1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The Internet Protocol (IP) output module.
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
19 * See ip_input.c for original log
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readability.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * Hirokazu Takahashi: sendfile() on UDP works now.
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
71 #include <linux/skbuff.h>
75 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <net/lwtunnel.h>
79 #include <net/inet_dscp.h>
80 #include <linux/bpf-cgroup.h>
81 #include <linux/igmp.h>
82 #include <linux/netfilter_ipv4.h>
83 #include <linux/netfilter_bridge.h>
84 #include <linux/netlink.h>
85 #include <linux/tcp.h>
88 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
90 int (*output)(struct net *, struct sock *, struct sk_buff *));
92 /* Generate a checksum for an outgoing IP datagram. */
93 void ip_send_check(struct iphdr *iph)
96 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
98 EXPORT_SYMBOL(ip_send_check);
100 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
102 struct iphdr *iph = ip_hdr(skb);
104 IP_INC_STATS(net, IPSTATS_MIB_OUTREQUESTS);
106 iph_set_totlen(iph, skb->len);
109 /* if egress device is enslaved to an L3 master device pass the
110 * skb to its handler for processing
112 skb = l3mdev_ip_out(sk, skb);
116 skb->protocol = htons(ETH_P_IP);
118 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
119 net, sk, skb, NULL, skb_dst(skb)->dev,
123 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
127 err = __ip_local_out(net, sk, skb);
128 if (likely(err == 1))
129 err = dst_output(net, sk, skb);
133 EXPORT_SYMBOL_GPL(ip_local_out);
135 static inline int ip_select_ttl(const struct inet_sock *inet,
136 const struct dst_entry *dst)
138 int ttl = READ_ONCE(inet->uc_ttl);
141 ttl = ip4_dst_hoplimit(dst);
146 * Add an ip header to a skbuff and send it out.
149 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
150 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
153 const struct inet_sock *inet = inet_sk(sk);
154 struct rtable *rt = skb_rtable(skb);
155 struct net *net = sock_net(sk);
158 /* Build the IP header. */
159 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
160 skb_reset_network_header(skb);
165 iph->ttl = ip_select_ttl(inet, &rt->dst);
166 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
168 iph->protocol = sk->sk_protocol;
169 /* Do not bother generating IPID for small packets (eg SYNACK) */
170 if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) {
171 iph->frag_off = htons(IP_DF);
175 /* TCP packets here are SYNACK with fat IPv4/TCP options.
176 * Avoid using the hashed IP ident generator.
178 if (sk->sk_protocol == IPPROTO_TCP)
179 iph->id = (__force __be16)get_random_u16();
181 __ip_select_ident(net, iph, 1);
184 if (opt && opt->opt.optlen) {
185 iph->ihl += opt->opt.optlen>>2;
186 ip_options_build(skb, &opt->opt, daddr, rt);
189 skb->priority = READ_ONCE(sk->sk_priority);
191 skb->mark = READ_ONCE(sk->sk_mark);
194 return ip_local_out(net, skb->sk, skb);
196 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
198 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
200 struct dst_entry *dst = skb_dst(skb);
201 struct rtable *rt = dst_rtable(dst);
202 struct net_device *dev = dst->dev;
203 unsigned int hh_len = LL_RESERVED_SPACE(dev);
204 struct neighbour *neigh;
205 bool is_v6gw = false;
207 if (rt->rt_type == RTN_MULTICAST) {
208 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
209 } else if (rt->rt_type == RTN_BROADCAST)
210 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
212 /* OUTOCTETS should be counted after fragment */
213 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
215 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
216 skb = skb_expand_head(skb, hh_len);
221 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
222 int res = lwtunnel_xmit(skb);
224 if (res != LWTUNNEL_XMIT_CONTINUE)
229 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
230 if (!IS_ERR(neigh)) {
233 sock_confirm_neigh(skb, neigh);
234 /* if crossing protocols, can not use the cached header */
235 res = neigh_output(neigh, skb, is_v6gw);
241 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
243 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL);
244 return PTR_ERR(neigh);
247 static int ip_finish_output_gso(struct net *net, struct sock *sk,
248 struct sk_buff *skb, unsigned int mtu)
250 struct sk_buff *segs, *nskb;
251 netdev_features_t features;
254 /* common case: seglen is <= mtu
256 if (skb_gso_validate_network_len(skb, mtu))
257 return ip_finish_output2(net, sk, skb);
259 /* Slowpath - GSO segment length exceeds the egress MTU.
261 * This can happen in several cases:
262 * - Forwarding of a TCP GRO skb, when DF flag is not set.
263 * - Forwarding of an skb that arrived on a virtualization interface
264 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
266 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
267 * interface with a smaller MTU.
268 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
269 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
272 features = netif_skb_features(skb);
273 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
274 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
275 if (IS_ERR_OR_NULL(segs)) {
282 skb_list_walk_safe(segs, segs, nskb) {
285 skb_mark_not_on_list(segs);
286 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
295 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
299 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
300 /* Policy lookup after SNAT yielded a new policy */
301 if (skb_dst(skb)->xfrm) {
302 IPCB(skb)->flags |= IPSKB_REROUTED;
303 return dst_output(net, sk, skb);
306 mtu = ip_skb_dst_mtu(sk, skb);
308 return ip_finish_output_gso(net, sk, skb, mtu);
310 if (skb->len > mtu || IPCB(skb)->frag_max_size)
311 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
313 return ip_finish_output2(net, sk, skb);
316 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
320 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
322 case NET_XMIT_SUCCESS:
323 return __ip_finish_output(net, sk, skb);
325 return __ip_finish_output(net, sk, skb) ? : ret;
327 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
332 static int ip_mc_finish_output(struct net *net, struct sock *sk,
335 struct rtable *new_rt;
339 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
344 case NET_XMIT_SUCCESS:
347 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
351 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
352 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
353 * see ipv4_pktinfo_prepare().
355 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
359 skb_dst_set(skb, &new_rt->dst);
362 err = dev_loopback_xmit(net, sk, skb);
363 return (do_cn && err) ? ret : err;
366 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
368 struct rtable *rt = skb_rtable(skb);
369 struct net_device *dev = rt->dst.dev;
372 * If the indicated interface is up and running, send the packet.
375 skb->protocol = htons(ETH_P_IP);
378 * Multicasts are looped back for other local users
381 if (rt->rt_flags&RTCF_MULTICAST) {
383 #ifdef CONFIG_IP_MROUTE
384 /* Small optimization: do not loopback not local frames,
385 which returned after forwarding; they will be dropped
386 by ip_mr_input in any case.
387 Note, that local frames are looped back to be delivered
390 This check is duplicated in ip_mr_input at the moment.
393 ((rt->rt_flags & RTCF_LOCAL) ||
394 !(IPCB(skb)->flags & IPSKB_FORWARDED))
397 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
399 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
400 net, sk, newskb, NULL, newskb->dev,
401 ip_mc_finish_output);
404 /* Multicasts with ttl 0 must not go beyond the host */
406 if (ip_hdr(skb)->ttl == 0) {
412 if (rt->rt_flags&RTCF_BROADCAST) {
413 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
415 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
416 net, sk, newskb, NULL, newskb->dev,
417 ip_mc_finish_output);
420 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
421 net, sk, skb, NULL, skb->dev,
423 !(IPCB(skb)->flags & IPSKB_REROUTED));
426 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
428 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
431 skb->protocol = htons(ETH_P_IP);
433 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
434 net, sk, skb, indev, dev,
436 !(IPCB(skb)->flags & IPSKB_REROUTED));
438 EXPORT_SYMBOL(ip_output);
441 * copy saddr and daddr, possibly using 64bit load/stores
443 * iph->saddr = fl4->saddr;
444 * iph->daddr = fl4->daddr;
446 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
448 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
449 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
451 iph->saddr = fl4->saddr;
452 iph->daddr = fl4->daddr;
455 /* Note: skb->sk can be different from sk, in case of tunnels */
456 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
459 struct inet_sock *inet = inet_sk(sk);
460 struct net *net = sock_net(sk);
461 struct ip_options_rcu *inet_opt;
467 /* Skip all of this if the packet is already routed,
468 * f.e. by something like SCTP.
471 inet_opt = rcu_dereference(inet->inet_opt);
473 rt = skb_rtable(skb);
477 /* Make sure we can route this packet. */
478 rt = dst_rtable(__sk_dst_check(sk, 0));
480 inet_sk_init_flowi4(inet, fl4);
482 /* sctp_v4_xmit() uses its own DSCP value */
483 fl4->flowi4_tos = tos & INET_DSCP_MASK;
485 /* If this fails, retransmit mechanism of transport layer will
486 * keep trying until route appears or the connection times
489 rt = ip_route_output_flow(net, fl4, sk);
492 sk_setup_caps(sk, &rt->dst);
494 skb_dst_set_noref(skb, &rt->dst);
497 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
500 /* OK, we know where to send it, allocate and build IP header. */
501 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
502 skb_reset_network_header(skb);
504 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
505 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
506 iph->frag_off = htons(IP_DF);
509 iph->ttl = ip_select_ttl(inet, &rt->dst);
510 iph->protocol = sk->sk_protocol;
511 ip_copy_addrs(iph, fl4);
513 /* Transport layer set skb->h.foo itself. */
515 if (inet_opt && inet_opt->opt.optlen) {
516 iph->ihl += inet_opt->opt.optlen >> 2;
517 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt);
520 ip_select_ident_segs(net, skb, sk,
521 skb_shinfo(skb)->gso_segs ?: 1);
523 /* TODO : should we use skb->sk here instead of sk ? */
524 skb->priority = READ_ONCE(sk->sk_priority);
525 skb->mark = READ_ONCE(sk->sk_mark);
527 res = ip_local_out(net, sk, skb);
533 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
534 kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES);
535 return -EHOSTUNREACH;
537 EXPORT_SYMBOL(__ip_queue_xmit);
539 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
541 return __ip_queue_xmit(sk, skb, fl, READ_ONCE(inet_sk(sk)->tos));
543 EXPORT_SYMBOL(ip_queue_xmit);
545 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
547 to->pkt_type = from->pkt_type;
548 to->priority = from->priority;
549 to->protocol = from->protocol;
550 to->skb_iif = from->skb_iif;
552 skb_dst_copy(to, from);
554 to->mark = from->mark;
556 skb_copy_hash(to, from);
558 #ifdef CONFIG_NET_SCHED
559 to->tc_index = from->tc_index;
562 skb_ext_copy(to, from);
563 #if IS_ENABLED(CONFIG_IP_VS)
564 to->ipvs_property = from->ipvs_property;
566 skb_copy_secmark(to, from);
569 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
571 int (*output)(struct net *, struct sock *, struct sk_buff *))
573 struct iphdr *iph = ip_hdr(skb);
575 if ((iph->frag_off & htons(IP_DF)) == 0)
576 return ip_do_fragment(net, sk, skb, output);
578 if (unlikely(!skb->ignore_df ||
579 (IPCB(skb)->frag_max_size &&
580 IPCB(skb)->frag_max_size > mtu))) {
581 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
582 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
588 return ip_do_fragment(net, sk, skb, output);
591 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
592 unsigned int hlen, struct ip_fraglist_iter *iter)
594 unsigned int first_len = skb_pagelen(skb);
596 iter->frag = skb_shinfo(skb)->frag_list;
597 skb_frag_list_init(skb);
603 skb->data_len = first_len - skb_headlen(skb);
604 skb->len = first_len;
605 iph->tot_len = htons(first_len);
606 iph->frag_off = htons(IP_MF);
609 EXPORT_SYMBOL(ip_fraglist_init);
611 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
613 unsigned int hlen = iter->hlen;
614 struct iphdr *iph = iter->iph;
615 struct sk_buff *frag;
618 frag->ip_summed = CHECKSUM_NONE;
619 skb_reset_transport_header(frag);
620 __skb_push(frag, hlen);
621 skb_reset_network_header(frag);
622 memcpy(skb_network_header(frag), iph, hlen);
623 iter->iph = ip_hdr(frag);
625 iph->tot_len = htons(frag->len);
626 ip_copy_metadata(frag, skb);
627 iter->offset += skb->len - hlen;
628 iph->frag_off = htons(iter->offset >> 3);
630 iph->frag_off |= htons(IP_MF);
631 /* Ready, complete checksum */
634 EXPORT_SYMBOL(ip_fraglist_prepare);
636 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
637 unsigned int ll_rs, unsigned int mtu, bool DF,
638 struct ip_frag_state *state)
640 struct iphdr *iph = ip_hdr(skb);
644 state->ll_rs = ll_rs;
647 state->left = skb->len - hlen; /* Space per frame */
648 state->ptr = hlen; /* Where to start from */
650 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
651 state->not_last_frag = iph->frag_off & htons(IP_MF);
653 EXPORT_SYMBOL(ip_frag_init);
655 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
658 /* Copy the flags to each fragment. */
659 IPCB(to)->flags = IPCB(from)->flags;
661 /* ANK: dirty, but effective trick. Upgrade options only if
662 * the segment to be fragmented was THE FIRST (otherwise,
663 * options are already fixed) and make it ONCE
664 * on the initial skb, so that all the following fragments
665 * will inherit fixed options.
668 ip_options_fragment(from);
671 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
673 unsigned int len = state->left;
674 struct sk_buff *skb2;
677 /* IF: it doesn't fit, use 'mtu' - the data space left */
678 if (len > state->mtu)
680 /* IF: we are not sending up to and including the packet end
681 then align the next start on an eight byte boundary */
682 if (len < state->left) {
686 /* Allocate buffer */
687 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
689 return ERR_PTR(-ENOMEM);
692 * Set up data on packet
695 ip_copy_metadata(skb2, skb);
696 skb_reserve(skb2, state->ll_rs);
697 skb_put(skb2, len + state->hlen);
698 skb_reset_network_header(skb2);
699 skb2->transport_header = skb2->network_header + state->hlen;
702 * Charge the memory for the fragment to any owner
707 skb_set_owner_w(skb2, skb->sk);
710 * Copy the packet header into the new buffer.
713 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
716 * Copy a block of the IP datagram.
718 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
723 * Fill in the new header fields.
726 iph->frag_off = htons((state->offset >> 3));
728 iph->frag_off |= htons(IP_DF);
731 * Added AC : If we are fragmenting a fragment that's not the
732 * last fragment then keep MF on each bit
734 if (state->left > 0 || state->not_last_frag)
735 iph->frag_off |= htons(IP_MF);
737 state->offset += len;
739 iph->tot_len = htons(len + state->hlen);
745 EXPORT_SYMBOL(ip_frag_next);
748 * This IP datagram is too large to be sent in one piece. Break it up into
749 * smaller pieces (each of size equal to IP header plus
750 * a block of the data of the original IP data part) that will yet fit in a
751 * single device frame, and queue such a frame for sending.
754 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
755 int (*output)(struct net *, struct sock *, struct sk_buff *))
758 struct sk_buff *skb2;
759 u8 tstamp_type = skb->tstamp_type;
760 struct rtable *rt = skb_rtable(skb);
761 unsigned int mtu, hlen, ll_rs;
762 struct ip_fraglist_iter iter;
763 ktime_t tstamp = skb->tstamp;
764 struct ip_frag_state state;
767 /* for offloaded checksums cleanup checksum before fragmentation */
768 if (skb->ip_summed == CHECKSUM_PARTIAL &&
769 (err = skb_checksum_help(skb)))
773 * Point into the IP datagram header.
778 mtu = ip_skb_dst_mtu(sk, skb);
779 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
780 mtu = IPCB(skb)->frag_max_size;
783 * Setup starting values.
787 mtu = mtu - hlen; /* Size of data space */
788 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
789 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
791 /* When frag_list is given, use it. First, check its validity:
792 * some transformers could create wrong frag_list or break existing
793 * one, it is not prohibited. In this case fall back to copying.
795 * LATER: this step can be merged to real generation of fragments,
796 * we can switch to copy when see the first bad fragment.
798 if (skb_has_frag_list(skb)) {
799 struct sk_buff *frag, *frag2;
800 unsigned int first_len = skb_pagelen(skb);
802 if (first_len - hlen > mtu ||
803 ((first_len - hlen) & 7) ||
804 ip_is_fragment(iph) ||
806 skb_headroom(skb) < ll_rs)
809 skb_walk_frags(skb, frag) {
810 /* Correct geometry. */
811 if (frag->len > mtu ||
812 ((frag->len & 7) && frag->next) ||
813 skb_headroom(frag) < hlen + ll_rs)
814 goto slow_path_clean;
816 /* Partially cloned skb? */
817 if (skb_shared(frag))
818 goto slow_path_clean;
823 frag->destructor = sock_wfree;
825 skb->truesize -= frag->truesize;
828 /* Everything is OK. Generate! */
829 ip_fraglist_init(skb, iph, hlen, &iter);
832 /* Prepare header of the next frame,
833 * before previous one went down. */
835 bool first_frag = (iter.offset == 0);
837 IPCB(iter.frag)->flags = IPCB(skb)->flags;
838 ip_fraglist_prepare(skb, &iter);
839 if (first_frag && IPCB(skb)->opt.optlen) {
840 /* ipcb->opt is not populated for frags
841 * coming from __ip_make_skb(),
842 * ip_options_fragment() needs optlen
844 IPCB(iter.frag)->opt.optlen =
845 IPCB(skb)->opt.optlen;
846 ip_options_fragment(iter.frag);
847 ip_send_check(iter.iph);
851 skb_set_delivery_time(skb, tstamp, tstamp_type);
852 err = output(net, sk, skb);
855 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
856 if (err || !iter.frag)
859 skb = ip_fraglist_next(&iter);
863 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
867 kfree_skb_list(iter.frag);
869 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
873 skb_walk_frags(skb, frag2) {
877 frag2->destructor = NULL;
878 skb->truesize += frag2->truesize;
884 * Fragment the datagram.
887 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
891 * Keep copying data until we run out.
894 while (state.left > 0) {
895 bool first_frag = (state.offset == 0);
897 skb2 = ip_frag_next(skb, &state);
902 ip_frag_ipcb(skb, skb2, first_frag);
905 * Put this fragment into the sending queue.
907 skb_set_delivery_time(skb2, tstamp, tstamp_type);
908 err = output(net, sk, skb2);
912 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
915 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
920 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
923 EXPORT_SYMBOL(ip_do_fragment);
926 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
928 struct msghdr *msg = from;
930 if (skb->ip_summed == CHECKSUM_PARTIAL) {
931 if (!copy_from_iter_full(to, len, &msg->msg_iter))
935 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
937 skb->csum = csum_block_add(skb->csum, csum, odd);
941 EXPORT_SYMBOL(ip_generic_getfrag);
943 static int __ip_append_data(struct sock *sk,
945 struct sk_buff_head *queue,
946 struct inet_cork *cork,
947 struct page_frag *pfrag,
948 int getfrag(void *from, char *to, int offset,
949 int len, int odd, struct sk_buff *skb),
950 void *from, int length, int transhdrlen,
953 struct inet_sock *inet = inet_sk(sk);
954 struct ubuf_info *uarg = NULL;
956 struct ip_options *opt = cork->opt;
964 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
965 int csummode = CHECKSUM_NONE;
966 struct rtable *rt = dst_rtable(cork->dst);
967 bool paged, hold_tskey = false, extra_uref = false;
968 unsigned int wmem_alloc_delta = 0;
971 skb = skb_peek_tail(queue);
973 exthdrlen = !skb ? rt->dst.header_len : 0;
974 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
975 paged = !!cork->gso_size;
977 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
979 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
980 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
981 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
983 if (cork->length + length > maxnonfragsize - fragheaderlen) {
984 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
985 mtu - (opt ? opt->optlen : 0));
990 * transhdrlen > 0 means that this is the first fragment and we wish
991 * it won't be fragmented in the future.
994 length + fragheaderlen <= mtu &&
995 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
996 (!(flags & MSG_MORE) || cork->gso_size) &&
997 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
998 csummode = CHECKSUM_PARTIAL;
1000 if ((flags & MSG_ZEROCOPY) && length) {
1001 struct msghdr *msg = from;
1003 if (getfrag == ip_generic_getfrag && msg->msg_ubuf) {
1004 if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb))
1007 /* Leave uarg NULL if can't zerocopy, callers should
1008 * be able to handle it.
1010 if ((rt->dst.dev->features & NETIF_F_SG) &&
1011 csummode == CHECKSUM_PARTIAL) {
1014 uarg = msg->msg_ubuf;
1016 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1017 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb),
1021 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1022 if (rt->dst.dev->features & NETIF_F_SG &&
1023 csummode == CHECKSUM_PARTIAL) {
1027 uarg_to_msgzc(uarg)->zerocopy = 0;
1028 skb_zcopy_set(skb, uarg, &extra_uref);
1031 } else if ((flags & MSG_SPLICE_PAGES) && length) {
1032 if (inet_test_bit(HDRINCL, sk))
1034 if (rt->dst.dev->features & NETIF_F_SG &&
1035 getfrag == ip_generic_getfrag)
1036 /* We need an empty buffer to attach stuff to */
1039 flags &= ~MSG_SPLICE_PAGES;
1042 cork->length += length;
1044 if (cork->tx_flags & SKBTX_ANY_TSTAMP &&
1045 READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
1046 if (cork->flags & IPCORK_TS_OPT_ID) {
1047 tskey = cork->ts_opt_id;
1049 tskey = atomic_inc_return(&sk->sk_tskey) - 1;
1054 /* So, what's going on in the loop below?
1056 * We use calculated fragment length to generate chained skb,
1057 * each of segments is IP fragment ready for sending to network after
1058 * adding appropriate IP header.
1064 while (length > 0) {
1065 /* Check if the remaining data fits into current packet. */
1066 copy = mtu - skb->len;
1068 copy = maxfraglen - skb->len;
1071 unsigned int datalen;
1072 unsigned int fraglen;
1073 unsigned int fraggap;
1074 unsigned int alloclen, alloc_extra;
1075 unsigned int pagedlen;
1076 struct sk_buff *skb_prev;
1080 fraggap = skb_prev->len - maxfraglen;
1085 * If remaining data exceeds the mtu,
1086 * we know we need more fragment(s).
1088 datalen = length + fraggap;
1089 if (datalen > mtu - fragheaderlen)
1090 datalen = maxfraglen - fragheaderlen;
1091 fraglen = datalen + fragheaderlen;
1094 alloc_extra = hh_len + 15;
1095 alloc_extra += exthdrlen;
1097 /* The last fragment gets additional space at tail.
1098 * Note, with MSG_MORE we overallocate on fragments,
1099 * because we have no idea what fragment will be
1102 if (datalen == length + fraggap)
1103 alloc_extra += rt->dst.trailer_len;
1105 if ((flags & MSG_MORE) &&
1106 !(rt->dst.dev->features&NETIF_F_SG))
1109 (fraglen + alloc_extra < SKB_MAX_ALLOC ||
1110 !(rt->dst.dev->features & NETIF_F_SG)))
1113 alloclen = fragheaderlen + transhdrlen;
1114 pagedlen = datalen - transhdrlen;
1117 alloclen += alloc_extra;
1120 skb = sock_alloc_send_skb(sk, alloclen,
1121 (flags & MSG_DONTWAIT), &err);
1124 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1126 skb = alloc_skb(alloclen,
1135 * Fill in the control structures
1137 skb->ip_summed = csummode;
1139 skb_reserve(skb, hh_len);
1142 * Find where to start putting bytes.
1144 data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1145 skb_set_network_header(skb, exthdrlen);
1146 skb->transport_header = (skb->network_header +
1148 data += fragheaderlen + exthdrlen;
1151 skb->csum = skb_copy_and_csum_bits(
1152 skb_prev, maxfraglen,
1153 data + transhdrlen, fraggap);
1154 skb_prev->csum = csum_sub(skb_prev->csum,
1157 pskb_trim_unique(skb_prev, maxfraglen);
1160 copy = datalen - transhdrlen - fraggap - pagedlen;
1161 /* [!] NOTE: copy will be negative if pagedlen>0
1162 * because then the equation reduces to -fraggap.
1165 INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1166 from, data + transhdrlen, offset,
1167 copy, fraggap, skb) < 0) {
1171 } else if (flags & MSG_SPLICE_PAGES) {
1176 length -= copy + transhdrlen;
1179 csummode = CHECKSUM_NONE;
1181 /* only the initial fragment is time stamped */
1182 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1184 skb_shinfo(skb)->tskey = tskey;
1186 skb_zcopy_set(skb, uarg, &extra_uref);
1188 if ((flags & MSG_CONFIRM) && !skb_prev)
1189 skb_set_dst_pending_confirm(skb, 1);
1192 * Put the packet on the pending queue.
1194 if (!skb->destructor) {
1195 skb->destructor = sock_wfree;
1197 wmem_alloc_delta += skb->truesize;
1199 __skb_queue_tail(queue, skb);
1206 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1207 skb_tailroom(skb) >= copy) {
1211 if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1212 from, skb_put(skb, copy),
1213 offset, copy, off, skb) < 0) {
1214 __skb_trim(skb, off);
1218 } else if (flags & MSG_SPLICE_PAGES) {
1219 struct msghdr *msg = from;
1222 if (WARN_ON_ONCE(copy > msg->msg_iter.count))
1225 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1230 wmem_alloc_delta += copy;
1232 int i = skb_shinfo(skb)->nr_frags;
1235 if (!sk_page_frag_refill(sk, pfrag))
1238 skb_zcopy_downgrade_managed(skb);
1239 if (!skb_can_coalesce(skb, i, pfrag->page,
1242 if (i == MAX_SKB_FRAGS)
1245 __skb_fill_page_desc(skb, i, pfrag->page,
1247 skb_shinfo(skb)->nr_frags = ++i;
1248 get_page(pfrag->page);
1250 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1251 if (INDIRECT_CALL_1(getfrag, ip_generic_getfrag,
1253 page_address(pfrag->page) + pfrag->offset,
1254 offset, copy, skb->len, skb) < 0)
1257 pfrag->offset += copy;
1258 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1259 skb_len_add(skb, copy);
1260 wmem_alloc_delta += copy;
1262 err = skb_zerocopy_iter_dgram(skb, from, copy);
1270 if (wmem_alloc_delta)
1271 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1277 net_zcopy_put_abort(uarg, extra_uref);
1278 cork->length -= length;
1279 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1280 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1282 atomic_dec(&sk->sk_tskey);
1286 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1287 struct ipcm_cookie *ipc, struct rtable **rtp)
1289 struct ip_options_rcu *opt;
1296 cork->fragsize = ip_sk_use_pmtu(sk) ?
1297 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1299 if (!inetdev_valid_mtu(cork->fragsize))
1300 return -ENETUNREACH;
1303 * setup for corking.
1308 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1310 if (unlikely(!cork->opt))
1313 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1314 cork->flags |= IPCORK_OPT;
1315 cork->addr = ipc->addr;
1318 cork->gso_size = ipc->gso_size;
1320 cork->dst = &rt->dst;
1321 /* We stole this route, caller should not release it. */
1325 cork->ttl = ipc->ttl;
1326 cork->tos = ipc->tos;
1327 cork->mark = ipc->sockc.mark;
1328 cork->priority = ipc->sockc.priority;
1329 cork->transmit_time = ipc->sockc.transmit_time;
1331 sock_tx_timestamp(sk, &ipc->sockc, &cork->tx_flags);
1332 if (ipc->sockc.tsflags & SOCKCM_FLAG_TS_OPT_ID) {
1333 cork->flags |= IPCORK_TS_OPT_ID;
1334 cork->ts_opt_id = ipc->sockc.ts_opt_id;
1341 * ip_append_data() can make one large IP datagram from many pieces of
1342 * data. Each piece will be held on the socket until
1343 * ip_push_pending_frames() is called. Each piece can be a page or
1346 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1347 * this interface potentially.
1349 * LATER: length must be adjusted by pad at tail, when it is required.
1351 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1352 int getfrag(void *from, char *to, int offset, int len,
1353 int odd, struct sk_buff *skb),
1354 void *from, int length, int transhdrlen,
1355 struct ipcm_cookie *ipc, struct rtable **rtp,
1358 struct inet_sock *inet = inet_sk(sk);
1361 if (flags&MSG_PROBE)
1364 if (skb_queue_empty(&sk->sk_write_queue)) {
1365 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1372 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1373 sk_page_frag(sk), getfrag,
1374 from, length, transhdrlen, flags);
1377 static void ip_cork_release(struct inet_cork *cork)
1379 cork->flags &= ~IPCORK_OPT;
1382 dst_release(cork->dst);
1387 * Combined all pending IP fragments on the socket as one IP datagram
1388 * and push them out.
1390 struct sk_buff *__ip_make_skb(struct sock *sk,
1392 struct sk_buff_head *queue,
1393 struct inet_cork *cork)
1395 struct sk_buff *skb, *tmp_skb;
1396 struct sk_buff **tail_skb;
1397 struct inet_sock *inet = inet_sk(sk);
1398 struct net *net = sock_net(sk);
1399 struct ip_options *opt = NULL;
1400 struct rtable *rt = dst_rtable(cork->dst);
1405 skb = __skb_dequeue(queue);
1408 tail_skb = &(skb_shinfo(skb)->frag_list);
1410 /* move skb->data to ip header from ext header */
1411 if (skb->data < skb_network_header(skb))
1412 __skb_pull(skb, skb_network_offset(skb));
1413 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1414 __skb_pull(tmp_skb, skb_network_header_len(skb));
1415 *tail_skb = tmp_skb;
1416 tail_skb = &(tmp_skb->next);
1417 skb->len += tmp_skb->len;
1418 skb->data_len += tmp_skb->len;
1419 skb->truesize += tmp_skb->truesize;
1420 tmp_skb->destructor = NULL;
1424 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1425 * to fragment the frame generated here. No matter, what transforms
1426 * how transforms change size of the packet, it will come out.
1428 skb->ignore_df = ip_sk_ignore_df(sk);
1430 /* DF bit is set when we want to see DF on outgoing frames.
1431 * If ignore_df is set too, we still allow to fragment this frame
1433 pmtudisc = READ_ONCE(inet->pmtudisc);
1434 if (pmtudisc == IP_PMTUDISC_DO ||
1435 pmtudisc == IP_PMTUDISC_PROBE ||
1436 (skb->len <= dst_mtu(&rt->dst) &&
1437 ip_dont_fragment(sk, &rt->dst)))
1440 if (cork->flags & IPCORK_OPT)
1445 else if (rt->rt_type == RTN_MULTICAST)
1446 ttl = READ_ONCE(inet->mc_ttl);
1448 ttl = ip_select_ttl(inet, &rt->dst);
1453 iph->tos = (cork->tos != -1) ? cork->tos : READ_ONCE(inet->tos);
1456 iph->protocol = sk->sk_protocol;
1457 ip_copy_addrs(iph, fl4);
1458 ip_select_ident(net, skb, sk);
1461 iph->ihl += opt->optlen >> 2;
1462 ip_options_build(skb, opt, cork->addr, rt);
1465 skb->priority = cork->priority;
1466 skb->mark = cork->mark;
1468 skb_set_delivery_time(skb, cork->transmit_time, SKB_CLOCK_MONOTONIC);
1470 skb_set_delivery_type_by_clockid(skb, cork->transmit_time, sk->sk_clockid);
1472 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1476 skb_dst_set(skb, &rt->dst);
1478 if (iph->protocol == IPPROTO_ICMP) {
1481 /* For such sockets, transhdrlen is zero when do ip_append_data(),
1482 * so icmphdr does not in skb linear region and can not get icmp_type
1483 * by icmp_hdr(skb)->type.
1485 if (sk->sk_type == SOCK_RAW &&
1486 !(fl4->flowi4_flags & FLOWI_FLAG_KNOWN_NH))
1487 icmp_type = fl4->fl4_icmp_type;
1489 icmp_type = icmp_hdr(skb)->type;
1490 icmp_out_count(net, icmp_type);
1493 ip_cork_release(cork);
1498 int ip_send_skb(struct net *net, struct sk_buff *skb)
1502 err = ip_local_out(net, skb->sk, skb);
1505 err = net_xmit_errno(err);
1507 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1513 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1515 struct sk_buff *skb;
1517 skb = ip_finish_skb(sk, fl4);
1521 /* Netfilter gets whole the not fragmented skb. */
1522 return ip_send_skb(sock_net(sk), skb);
1526 * Throw away all pending data on the socket.
1528 static void __ip_flush_pending_frames(struct sock *sk,
1529 struct sk_buff_head *queue,
1530 struct inet_cork *cork)
1532 struct sk_buff *skb;
1534 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1537 ip_cork_release(cork);
1540 void ip_flush_pending_frames(struct sock *sk)
1542 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1545 struct sk_buff *ip_make_skb(struct sock *sk,
1547 int getfrag(void *from, char *to, int offset,
1548 int len, int odd, struct sk_buff *skb),
1549 void *from, int length, int transhdrlen,
1550 struct ipcm_cookie *ipc, struct rtable **rtp,
1551 struct inet_cork *cork, unsigned int flags)
1553 struct sk_buff_head queue;
1556 if (flags & MSG_PROBE)
1559 __skb_queue_head_init(&queue);
1564 err = ip_setup_cork(sk, cork, ipc, rtp);
1566 return ERR_PTR(err);
1568 err = __ip_append_data(sk, fl4, &queue, cork,
1569 ¤t->task_frag, getfrag,
1570 from, length, transhdrlen, flags);
1572 __ip_flush_pending_frames(sk, &queue, cork);
1573 return ERR_PTR(err);
1576 return __ip_make_skb(sk, fl4, &queue, cork);
1580 * Fetch data from kernel space and fill in checksum if needed.
1582 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1583 int len, int odd, struct sk_buff *skb)
1587 csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1588 skb->csum = csum_block_add(skb->csum, csum, odd);
1593 * Generic function to send a packet as reply to another packet.
1594 * Used to send some TCP resets/acks so far.
1596 void ip_send_unicast_reply(struct sock *sk, const struct sock *orig_sk,
1597 struct sk_buff *skb,
1598 const struct ip_options *sopt,
1599 __be32 daddr, __be32 saddr,
1600 const struct ip_reply_arg *arg,
1601 unsigned int len, u64 transmit_time, u32 txhash)
1603 struct ip_options_data replyopts;
1604 struct ipcm_cookie ipc;
1606 struct rtable *rt = skb_rtable(skb);
1607 struct net *net = sock_net(sk);
1608 struct sk_buff *nskb;
1612 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1617 ipc.sockc.transmit_time = transmit_time;
1619 if (replyopts.opt.opt.optlen) {
1620 ipc.opt = &replyopts.opt;
1622 if (replyopts.opt.opt.srr)
1623 daddr = replyopts.opt.opt.faddr;
1626 oif = arg->bound_dev_if;
1627 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1630 flowi4_init_output(&fl4, oif,
1631 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1632 arg->tos & INET_DSCP_MASK,
1633 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1634 ip_reply_arg_flowi_flags(arg),
1636 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1638 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
1639 rt = ip_route_output_flow(net, &fl4, sk);
1643 inet_sk(sk)->tos = arg->tos;
1645 sk->sk_protocol = ip_hdr(skb)->protocol;
1646 sk->sk_bound_dev_if = arg->bound_dev_if;
1647 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
1648 ipc.sockc.mark = fl4.flowi4_mark;
1649 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1650 len, 0, &ipc, &rt, MSG_DONTWAIT);
1651 if (unlikely(err)) {
1652 ip_flush_pending_frames(sk);
1656 nskb = skb_peek(&sk->sk_write_queue);
1658 if (arg->csumoffset >= 0)
1659 *((__sum16 *)skb_transport_header(nskb) +
1660 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1662 nskb->ip_summed = CHECKSUM_NONE;
1664 skb_set_owner_edemux(nskb, (struct sock *)orig_sk);
1666 nskb->tstamp_type = SKB_CLOCK_MONOTONIC;
1668 skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4);
1669 ip_push_pending_frames(sk, &fl4);
1675 void __init ip_init(void)
1680 #if defined(CONFIG_IP_MULTICAST)