1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Support for INET connection oriented protocols.
9 * Authors: See the TCP sources
12 #include <linux/module.h>
13 #include <linux/jhash.h>
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
111 bool inet_rcv_saddr_any(const struct sock *sk)
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
117 return !sk->sk_rcv_saddr;
121 * inet_sk_get_local_port_range - fetch ephemeral ports range
123 * @low: pointer to low port
124 * @high: pointer to high port
126 * Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127 * Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128 * Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
132 int lo, hi, sk_lo, sk_hi;
133 bool local_range = false;
136 inet_get_local_port_range(sock_net(sk), &lo, &hi);
138 sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 if (unlikely(sk_range)) {
140 sk_lo = sk_range & 0xffff;
141 sk_hi = sk_range >> 16;
143 if (lo <= sk_lo && sk_lo <= hi)
145 if (lo <= sk_hi && sk_hi <= hi)
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
158 #if IS_ENABLED(CONFIG_IPV6)
159 if (sk->sk_family == AF_INET6) {
160 if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
163 if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
167 return sk->sk_rcv_saddr != htonl(INADDR_ANY);
170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171 kuid_t sk_uid, bool relax,
172 bool reuseport_cb_ok, bool reuseport_ok)
179 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
181 if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182 sk->sk_bound_dev_if == bound_dev_if2) {
183 if (sk->sk_reuse && sk2->sk_reuse &&
184 sk2->sk_state != TCP_LISTEN) {
185 if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186 sk2->sk_reuseport && reuseport_cb_ok &&
187 (sk2->sk_state == TCP_TIME_WAIT ||
188 uid_eq(sk_uid, sock_i_uid(sk2)))))
190 } else if (!reuseport_ok || !sk->sk_reuseport ||
191 !sk2->sk_reuseport || !reuseport_cb_ok ||
192 (sk2->sk_state != TCP_TIME_WAIT &&
193 !uid_eq(sk_uid, sock_i_uid(sk2)))) {
200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201 kuid_t sk_uid, bool relax,
202 bool reuseport_cb_ok, bool reuseport_ok)
204 if (ipv6_only_sock(sk2)) {
205 if (sk->sk_family == AF_INET)
208 #if IS_ENABLED(CONFIG_IPV6)
209 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
214 return inet_bind_conflict(sk, sk2, sk_uid, relax,
215 reuseport_cb_ok, reuseport_ok);
218 static bool inet_bhash2_conflict(const struct sock *sk,
219 const struct inet_bind2_bucket *tb2,
221 bool relax, bool reuseport_cb_ok,
226 sk_for_each_bound(sk2, &tb2->owners) {
227 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
228 reuseport_cb_ok, reuseport_ok))
235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb) \
236 hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node) \
237 sk_for_each_bound((__sk), &(__tb2)->owners)
239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
240 static int inet_csk_bind_conflict(const struct sock *sk,
241 const struct inet_bind_bucket *tb,
242 const struct inet_bind2_bucket *tb2, /* may be null */
243 bool relax, bool reuseport_ok)
245 kuid_t uid = sock_i_uid((struct sock *)sk);
246 struct sock_reuseport *reuseport_cb;
247 bool reuseport_cb_ok;
251 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
256 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257 * ipv4) should have been checked already. We need to do these two
258 * checks separately because their spinlocks have to be acquired/released
259 * independently of each other, to prevent possible deadlocks
261 if (inet_use_bhash2_on_bind(sk))
262 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263 reuseport_cb_ok, reuseport_ok);
265 /* Unlike other sk lookup places we do not check
266 * for sk_net here, since _all_ the socks listed
267 * in tb->owners and tb2->owners list belong
268 * to the same net - the one this bucket belongs to.
270 sk_for_each_bound_bhash(sk2, tb2, tb) {
271 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
274 if (inet_rcv_saddr_equal(sk, sk2, true))
281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282 * INADDR_ANY (if ipv4) socket.
284 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
285 * against concurrent binds on the port for addr any
287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288 bool relax, bool reuseport_ok)
290 kuid_t uid = sock_i_uid((struct sock *)sk);
291 const struct net *net = sock_net(sk);
292 struct sock_reuseport *reuseport_cb;
293 struct inet_bind_hashbucket *head2;
294 struct inet_bind2_bucket *tb2;
295 bool conflict = false;
296 bool reuseport_cb_ok;
299 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
304 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
306 spin_lock(&head2->lock);
308 inet_bind_bucket_for_each(tb2, &head2->chain) {
309 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
312 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
319 spin_unlock(&head2->lock);
325 * Find an open port number for the socket. Returns with the
326 * inet_bind_hashbucket locks held if successful.
328 static struct inet_bind_hashbucket *
329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330 struct inet_bind2_bucket **tb2_ret,
331 struct inet_bind_hashbucket **head2_ret, int *port_ret)
333 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
334 int i, low, high, attempt_half, port, l3mdev;
335 struct inet_bind_hashbucket *head, *head2;
336 struct net *net = sock_net(sk);
337 struct inet_bind2_bucket *tb2;
338 struct inet_bind_bucket *tb;
339 u32 remaining, offset;
342 l3mdev = inet_sk_bound_l3mdev(sk);
344 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
346 inet_sk_get_local_port_range(sk, &low, &high);
347 high++; /* [32768, 60999] -> [32768, 61000[ */
351 int half = low + (((high - low) >> 2) << 1);
353 if (attempt_half == 1)
358 remaining = high - low;
359 if (likely(remaining > 1))
362 offset = get_random_u32_below(remaining);
363 /* __inet_hash_connect() favors ports having @low parity
364 * We do the opposite to not pollute connect() users.
370 for (i = 0; i < remaining; i += 2, port += 2) {
371 if (unlikely(port >= high))
373 if (inet_is_local_reserved_port(net, port))
375 head = &hinfo->bhash[inet_bhashfn(net, port,
377 spin_lock_bh(&head->lock);
378 if (inet_use_bhash2_on_bind(sk)) {
379 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
383 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384 spin_lock(&head2->lock);
385 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386 inet_bind_bucket_for_each(tb, &head->chain)
387 if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388 if (!inet_csk_bind_conflict(sk, tb, tb2,
391 spin_unlock(&head2->lock);
397 spin_unlock_bh(&head->lock);
403 goto other_parity_scan;
405 if (attempt_half == 1) {
406 /* OK we now try the upper half of the range */
408 goto other_half_scan;
411 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412 /* We still have a chance to connect to different destinations */
414 goto ports_exhausted;
425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
428 kuid_t uid = sock_i_uid(sk);
430 if (tb->fastreuseport <= 0)
432 if (!sk->sk_reuseport)
434 if (rcu_access_pointer(sk->sk_reuseport_cb))
436 if (!uid_eq(tb->fastuid, uid))
438 /* We only need to check the rcv_saddr if this tb was once marked
439 * without fastreuseport and then was reset, as we can only know that
440 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
443 if (tb->fastreuseport == FASTREUSEPORT_ANY)
445 #if IS_ENABLED(CONFIG_IPV6)
446 if (tb->fast_sk_family == AF_INET6)
447 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
452 ipv6_only_sock(sk), true, false);
454 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
455 ipv6_only_sock(sk), true, false);
458 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
461 kuid_t uid = sock_i_uid(sk);
462 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
464 if (hlist_empty(&tb->bhash2)) {
465 tb->fastreuse = reuse;
466 if (sk->sk_reuseport) {
467 tb->fastreuseport = FASTREUSEPORT_ANY;
469 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
470 tb->fast_ipv6_only = ipv6_only_sock(sk);
471 tb->fast_sk_family = sk->sk_family;
472 #if IS_ENABLED(CONFIG_IPV6)
473 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
476 tb->fastreuseport = 0;
481 if (sk->sk_reuseport) {
482 /* We didn't match or we don't have fastreuseport set on
483 * the tb, but we have sk_reuseport set on this socket
484 * and we know that there are no bind conflicts with
485 * this socket in this tb, so reset our tb's reuseport
486 * settings so that any subsequent sockets that match
487 * our current socket will be put on the fast path.
489 * If we reset we need to set FASTREUSEPORT_STRICT so we
490 * do extra checking for all subsequent sk_reuseport
493 if (!sk_reuseport_match(tb, sk)) {
494 tb->fastreuseport = FASTREUSEPORT_STRICT;
496 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
497 tb->fast_ipv6_only = ipv6_only_sock(sk);
498 tb->fast_sk_family = sk->sk_family;
499 #if IS_ENABLED(CONFIG_IPV6)
500 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
504 tb->fastreuseport = 0;
509 /* Obtain a reference to a local port for the given sock,
510 * if snum is zero it means select any available local port.
511 * We try to allocate an odd port (and leave even ports for connect())
513 int inet_csk_get_port(struct sock *sk, unsigned short snum)
515 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
516 bool found_port = false, check_bind_conflict = true;
517 bool bhash_created = false, bhash2_created = false;
518 struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
519 int ret = -EADDRINUSE, port = snum, l3mdev;
520 struct inet_bind_hashbucket *head, *head2;
521 struct inet_bind2_bucket *tb2 = NULL;
522 struct inet_bind_bucket *tb = NULL;
523 bool head2_lock_acquired = false;
524 struct net *net = sock_net(sk);
526 l3mdev = inet_sk_bound_l3mdev(sk);
529 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
533 head2_lock_acquired = true;
539 head = &hinfo->bhash[inet_bhashfn(net, port,
541 spin_lock_bh(&head->lock);
542 inet_bind_bucket_for_each(tb, &head->chain)
543 if (inet_bind_bucket_match(tb, net, port, l3mdev))
548 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
552 bhash_created = true;
556 if (!hlist_empty(&tb->bhash2)) {
557 if (sk->sk_reuse == SK_FORCE_REUSE ||
558 (tb->fastreuse > 0 && reuse) ||
559 sk_reuseport_match(tb, sk))
560 check_bind_conflict = false;
563 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
564 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
568 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
569 spin_lock(&head2->lock);
570 head2_lock_acquired = true;
571 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
575 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
579 bhash2_created = true;
582 if (!found_port && check_bind_conflict) {
583 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
588 inet_csk_update_fastreuse(tb, sk);
590 if (!inet_csk(sk)->icsk_bind_hash)
591 inet_bind_hash(sk, tb, tb2, port);
592 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
593 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
599 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
601 inet_bind_bucket_destroy(tb);
603 if (head2_lock_acquired)
604 spin_unlock(&head2->lock);
605 spin_unlock_bh(&head->lock);
608 EXPORT_SYMBOL_GPL(inet_csk_get_port);
611 * Wait for an incoming connection, avoid race conditions. This must be called
612 * with the socket locked.
614 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
616 struct inet_connection_sock *icsk = inet_csk(sk);
621 * True wake-one mechanism for incoming connections: only
622 * one process gets woken up, not the 'whole herd'.
623 * Since we do not 'race & poll' for established sockets
624 * anymore, the common case will execute the loop only once.
626 * Subtle issue: "add_wait_queue_exclusive()" will be added
627 * after any current non-exclusive waiters, and we know that
628 * it will always _stay_ after any new non-exclusive waiters
629 * because all non-exclusive waiters are added at the
630 * beginning of the wait-queue. As such, it's ok to "drop"
631 * our exclusiveness temporarily when we get woken up without
632 * having to remove and re-insert us on the wait queue.
635 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
638 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
639 timeo = schedule_timeout(timeo);
640 sched_annotate_sleep();
643 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
646 if (sk->sk_state != TCP_LISTEN)
648 err = sock_intr_errno(timeo);
649 if (signal_pending(current))
655 finish_wait(sk_sleep(sk), &wait);
660 * This will accept the next outstanding connection.
662 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
664 struct inet_connection_sock *icsk = inet_csk(sk);
665 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
666 struct request_sock *req;
672 /* We need to make sure that this socket is listening,
673 * and that it has something pending.
676 if (sk->sk_state != TCP_LISTEN)
679 /* Find already established connection */
680 if (reqsk_queue_empty(queue)) {
681 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
683 /* If this is a non blocking socket don't sleep */
688 error = inet_csk_wait_for_connect(sk, timeo);
692 req = reqsk_queue_remove(queue, sk);
693 arg->is_empty = reqsk_queue_empty(queue);
696 if (sk->sk_protocol == IPPROTO_TCP &&
697 tcp_rsk(req)->tfo_listener) {
698 spin_lock_bh(&queue->fastopenq.lock);
699 if (tcp_rsk(req)->tfo_listener) {
700 /* We are still waiting for the final ACK from 3WHS
701 * so can't free req now. Instead, we set req->sk to
702 * NULL to signify that the child socket is taken
703 * so reqsk_fastopen_remove() will free the req
704 * when 3WHS finishes (or is aborted).
709 spin_unlock_bh(&queue->fastopenq.lock);
714 if (newsk && mem_cgroup_sockets_enabled) {
715 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
718 /* atomically get the memory usage, set and charge the
723 mem_cgroup_sk_alloc(newsk);
724 if (newsk->sk_memcg) {
725 /* The socket has not been accepted yet, no need
726 * to look at newsk->sk_wmem_queued.
728 amt = sk_mem_pages(newsk->sk_forward_alloc +
729 atomic_read(&newsk->sk_rmem_alloc));
733 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
734 kmem_cache_charge(newsk, gfp);
742 inet_init_csk_locks(newsk);
751 EXPORT_SYMBOL(inet_csk_accept);
754 * Using different timers for retransmit, delayed acks and probes
755 * We may wish use just one timer maintaining a list of expire jiffies
758 void inet_csk_init_xmit_timers(struct sock *sk,
759 void (*retransmit_handler)(struct timer_list *t),
760 void (*delack_handler)(struct timer_list *t),
761 void (*keepalive_handler)(struct timer_list *t))
763 struct inet_connection_sock *icsk = inet_csk(sk);
765 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
766 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
767 timer_setup(&sk->sk_timer, keepalive_handler, 0);
768 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
771 void inet_csk_clear_xmit_timers(struct sock *sk)
773 struct inet_connection_sock *icsk = inet_csk(sk);
775 smp_store_release(&icsk->icsk_pending, 0);
776 smp_store_release(&icsk->icsk_ack.pending, 0);
778 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
779 sk_stop_timer(sk, &icsk->icsk_delack_timer);
780 sk_stop_timer(sk, &sk->sk_timer);
783 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
785 struct inet_connection_sock *icsk = inet_csk(sk);
787 /* ongoing timer handlers need to acquire socket lock. */
788 sock_not_owned_by_me(sk);
790 smp_store_release(&icsk->icsk_pending, 0);
791 smp_store_release(&icsk->icsk_ack.pending, 0);
793 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
794 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
795 sk_stop_timer_sync(sk, &sk->sk_timer);
798 struct dst_entry *inet_csk_route_req(const struct sock *sk,
800 const struct request_sock *req)
802 const struct inet_request_sock *ireq = inet_rsk(req);
803 struct net *net = read_pnet(&ireq->ireq_net);
804 struct ip_options_rcu *opt;
808 opt = rcu_dereference(ireq->ireq_opt);
810 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
811 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
812 sk->sk_protocol, inet_sk_flowi_flags(sk),
813 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
814 ireq->ir_loc_addr, ireq->ir_rmt_port,
815 htons(ireq->ir_num), sk->sk_uid);
816 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
817 rt = ip_route_output_flow(net, fl4, sk);
820 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
829 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
833 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
835 const struct request_sock *req)
837 const struct inet_request_sock *ireq = inet_rsk(req);
838 struct net *net = read_pnet(&ireq->ireq_net);
839 struct inet_sock *newinet = inet_sk(newsk);
840 struct ip_options_rcu *opt;
844 opt = rcu_dereference(ireq->ireq_opt);
845 fl4 = &newinet->cork.fl.u.ip4;
847 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
848 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
849 sk->sk_protocol, inet_sk_flowi_flags(sk),
850 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
851 ireq->ir_loc_addr, ireq->ir_rmt_port,
852 htons(ireq->ir_num), sk->sk_uid);
853 security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
854 rt = ip_route_output_flow(net, fl4, sk);
857 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
864 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
867 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
869 /* Decide when to expire the request and when to resend SYN-ACK */
870 static void syn_ack_recalc(struct request_sock *req,
871 const int max_syn_ack_retries,
872 const u8 rskq_defer_accept,
873 int *expire, int *resend)
875 if (!rskq_defer_accept) {
876 *expire = req->num_timeout >= max_syn_ack_retries;
880 *expire = req->num_timeout >= max_syn_ack_retries &&
881 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
882 /* Do not resend while waiting for data after ACK,
883 * start to resend on end of deferring period to give
884 * last chance for data or ACK to create established socket.
886 *resend = !inet_rsk(req)->acked ||
887 req->num_timeout >= rskq_defer_accept - 1;
890 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
892 int err = req->rsk_ops->rtx_syn_ack(parent, req);
899 static struct request_sock *
900 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
901 bool attach_listener)
903 struct request_sock *req;
905 req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
908 req->rsk_listener = NULL;
909 if (attach_listener) {
910 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
911 kmem_cache_free(ops->slab, req);
914 req->rsk_listener = sk_listener;
917 req_to_sk(req)->sk_prot = sk_listener->sk_prot;
918 sk_node_init(&req_to_sk(req)->sk_node);
919 sk_tx_queue_clear(req_to_sk(req));
920 req->saved_syn = NULL;
923 req->num_timeout = 0;
924 req->num_retrans = 0;
926 refcount_set(&req->rsk_refcnt, 0);
930 #define reqsk_alloc(...) alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
932 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
933 struct sock *sk_listener,
934 bool attach_listener)
936 struct request_sock *req = reqsk_alloc(ops, sk_listener,
940 struct inet_request_sock *ireq = inet_rsk(req);
942 ireq->ireq_opt = NULL;
943 #if IS_ENABLED(CONFIG_IPV6)
944 ireq->pktopts = NULL;
946 atomic64_set(&ireq->ir_cookie, 0);
947 ireq->ireq_state = TCP_NEW_SYN_RECV;
948 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
949 ireq->ireq_family = sk_listener->sk_family;
950 req->timeout = TCP_TIMEOUT_INIT;
955 EXPORT_SYMBOL(inet_reqsk_alloc);
957 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
960 struct sock *req_sk, *nreq_sk;
961 struct request_sock *nreq;
963 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
965 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
967 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
972 req_sk = req_to_sk(req);
973 nreq_sk = req_to_sk(nreq);
975 memcpy(nreq_sk, req_sk,
976 offsetof(struct sock, sk_dontcopy_begin));
977 unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
978 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
979 /* alloc is larger than struct, see above */);
981 sk_node_init(&nreq_sk->sk_node);
982 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
983 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
984 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
986 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
988 nreq->rsk_listener = sk;
990 /* We need not acquire fastopenq->lock
991 * because the child socket is locked in inet_csk_listen_stop().
993 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
994 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
999 static void reqsk_queue_migrated(struct request_sock_queue *queue,
1000 const struct request_sock *req)
1002 if (req->num_timeout == 0)
1003 atomic_inc(&queue->young);
1004 atomic_inc(&queue->qlen);
1007 static void reqsk_migrate_reset(struct request_sock *req)
1009 req->saved_syn = NULL;
1010 #if IS_ENABLED(CONFIG_IPV6)
1011 inet_rsk(req)->ipv6_opt = NULL;
1012 inet_rsk(req)->pktopts = NULL;
1014 inet_rsk(req)->ireq_opt = NULL;
1018 /* return true if req was found in the ehash table */
1019 static bool reqsk_queue_unlink(struct request_sock *req)
1021 struct sock *sk = req_to_sk(req);
1024 if (sk_hashed(sk)) {
1025 struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
1028 lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1030 found = __sk_nulls_del_node_init_rcu(sk);
1037 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1038 struct request_sock *req,
1041 bool unlinked = reqsk_queue_unlink(req);
1043 if (!from_timer && timer_delete_sync(&req->rsk_timer))
1047 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1054 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1056 return __inet_csk_reqsk_queue_drop(sk, req, false);
1059 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1061 inet_csk_reqsk_queue_drop(sk, req);
1064 EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
1066 static void reqsk_timer_handler(struct timer_list *t)
1068 struct request_sock *req = timer_container_of(req, t, rsk_timer);
1069 struct request_sock *nreq = NULL, *oreq = req;
1070 struct sock *sk_listener = req->rsk_listener;
1071 struct inet_connection_sock *icsk;
1072 struct request_sock_queue *queue;
1074 int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1076 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1079 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1083 nreq = inet_reqsk_clone(req, nsk);
1087 /* The new timer for the cloned req can decrease the 2
1088 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1089 * hold another count to prevent use-after-free and
1090 * call reqsk_put() just before return.
1092 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1093 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1094 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1100 icsk = inet_csk(sk_listener);
1101 net = sock_net(sk_listener);
1102 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1103 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1104 /* Normally all the openreqs are young and become mature
1105 * (i.e. converted to established socket) for first timeout.
1106 * If synack was not acknowledged for 1 second, it means
1107 * one of the following things: synack was lost, ack was lost,
1108 * rtt is high or nobody planned to ack (i.e. synflood).
1109 * When server is a bit loaded, queue is populated with old
1110 * open requests, reducing effective size of queue.
1111 * When server is well loaded, queue size reduces to zero
1112 * after several minutes of work. It is not synflood,
1113 * it is normal operation. The solution is pruning
1114 * too old entries overriding normal timeout, when
1115 * situation becomes dangerous.
1117 * Essentially, we reserve half of room for young
1118 * embrions; and abort old ones without pity, if old
1119 * ones are about to clog our table.
1121 queue = &icsk->icsk_accept_queue;
1122 qlen = reqsk_queue_len(queue);
1123 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1124 int young = reqsk_queue_len_young(queue) << 1;
1126 while (max_syn_ack_retries > 2) {
1129 max_syn_ack_retries--;
1133 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1135 req->rsk_ops->syn_ack_timeout(req);
1138 !inet_rtx_syn_ack(sk_listener, req) ||
1139 inet_rsk(req)->acked)) {
1140 if (req->num_timeout++ == 0)
1141 atomic_dec(&queue->young);
1142 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1147 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1149 __inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1153 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1154 reqsk_migrate_reset(oreq);
1155 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1162 /* Even if we can clone the req, we may need not retransmit any more
1163 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1164 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1167 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1169 reqsk_migrate_reset(nreq);
1170 reqsk_queue_removed(queue, nreq);
1175 __inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1179 static bool reqsk_queue_hash_req(struct request_sock *req,
1180 unsigned long timeout)
1182 bool found_dup_sk = false;
1184 if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1187 /* The timer needs to be setup after a successful insertion. */
1188 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1189 mod_timer(&req->rsk_timer, jiffies + timeout);
1191 /* before letting lookups find us, make sure all req fields
1192 * are committed to memory and refcnt initialized.
1195 refcount_set(&req->rsk_refcnt, 2 + 1);
1199 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1200 unsigned long timeout)
1202 if (!reqsk_queue_hash_req(req, timeout))
1205 inet_csk_reqsk_queue_added(sk);
1209 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1210 const gfp_t priority)
1212 struct inet_connection_sock *icsk = inet_csk(newsk);
1214 if (!icsk->icsk_ulp_ops)
1217 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1221 * inet_csk_clone_lock - clone an inet socket, and lock its clone
1222 * @sk: the socket to clone
1223 * @req: request_sock
1224 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1226 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1228 struct sock *inet_csk_clone_lock(const struct sock *sk,
1229 const struct request_sock *req,
1230 const gfp_t priority)
1232 struct sock *newsk = sk_clone_lock(sk, priority);
1233 struct inet_connection_sock *newicsk;
1234 struct inet_request_sock *ireq;
1235 struct inet_sock *newinet;
1240 newicsk = inet_csk(newsk);
1241 newinet = inet_sk(newsk);
1242 ireq = inet_rsk(req);
1244 newicsk->icsk_bind_hash = NULL;
1245 newicsk->icsk_bind2_hash = NULL;
1247 newinet->inet_dport = ireq->ir_rmt_port;
1248 newinet->inet_num = ireq->ir_num;
1249 newinet->inet_sport = htons(ireq->ir_num);
1251 newsk->sk_bound_dev_if = ireq->ir_iif;
1253 newsk->sk_daddr = ireq->ir_rmt_addr;
1254 newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1255 newinet->inet_saddr = ireq->ir_loc_addr;
1257 #if IS_ENABLED(CONFIG_IPV6)
1258 newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1259 newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1262 /* listeners have SOCK_RCU_FREE, not the children */
1263 sock_reset_flag(newsk, SOCK_RCU_FREE);
1265 inet_sk(newsk)->mc_list = NULL;
1267 newsk->sk_mark = inet_rsk(req)->ir_mark;
1268 atomic64_set(&newsk->sk_cookie,
1269 atomic64_read(&inet_rsk(req)->ir_cookie));
1271 newicsk->icsk_retransmits = 0;
1272 newicsk->icsk_backoff = 0;
1273 newicsk->icsk_probes_out = 0;
1274 newicsk->icsk_probes_tstamp = 0;
1276 /* Deinitialize accept_queue to trap illegal accesses. */
1277 memset(&newicsk->icsk_accept_queue, 0,
1278 sizeof(newicsk->icsk_accept_queue));
1280 inet_sk_set_state(newsk, TCP_SYN_RECV);
1282 inet_clone_ulp(req, newsk, priority);
1284 security_inet_csk_clone(newsk, req);
1290 * At this point, there should be no process reference to this
1291 * socket, and thus no user references at all. Therefore we
1292 * can assume the socket waitqueue is inactive and nobody will
1293 * try to jump onto it.
1295 void inet_csk_destroy_sock(struct sock *sk)
1297 WARN_ON(sk->sk_state != TCP_CLOSE);
1298 WARN_ON(!sock_flag(sk, SOCK_DEAD));
1300 /* It cannot be in hash table! */
1301 WARN_ON(!sk_unhashed(sk));
1303 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1304 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1306 sk->sk_prot->destroy(sk);
1308 sk_stream_kill_queues(sk);
1310 xfrm_sk_free_policy(sk);
1312 this_cpu_dec(*sk->sk_prot->orphan_count);
1316 EXPORT_SYMBOL(inet_csk_destroy_sock);
1318 /* This function allows to force a closure of a socket after the call to
1319 * tcp_create_openreq_child().
1321 void inet_csk_prepare_forced_close(struct sock *sk)
1322 __releases(&sk->sk_lock.slock)
1324 /* sk_clone_lock locked the socket and set refcnt to 2 */
1327 inet_csk_prepare_for_destroy_sock(sk);
1328 inet_sk(sk)->inet_num = 0;
1330 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1332 static int inet_ulp_can_listen(const struct sock *sk)
1334 const struct inet_connection_sock *icsk = inet_csk(sk);
1336 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1342 int inet_csk_listen_start(struct sock *sk)
1344 struct inet_connection_sock *icsk = inet_csk(sk);
1345 struct inet_sock *inet = inet_sk(sk);
1348 err = inet_ulp_can_listen(sk);
1352 reqsk_queue_alloc(&icsk->icsk_accept_queue);
1354 sk->sk_ack_backlog = 0;
1355 inet_csk_delack_init(sk);
1357 /* There is race window here: we announce ourselves listening,
1358 * but this transition is still not validated by get_port().
1359 * It is OK, because this socket enters to hash table only
1360 * after validation is complete.
1362 inet_sk_state_store(sk, TCP_LISTEN);
1363 err = sk->sk_prot->get_port(sk, inet->inet_num);
1365 inet->inet_sport = htons(inet->inet_num);
1368 err = sk->sk_prot->hash(sk);
1374 inet_sk_set_state(sk, TCP_CLOSE);
1378 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1381 sk->sk_prot->disconnect(child, O_NONBLOCK);
1385 this_cpu_inc(*sk->sk_prot->orphan_count);
1387 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1388 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1389 BUG_ON(sk != req->rsk_listener);
1391 /* Paranoid, to prevent race condition if
1392 * an inbound pkt destined for child is
1393 * blocked by sock lock in tcp_v4_rcv().
1394 * Also to satisfy an assertion in
1395 * tcp_v4_destroy_sock().
1397 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1399 inet_csk_destroy_sock(child);
1402 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1403 struct request_sock *req,
1406 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1408 spin_lock(&queue->rskq_lock);
1409 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1410 inet_child_forget(sk, req, child);
1414 req->dl_next = NULL;
1415 if (queue->rskq_accept_head == NULL)
1416 WRITE_ONCE(queue->rskq_accept_head, req);
1418 queue->rskq_accept_tail->dl_next = req;
1419 queue->rskq_accept_tail = req;
1420 sk_acceptq_added(sk);
1422 spin_unlock(&queue->rskq_lock);
1425 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1427 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1428 struct request_sock *req, bool own_req)
1431 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1432 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1434 if (sk != req->rsk_listener) {
1435 /* another listening sk has been selected,
1436 * migrate the req to it.
1438 struct request_sock *nreq;
1440 /* hold a refcnt for the nreq->rsk_listener
1441 * which is assigned in inet_reqsk_clone()
1444 nreq = inet_reqsk_clone(req, sk);
1446 inet_child_forget(sk, req, child);
1450 refcount_set(&nreq->rsk_refcnt, 1);
1451 if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1452 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1453 reqsk_migrate_reset(req);
1458 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1459 reqsk_migrate_reset(nreq);
1461 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1465 /* Too bad, another child took ownership of the request, undo. */
1467 bh_unlock_sock(child);
1473 * This routine closes sockets which have been at least partially
1474 * opened, but not yet accepted.
1476 void inet_csk_listen_stop(struct sock *sk)
1478 struct inet_connection_sock *icsk = inet_csk(sk);
1479 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1480 struct request_sock *next, *req;
1482 /* Following specs, it would be better either to send FIN
1483 * (and enter FIN-WAIT-1, it is normal close)
1484 * or to send active reset (abort).
1485 * Certainly, it is pretty dangerous while synflood, but it is
1486 * bad justification for our negligence 8)
1487 * To be honest, we are not able to make either
1488 * of the variants now. --ANK
1490 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1491 struct sock *child = req->sk, *nsk;
1492 struct request_sock *nreq;
1495 bh_lock_sock(child);
1496 WARN_ON(sock_owned_by_user(child));
1499 nsk = reuseport_migrate_sock(sk, child, NULL);
1501 nreq = inet_reqsk_clone(req, nsk);
1503 refcount_set(&nreq->rsk_refcnt, 1);
1505 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1506 __NET_INC_STATS(sock_net(nsk),
1507 LINUX_MIB_TCPMIGRATEREQSUCCESS);
1508 reqsk_migrate_reset(req);
1510 __NET_INC_STATS(sock_net(nsk),
1511 LINUX_MIB_TCPMIGRATEREQFAILURE);
1512 reqsk_migrate_reset(nreq);
1516 /* inet_csk_reqsk_queue_add() has already
1517 * called inet_child_forget() on failure case.
1519 goto skip_child_forget;
1523 inet_child_forget(sk, req, child);
1526 bh_unlock_sock(child);
1532 if (queue->fastopenq.rskq_rst_head) {
1533 /* Free all the reqs queued in rskq_rst_head. */
1534 spin_lock_bh(&queue->fastopenq.lock);
1535 req = queue->fastopenq.rskq_rst_head;
1536 queue->fastopenq.rskq_rst_head = NULL;
1537 spin_unlock_bh(&queue->fastopenq.lock);
1538 while (req != NULL) {
1539 next = req->dl_next;
1544 WARN_ON_ONCE(sk->sk_ack_backlog);
1546 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1548 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1550 const struct inet_sock *inet = inet_sk(sk);
1556 inet_sk_init_flowi4(inet, fl4);
1557 rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1561 sk_setup_caps(sk, &rt->dst);
1567 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1569 struct dst_entry *dst = __sk_dst_check(sk, 0);
1570 struct inet_sock *inet = inet_sk(sk);
1573 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1577 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1579 dst = __sk_dst_check(sk, 0);
1581 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);