
1086
1087         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088                 return -EINVAL;
1089
1090         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092                               GFP_KERNEL);
1093 }
1094
1095 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096                                         __be32 daddr, __be32 saddr, int nbytes)
1097 {
1098         struct tcp4_pseudohdr *bp;
1099         struct scatterlist sg;
1100
1101         bp = &hp->md5_blk.ip4;
1102
1103         /*
1104          * 1. the TCP pseudo-header (in the order: source IP address,
1105          * destination IP address, zero-padded protocol number, and
1106          * segment length)
1107          */
1108         bp->saddr = saddr;
1109         bp->daddr = daddr;
1110         bp->pad = 0;
1111         bp->protocol = IPPROTO_TCP;
1112         bp->len = cpu_to_be16(nbytes);
1113
1114         sg_init_one(&sg, bp, sizeof(*bp));
1115         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1116 }
1117
1118 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120 {
1121         struct tcp_md5sig_pool *hp;
1122         struct hash_desc *desc;
1123
1124         hp = tcp_get_md5sig_pool();
1125         if (!hp)
1126                 goto clear_hash_noput;
1127         desc = &hp->md5_desc;
1128
1129         if (crypto_hash_init(desc))
1130                 goto clear_hash;
1131         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132                 goto clear_hash;
1133         if (tcp_md5_hash_header(hp, th))
1134                 goto clear_hash;
1135         if (tcp_md5_hash_key(hp, key))
1136                 goto clear_hash;
1137         if (crypto_hash_final(desc, md5_hash))
1138                 goto clear_hash;
1139
1140         tcp_put_md5sig_pool();
1141         return 0;
1142
1143 clear_hash:
1144         tcp_put_md5sig_pool();
1145 clear_hash_noput:
1146         memset(md5_hash, 0, 16);
1147         return 1;
1148 }
1149
1150 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151                         const struct sock *sk, const struct request_sock *req,
1152                         const struct sk_buff *skb)
1153 {
1154         struct tcp_md5sig_pool *hp;
1155         struct hash_desc *desc;
1156         const struct tcphdr *th = tcp_hdr(skb);
1157         __be32 saddr, daddr;
1158
1159         if (sk) {
1160                 saddr = inet_sk(sk)->inet_saddr;
1161                 daddr = inet_sk(sk)->inet_daddr;
1162         } else if (req) {
1163                 saddr = inet_rsk(req)->loc_addr;
1164                 daddr = inet_rsk(req)->rmt_addr;
1165         } else {
1166                 const struct iphdr *iph = ip_hdr(skb);
1167                 saddr = iph->saddr;
1168                 daddr = iph->daddr;
1169         }
1170
1171         hp = tcp_get_md5sig_pool();
1172         if (!hp)
1173                 goto clear_hash_noput;
1174         desc = &hp->md5_desc;
1175
1176         if (crypto_hash_init(desc))
1177                 goto clear_hash;
1178
1179         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180                 goto clear_hash;
1181         if (tcp_md5_hash_header(hp, th))
1182                 goto clear_hash;
1183         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184                 goto clear_hash;
1185         if (tcp_md5_hash_key(hp, key))
1186                 goto clear_hash;
1187         if (crypto_hash_final(desc, md5_hash))
1188                 goto clear_hash;
1189
1190         tcp_put_md5sig_pool();
1191         return 0;
1192
1193 clear_hash:
1194         tcp_put_md5sig_pool();
1195 clear_hash_noput:
1196         memset(md5_hash, 0, 16);
1197         return 1;
1198 }
1199 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202 {
1203         /*
1204          * This gets called for each TCP segment that arrives
1205          * so we want to be efficient.
1206          * We have 3 drop cases:
1207          * o No MD5 hash and one expected.
1208          * o MD5 hash and we're not expecting one.
1209          * o MD5 hash and its wrong.
1210          */
1211         const __u8 *hash_location = NULL;
1212         struct tcp_md5sig_key *hash_expected;
1213         const struct iphdr *iph = ip_hdr(skb);
1214         const struct tcphdr *th = tcp_hdr(skb);
1215         int genhash;
1216         unsigned char newhash[16];
1217
1218         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219                                           AF_INET);
1220         hash_location = tcp_parse_md5sig_option(th);
1221
1222         /* We've parsed the options - do we have a hash? */
1223         if (!hash_expected && !hash_location)
1224                 return false;
1225
1226         if (hash_expected && !hash_location) {
1227                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228                 return true;
1229         }
1230
1231         if (!hash_expected && hash_location) {
1232                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233                 return true;
1234         }
1235
1236         /* Okay, so this is hash_expected and hash_location -
1237          * so we need to calculate the checksum.
1238          */
1239         genhash = tcp_v4_md5_hash_skb(newhash,
1240                                       hash_expected,
1241                                       NULL, NULL, skb);
1242
1243         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245                                      &iph->saddr, ntohs(th->source),
1246                                      &iph->daddr, ntohs(th->dest),
1247                                      genhash ? " tcp_v4_calc_md5_hash failed"
1248                                      : "");
1249                 return true;
1250         }
1251         return false;
1252 }
1253
1254 #endif
1255
1256 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257         .family         =       PF_INET,
1258         .obj_size       =       sizeof(struct tcp_request_sock),
1259         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1260         .send_ack       =       tcp_v4_reqsk_send_ack,
1261         .destructor     =       tcp_v4_reqsk_destructor,
1262         .send_reset     =       tcp_v4_send_reset,
1263         .syn_ack_timeout =      tcp_syn_ack_timeout,
1264 };
1265
1266 #ifdef CONFIG_TCP_MD5SIG
1267 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1269         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1270 };
1271 #endif
1272
1273 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274 {
1275         struct tcp_extend_values tmp_ext;
1276         struct tcp_options_received tmp_opt;
1277         const u8 *hash_location;
1278         struct request_sock *req;
1279         struct inet_request_sock *ireq;
1280         struct tcp_sock *tp = tcp_sk(sk);
1281         struct dst_entry *dst = NULL;
1282         __be32 saddr = ip_hdr(skb)->saddr;
1283         __be32 daddr = ip_hdr(skb)->daddr;
1284         __u32 isn = TCP_SKB_CB(skb)->when;
1285         bool want_cookie = false;
1286
1287         /* Never answer to SYNs send to broadcast or multicast */
1288         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289                 goto drop;
1290
1291         /* TW buckets are converted to open requests without
1292          * limitations, they conserve resources and peer is
1293          * evidently real one.
1294          */
1295         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297                 if (!want_cookie)
1298                         goto drop;
1299         }
1300
1301         /* Accept backlog is full. If we have already queued enough
1302          * of warm entries in syn queue, drop request. It is better than
1303          * clogging syn queue with openreqs with exponentially increasing
1304          * timeout.
1305          */
1306         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307                 goto drop;
1308
1309         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310         if (!req)
1311                 goto drop;
1312
1313 #ifdef CONFIG_TCP_MD5SIG
1314         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315 #endif
1316
1317         tcp_clear_options(&tmp_opt);
1318         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1320         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1321
1322         if (tmp_opt.cookie_plus > 0 &&
1323             tmp_opt.saw_tstamp &&
1324             !tp->rx_opt.cookie_out_never &&
1325             (sysctl_tcp_cookie_size > 0 ||
1326              (tp->cookie_values != NULL &&
1327               tp->cookie_values->cookie_desired > 0))) {
1328                 u8 *c;
1329                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333                         goto drop_and_release;
1334
1335                 /* Secret recipe starts with IP addresses */
1336                 *mess++ ^= (__force u32)daddr;
1337                 *mess++ ^= (__force u32)saddr;
1338
1339                 /* plus variable length Initiator Cookie */
1340                 c = (u8 *)mess;
1341                 while (l-- > 0)
1342                         *c++ ^= *hash_location++;
1343
1344                 want_cookie = false;    /* not our kind of cookie */
1345                 tmp_ext.cookie_out_never = 0; /* false */
1346                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347         } else if (!tp->rx_opt.cookie_in_always) {
1348                 /* redundant indications, but ensure initialization. */
1349                 tmp_ext.cookie_out_never = 1; /* true */
1350                 tmp_ext.cookie_plus = 0;
1351         } else {
1352                 goto drop_and_release;
1353         }
1354         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356         if (want_cookie && !tmp_opt.saw_tstamp)
1357                 tcp_clear_options(&tmp_opt);
1358
1359         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360         tcp_openreq_init(req, &tmp_opt, skb);
1361
1362         ireq = inet_rsk(req);
1363         ireq->loc_addr = daddr;
1364         ireq->rmt_addr = saddr;
1365         ireq->no_srccheck = inet_sk(sk)->transparent;
1366         ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368         if (security_inet_conn_request(sk, skb, req))
1369                 goto drop_and_free;
1370
1371         if (!want_cookie || tmp_opt.tstamp_ok)
1372                 TCP_ECN_create_request(req, skb);
1373
1374         if (want_cookie) {
1375                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376                 req->cookie_ts = tmp_opt.tstamp_ok;
1377         } else if (!isn) {
1378                 struct inet_peer *peer = NULL;
1379                 struct flowi4 fl4;
1380
1381                 /* VJ's idea. We save last timestamp seen
1382                  * from the destination in peer table, when entering
1383                  * state TIME-WAIT, and check against it before
1384                  * accepting new connection request.
1385                  *
1386                  * If "isn" is not zero, this request hit alive
1387                  * timewait bucket, so that all the necessary checks
1388                  * are made in the function processing timewait state.
1389                  */
1390                 if (tmp_opt.saw_tstamp &&
1391                     tcp_death_row.sysctl_tw_recycle &&
1392                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1393                     fl4.daddr == saddr &&
1394                     (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1395                         inet_peer_refcheck(peer);
1396                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1397                             (s32)(peer->tcp_ts - req->ts_recent) >
1398                                                         TCP_PAWS_WINDOW) {
1399                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1400                                 goto drop_and_release;
1401                         }
1402                 }
1403                 /* Kill the following clause, if you dislike this way. */
1404                 else if (!sysctl_tcp_syncookies &&
1405                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1406                           (sysctl_max_syn_backlog >> 2)) &&
1407                          (!peer || !peer->tcp_ts_stamp) &&
1408                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1409                         /* Without syncookies last quarter of
1410                          * backlog is filled with destinations,
1411                          * proven to be alive.
1412                          * It means that we continue to communicate
1413                          * to destinations, already remembered
1414                          * to the moment of synflood.
1415                          */
1416                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1417                                        &saddr, ntohs(tcp_hdr(skb)->source));
1418                         goto drop_and_release;
1419                 }
1420
1421                 isn = tcp_v4_init_sequence(skb);
1422         }
1423         tcp_rsk(req)->snt_isn = isn;
1424         tcp_rsk(req)->snt_synack = tcp_time_stamp;
1425
1426         if (tcp_v4_send_synack(sk, dst, req,
1427                                (struct request_values *)&tmp_ext,
1428                                skb_get_queue_mapping(skb)) ||
1429             want_cookie)
1430                 goto drop_and_free;
1431
1432         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1433         return 0;
1434
1435 drop_and_release:
1436         dst_release(dst);
1437 drop_and_free:
1438         reqsk_free(req);
1439 drop:
1440         return 0;
1441 }
1442 EXPORT_SYMBOL(tcp_v4_conn_request);
1443
1444
1445 /*
1446  * The three way handshake has completed - we got a valid synack -
1447  * now create the new socket.
1448  */
1449 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1450                                   struct request_sock *req,
1451                                   struct dst_entry *dst)
1452 {
1453         struct inet_request_sock *ireq;
1454         struct inet_sock *newinet;
1455         struct tcp_sock *newtp;
1456         struct sock *newsk;
1457 #ifdef CONFIG_TCP_MD5SIG
1458         struct tcp_md5sig_key *key;
1459 #endif
1460         struct ip_options_rcu *inet_opt;
1461
1462         if (sk_acceptq_is_full(sk))
1463                 goto exit_overflow;
1464
1465         newsk = tcp_create_openreq_child(sk, req, skb);
1466         if (!newsk)
1467                 goto exit_nonewsk;
1468
1469         newsk->sk_gso_type = SKB_GSO_TCPV4;
1470
1471         newtp                 = tcp_sk(newsk);
1472         newinet               = inet_sk(newsk);
1473         ireq                  = inet_rsk(req);
1474         newinet->inet_daddr   = ireq->rmt_addr;
1475         newinet->inet_rcv_saddr = ireq->loc_addr;
1476         newinet->inet_saddr           = ireq->loc_addr;
1477         inet_opt              = ireq->opt;
1478         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1479         ireq->opt             = NULL;
1480         newinet->mc_index     = inet_iif(skb);
1481         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1482         newinet->rcv_tos      = ip_hdr(skb)->tos;
1483         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1484         if (inet_opt)
1485                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1486         newinet->inet_id = newtp->write_seq ^ jiffies;
1487
1488         if (!dst) {
1489                 dst = inet_csk_route_child_sock(sk, newsk, req);
1490                 if (!dst)
1491                         goto put_and_exit;
1492         } else {
1493                 /* syncookie case : see end of cookie_v4_check() */
1494         }
1495         sk_setup_caps(newsk, dst);
1496
1497         tcp_mtup_init(newsk);
1498         tcp_sync_mss(newsk, dst_mtu(dst));
1499         newtp->advmss = dst_metric_advmss(dst);
1500         if (tcp_sk(sk)->rx_opt.user_mss &&
1501             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1502                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1503
1504         tcp_initialize_rcv_mss(newsk);
1505         if (tcp_rsk(req)->snt_synack)
1506                 tcp_valid_rtt_meas(newsk,
1507                     tcp_time_stamp - tcp_rsk(req)->snt_synack);
1508         newtp->total_retrans = req->retrans;
1509
1510 #ifdef CONFIG_TCP_MD5SIG
1511         /* Copy over the MD5 key from the original socket */
1512         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1513                                 AF_INET);
1514         if (key != NULL) {
1515                 /*
1516                  * We're using one, so create a matching key
1517                  * on the newsk structure. If we fail to get
1518                  * memory, then we end up not copying the key
1519                  * across. Shucks.
1520                  */
1521                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1522                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1523                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1524         }
1525 #endif
1526
1527         if (__inet_inherit_port(sk, newsk) < 0)
1528                 goto put_and_exit;
1529         __inet_hash_nolisten(newsk, NULL);
1530
1531         return newsk;
1532
1533 exit_overflow:
1534         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1535 exit_nonewsk:
1536         dst_release(dst);
1537 exit:
1538         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1539         return NULL;
1540 put_and_exit:
1541         tcp_clear_xmit_timers(newsk);
1542         tcp_cleanup_congestion_control(newsk);
1543         bh_unlock_sock(newsk);
1544         sock_put(newsk);
1545         goto exit;
1546 }
1547 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1548
1549 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1550 {
1551         struct tcphdr *th = tcp_hdr(skb);
1552         const struct iphdr *iph = ip_hdr(skb);
1553         struct sock *nsk;
1554         struct request_sock **prev;
1555         /* Find possible connection requests. */
1556         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1557                                                        iph->saddr, iph->daddr);
1558         if (req)
1559                 return tcp_check_req(sk, skb, req, prev);
1560
1561         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1562                         th->source, iph->daddr, th->dest, inet_iif(skb));
1563
1564         if (nsk) {
1565                 if (nsk->sk_state != TCP_TIME_WAIT) {
1566                         bh_lock_sock(nsk);
1567                         return nsk;
1568                 }
1569                 inet_twsk_put(inet_twsk(nsk));
1570                 return NULL;
1571         }
1572
1573 #ifdef CONFIG_SYN_COOKIES
1574         if (!th->syn)
1575                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1576 #endif
1577         return sk;
1578 }
1579
1580 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1581 {
1582         const struct iphdr *iph = ip_hdr(skb);
1583
1584         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1585                 if (!tcp_v4_check(skb->len, iph->saddr,
1586                                   iph->daddr, skb->csum)) {
1587                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1588                         return 0;
1589                 }
1590         }
1591
1592         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1593                                        skb->len, IPPROTO_TCP, 0);
1594
1595         if (skb->len <= 76) {
1596                 return __skb_checksum_complete(skb);
1597         }
1598         return 0;
1599 }
1600
1601
1602 /* The socket must have it's spinlock held when we get
1603  * here.
1604  *
1605  * We have a potential double-lock case here, so even when
1606  * doing backlog processing we use the BH locking scheme.
1607  * This is because we cannot sleep with the original spinlock
1608  * held.
1609  */
1610 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1611 {
1612         struct sock *rsk;
1613 #ifdef CONFIG_TCP_MD5SIG
1614         /*
1615          * We really want to reject the packet as early as possible
1616          * if:
1617          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1618          *  o There is an MD5 option and we're not expecting one
1619          */
1620         if (tcp_v4_inbound_md5_hash(sk, skb))
1621                 goto discard;
1622 #endif
1623
1624         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1625                 sock_rps_save_rxhash(sk, skb);
1626                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1627                         rsk = sk;
1628                         goto reset;
1629                 }
1630                 return 0;
1631         }
1632
1633         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1634                 goto csum_err;
1635
1636         if (sk->sk_state == TCP_LISTEN) {
1637                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1638                 if (!nsk)
1639                         goto discard;
1640
1641                 if (nsk != sk) {
1642                         sock_rps_save_rxhash(nsk, skb);
1643                         if (tcp_child_process(sk, nsk, skb)) {
1644                                 rsk = nsk;
1645                                 goto reset;
1646                         }
1647                         return 0;
1648                 }
1649         } else
1650                 sock_rps_save_rxhash(sk, skb);
1651
1652         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1653                 rsk = sk;
1654                 goto reset;
1655         }
1656         return 0;
1657
1658 reset:
1659         tcp_v4_send_reset(rsk, skb);
1660 discard:
1661         kfree_skb(skb);
1662         /* Be careful here. If this function gets more complicated and
1663          * gcc suffers from register pressure on the x86, sk (in %ebx)
1664          * might be destroyed here. This current version compiles correctly,
1665          * but you have been warned.
1666          */
1667         return 0;
1668
1669 csum_err:
1670         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1671         goto discard;
1672 }
1673 EXPORT_SYMBOL(tcp_v4_do_rcv);
1674
1675 /*
1676  *      From tcp_input.c
1677  */
1678
1679 int tcp_v4_rcv(struct sk_buff *skb)
1680 {
1681         const struct iphdr *iph;
1682         const struct tcphdr *th;
1683         struct sock *sk;
1684         int ret;
1685         struct net *net = dev_net(skb->dev);
1686
1687         if (skb->pkt_type != PACKET_HOST)
1688                 goto discard_it;
1689
1690         /* Count it even if it's bad */
1691         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1692
1693         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1694                 goto discard_it;
1695
1696         th = tcp_hdr(skb);
1697
1698         if (th->doff < sizeof(struct tcphdr) / 4)
1699                 goto bad_packet;
1700         if (!pskb_may_pull(skb, th->doff * 4))
1701                 goto discard_it;
1702
1703         /* An explanation is required here, I think.
1704          * Packet length and doff are validated by header prediction,
1705          * provided case of th->doff==0 is eliminated.
1706          * So, we defer the checks. */
1707         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1708                 goto bad_packet;
1709
1710         th = tcp_hdr(skb);
1711         iph = ip_hdr(skb);
1712         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1713         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1714                                     skb->len - th->doff * 4);
1715         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1716         TCP_SKB_CB(skb)->when    = 0;
1717         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1718         TCP_SKB_CB(skb)->sacked  = 0;
1719
1720         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1721         if (!sk)
1722                 goto no_tcp_socket;
1723
1724 process:
1725         if (sk->sk_state == TCP_TIME_WAIT)
1726                 goto do_time_wait;
1727
1728         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1729                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1730                 goto discard_and_relse;
1731         }
1732
1733         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1734                 goto discard_and_relse;
1735         nf_reset(skb);
1736
1737         if (sk_filter(sk, skb))
1738                 goto discard_and_relse;
1739
1740         skb->dev = NULL;
1741
1742         bh_lock_sock_nested(sk);
1743         ret = 0;
1744         if (!sock_owned_by_user(sk)) {
1745 #ifdef CONFIG_NET_DMA
1746                 struct tcp_sock *tp = tcp_sk(sk);
1747                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1748                         tp->ucopy.dma_chan = net_dma_find_channel();
1749                 if (tp->ucopy.dma_chan)
1750                         ret = tcp_v4_do_rcv(sk, skb);
1751                 else
1752 #endif
1753                 {
1754                         if (!tcp_prequeue(sk, skb))
1755                                 ret = tcp_v4_do_rcv(sk, skb);
1756                 }
1757         } else if (unlikely(sk_add_backlog(sk, skb,
1758                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
1759                 bh_unlock_sock(sk);
1760                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1761                 goto discard_and_relse;
1762         }
1763         bh_unlock_sock(sk);
1764
1765         sock_put(sk);
1766
1767         return ret;
1768
1769 no_tcp_socket:
1770         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1771                 goto discard_it;
1772
1773         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1774 bad_packet:
1775                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1776         } else {
1777                 tcp_v4_send_reset(NULL, skb);
1778         }
1779
1780 discard_it:
1781         /* Discard frame. */
1782         kfree_skb(skb);
1783         return 0;
1784
1785 discard_and_relse:
1786         sock_put(sk);
1787         goto discard_it;
1788
1789 do_time_wait:
1790         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1791                 inet_twsk_put(inet_twsk(sk));
1792                 goto discard_it;
1793         }
1794
1795         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1796                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1797                 inet_twsk_put(inet_twsk(sk));
1798                 goto discard_it;
1799         }
1800         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1801         case TCP_TW_SYN: {
1802                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1803                                                         &tcp_hashinfo,
1804                                                         iph->daddr, th->dest,
1805                                                         inet_iif(skb));
1806                 if (sk2) {
1807                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1808                         inet_twsk_put(inet_twsk(sk));
1809                         sk = sk2;
1810                         goto process;
1811                 }
1812                 /* Fall through to ACK */
1813         }
1814         case TCP_TW_ACK:
1815                 tcp_v4_timewait_ack(sk, skb);
1816                 break;
1817         case TCP_TW_RST:
1818                 goto no_tcp_socket;
1819         case TCP_TW_SUCCESS:;
1820         }
1821         goto discard_it;
1822 }
1823
1824 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1825 {
1826         struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1827         struct inet_sock *inet = inet_sk(sk);
1828         struct inet_peer *peer;
1829
1830         if (!rt ||
1831             inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1832                 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1833                 *release_it = true;
1834         } else {
1835                 if (!rt->peer)
1836                         rt_bind_peer(rt, inet->inet_daddr, 1);
1837                 peer = rt->peer;
1838                 *release_it = false;
1839         }
1840
1841         return peer;
1842 }
1843 EXPORT_SYMBOL(tcp_v4_get_peer);
1844
1845 void *tcp_v4_tw_get_peer(struct sock *sk)
1846 {
1847         const struct inet_timewait_sock *tw = inet_twsk(sk);
1848
1849         return inet_getpeer_v4(tw->tw_daddr, 1);
1850 }
1851 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1852
1853 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1854         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1855         .twsk_unique    = tcp_twsk_unique,
1856         .twsk_destructor= tcp_twsk_destructor,
1857         .twsk_getpeer   = tcp_v4_tw_get_peer,
1858 };
1859
1860 const struct inet_connection_sock_af_ops ipv4_specific = {
1861         .queue_xmit        = ip_queue_xmit,
1862         .send_check        = tcp_v4_send_check,
1863         .rebuild_header    = inet_sk_rebuild_header,
1864         .conn_request      = tcp_v4_conn_request,
1865         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1866         .get_peer          = tcp_v4_get_peer,
1867         .net_header_len    = sizeof(struct iphdr),
1868         .setsockopt        = ip_setsockopt,
1869         .getsockopt        = ip_getsockopt,
1870         .addr2sockaddr     = inet_csk_addr2sockaddr,
1871         .sockaddr_len      = sizeof(struct sockaddr_in),
1872         .bind_conflict     = inet_csk_bind_conflict,
1873 #ifdef CONFIG_COMPAT
1874         .compat_setsockopt = compat_ip_setsockopt,
1875         .compat_getsockopt = compat_ip_getsockopt,
1876 #endif
1877 };
1878 EXPORT_SYMBOL(ipv4_specific);
1879
1880 #ifdef CONFIG_TCP_MD5SIG
1881 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1882         .md5_lookup             = tcp_v4_md5_lookup,
1883         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1884         .md5_parse              = tcp_v4_parse_md5_keys,
1885 };
1886 #endif
1887
1888 /* NOTE: A lot of things set to zero explicitly by call to
1889  *       sk_alloc() so need not be done here.
1890  */
1891 static int tcp_v4_init_sock(struct sock *sk)
1892 {
1893         struct inet_connection_sock *icsk = inet_csk(sk);
1894
1895         tcp_init_sock(sk);
1896
1897         icsk->icsk_af_ops = &ipv4_specific;
1898
1899 #ifdef CONFIG_TCP_MD5SIG
1900         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1901 #endif
1902
1903         return 0;
1904 }
1905
1906 void tcp_v4_destroy_sock(struct sock *sk)
1907 {
1908         struct tcp_sock *tp = tcp_sk(sk);
1909
1910         tcp_clear_xmit_timers(sk);
1911
1912         tcp_cleanup_congestion_control(sk);
1913
1914         /* Cleanup up the write buffer. */
1915         tcp_write_queue_purge(sk);
1916
1917         /* Cleans up our, hopefully empty, out_of_order_queue. */
1918         __skb_queue_purge(&tp->out_of_order_queue);
1919
1920 #ifdef CONFIG_TCP_MD5SIG
1921         /* Clean up the MD5 key list, if any */
1922         if (tp->md5sig_info) {
1923                 tcp_clear_md5_list(sk);
1924                 kfree_rcu(tp->md5sig_info, rcu);
1925                 tp->md5sig_info = NULL;
1926         }
1927 #endif
1928
1929 #ifdef CONFIG_NET_DMA
1930         /* Cleans up our sk_async_wait_queue */
1931         __skb_queue_purge(&sk->sk_async_wait_queue);
1932 #endif
1933
1934         /* Clean prequeue, it must be empty really */
1935         __skb_queue_purge(&tp->ucopy.prequeue);
1936
1937         /* Clean up a referenced TCP bind bucket. */
1938         if (inet_csk(sk)->icsk_bind_hash)
1939                 inet_put_port(sk);
1940
1941         /*
1942          * If sendmsg cached page exists, toss it.
1943          */
1944         if (sk->sk_sndmsg_page) {
1945                 __free_page(sk->sk_sndmsg_page);
1946                 sk->sk_sndmsg_page = NULL;
1947         }
1948
1949         /* TCP Cookie Transactions */
1950         if (tp->cookie_values != NULL) {
1951                 kref_put(&tp->cookie_values->kref,
1952                          tcp_cookie_values_release);
1953                 tp->cookie_values = NULL;
1954         }
1955
1956         sk_sockets_allocated_dec(sk);
1957         sock_release_memcg(sk);
1958 }
1959 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1960
1961 #ifdef CONFIG_PROC_FS
1962 /* Proc filesystem TCP sock list dumping. */
1963
1964 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1965 {
1966         return hlist_nulls_empty(head) ? NULL :
1967                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1968 }
1969
1970 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1971 {
1972         return !is_a_nulls(tw->tw_node.next) ?
1973                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1974 }
1975
1976 /*
1977  * Get next listener socket follow cur.  If cur is NULL, get first socket
1978  * starting from bucket given in st->bucket; when st->bucket is zero the
1979  * very first socket in the hash table is returned.
1980  */
1981 static void *listening_get_next(struct seq_file *seq, void *cur)
1982 {
1983         struct inet_connection_sock *icsk;
1984         struct hlist_nulls_node *node;
1985         struct sock *sk = cur;
1986         struct inet_listen_hashbucket *ilb;
1987         struct tcp_iter_state *st = seq->private;
1988         struct net *net = seq_file_net(seq);
1989
1990         if (!sk) {
1991                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1992                 spin_lock_bh(&ilb->lock);
1993                 sk = sk_nulls_head(&ilb->head);
1994                 st->offset = 0;
1995                 goto get_sk;
1996         }
1997         ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998         ++st->num;
1999         ++st->offset;
2000
2001         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2002                 struct request_sock *req = cur;
2003
2004                 icsk = inet_csk(st->syn_wait_sk);
2005                 req = req->dl_next;
2006                 while (1) {
2007                         while (req) {
2008                                 if (req->rsk_ops->family == st->family) {
2009                                         cur = req;
2010                                         goto out;
2011                                 }
2012                                 req = req->dl_next;
2013                         }
2014                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2015                                 break;
2016 get_req:
2017                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2018                 }
2019                 sk        = sk_nulls_next(st->syn_wait_sk);
2020                 st->state = TCP_SEQ_STATE_LISTENING;
2021                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022         } else {
2023                 icsk = inet_csk(sk);
2024                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2026                         goto start_req;
2027                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2028                 sk = sk_nulls_next(sk);
2029         }
2030 get_sk:
2031         sk_nulls_for_each_from(sk, node) {
2032                 if (!net_eq(sock_net(sk), net))
2033                         continue;
2034                 if (sk->sk_family == st->family) {
2035                         cur = sk;
2036                         goto out;
2037                 }
2038                 icsk = inet_csk(sk);
2039                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2040                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2041 start_req:
2042                         st->uid         = sock_i_uid(sk);
2043                         st->syn_wait_sk = sk;
2044                         st->state       = TCP_SEQ_STATE_OPENREQ;
2045                         st->sbucket     = 0;
2046                         goto get_req;
2047                 }
2048                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2049         }
2050         spin_unlock_bh(&ilb->lock);
2051         st->offset = 0;
2052         if (++st->bucket < INET_LHTABLE_SIZE) {
2053                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2054                 spin_lock_bh(&ilb->lock);
2055                 sk = sk_nulls_head(&ilb->head);
2056                 goto get_sk;
2057         }
2058         cur = NULL;
2059 out:
2060         return cur;
2061 }
2062
2063 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2064 {
2065         struct tcp_iter_state *st = seq->private;
2066         void *rc;
2067
2068         st->bucket = 0;
2069         st->offset = 0;
2070         rc = listening_get_next(seq, NULL);
2071
2072         while (rc && *pos) {
2073                 rc = listening_get_next(seq, rc);
2074                 --*pos;
2075         }
2076         return rc;
2077 }
2078
2079 static inline bool empty_bucket(struct tcp_iter_state *st)
2080 {
2081         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2082                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2083 }
2084
2085 /*
2086  * Get first established socket starting from bucket given in st->bucket.
2087  * If st->bucket is zero, the very first socket in the hash is returned.
2088  */
2089 static void *established_get_first(struct seq_file *seq)
2090 {
2091         struct tcp_iter_state *st = seq->private;
2092         struct net *net = seq_file_net(seq);
2093         void *rc = NULL;
2094
2095         st->offset = 0;
2096         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2097                 struct sock *sk;
2098                 struct hlist_nulls_node *node;
2099                 struct inet_timewait_sock *tw;
2100                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2101
2102                 /* Lockless fast path for the common case of empty buckets */
2103                 if (empty_bucket(st))
2104                         continue;
2105
2106                 spin_lock_bh(lock);
2107                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2108                         if (sk->sk_family != st->family ||
2109                             !net_eq(sock_net(sk), net)) {
2110                                 continue;
2111                         }
2112                         rc = sk;
2113                         goto out;
2114                 }
2115                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2116                 inet_twsk_for_each(tw, node,
2117                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2118                         if (tw->tw_family != st->family ||
2119                             !net_eq(twsk_net(tw), net)) {
2120                                 continue;
2121                         }
2122                         rc = tw;
2123                         goto out;
2124                 }
2125                 spin_unlock_bh(lock);
2126                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2127         }
2128 out:
2129         return rc;
2130 }
2131
2132 static void *established_get_next(struct seq_file *seq, void *cur)
2133 {
2134         struct sock *sk = cur;
2135         struct inet_timewait_sock *tw;
2136         struct hlist_nulls_node *node;
2137         struct tcp_iter_state *st = seq->private;
2138         struct net *net = seq_file_net(seq);
2139
2140         ++st->num;
2141         ++st->offset;
2142
2143         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2144                 tw = cur;
2145                 tw = tw_next(tw);
2146 get_tw:
2147                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2148                         tw = tw_next(tw);
2149                 }
2150                 if (tw) {
2151                         cur = tw;
2152                         goto out;
2153                 }
2154                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2155                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2156
2157                 /* Look for next non empty bucket */
2158                 st->offset = 0;
2159                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2160                                 empty_bucket(st))
2161                         ;
2162                 if (st->bucket > tcp_hashinfo.ehash_mask)
2163                         return NULL;
2164
2165                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2166                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2167         } else
2168                 sk = sk_nulls_next(sk);
2169
2170         sk_nulls_for_each_from(sk, node) {
2171                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2172                         goto found;
2173         }
2174
2175         st->state = TCP_SEQ_STATE_TIME_WAIT;
2176         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2177         goto get_tw;
2178 found:
2179         cur = sk;
2180 out:
2181         return cur;
2182 }
2183
2184 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2185 {
2186         struct tcp_iter_state *st = seq->private;
2187         void *rc;
2188
2189         st->bucket = 0;
2190         rc = established_get_first(seq);
2191
2192         while (rc && pos) {
2193                 rc = established_get_next(seq, rc);
2194                 --pos;
2195         }
2196         return rc;
2197 }
2198
2199 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2200 {
2201         void *rc;
2202         struct tcp_iter_state *st = seq->private;
2203
2204         st->state = TCP_SEQ_STATE_LISTENING;
2205         rc        = listening_get_idx(seq, &pos);
2206
2207         if (!rc) {
2208                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2209                 rc        = established_get_idx(seq, pos);
2210         }
2211
2212         return rc;
2213 }
2214
2215 static void *tcp_seek_last_pos(struct seq_file *seq)
2216 {
2217         struct tcp_iter_state *st = seq->private;
2218         int offset = st->offset;
2219         int orig_num = st->num;
2220         void *rc = NULL;
2221
2222         switch (st->state) {
2223         case TCP_SEQ_STATE_OPENREQ:
2224         case TCP_SEQ_STATE_LISTENING:
2225                 if (st->bucket >= INET_LHTABLE_SIZE)
2226                         break;
2227                 st->state = TCP_SEQ_STATE_LISTENING;
2228                 rc = listening_get_next(seq, NULL);
2229                 while (offset-- && rc)
2230                         rc = listening_get_next(seq, rc);
2231                 if (rc)
2232                         break;
2233                 st->bucket = 0;
2234                 /* Fallthrough */
2235         case TCP_SEQ_STATE_ESTABLISHED:
2236         case TCP_SEQ_STATE_TIME_WAIT:
2237                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2238                 if (st->bucket > tcp_hashinfo.ehash_mask)
2239                         break;
2240                 rc = established_get_first(seq);
2241                 while (offset-- && rc)
2242                         rc = established_get_next(seq, rc);
2243         }
2244
2245         st->num = orig_num;
2246
2247         return rc;
2248 }
2249
2250 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2251 {
2252         struct tcp_iter_state *st = seq->private;
2253         void *rc;
2254
2255         if (*pos && *pos == st->last_pos) {
2256                 rc = tcp_seek_last_pos(seq);
2257                 if (rc)
2258                         goto out;
2259         }
2260
2261         st->state = TCP_SEQ_STATE_LISTENING;
2262         st->num = 0;
2263         st->bucket = 0;
2264         st->offset = 0;
2265         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2266
2267 out:
2268         st->last_pos = *pos;
2269         return rc;
2270 }
2271
2272 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273 {
2274         struct tcp_iter_state *st = seq->private;
2275         void *rc = NULL;
2276
2277         if (v == SEQ_START_TOKEN) {
2278                 rc = tcp_get_idx(seq, 0);
2279                 goto out;
2280         }
2281
2282         switch (st->state) {
2283         case TCP_SEQ_STATE_OPENREQ:
2284         case TCP_SEQ_STATE_LISTENING:
2285                 rc = listening_get_next(seq, v);
2286                 if (!rc) {
2287                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2288                         st->bucket = 0;
2289                         st->offset = 0;
2290                         rc        = established_get_first(seq);
2291                 }
2292                 break;
2293         case TCP_SEQ_STATE_ESTABLISHED:
2294         case TCP_SEQ_STATE_TIME_WAIT:
2295                 rc = established_get_next(seq, v);
2296                 break;
2297         }
2298 out:
2299         ++*pos;
2300         st->last_pos = *pos;
2301         return rc;
2302 }
2303
2304 static void tcp_seq_stop(struct seq_file *seq, void *v)
2305 {
2306         struct tcp_iter_state *st = seq->private;
2307
2308         switch (st->state) {
2309         case TCP_SEQ_STATE_OPENREQ:
2310                 if (v) {
2311                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2312                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2313                 }
2314         case TCP_SEQ_STATE_LISTENING:
2315                 if (v != SEQ_START_TOKEN)
2316                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2317                 break;
2318         case TCP_SEQ_STATE_TIME_WAIT:
2319         case TCP_SEQ_STATE_ESTABLISHED:
2320                 if (v)
2321                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2322                 break;
2323         }
2324 }
2325
2326 int tcp_seq_open(struct inode *inode, struct file *file)
2327 {
2328         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2329         struct tcp_iter_state *s;
2330         int err;
2331
2332         err = seq_open_net(inode, file, &afinfo->seq_ops,
2333                           sizeof(struct tcp_iter_state));
2334         if (err < 0)
2335                 return err;
2336
2337         s = ((struct seq_file *)file->private_data)->private;
2338         s->family               = afinfo->family;
2339         s->last_pos             = 0;
2340         return 0;
2341 }
2342 EXPORT_SYMBOL(tcp_seq_open);
2343
2344 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2345 {
2346         int rc = 0;
2347         struct proc_dir_entry *p;
2348
2349         afinfo->seq_ops.start           = tcp_seq_start;
2350         afinfo->seq_ops.next            = tcp_seq_next;
2351         afinfo->seq_ops.stop            = tcp_seq_stop;
2352
2353         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2354                              afinfo->seq_fops, afinfo);
2355         if (!p)
2356                 rc = -ENOMEM;
2357         return rc;
2358 }
2359 EXPORT_SYMBOL(tcp_proc_register);
2360
2361 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2362 {
2363         proc_net_remove(net, afinfo->name);
2364 }
2365 EXPORT_SYMBOL(tcp_proc_unregister);
2366
2367 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2368                          struct seq_file *f, int i, int uid, int *len)
2369 {
2370         const struct inet_request_sock *ireq = inet_rsk(req);
2371         int ttd = req->expires - jiffies;
2372
2373         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2374                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2375                 i,
2376                 ireq->loc_addr,
2377                 ntohs(inet_sk(sk)->inet_sport),
2378                 ireq->rmt_addr,
2379                 ntohs(ireq->rmt_port),
2380                 TCP_SYN_RECV,
2381                 0, 0, /* could print option size, but that is af dependent. */
2382                 1,    /* timers active (only the expire timer) */
2383                 jiffies_to_clock_t(ttd),
2384                 req->retrans,
2385                 uid,
2386                 0,  /* non standard timer */
2387                 0, /* open_requests have no inode */
2388                 atomic_read(&sk->sk_refcnt),
2389                 req,
2390                 len);
2391 }
2392
2393 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2394 {
2395         int timer_active;
2396         unsigned long timer_expires;
2397         const struct tcp_sock *tp = tcp_sk(sk);
2398         const struct inet_connection_sock *icsk = inet_csk(sk);
2399         const struct inet_sock *inet = inet_sk(sk);
2400         __be32 dest = inet->inet_daddr;
2401         __be32 src = inet->inet_rcv_saddr;
2402         __u16 destp = ntohs(inet->inet_dport);
2403         __u16 srcp = ntohs(inet->inet_sport);
2404         int rx_queue;
2405
2406         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2407                 timer_active    = 1;
2408                 timer_expires   = icsk->icsk_timeout;
2409         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2410                 timer_active    = 4;
2411                 timer_expires   = icsk->icsk_timeout;
2412         } else if (timer_pending(&sk->sk_timer)) {
2413                 timer_active    = 2;
2414                 timer_expires   = sk->sk_timer.expires;
2415         } else {
2416                 timer_active    = 0;
2417                 timer_expires = jiffies;
2418         }
2419
2420         if (sk->sk_state == TCP_LISTEN)
2421                 rx_queue = sk->sk_ack_backlog;
2422         else
2423                 /*
2424                  * because we dont lock socket, we might find a transient negative value
2425                  */
2426                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2427
2428         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2429                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2430                 i, src, srcp, dest, destp, sk->sk_state,
2431                 tp->write_seq - tp->snd_una,
2432                 rx_queue,
2433                 timer_active,
2434                 jiffies_to_clock_t(timer_expires - jiffies),
2435                 icsk->icsk_retransmits,
2436                 sock_i_uid(sk),
2437                 icsk->icsk_probes_out,
2438                 sock_i_ino(sk),
2439                 atomic_read(&sk->sk_refcnt), sk,
2440                 jiffies_to_clock_t(icsk->icsk_rto),
2441                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2442                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2443                 tp->snd_cwnd,
2444                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2445                 len);
2446 }
2447
2448 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2449                                struct seq_file *f, int i, int *len)
2450 {
2451         __be32 dest, src;
2452         __u16 destp, srcp;
2453         int ttd = tw->tw_ttd - jiffies;
2454
2455         if (ttd < 0)
2456                 ttd = 0;
2457
2458         dest  = tw->tw_daddr;
2459         src   = tw->tw_rcv_saddr;
2460         destp = ntohs(tw->tw_dport);
2461         srcp  = ntohs(tw->tw_sport);
2462
2463         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2464                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2465                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2466                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2467                 atomic_read(&tw->tw_refcnt), tw, len);
2468 }
2469
2470 #define TMPSZ 150
2471
2472 static int tcp4_seq_show(struct seq_file *seq, void *v)
2473 {
2474         struct tcp_iter_state *st;
2475         int len;
2476
2477         if (v == SEQ_START_TOKEN) {
2478                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2479                            "  sl  local_address rem_address   st tx_queue "
2480                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2481                            "inode");
2482                 goto out;
2483         }
2484         st = seq->private;
2485
2486         switch (st->state) {
2487         case TCP_SEQ_STATE_LISTENING:
2488         case TCP_SEQ_STATE_ESTABLISHED:
2489                 get_tcp4_sock(v, seq, st->num, &len);
2490                 break;
2491         case TCP_SEQ_STATE_OPENREQ:
2492                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2493                 break;
2494         case TCP_SEQ_STATE_TIME_WAIT:
2495                 get_timewait4_sock(v, seq, st->num, &len);
2496                 break;
2497         }
2498         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2499 out:
2500         return 0;
2501 }
2502
2503 static const struct file_operations tcp_afinfo_seq_fops = {
2504         .owner   = THIS_MODULE,
2505         .open    = tcp_seq_open,
2506         .read    = seq_read,
2507         .llseek  = seq_lseek,
2508         .release = seq_release_net
2509 };
2510
2511 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2512         .name           = "tcp",
2513         .family         = AF_INET,
2514         .seq_fops       = &tcp_afinfo_seq_fops,
2515         .seq_ops        = {
2516                 .show           = tcp4_seq_show,
2517         },
2518 };
2519
2520 static int __net_init tcp4_proc_init_net(struct net *net)
2521 {
2522         return tcp_proc_register(net, &tcp4_seq_afinfo);
2523 }
2524
2525 static void __net_exit tcp4_proc_exit_net(struct net *net)
2526 {
2527         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2528 }
2529
2530 static struct pernet_operations tcp4_net_ops = {
2531         .init = tcp4_proc_init_net,
2532         .exit = tcp4_proc_exit_net,
2533 };
2534
2535 int __init tcp4_proc_init(void)
2536 {
2537         return register_pernet_subsys(&tcp4_net_ops);
2538 }
2539
2540 void tcp4_proc_exit(void)
2541 {
2542         unregister_pernet_subsys(&tcp4_net_ops);
2543 }
2544 #endif /* CONFIG_PROC_FS */
2545
2546 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2547 {
2548         const struct iphdr *iph = skb_gro_network_header(skb);
2549
2550         switch (skb->ip_summed) {
2551         case CHECKSUM_COMPLETE:
2552                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2553                                   skb->csum)) {
2554                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2555                         break;
2556                 }
2557
2558                 /* fall through */
2559         case CHECKSUM_NONE:
2560                 NAPI_GRO_CB(skb)->flush = 1;
2561                 return NULL;
2562         }
2563
2564         return tcp_gro_receive(head, skb);
2565 }
2566
2567 int tcp4_gro_complete(struct sk_buff *skb)
2568 {
2569         const struct iphdr *iph = ip_hdr(skb);
2570         struct tcphdr *th = tcp_hdr(skb);
2571
2572         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2573                                   iph->saddr, iph->daddr, 0);
2574         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2575
2576         return tcp_gro_complete(skb);
2577 }
2578
2579 struct proto tcp_prot = {
2580         .name                   = "TCP",
2581         .owner                  = THIS_MODULE,
2582         .close                  = tcp_close,
2583         .connect                = tcp_v4_connect,
2584         .disconnect             = tcp_disconnect,
2585         .accept                 = inet_csk_accept,
2586         .ioctl                  = tcp_ioctl,
2587         .init                   = tcp_v4_init_sock,
2588         .destroy                = tcp_v4_destroy_sock,
2589         .shutdown               = tcp_shutdown,
2590         .setsockopt             = tcp_setsockopt,
2591         .getsockopt             = tcp_getsockopt,
2592         .recvmsg                = tcp_recvmsg,
2593         .sendmsg                = tcp_sendmsg,
2594         .sendpage               = tcp_sendpage,
2595         .backlog_rcv            = tcp_v4_do_rcv,
2596         .hash                   = inet_hash,
2597         .unhash                 = inet_unhash,
2598         .get_port               = inet_csk_get_port,
2599         .enter_memory_pressure  = tcp_enter_memory_pressure,
2600         .sockets_allocated      = &tcp_sockets_allocated,
2601         .orphan_count           = &tcp_orphan_count,
2602         .memory_allocated       = &tcp_memory_allocated,
2603         .memory_pressure        = &tcp_memory_pressure,
2604         .sysctl_wmem            = sysctl_tcp_wmem,
2605         .sysctl_rmem            = sysctl_tcp_rmem,
2606         .max_header             = MAX_TCP_HEADER,
2607         .obj_size               = sizeof(struct tcp_sock),
2608         .slab_flags             = SLAB_DESTROY_BY_RCU,
2609         .twsk_prot              = &tcp_timewait_sock_ops,
2610         .rsk_prot               = &tcp_request_sock_ops,
2611         .h.hashinfo             = &tcp_hashinfo,
2612         .no_autobind            = true,
2613 #ifdef CONFIG_COMPAT
2614         .compat_setsockopt      = compat_tcp_setsockopt,
2615         .compat_getsockopt      = compat_tcp_getsockopt,
2616 #endif
2617 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2618         .init_cgroup            = tcp_init_cgroup,
2619         .destroy_cgroup         = tcp_destroy_cgroup,
2620         .proto_cgroup           = tcp_proto_cgroup,
2621 #endif
2622 };
2623 EXPORT_SYMBOL(tcp_prot);
2624
2625 static int __net_init tcp_sk_init(struct net *net)
2626 {
2627         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2628                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2629 }
2630
2631 static void __net_exit tcp_sk_exit(struct net *net)
2632 {
2633         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2634 }
2635
2636 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2637 {
2638         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2639 }
2640
2641 static struct pernet_operations __net_initdata tcp_sk_ops = {
2642        .init       = tcp_sk_init,
2643        .exit       = tcp_sk_exit,
2644        .exit_batch = tcp_sk_exit_batch,
2645 };
2646
2647 void __init tcp_v4_init(void)
2648 {
2649         inet_hashinfo_init(&tcp_hashinfo);
2650         if (register_pernet_subsys(&tcp_sk_ops))
2651                 panic("Failed to create the TCP control socket.\n");
2652 }