6906bedad19a13d3f62100058d6a20debbf6a88e
[linux-2.6-block.git] / net / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *                              if IPv6 only, and any IPv4 addresses
29  *                              if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *                              and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35                                  const struct in6_addr *sk2_rcv_saddr6,
36                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37                                  bool sk1_ipv6only, bool sk2_ipv6only,
38                                  bool match_sk1_wildcard,
39                                  bool match_sk2_wildcard)
40 {
41         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44         /* if both are mapped, treat as IPv4 */
45         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46                 if (!sk2_ipv6only) {
47                         if (sk1_rcv_saddr == sk2_rcv_saddr)
48                                 return true;
49                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50                                 (match_sk2_wildcard && !sk2_rcv_saddr);
51                 }
52                 return false;
53         }
54
55         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56                 return true;
57
58         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60                 return true;
61
62         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64                 return true;
65
66         if (sk2_rcv_saddr6 &&
67             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68                 return true;
69
70         return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *                              0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79                                  bool sk2_ipv6only, bool match_sk1_wildcard,
80                                  bool match_sk2_wildcard)
81 {
82         if (!sk2_ipv6only) {
83                 if (sk1_rcv_saddr == sk2_rcv_saddr)
84                         return true;
85                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86                         (match_sk2_wildcard && !sk2_rcv_saddr);
87         }
88         return false;
89 }
90
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92                           bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95         if (sk->sk_family == AF_INET6)
96                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97                                             inet6_rcv_saddr(sk2),
98                                             sk->sk_rcv_saddr,
99                                             sk2->sk_rcv_saddr,
100                                             ipv6_only_sock(sk),
101                                             ipv6_only_sock(sk2),
102                                             match_wildcard,
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard,
107                                     match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114         if (sk->sk_family == AF_INET6)
115                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117         return !sk->sk_rcv_saddr;
118 }
119
120 /**
121  *      inet_sk_get_local_port_range - fetch ephemeral ports range
122  *      @sk: socket
123  *      @low: pointer to low port
124  *      @high: pointer to high port
125  *
126  *      Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127  *      Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128  *      Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129  */
130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132         int lo, hi, sk_lo, sk_hi;
133         bool local_range = false;
134         u32 sk_range;
135
136         inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138         sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139         if (unlikely(sk_range)) {
140                 sk_lo = sk_range & 0xffff;
141                 sk_hi = sk_range >> 16;
142
143                 if (lo <= sk_lo && sk_lo <= hi)
144                         lo = sk_lo;
145                 if (lo <= sk_hi && sk_hi <= hi)
146                         hi = sk_hi;
147                 local_range = true;
148         }
149
150         *low = lo;
151         *high = hi;
152         return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159         if (sk->sk_family == AF_INET6) {
160                 if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
161                         return false;
162
163                 if (!ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
164                         return true;
165         }
166 #endif
167         return sk->sk_rcv_saddr != htonl(INADDR_ANY);
168 }
169
170 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
171                                kuid_t sk_uid, bool relax,
172                                bool reuseport_cb_ok, bool reuseport_ok)
173 {
174         int bound_dev_if2;
175
176         if (sk == sk2)
177                 return false;
178
179         bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
180
181         if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
182             sk->sk_bound_dev_if == bound_dev_if2) {
183                 if (sk->sk_reuse && sk2->sk_reuse &&
184                     sk2->sk_state != TCP_LISTEN) {
185                         if (!relax || (!reuseport_ok && sk->sk_reuseport &&
186                                        sk2->sk_reuseport && reuseport_cb_ok &&
187                                        (sk2->sk_state == TCP_TIME_WAIT ||
188                                         uid_eq(sk_uid, sock_i_uid(sk2)))))
189                                 return true;
190                 } else if (!reuseport_ok || !sk->sk_reuseport ||
191                            !sk2->sk_reuseport || !reuseport_cb_ok ||
192                            (sk2->sk_state != TCP_TIME_WAIT &&
193                             !uid_eq(sk_uid, sock_i_uid(sk2)))) {
194                         return true;
195                 }
196         }
197         return false;
198 }
199
200 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
201                                    kuid_t sk_uid, bool relax,
202                                    bool reuseport_cb_ok, bool reuseport_ok)
203 {
204         if (ipv6_only_sock(sk2)) {
205                 if (sk->sk_family == AF_INET)
206                         return false;
207
208 #if IS_ENABLED(CONFIG_IPV6)
209                 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
210                         return false;
211 #endif
212         }
213
214         return inet_bind_conflict(sk, sk2, sk_uid, relax,
215                                   reuseport_cb_ok, reuseport_ok);
216 }
217
218 static bool inet_bhash2_conflict(const struct sock *sk,
219                                  const struct inet_bind2_bucket *tb2,
220                                  kuid_t sk_uid,
221                                  bool relax, bool reuseport_cb_ok,
222                                  bool reuseport_ok)
223 {
224         struct sock *sk2;
225
226         sk_for_each_bound(sk2, &tb2->owners) {
227                 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
228                                            reuseport_cb_ok, reuseport_ok))
229                         return true;
230         }
231
232         return false;
233 }
234
235 #define sk_for_each_bound_bhash(__sk, __tb2, __tb)                      \
236         hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)        \
237                 sk_for_each_bound((__sk), &(__tb2)->owners)
238
239 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
240 static int inet_csk_bind_conflict(const struct sock *sk,
241                                   const struct inet_bind_bucket *tb,
242                                   const struct inet_bind2_bucket *tb2, /* may be null */
243                                   bool relax, bool reuseport_ok)
244 {
245         kuid_t uid = sock_i_uid((struct sock *)sk);
246         struct sock_reuseport *reuseport_cb;
247         bool reuseport_cb_ok;
248         struct sock *sk2;
249
250         rcu_read_lock();
251         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
252         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
253         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
254         rcu_read_unlock();
255
256         /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
257          * ipv4) should have been checked already. We need to do these two
258          * checks separately because their spinlocks have to be acquired/released
259          * independently of each other, to prevent possible deadlocks
260          */
261         if (inet_use_bhash2_on_bind(sk))
262                 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
263                                                    reuseport_cb_ok, reuseport_ok);
264
265         /* Unlike other sk lookup places we do not check
266          * for sk_net here, since _all_ the socks listed
267          * in tb->owners and tb2->owners list belong
268          * to the same net - the one this bucket belongs to.
269          */
270         sk_for_each_bound_bhash(sk2, tb2, tb) {
271                 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
272                         continue;
273
274                 if (inet_rcv_saddr_equal(sk, sk2, true))
275                         return true;
276         }
277
278         return false;
279 }
280
281 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
282  * INADDR_ANY (if ipv4) socket.
283  *
284  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
285  * against concurrent binds on the port for addr any
286  */
287 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
288                                           bool relax, bool reuseport_ok)
289 {
290         kuid_t uid = sock_i_uid((struct sock *)sk);
291         const struct net *net = sock_net(sk);
292         struct sock_reuseport *reuseport_cb;
293         struct inet_bind_hashbucket *head2;
294         struct inet_bind2_bucket *tb2;
295         bool conflict = false;
296         bool reuseport_cb_ok;
297
298         rcu_read_lock();
299         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
300         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
301         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
302         rcu_read_unlock();
303
304         head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
305
306         spin_lock(&head2->lock);
307
308         inet_bind_bucket_for_each(tb2, &head2->chain) {
309                 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
310                         continue;
311
312                 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
313                         continue;
314
315                 conflict = true;
316                 break;
317         }
318
319         spin_unlock(&head2->lock);
320
321         return conflict;
322 }
323
324 /*
325  * Find an open port number for the socket.  Returns with the
326  * inet_bind_hashbucket locks held if successful.
327  */
328 static struct inet_bind_hashbucket *
329 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
330                         struct inet_bind2_bucket **tb2_ret,
331                         struct inet_bind_hashbucket **head2_ret, int *port_ret)
332 {
333         struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
334         int i, low, high, attempt_half, port, l3mdev;
335         struct inet_bind_hashbucket *head, *head2;
336         struct net *net = sock_net(sk);
337         struct inet_bind2_bucket *tb2;
338         struct inet_bind_bucket *tb;
339         u32 remaining, offset;
340         bool relax = false;
341
342         l3mdev = inet_sk_bound_l3mdev(sk);
343 ports_exhausted:
344         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
345 other_half_scan:
346         inet_sk_get_local_port_range(sk, &low, &high);
347         high++; /* [32768, 60999] -> [32768, 61000[ */
348         if (high - low < 4)
349                 attempt_half = 0;
350         if (attempt_half) {
351                 int half = low + (((high - low) >> 2) << 1);
352
353                 if (attempt_half == 1)
354                         high = half;
355                 else
356                         low = half;
357         }
358         remaining = high - low;
359         if (likely(remaining > 1))
360                 remaining &= ~1U;
361
362         offset = get_random_u32_below(remaining);
363         /* __inet_hash_connect() favors ports having @low parity
364          * We do the opposite to not pollute connect() users.
365          */
366         offset |= 1U;
367
368 other_parity_scan:
369         port = low + offset;
370         for (i = 0; i < remaining; i += 2, port += 2) {
371                 if (unlikely(port >= high))
372                         port -= remaining;
373                 if (inet_is_local_reserved_port(net, port))
374                         continue;
375                 head = &hinfo->bhash[inet_bhashfn(net, port,
376                                                   hinfo->bhash_size)];
377                 spin_lock_bh(&head->lock);
378                 if (inet_use_bhash2_on_bind(sk)) {
379                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
380                                 goto next_port;
381                 }
382
383                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
384                 spin_lock(&head2->lock);
385                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
386                 inet_bind_bucket_for_each(tb, &head->chain)
387                         if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
388                                 if (!inet_csk_bind_conflict(sk, tb, tb2,
389                                                             relax, false))
390                                         goto success;
391                                 spin_unlock(&head2->lock);
392                                 goto next_port;
393                         }
394                 tb = NULL;
395                 goto success;
396 next_port:
397                 spin_unlock_bh(&head->lock);
398                 cond_resched();
399         }
400
401         offset--;
402         if (!(offset & 1))
403                 goto other_parity_scan;
404
405         if (attempt_half == 1) {
406                 /* OK we now try the upper half of the range */
407                 attempt_half = 2;
408                 goto other_half_scan;
409         }
410
411         if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
412                 /* We still have a chance to connect to different destinations */
413                 relax = true;
414                 goto ports_exhausted;
415         }
416         return NULL;
417 success:
418         *port_ret = port;
419         *tb_ret = tb;
420         *tb2_ret = tb2;
421         *head2_ret = head2;
422         return head;
423 }
424
425 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
426                                      struct sock *sk)
427 {
428         kuid_t uid = sock_i_uid(sk);
429
430         if (tb->fastreuseport <= 0)
431                 return 0;
432         if (!sk->sk_reuseport)
433                 return 0;
434         if (rcu_access_pointer(sk->sk_reuseport_cb))
435                 return 0;
436         if (!uid_eq(tb->fastuid, uid))
437                 return 0;
438         /* We only need to check the rcv_saddr if this tb was once marked
439          * without fastreuseport and then was reset, as we can only know that
440          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
441          * owners list.
442          */
443         if (tb->fastreuseport == FASTREUSEPORT_ANY)
444                 return 1;
445 #if IS_ENABLED(CONFIG_IPV6)
446         if (tb->fast_sk_family == AF_INET6)
447                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
448                                             inet6_rcv_saddr(sk),
449                                             tb->fast_rcv_saddr,
450                                             sk->sk_rcv_saddr,
451                                             tb->fast_ipv6_only,
452                                             ipv6_only_sock(sk), true, false);
453 #endif
454         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
455                                     ipv6_only_sock(sk), true, false);
456 }
457
458 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
459                                struct sock *sk)
460 {
461         kuid_t uid = sock_i_uid(sk);
462         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
463
464         if (hlist_empty(&tb->bhash2)) {
465                 tb->fastreuse = reuse;
466                 if (sk->sk_reuseport) {
467                         tb->fastreuseport = FASTREUSEPORT_ANY;
468                         tb->fastuid = uid;
469                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
470                         tb->fast_ipv6_only = ipv6_only_sock(sk);
471                         tb->fast_sk_family = sk->sk_family;
472 #if IS_ENABLED(CONFIG_IPV6)
473                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
474 #endif
475                 } else {
476                         tb->fastreuseport = 0;
477                 }
478         } else {
479                 if (!reuse)
480                         tb->fastreuse = 0;
481                 if (sk->sk_reuseport) {
482                         /* We didn't match or we don't have fastreuseport set on
483                          * the tb, but we have sk_reuseport set on this socket
484                          * and we know that there are no bind conflicts with
485                          * this socket in this tb, so reset our tb's reuseport
486                          * settings so that any subsequent sockets that match
487                          * our current socket will be put on the fast path.
488                          *
489                          * If we reset we need to set FASTREUSEPORT_STRICT so we
490                          * do extra checking for all subsequent sk_reuseport
491                          * socks.
492                          */
493                         if (!sk_reuseport_match(tb, sk)) {
494                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
495                                 tb->fastuid = uid;
496                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
497                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
498                                 tb->fast_sk_family = sk->sk_family;
499 #if IS_ENABLED(CONFIG_IPV6)
500                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
501 #endif
502                         }
503                 } else {
504                         tb->fastreuseport = 0;
505                 }
506         }
507 }
508
509 /* Obtain a reference to a local port for the given sock,
510  * if snum is zero it means select any available local port.
511  * We try to allocate an odd port (and leave even ports for connect())
512  */
513 int inet_csk_get_port(struct sock *sk, unsigned short snum)
514 {
515         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
516         bool found_port = false, check_bind_conflict = true;
517         bool bhash_created = false, bhash2_created = false;
518         struct inet_hashinfo *hinfo = tcp_get_hashinfo(sk);
519         int ret = -EADDRINUSE, port = snum, l3mdev;
520         struct inet_bind_hashbucket *head, *head2;
521         struct inet_bind2_bucket *tb2 = NULL;
522         struct inet_bind_bucket *tb = NULL;
523         bool head2_lock_acquired = false;
524         struct net *net = sock_net(sk);
525
526         l3mdev = inet_sk_bound_l3mdev(sk);
527
528         if (!port) {
529                 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
530                 if (!head)
531                         return ret;
532
533                 head2_lock_acquired = true;
534
535                 if (tb && tb2)
536                         goto success;
537                 found_port = true;
538         } else {
539                 head = &hinfo->bhash[inet_bhashfn(net, port,
540                                                   hinfo->bhash_size)];
541                 spin_lock_bh(&head->lock);
542                 inet_bind_bucket_for_each(tb, &head->chain)
543                         if (inet_bind_bucket_match(tb, net, port, l3mdev))
544                                 break;
545         }
546
547         if (!tb) {
548                 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
549                                              head, port, l3mdev);
550                 if (!tb)
551                         goto fail_unlock;
552                 bhash_created = true;
553         }
554
555         if (!found_port) {
556                 if (!hlist_empty(&tb->bhash2)) {
557                         if (sk->sk_reuse == SK_FORCE_REUSE ||
558                             (tb->fastreuse > 0 && reuse) ||
559                             sk_reuseport_match(tb, sk))
560                                 check_bind_conflict = false;
561                 }
562
563                 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
564                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
565                                 goto fail_unlock;
566                 }
567
568                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
569                 spin_lock(&head2->lock);
570                 head2_lock_acquired = true;
571                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
572         }
573
574         if (!tb2) {
575                 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
576                                                net, head2, tb, sk);
577                 if (!tb2)
578                         goto fail_unlock;
579                 bhash2_created = true;
580         }
581
582         if (!found_port && check_bind_conflict) {
583                 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
584                         goto fail_unlock;
585         }
586
587 success:
588         inet_csk_update_fastreuse(tb, sk);
589
590         if (!inet_csk(sk)->icsk_bind_hash)
591                 inet_bind_hash(sk, tb, tb2, port);
592         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
593         WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
594         ret = 0;
595
596 fail_unlock:
597         if (ret) {
598                 if (bhash2_created)
599                         inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
600                 if (bhash_created)
601                         inet_bind_bucket_destroy(tb);
602         }
603         if (head2_lock_acquired)
604                 spin_unlock(&head2->lock);
605         spin_unlock_bh(&head->lock);
606         return ret;
607 }
608 EXPORT_SYMBOL_GPL(inet_csk_get_port);
609
610 /*
611  * Wait for an incoming connection, avoid race conditions. This must be called
612  * with the socket locked.
613  */
614 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
615 {
616         struct inet_connection_sock *icsk = inet_csk(sk);
617         DEFINE_WAIT(wait);
618         int err;
619
620         /*
621          * True wake-one mechanism for incoming connections: only
622          * one process gets woken up, not the 'whole herd'.
623          * Since we do not 'race & poll' for established sockets
624          * anymore, the common case will execute the loop only once.
625          *
626          * Subtle issue: "add_wait_queue_exclusive()" will be added
627          * after any current non-exclusive waiters, and we know that
628          * it will always _stay_ after any new non-exclusive waiters
629          * because all non-exclusive waiters are added at the
630          * beginning of the wait-queue. As such, it's ok to "drop"
631          * our exclusiveness temporarily when we get woken up without
632          * having to remove and re-insert us on the wait queue.
633          */
634         for (;;) {
635                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
636                                           TASK_INTERRUPTIBLE);
637                 release_sock(sk);
638                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
639                         timeo = schedule_timeout(timeo);
640                 sched_annotate_sleep();
641                 lock_sock(sk);
642                 err = 0;
643                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
644                         break;
645                 err = -EINVAL;
646                 if (sk->sk_state != TCP_LISTEN)
647                         break;
648                 err = sock_intr_errno(timeo);
649                 if (signal_pending(current))
650                         break;
651                 err = -EAGAIN;
652                 if (!timeo)
653                         break;
654         }
655         finish_wait(sk_sleep(sk), &wait);
656         return err;
657 }
658
659 /*
660  * This will accept the next outstanding connection.
661  */
662 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
663 {
664         struct inet_connection_sock *icsk = inet_csk(sk);
665         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
666         struct request_sock *req;
667         struct sock *newsk;
668         int error;
669
670         lock_sock(sk);
671
672         /* We need to make sure that this socket is listening,
673          * and that it has something pending.
674          */
675         error = -EINVAL;
676         if (sk->sk_state != TCP_LISTEN)
677                 goto out_err;
678
679         /* Find already established connection */
680         if (reqsk_queue_empty(queue)) {
681                 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
682
683                 /* If this is a non blocking socket don't sleep */
684                 error = -EAGAIN;
685                 if (!timeo)
686                         goto out_err;
687
688                 error = inet_csk_wait_for_connect(sk, timeo);
689                 if (error)
690                         goto out_err;
691         }
692         req = reqsk_queue_remove(queue, sk);
693         arg->is_empty = reqsk_queue_empty(queue);
694         newsk = req->sk;
695
696         if (sk->sk_protocol == IPPROTO_TCP &&
697             tcp_rsk(req)->tfo_listener) {
698                 spin_lock_bh(&queue->fastopenq.lock);
699                 if (tcp_rsk(req)->tfo_listener) {
700                         /* We are still waiting for the final ACK from 3WHS
701                          * so can't free req now. Instead, we set req->sk to
702                          * NULL to signify that the child socket is taken
703                          * so reqsk_fastopen_remove() will free the req
704                          * when 3WHS finishes (or is aborted).
705                          */
706                         req->sk = NULL;
707                         req = NULL;
708                 }
709                 spin_unlock_bh(&queue->fastopenq.lock);
710         }
711
712 out:
713         release_sock(sk);
714         if (newsk && mem_cgroup_sockets_enabled) {
715                 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
716                 int amt = 0;
717
718                 /* atomically get the memory usage, set and charge the
719                  * newsk->sk_memcg.
720                  */
721                 lock_sock(newsk);
722
723                 mem_cgroup_sk_alloc(newsk);
724                 if (newsk->sk_memcg) {
725                         /* The socket has not been accepted yet, no need
726                          * to look at newsk->sk_wmem_queued.
727                          */
728                         amt = sk_mem_pages(newsk->sk_forward_alloc +
729                                            atomic_read(&newsk->sk_rmem_alloc));
730                 }
731
732                 if (amt)
733                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt, gfp);
734                 kmem_cache_charge(newsk, gfp);
735
736                 release_sock(newsk);
737         }
738         if (req)
739                 reqsk_put(req);
740
741         if (newsk)
742                 inet_init_csk_locks(newsk);
743
744         return newsk;
745 out_err:
746         newsk = NULL;
747         req = NULL;
748         arg->err = error;
749         goto out;
750 }
751 EXPORT_SYMBOL(inet_csk_accept);
752
753 /*
754  * Using different timers for retransmit, delayed acks and probes
755  * We may wish use just one timer maintaining a list of expire jiffies
756  * to optimize.
757  */
758 void inet_csk_init_xmit_timers(struct sock *sk,
759                                void (*retransmit_handler)(struct timer_list *t),
760                                void (*delack_handler)(struct timer_list *t),
761                                void (*keepalive_handler)(struct timer_list *t))
762 {
763         struct inet_connection_sock *icsk = inet_csk(sk);
764
765         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
766         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
767         timer_setup(&sk->sk_timer, keepalive_handler, 0);
768         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
769 }
770
771 void inet_csk_clear_xmit_timers(struct sock *sk)
772 {
773         struct inet_connection_sock *icsk = inet_csk(sk);
774
775         smp_store_release(&icsk->icsk_pending, 0);
776         smp_store_release(&icsk->icsk_ack.pending, 0);
777
778         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
779         sk_stop_timer(sk, &icsk->icsk_delack_timer);
780         sk_stop_timer(sk, &sk->sk_timer);
781 }
782
783 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
784 {
785         struct inet_connection_sock *icsk = inet_csk(sk);
786
787         /* ongoing timer handlers need to acquire socket lock. */
788         sock_not_owned_by_me(sk);
789
790         smp_store_release(&icsk->icsk_pending, 0);
791         smp_store_release(&icsk->icsk_ack.pending, 0);
792
793         sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
794         sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
795         sk_stop_timer_sync(sk, &sk->sk_timer);
796 }
797
798 struct dst_entry *inet_csk_route_req(const struct sock *sk,
799                                      struct flowi4 *fl4,
800                                      const struct request_sock *req)
801 {
802         const struct inet_request_sock *ireq = inet_rsk(req);
803         struct net *net = read_pnet(&ireq->ireq_net);
804         struct ip_options_rcu *opt;
805         struct rtable *rt;
806
807         rcu_read_lock();
808         opt = rcu_dereference(ireq->ireq_opt);
809
810         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
811                            ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
812                            sk->sk_protocol, inet_sk_flowi_flags(sk),
813                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
814                            ireq->ir_loc_addr, ireq->ir_rmt_port,
815                            htons(ireq->ir_num), sk->sk_uid);
816         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
817         rt = ip_route_output_flow(net, fl4, sk);
818         if (IS_ERR(rt))
819                 goto no_route;
820         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
821                 goto route_err;
822         rcu_read_unlock();
823         return &rt->dst;
824
825 route_err:
826         ip_rt_put(rt);
827 no_route:
828         rcu_read_unlock();
829         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
830         return NULL;
831 }
832
833 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
834                                             struct sock *newsk,
835                                             const struct request_sock *req)
836 {
837         const struct inet_request_sock *ireq = inet_rsk(req);
838         struct net *net = read_pnet(&ireq->ireq_net);
839         struct inet_sock *newinet = inet_sk(newsk);
840         struct ip_options_rcu *opt;
841         struct flowi4 *fl4;
842         struct rtable *rt;
843
844         opt = rcu_dereference(ireq->ireq_opt);
845         fl4 = &newinet->cork.fl.u.ip4;
846
847         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
848                            ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
849                            sk->sk_protocol, inet_sk_flowi_flags(sk),
850                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
851                            ireq->ir_loc_addr, ireq->ir_rmt_port,
852                            htons(ireq->ir_num), sk->sk_uid);
853         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
854         rt = ip_route_output_flow(net, fl4, sk);
855         if (IS_ERR(rt))
856                 goto no_route;
857         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
858                 goto route_err;
859         return &rt->dst;
860
861 route_err:
862         ip_rt_put(rt);
863 no_route:
864         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
865         return NULL;
866 }
867 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
868
869 /* Decide when to expire the request and when to resend SYN-ACK */
870 static void syn_ack_recalc(struct request_sock *req,
871                            const int max_syn_ack_retries,
872                            const u8 rskq_defer_accept,
873                            int *expire, int *resend)
874 {
875         if (!rskq_defer_accept) {
876                 *expire = req->num_timeout >= max_syn_ack_retries;
877                 *resend = 1;
878                 return;
879         }
880         *expire = req->num_timeout >= max_syn_ack_retries &&
881                   (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
882         /* Do not resend while waiting for data after ACK,
883          * start to resend on end of deferring period to give
884          * last chance for data or ACK to create established socket.
885          */
886         *resend = !inet_rsk(req)->acked ||
887                   req->num_timeout >= rskq_defer_accept - 1;
888 }
889
890 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
891 {
892         int err = req->rsk_ops->rtx_syn_ack(parent, req);
893
894         if (!err)
895                 req->num_retrans++;
896         return err;
897 }
898
899 static struct request_sock *
900 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
901                    bool attach_listener)
902 {
903         struct request_sock *req;
904
905         req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
906         if (!req)
907                 return NULL;
908         req->rsk_listener = NULL;
909         if (attach_listener) {
910                 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
911                         kmem_cache_free(ops->slab, req);
912                         return NULL;
913                 }
914                 req->rsk_listener = sk_listener;
915         }
916         req->rsk_ops = ops;
917         req_to_sk(req)->sk_prot = sk_listener->sk_prot;
918         sk_node_init(&req_to_sk(req)->sk_node);
919         sk_tx_queue_clear(req_to_sk(req));
920         req->saved_syn = NULL;
921         req->syncookie = 0;
922         req->timeout = 0;
923         req->num_timeout = 0;
924         req->num_retrans = 0;
925         req->sk = NULL;
926         refcount_set(&req->rsk_refcnt, 0);
927
928         return req;
929 }
930 #define reqsk_alloc(...)        alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
931
932 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
933                                       struct sock *sk_listener,
934                                       bool attach_listener)
935 {
936         struct request_sock *req = reqsk_alloc(ops, sk_listener,
937                                                attach_listener);
938
939         if (req) {
940                 struct inet_request_sock *ireq = inet_rsk(req);
941
942                 ireq->ireq_opt = NULL;
943 #if IS_ENABLED(CONFIG_IPV6)
944                 ireq->pktopts = NULL;
945 #endif
946                 atomic64_set(&ireq->ir_cookie, 0);
947                 ireq->ireq_state = TCP_NEW_SYN_RECV;
948                 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
949                 ireq->ireq_family = sk_listener->sk_family;
950                 req->timeout = TCP_TIMEOUT_INIT;
951         }
952
953         return req;
954 }
955 EXPORT_SYMBOL(inet_reqsk_alloc);
956
957 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
958                                              struct sock *sk)
959 {
960         struct sock *req_sk, *nreq_sk;
961         struct request_sock *nreq;
962
963         nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
964         if (!nreq) {
965                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
966
967                 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
968                 sock_put(sk);
969                 return NULL;
970         }
971
972         req_sk = req_to_sk(req);
973         nreq_sk = req_to_sk(nreq);
974
975         memcpy(nreq_sk, req_sk,
976                offsetof(struct sock, sk_dontcopy_begin));
977         unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
978                       req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
979                       /* alloc is larger than struct, see above */);
980
981         sk_node_init(&nreq_sk->sk_node);
982         nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
983 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
984         nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
985 #endif
986         nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
987
988         nreq->rsk_listener = sk;
989
990         /* We need not acquire fastopenq->lock
991          * because the child socket is locked in inet_csk_listen_stop().
992          */
993         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
994                 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
995
996         return nreq;
997 }
998
999 static void reqsk_queue_migrated(struct request_sock_queue *queue,
1000                                  const struct request_sock *req)
1001 {
1002         if (req->num_timeout == 0)
1003                 atomic_inc(&queue->young);
1004         atomic_inc(&queue->qlen);
1005 }
1006
1007 static void reqsk_migrate_reset(struct request_sock *req)
1008 {
1009         req->saved_syn = NULL;
1010 #if IS_ENABLED(CONFIG_IPV6)
1011         inet_rsk(req)->ipv6_opt = NULL;
1012         inet_rsk(req)->pktopts = NULL;
1013 #else
1014         inet_rsk(req)->ireq_opt = NULL;
1015 #endif
1016 }
1017
1018 /* return true if req was found in the ehash table */
1019 static bool reqsk_queue_unlink(struct request_sock *req)
1020 {
1021         struct sock *sk = req_to_sk(req);
1022         bool found = false;
1023
1024         if (sk_hashed(sk)) {
1025                 struct inet_hashinfo *hashinfo = tcp_get_hashinfo(sk);
1026                 spinlock_t *lock;
1027
1028                 lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1029                 spin_lock(lock);
1030                 found = __sk_nulls_del_node_init_rcu(sk);
1031                 spin_unlock(lock);
1032         }
1033
1034         return found;
1035 }
1036
1037 static bool __inet_csk_reqsk_queue_drop(struct sock *sk,
1038                                         struct request_sock *req,
1039                                         bool from_timer)
1040 {
1041         bool unlinked = reqsk_queue_unlink(req);
1042
1043         if (!from_timer && timer_delete_sync(&req->rsk_timer))
1044                 reqsk_put(req);
1045
1046         if (unlinked) {
1047                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1048                 reqsk_put(req);
1049         }
1050
1051         return unlinked;
1052 }
1053
1054 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1055 {
1056         return __inet_csk_reqsk_queue_drop(sk, req, false);
1057 }
1058
1059 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1060 {
1061         inet_csk_reqsk_queue_drop(sk, req);
1062         reqsk_put(req);
1063 }
1064 EXPORT_IPV6_MOD(inet_csk_reqsk_queue_drop_and_put);
1065
1066 static void reqsk_timer_handler(struct timer_list *t)
1067 {
1068         struct request_sock *req = timer_container_of(req, t, rsk_timer);
1069         struct request_sock *nreq = NULL, *oreq = req;
1070         struct sock *sk_listener = req->rsk_listener;
1071         struct inet_connection_sock *icsk;
1072         struct request_sock_queue *queue;
1073         struct net *net;
1074         int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1075
1076         if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1077                 struct sock *nsk;
1078
1079                 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1080                 if (!nsk)
1081                         goto drop;
1082
1083                 nreq = inet_reqsk_clone(req, nsk);
1084                 if (!nreq)
1085                         goto drop;
1086
1087                 /* The new timer for the cloned req can decrease the 2
1088                  * by calling inet_csk_reqsk_queue_drop_and_put(), so
1089                  * hold another count to prevent use-after-free and
1090                  * call reqsk_put() just before return.
1091                  */
1092                 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1093                 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1094                 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1095
1096                 req = nreq;
1097                 sk_listener = nsk;
1098         }
1099
1100         icsk = inet_csk(sk_listener);
1101         net = sock_net(sk_listener);
1102         max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1103                 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1104         /* Normally all the openreqs are young and become mature
1105          * (i.e. converted to established socket) for first timeout.
1106          * If synack was not acknowledged for 1 second, it means
1107          * one of the following things: synack was lost, ack was lost,
1108          * rtt is high or nobody planned to ack (i.e. synflood).
1109          * When server is a bit loaded, queue is populated with old
1110          * open requests, reducing effective size of queue.
1111          * When server is well loaded, queue size reduces to zero
1112          * after several minutes of work. It is not synflood,
1113          * it is normal operation. The solution is pruning
1114          * too old entries overriding normal timeout, when
1115          * situation becomes dangerous.
1116          *
1117          * Essentially, we reserve half of room for young
1118          * embrions; and abort old ones without pity, if old
1119          * ones are about to clog our table.
1120          */
1121         queue = &icsk->icsk_accept_queue;
1122         qlen = reqsk_queue_len(queue);
1123         if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1124                 int young = reqsk_queue_len_young(queue) << 1;
1125
1126                 while (max_syn_ack_retries > 2) {
1127                         if (qlen < young)
1128                                 break;
1129                         max_syn_ack_retries--;
1130                         young <<= 1;
1131                 }
1132         }
1133         syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1134                        &expire, &resend);
1135         req->rsk_ops->syn_ack_timeout(req);
1136         if (!expire &&
1137             (!resend ||
1138              !inet_rtx_syn_ack(sk_listener, req) ||
1139              inet_rsk(req)->acked)) {
1140                 if (req->num_timeout++ == 0)
1141                         atomic_dec(&queue->young);
1142                 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1143
1144                 if (!nreq)
1145                         return;
1146
1147                 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1148                         /* delete timer */
1149                         __inet_csk_reqsk_queue_drop(sk_listener, nreq, true);
1150                         goto no_ownership;
1151                 }
1152
1153                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1154                 reqsk_migrate_reset(oreq);
1155                 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1156                 reqsk_put(oreq);
1157
1158                 reqsk_put(nreq);
1159                 return;
1160         }
1161
1162         /* Even if we can clone the req, we may need not retransmit any more
1163          * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1164          * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1165          */
1166         if (nreq) {
1167                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1168 no_ownership:
1169                 reqsk_migrate_reset(nreq);
1170                 reqsk_queue_removed(queue, nreq);
1171                 __reqsk_free(nreq);
1172         }
1173
1174 drop:
1175         __inet_csk_reqsk_queue_drop(sk_listener, oreq, true);
1176         reqsk_put(oreq);
1177 }
1178
1179 static bool reqsk_queue_hash_req(struct request_sock *req,
1180                                  unsigned long timeout)
1181 {
1182         bool found_dup_sk = false;
1183
1184         if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1185                 return false;
1186
1187         /* The timer needs to be setup after a successful insertion. */
1188         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1189         mod_timer(&req->rsk_timer, jiffies + timeout);
1190
1191         /* before letting lookups find us, make sure all req fields
1192          * are committed to memory and refcnt initialized.
1193          */
1194         smp_wmb();
1195         refcount_set(&req->rsk_refcnt, 2 + 1);
1196         return true;
1197 }
1198
1199 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1200                                    unsigned long timeout)
1201 {
1202         if (!reqsk_queue_hash_req(req, timeout))
1203                 return false;
1204
1205         inet_csk_reqsk_queue_added(sk);
1206         return true;
1207 }
1208
1209 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1210                            const gfp_t priority)
1211 {
1212         struct inet_connection_sock *icsk = inet_csk(newsk);
1213
1214         if (!icsk->icsk_ulp_ops)
1215                 return;
1216
1217         icsk->icsk_ulp_ops->clone(req, newsk, priority);
1218 }
1219
1220 /**
1221  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
1222  *      @sk: the socket to clone
1223  *      @req: request_sock
1224  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1225  *
1226  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1227  */
1228 struct sock *inet_csk_clone_lock(const struct sock *sk,
1229                                  const struct request_sock *req,
1230                                  const gfp_t priority)
1231 {
1232         struct sock *newsk = sk_clone_lock(sk, priority);
1233         struct inet_connection_sock *newicsk;
1234         struct inet_request_sock *ireq;
1235         struct inet_sock *newinet;
1236
1237         if (!newsk)
1238                 return NULL;
1239
1240         newicsk = inet_csk(newsk);
1241         newinet = inet_sk(newsk);
1242         ireq = inet_rsk(req);
1243
1244         newicsk->icsk_bind_hash = NULL;
1245         newicsk->icsk_bind2_hash = NULL;
1246
1247         newinet->inet_dport = ireq->ir_rmt_port;
1248         newinet->inet_num = ireq->ir_num;
1249         newinet->inet_sport = htons(ireq->ir_num);
1250
1251         newsk->sk_bound_dev_if = ireq->ir_iif;
1252
1253         newsk->sk_daddr = ireq->ir_rmt_addr;
1254         newsk->sk_rcv_saddr = ireq->ir_loc_addr;
1255         newinet->inet_saddr = ireq->ir_loc_addr;
1256
1257 #if IS_ENABLED(CONFIG_IPV6)
1258         newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
1259         newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
1260 #endif
1261
1262         /* listeners have SOCK_RCU_FREE, not the children */
1263         sock_reset_flag(newsk, SOCK_RCU_FREE);
1264
1265         inet_sk(newsk)->mc_list = NULL;
1266
1267         newsk->sk_mark = inet_rsk(req)->ir_mark;
1268         atomic64_set(&newsk->sk_cookie,
1269                      atomic64_read(&inet_rsk(req)->ir_cookie));
1270
1271         newicsk->icsk_retransmits = 0;
1272         newicsk->icsk_backoff     = 0;
1273         newicsk->icsk_probes_out  = 0;
1274         newicsk->icsk_probes_tstamp = 0;
1275
1276         /* Deinitialize accept_queue to trap illegal accesses. */
1277         memset(&newicsk->icsk_accept_queue, 0,
1278                sizeof(newicsk->icsk_accept_queue));
1279
1280         inet_sk_set_state(newsk, TCP_SYN_RECV);
1281
1282         inet_clone_ulp(req, newsk, priority);
1283
1284         security_inet_csk_clone(newsk, req);
1285
1286         return newsk;
1287 }
1288
1289 /*
1290  * At this point, there should be no process reference to this
1291  * socket, and thus no user references at all.  Therefore we
1292  * can assume the socket waitqueue is inactive and nobody will
1293  * try to jump onto it.
1294  */
1295 void inet_csk_destroy_sock(struct sock *sk)
1296 {
1297         WARN_ON(sk->sk_state != TCP_CLOSE);
1298         WARN_ON(!sock_flag(sk, SOCK_DEAD));
1299
1300         /* It cannot be in hash table! */
1301         WARN_ON(!sk_unhashed(sk));
1302
1303         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1304         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1305
1306         sk->sk_prot->destroy(sk);
1307
1308         sk_stream_kill_queues(sk);
1309
1310         xfrm_sk_free_policy(sk);
1311
1312         this_cpu_dec(*sk->sk_prot->orphan_count);
1313
1314         sock_put(sk);
1315 }
1316 EXPORT_SYMBOL(inet_csk_destroy_sock);
1317
1318 /* This function allows to force a closure of a socket after the call to
1319  * tcp_create_openreq_child().
1320  */
1321 void inet_csk_prepare_forced_close(struct sock *sk)
1322         __releases(&sk->sk_lock.slock)
1323 {
1324         /* sk_clone_lock locked the socket and set refcnt to 2 */
1325         bh_unlock_sock(sk);
1326         sock_put(sk);
1327         inet_csk_prepare_for_destroy_sock(sk);
1328         inet_sk(sk)->inet_num = 0;
1329 }
1330 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1331
1332 static int inet_ulp_can_listen(const struct sock *sk)
1333 {
1334         const struct inet_connection_sock *icsk = inet_csk(sk);
1335
1336         if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1337                 return -EINVAL;
1338
1339         return 0;
1340 }
1341
1342 int inet_csk_listen_start(struct sock *sk)
1343 {
1344         struct inet_connection_sock *icsk = inet_csk(sk);
1345         struct inet_sock *inet = inet_sk(sk);
1346         int err;
1347
1348         err = inet_ulp_can_listen(sk);
1349         if (unlikely(err))
1350                 return err;
1351
1352         reqsk_queue_alloc(&icsk->icsk_accept_queue);
1353
1354         sk->sk_ack_backlog = 0;
1355         inet_csk_delack_init(sk);
1356
1357         /* There is race window here: we announce ourselves listening,
1358          * but this transition is still not validated by get_port().
1359          * It is OK, because this socket enters to hash table only
1360          * after validation is complete.
1361          */
1362         inet_sk_state_store(sk, TCP_LISTEN);
1363         err = sk->sk_prot->get_port(sk, inet->inet_num);
1364         if (!err) {
1365                 inet->inet_sport = htons(inet->inet_num);
1366
1367                 sk_dst_reset(sk);
1368                 err = sk->sk_prot->hash(sk);
1369
1370                 if (likely(!err))
1371                         return 0;
1372         }
1373
1374         inet_sk_set_state(sk, TCP_CLOSE);
1375         return err;
1376 }
1377
1378 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1379                               struct sock *child)
1380 {
1381         sk->sk_prot->disconnect(child, O_NONBLOCK);
1382
1383         sock_orphan(child);
1384
1385         this_cpu_inc(*sk->sk_prot->orphan_count);
1386
1387         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1388                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1389                 BUG_ON(sk != req->rsk_listener);
1390
1391                 /* Paranoid, to prevent race condition if
1392                  * an inbound pkt destined for child is
1393                  * blocked by sock lock in tcp_v4_rcv().
1394                  * Also to satisfy an assertion in
1395                  * tcp_v4_destroy_sock().
1396                  */
1397                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1398         }
1399         inet_csk_destroy_sock(child);
1400 }
1401
1402 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1403                                       struct request_sock *req,
1404                                       struct sock *child)
1405 {
1406         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1407
1408         spin_lock(&queue->rskq_lock);
1409         if (unlikely(sk->sk_state != TCP_LISTEN)) {
1410                 inet_child_forget(sk, req, child);
1411                 child = NULL;
1412         } else {
1413                 req->sk = child;
1414                 req->dl_next = NULL;
1415                 if (queue->rskq_accept_head == NULL)
1416                         WRITE_ONCE(queue->rskq_accept_head, req);
1417                 else
1418                         queue->rskq_accept_tail->dl_next = req;
1419                 queue->rskq_accept_tail = req;
1420                 sk_acceptq_added(sk);
1421         }
1422         spin_unlock(&queue->rskq_lock);
1423         return child;
1424 }
1425 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1426
1427 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1428                                          struct request_sock *req, bool own_req)
1429 {
1430         if (own_req) {
1431                 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1432                 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1433
1434                 if (sk != req->rsk_listener) {
1435                         /* another listening sk has been selected,
1436                          * migrate the req to it.
1437                          */
1438                         struct request_sock *nreq;
1439
1440                         /* hold a refcnt for the nreq->rsk_listener
1441                          * which is assigned in inet_reqsk_clone()
1442                          */
1443                         sock_hold(sk);
1444                         nreq = inet_reqsk_clone(req, sk);
1445                         if (!nreq) {
1446                                 inet_child_forget(sk, req, child);
1447                                 goto child_put;
1448                         }
1449
1450                         refcount_set(&nreq->rsk_refcnt, 1);
1451                         if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1452                                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1453                                 reqsk_migrate_reset(req);
1454                                 reqsk_put(req);
1455                                 return child;
1456                         }
1457
1458                         __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1459                         reqsk_migrate_reset(nreq);
1460                         __reqsk_free(nreq);
1461                 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1462                         return child;
1463                 }
1464         }
1465         /* Too bad, another child took ownership of the request, undo. */
1466 child_put:
1467         bh_unlock_sock(child);
1468         sock_put(child);
1469         return NULL;
1470 }
1471
1472 /*
1473  *      This routine closes sockets which have been at least partially
1474  *      opened, but not yet accepted.
1475  */
1476 void inet_csk_listen_stop(struct sock *sk)
1477 {
1478         struct inet_connection_sock *icsk = inet_csk(sk);
1479         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1480         struct request_sock *next, *req;
1481
1482         /* Following specs, it would be better either to send FIN
1483          * (and enter FIN-WAIT-1, it is normal close)
1484          * or to send active reset (abort).
1485          * Certainly, it is pretty dangerous while synflood, but it is
1486          * bad justification for our negligence 8)
1487          * To be honest, we are not able to make either
1488          * of the variants now.                 --ANK
1489          */
1490         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1491                 struct sock *child = req->sk, *nsk;
1492                 struct request_sock *nreq;
1493
1494                 local_bh_disable();
1495                 bh_lock_sock(child);
1496                 WARN_ON(sock_owned_by_user(child));
1497                 sock_hold(child);
1498
1499                 nsk = reuseport_migrate_sock(sk, child, NULL);
1500                 if (nsk) {
1501                         nreq = inet_reqsk_clone(req, nsk);
1502                         if (nreq) {
1503                                 refcount_set(&nreq->rsk_refcnt, 1);
1504
1505                                 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1506                                         __NET_INC_STATS(sock_net(nsk),
1507                                                         LINUX_MIB_TCPMIGRATEREQSUCCESS);
1508                                         reqsk_migrate_reset(req);
1509                                 } else {
1510                                         __NET_INC_STATS(sock_net(nsk),
1511                                                         LINUX_MIB_TCPMIGRATEREQFAILURE);
1512                                         reqsk_migrate_reset(nreq);
1513                                         __reqsk_free(nreq);
1514                                 }
1515
1516                                 /* inet_csk_reqsk_queue_add() has already
1517                                  * called inet_child_forget() on failure case.
1518                                  */
1519                                 goto skip_child_forget;
1520                         }
1521                 }
1522
1523                 inet_child_forget(sk, req, child);
1524 skip_child_forget:
1525                 reqsk_put(req);
1526                 bh_unlock_sock(child);
1527                 local_bh_enable();
1528                 sock_put(child);
1529
1530                 cond_resched();
1531         }
1532         if (queue->fastopenq.rskq_rst_head) {
1533                 /* Free all the reqs queued in rskq_rst_head. */
1534                 spin_lock_bh(&queue->fastopenq.lock);
1535                 req = queue->fastopenq.rskq_rst_head;
1536                 queue->fastopenq.rskq_rst_head = NULL;
1537                 spin_unlock_bh(&queue->fastopenq.lock);
1538                 while (req != NULL) {
1539                         next = req->dl_next;
1540                         reqsk_put(req);
1541                         req = next;
1542                 }
1543         }
1544         WARN_ON_ONCE(sk->sk_ack_backlog);
1545 }
1546 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1547
1548 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1549 {
1550         const struct inet_sock *inet = inet_sk(sk);
1551         struct flowi4 *fl4;
1552         struct rtable *rt;
1553
1554         rcu_read_lock();
1555         fl4 = &fl->u.ip4;
1556         inet_sk_init_flowi4(inet, fl4);
1557         rt = ip_route_output_flow(sock_net(sk), fl4, sk);
1558         if (IS_ERR(rt))
1559                 rt = NULL;
1560         if (rt)
1561                 sk_setup_caps(sk, &rt->dst);
1562         rcu_read_unlock();
1563
1564         return &rt->dst;
1565 }
1566
1567 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1568 {
1569         struct dst_entry *dst = __sk_dst_check(sk, 0);
1570         struct inet_sock *inet = inet_sk(sk);
1571
1572         if (!dst) {
1573                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1574                 if (!dst)
1575                         goto out;
1576         }
1577         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1578
1579         dst = __sk_dst_check(sk, 0);
1580         if (!dst)
1581                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1582 out:
1583         return dst;
1584 }