Merge tag 'perf-tools-fixes-for-v6.4-1-2023-05-20' of git://git.kernel.org/pub/scm...
[linux-block.git] / net / dsa / dsa.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DSA topology and switch handling
4  *
5  * Copyright (c) 2008-2009 Marvell Semiconductor
6  * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8  */
9
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/slab.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/of.h>
18 #include <linux/of_mdio.h>
19 #include <linux/of_net.h>
20 #include <net/dsa_stubs.h>
21 #include <net/sch_generic.h>
22
23 #include "devlink.h"
24 #include "dsa.h"
25 #include "master.h"
26 #include "netlink.h"
27 #include "port.h"
28 #include "slave.h"
29 #include "switch.h"
30 #include "tag.h"
31
32 #define DSA_MAX_NUM_OFFLOADING_BRIDGES          BITS_PER_LONG
33
34 static DEFINE_MUTEX(dsa2_mutex);
35 LIST_HEAD(dsa_tree_list);
36
37 static struct workqueue_struct *dsa_owq;
38
39 /* Track the bridges with forwarding offload enabled */
40 static unsigned long dsa_fwd_offloading_bridges;
41
42 bool dsa_schedule_work(struct work_struct *work)
43 {
44         return queue_work(dsa_owq, work);
45 }
46
47 void dsa_flush_workqueue(void)
48 {
49         flush_workqueue(dsa_owq);
50 }
51 EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
52
53 /**
54  * dsa_lag_map() - Map LAG structure to a linear LAG array
55  * @dst: Tree in which to record the mapping.
56  * @lag: LAG structure that is to be mapped to the tree's array.
57  *
58  * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
59  * two spaces. The size of the mapping space is determined by the
60  * driver by setting ds->num_lag_ids. It is perfectly legal to leave
61  * it unset if it is not needed, in which case these functions become
62  * no-ops.
63  */
64 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
65 {
66         unsigned int id;
67
68         for (id = 1; id <= dst->lags_len; id++) {
69                 if (!dsa_lag_by_id(dst, id)) {
70                         dst->lags[id - 1] = lag;
71                         lag->id = id;
72                         return;
73                 }
74         }
75
76         /* No IDs left, which is OK. Some drivers do not need it. The
77          * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
78          * returns an error for this device when joining the LAG. The
79          * driver can then return -EOPNOTSUPP back to DSA, which will
80          * fall back to a software LAG.
81          */
82 }
83
84 /**
85  * dsa_lag_unmap() - Remove a LAG ID mapping
86  * @dst: Tree in which the mapping is recorded.
87  * @lag: LAG structure that was mapped.
88  *
89  * As there may be multiple users of the mapping, it is only removed
90  * if there are no other references to it.
91  */
92 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
93 {
94         unsigned int id;
95
96         dsa_lags_foreach_id(id, dst) {
97                 if (dsa_lag_by_id(dst, id) == lag) {
98                         dst->lags[id - 1] = NULL;
99                         lag->id = 0;
100                         break;
101                 }
102         }
103 }
104
105 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
106                                   const struct net_device *lag_dev)
107 {
108         struct dsa_port *dp;
109
110         list_for_each_entry(dp, &dst->ports, list)
111                 if (dsa_port_lag_dev_get(dp) == lag_dev)
112                         return dp->lag;
113
114         return NULL;
115 }
116
117 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
118                                         const struct net_device *br)
119 {
120         struct dsa_port *dp;
121
122         list_for_each_entry(dp, &dst->ports, list)
123                 if (dsa_port_bridge_dev_get(dp) == br)
124                         return dp->bridge;
125
126         return NULL;
127 }
128
129 static int dsa_bridge_num_find(const struct net_device *bridge_dev)
130 {
131         struct dsa_switch_tree *dst;
132
133         list_for_each_entry(dst, &dsa_tree_list, list) {
134                 struct dsa_bridge *bridge;
135
136                 bridge = dsa_tree_bridge_find(dst, bridge_dev);
137                 if (bridge)
138                         return bridge->num;
139         }
140
141         return 0;
142 }
143
144 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
145 {
146         unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
147
148         /* Switches without FDB isolation support don't get unique
149          * bridge numbering
150          */
151         if (!max)
152                 return 0;
153
154         if (!bridge_num) {
155                 /* First port that requests FDB isolation or TX forwarding
156                  * offload for this bridge
157                  */
158                 bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
159                                                 DSA_MAX_NUM_OFFLOADING_BRIDGES,
160                                                 1);
161                 if (bridge_num >= max)
162                         return 0;
163
164                 set_bit(bridge_num, &dsa_fwd_offloading_bridges);
165         }
166
167         return bridge_num;
168 }
169
170 void dsa_bridge_num_put(const struct net_device *bridge_dev,
171                         unsigned int bridge_num)
172 {
173         /* Since we refcount bridges, we know that when we call this function
174          * it is no longer in use, so we can just go ahead and remove it from
175          * the bit mask.
176          */
177         clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
178 }
179
180 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
181 {
182         struct dsa_switch_tree *dst;
183         struct dsa_port *dp;
184
185         list_for_each_entry(dst, &dsa_tree_list, list) {
186                 if (dst->index != tree_index)
187                         continue;
188
189                 list_for_each_entry(dp, &dst->ports, list) {
190                         if (dp->ds->index != sw_index)
191                                 continue;
192
193                         return dp->ds;
194                 }
195         }
196
197         return NULL;
198 }
199 EXPORT_SYMBOL_GPL(dsa_switch_find);
200
201 static struct dsa_switch_tree *dsa_tree_find(int index)
202 {
203         struct dsa_switch_tree *dst;
204
205         list_for_each_entry(dst, &dsa_tree_list, list)
206                 if (dst->index == index)
207                         return dst;
208
209         return NULL;
210 }
211
212 static struct dsa_switch_tree *dsa_tree_alloc(int index)
213 {
214         struct dsa_switch_tree *dst;
215
216         dst = kzalloc(sizeof(*dst), GFP_KERNEL);
217         if (!dst)
218                 return NULL;
219
220         dst->index = index;
221
222         INIT_LIST_HEAD(&dst->rtable);
223
224         INIT_LIST_HEAD(&dst->ports);
225
226         INIT_LIST_HEAD(&dst->list);
227         list_add_tail(&dst->list, &dsa_tree_list);
228
229         kref_init(&dst->refcount);
230
231         return dst;
232 }
233
234 static void dsa_tree_free(struct dsa_switch_tree *dst)
235 {
236         if (dst->tag_ops)
237                 dsa_tag_driver_put(dst->tag_ops);
238         list_del(&dst->list);
239         kfree(dst);
240 }
241
242 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
243 {
244         if (dst)
245                 kref_get(&dst->refcount);
246
247         return dst;
248 }
249
250 static struct dsa_switch_tree *dsa_tree_touch(int index)
251 {
252         struct dsa_switch_tree *dst;
253
254         dst = dsa_tree_find(index);
255         if (dst)
256                 return dsa_tree_get(dst);
257         else
258                 return dsa_tree_alloc(index);
259 }
260
261 static void dsa_tree_release(struct kref *ref)
262 {
263         struct dsa_switch_tree *dst;
264
265         dst = container_of(ref, struct dsa_switch_tree, refcount);
266
267         dsa_tree_free(dst);
268 }
269
270 static void dsa_tree_put(struct dsa_switch_tree *dst)
271 {
272         if (dst)
273                 kref_put(&dst->refcount, dsa_tree_release);
274 }
275
276 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
277                                                    struct device_node *dn)
278 {
279         struct dsa_port *dp;
280
281         list_for_each_entry(dp, &dst->ports, list)
282                 if (dp->dn == dn)
283                         return dp;
284
285         return NULL;
286 }
287
288 static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
289                                        struct dsa_port *link_dp)
290 {
291         struct dsa_switch *ds = dp->ds;
292         struct dsa_switch_tree *dst;
293         struct dsa_link *dl;
294
295         dst = ds->dst;
296
297         list_for_each_entry(dl, &dst->rtable, list)
298                 if (dl->dp == dp && dl->link_dp == link_dp)
299                         return dl;
300
301         dl = kzalloc(sizeof(*dl), GFP_KERNEL);
302         if (!dl)
303                 return NULL;
304
305         dl->dp = dp;
306         dl->link_dp = link_dp;
307
308         INIT_LIST_HEAD(&dl->list);
309         list_add_tail(&dl->list, &dst->rtable);
310
311         return dl;
312 }
313
314 static bool dsa_port_setup_routing_table(struct dsa_port *dp)
315 {
316         struct dsa_switch *ds = dp->ds;
317         struct dsa_switch_tree *dst = ds->dst;
318         struct device_node *dn = dp->dn;
319         struct of_phandle_iterator it;
320         struct dsa_port *link_dp;
321         struct dsa_link *dl;
322         int err;
323
324         of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
325                 link_dp = dsa_tree_find_port_by_node(dst, it.node);
326                 if (!link_dp) {
327                         of_node_put(it.node);
328                         return false;
329                 }
330
331                 dl = dsa_link_touch(dp, link_dp);
332                 if (!dl) {
333                         of_node_put(it.node);
334                         return false;
335                 }
336         }
337
338         return true;
339 }
340
341 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
342 {
343         bool complete = true;
344         struct dsa_port *dp;
345
346         list_for_each_entry(dp, &dst->ports, list) {
347                 if (dsa_port_is_dsa(dp)) {
348                         complete = dsa_port_setup_routing_table(dp);
349                         if (!complete)
350                                 break;
351                 }
352         }
353
354         return complete;
355 }
356
357 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
358 {
359         struct dsa_port *dp;
360
361         list_for_each_entry(dp, &dst->ports, list)
362                 if (dsa_port_is_cpu(dp))
363                         return dp;
364
365         return NULL;
366 }
367
368 struct net_device *dsa_tree_find_first_master(struct dsa_switch_tree *dst)
369 {
370         struct device_node *ethernet;
371         struct net_device *master;
372         struct dsa_port *cpu_dp;
373
374         cpu_dp = dsa_tree_find_first_cpu(dst);
375         ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
376         master = of_find_net_device_by_node(ethernet);
377         of_node_put(ethernet);
378
379         return master;
380 }
381
382 /* Assign the default CPU port (the first one in the tree) to all ports of the
383  * fabric which don't already have one as part of their own switch.
384  */
385 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
386 {
387         struct dsa_port *cpu_dp, *dp;
388
389         cpu_dp = dsa_tree_find_first_cpu(dst);
390         if (!cpu_dp) {
391                 pr_err("DSA: tree %d has no CPU port\n", dst->index);
392                 return -EINVAL;
393         }
394
395         list_for_each_entry(dp, &dst->ports, list) {
396                 if (dp->cpu_dp)
397                         continue;
398
399                 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
400                         dp->cpu_dp = cpu_dp;
401         }
402
403         return 0;
404 }
405
406 /* Perform initial assignment of CPU ports to user ports and DSA links in the
407  * fabric, giving preference to CPU ports local to each switch. Default to
408  * using the first CPU port in the switch tree if the port does not have a CPU
409  * port local to this switch.
410  */
411 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
412 {
413         struct dsa_port *cpu_dp, *dp;
414
415         list_for_each_entry(cpu_dp, &dst->ports, list) {
416                 if (!dsa_port_is_cpu(cpu_dp))
417                         continue;
418
419                 /* Prefer a local CPU port */
420                 dsa_switch_for_each_port(dp, cpu_dp->ds) {
421                         /* Prefer the first local CPU port found */
422                         if (dp->cpu_dp)
423                                 continue;
424
425                         if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
426                                 dp->cpu_dp = cpu_dp;
427                 }
428         }
429
430         return dsa_tree_setup_default_cpu(dst);
431 }
432
433 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
434 {
435         struct dsa_port *dp;
436
437         list_for_each_entry(dp, &dst->ports, list)
438                 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
439                         dp->cpu_dp = NULL;
440 }
441
442 static int dsa_port_setup(struct dsa_port *dp)
443 {
444         bool dsa_port_link_registered = false;
445         struct dsa_switch *ds = dp->ds;
446         bool dsa_port_enabled = false;
447         int err = 0;
448
449         if (dp->setup)
450                 return 0;
451
452         err = dsa_port_devlink_setup(dp);
453         if (err)
454                 return err;
455
456         switch (dp->type) {
457         case DSA_PORT_TYPE_UNUSED:
458                 dsa_port_disable(dp);
459                 break;
460         case DSA_PORT_TYPE_CPU:
461                 if (dp->dn) {
462                         err = dsa_shared_port_link_register_of(dp);
463                         if (err)
464                                 break;
465                         dsa_port_link_registered = true;
466                 } else {
467                         dev_warn(ds->dev,
468                                  "skipping link registration for CPU port %d\n",
469                                  dp->index);
470                 }
471
472                 err = dsa_port_enable(dp, NULL);
473                 if (err)
474                         break;
475                 dsa_port_enabled = true;
476
477                 break;
478         case DSA_PORT_TYPE_DSA:
479                 if (dp->dn) {
480                         err = dsa_shared_port_link_register_of(dp);
481                         if (err)
482                                 break;
483                         dsa_port_link_registered = true;
484                 } else {
485                         dev_warn(ds->dev,
486                                  "skipping link registration for DSA port %d\n",
487                                  dp->index);
488                 }
489
490                 err = dsa_port_enable(dp, NULL);
491                 if (err)
492                         break;
493                 dsa_port_enabled = true;
494
495                 break;
496         case DSA_PORT_TYPE_USER:
497                 of_get_mac_address(dp->dn, dp->mac);
498                 err = dsa_slave_create(dp);
499                 break;
500         }
501
502         if (err && dsa_port_enabled)
503                 dsa_port_disable(dp);
504         if (err && dsa_port_link_registered)
505                 dsa_shared_port_link_unregister_of(dp);
506         if (err) {
507                 dsa_port_devlink_teardown(dp);
508                 return err;
509         }
510
511         dp->setup = true;
512
513         return 0;
514 }
515
516 static void dsa_port_teardown(struct dsa_port *dp)
517 {
518         if (!dp->setup)
519                 return;
520
521         switch (dp->type) {
522         case DSA_PORT_TYPE_UNUSED:
523                 break;
524         case DSA_PORT_TYPE_CPU:
525                 dsa_port_disable(dp);
526                 if (dp->dn)
527                         dsa_shared_port_link_unregister_of(dp);
528                 break;
529         case DSA_PORT_TYPE_DSA:
530                 dsa_port_disable(dp);
531                 if (dp->dn)
532                         dsa_shared_port_link_unregister_of(dp);
533                 break;
534         case DSA_PORT_TYPE_USER:
535                 if (dp->slave) {
536                         dsa_slave_destroy(dp->slave);
537                         dp->slave = NULL;
538                 }
539                 break;
540         }
541
542         dsa_port_devlink_teardown(dp);
543
544         dp->setup = false;
545 }
546
547 static int dsa_port_setup_as_unused(struct dsa_port *dp)
548 {
549         dp->type = DSA_PORT_TYPE_UNUSED;
550         return dsa_port_setup(dp);
551 }
552
553 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
554 {
555         const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
556         struct dsa_switch_tree *dst = ds->dst;
557         int err;
558
559         if (tag_ops->proto == dst->default_proto)
560                 goto connect;
561
562         rtnl_lock();
563         err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
564         rtnl_unlock();
565         if (err) {
566                 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
567                         tag_ops->name, ERR_PTR(err));
568                 return err;
569         }
570
571 connect:
572         if (tag_ops->connect) {
573                 err = tag_ops->connect(ds);
574                 if (err)
575                         return err;
576         }
577
578         if (ds->ops->connect_tag_protocol) {
579                 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
580                 if (err) {
581                         dev_err(ds->dev,
582                                 "Unable to connect to tag protocol \"%s\": %pe\n",
583                                 tag_ops->name, ERR_PTR(err));
584                         goto disconnect;
585                 }
586         }
587
588         return 0;
589
590 disconnect:
591         if (tag_ops->disconnect)
592                 tag_ops->disconnect(ds);
593
594         return err;
595 }
596
597 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
598 {
599         const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
600
601         if (tag_ops->disconnect)
602                 tag_ops->disconnect(ds);
603 }
604
605 static int dsa_switch_setup(struct dsa_switch *ds)
606 {
607         struct device_node *dn;
608         int err;
609
610         if (ds->setup)
611                 return 0;
612
613         /* Initialize ds->phys_mii_mask before registering the slave MDIO bus
614          * driver and before ops->setup() has run, since the switch drivers and
615          * the slave MDIO bus driver rely on these values for probing PHY
616          * devices or not
617          */
618         ds->phys_mii_mask |= dsa_user_ports(ds);
619
620         err = dsa_switch_devlink_alloc(ds);
621         if (err)
622                 return err;
623
624         err = dsa_switch_register_notifier(ds);
625         if (err)
626                 goto devlink_free;
627
628         ds->configure_vlan_while_not_filtering = true;
629
630         err = ds->ops->setup(ds);
631         if (err < 0)
632                 goto unregister_notifier;
633
634         err = dsa_switch_setup_tag_protocol(ds);
635         if (err)
636                 goto teardown;
637
638         if (!ds->slave_mii_bus && ds->ops->phy_read) {
639                 ds->slave_mii_bus = mdiobus_alloc();
640                 if (!ds->slave_mii_bus) {
641                         err = -ENOMEM;
642                         goto teardown;
643                 }
644
645                 dsa_slave_mii_bus_init(ds);
646
647                 dn = of_get_child_by_name(ds->dev->of_node, "mdio");
648
649                 err = of_mdiobus_register(ds->slave_mii_bus, dn);
650                 of_node_put(dn);
651                 if (err < 0)
652                         goto free_slave_mii_bus;
653         }
654
655         dsa_switch_devlink_register(ds);
656
657         ds->setup = true;
658         return 0;
659
660 free_slave_mii_bus:
661         if (ds->slave_mii_bus && ds->ops->phy_read)
662                 mdiobus_free(ds->slave_mii_bus);
663 teardown:
664         if (ds->ops->teardown)
665                 ds->ops->teardown(ds);
666 unregister_notifier:
667         dsa_switch_unregister_notifier(ds);
668 devlink_free:
669         dsa_switch_devlink_free(ds);
670         return err;
671 }
672
673 static void dsa_switch_teardown(struct dsa_switch *ds)
674 {
675         if (!ds->setup)
676                 return;
677
678         dsa_switch_devlink_unregister(ds);
679
680         if (ds->slave_mii_bus && ds->ops->phy_read) {
681                 mdiobus_unregister(ds->slave_mii_bus);
682                 mdiobus_free(ds->slave_mii_bus);
683                 ds->slave_mii_bus = NULL;
684         }
685
686         dsa_switch_teardown_tag_protocol(ds);
687
688         if (ds->ops->teardown)
689                 ds->ops->teardown(ds);
690
691         dsa_switch_unregister_notifier(ds);
692
693         dsa_switch_devlink_free(ds);
694
695         ds->setup = false;
696 }
697
698 /* First tear down the non-shared, then the shared ports. This ensures that
699  * all work items scheduled by our switchdev handlers for user ports have
700  * completed before we destroy the refcounting kept on the shared ports.
701  */
702 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
703 {
704         struct dsa_port *dp;
705
706         list_for_each_entry(dp, &dst->ports, list)
707                 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
708                         dsa_port_teardown(dp);
709
710         dsa_flush_workqueue();
711
712         list_for_each_entry(dp, &dst->ports, list)
713                 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
714                         dsa_port_teardown(dp);
715 }
716
717 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
718 {
719         struct dsa_port *dp;
720
721         list_for_each_entry(dp, &dst->ports, list)
722                 dsa_switch_teardown(dp->ds);
723 }
724
725 /* Bring shared ports up first, then non-shared ports */
726 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
727 {
728         struct dsa_port *dp;
729         int err = 0;
730
731         list_for_each_entry(dp, &dst->ports, list) {
732                 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
733                         err = dsa_port_setup(dp);
734                         if (err)
735                                 goto teardown;
736                 }
737         }
738
739         list_for_each_entry(dp, &dst->ports, list) {
740                 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
741                         err = dsa_port_setup(dp);
742                         if (err) {
743                                 err = dsa_port_setup_as_unused(dp);
744                                 if (err)
745                                         goto teardown;
746                         }
747                 }
748         }
749
750         return 0;
751
752 teardown:
753         dsa_tree_teardown_ports(dst);
754
755         return err;
756 }
757
758 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
759 {
760         struct dsa_port *dp;
761         int err = 0;
762
763         list_for_each_entry(dp, &dst->ports, list) {
764                 err = dsa_switch_setup(dp->ds);
765                 if (err) {
766                         dsa_tree_teardown_switches(dst);
767                         break;
768                 }
769         }
770
771         return err;
772 }
773
774 static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
775 {
776         struct dsa_port *cpu_dp;
777         int err = 0;
778
779         rtnl_lock();
780
781         dsa_tree_for_each_cpu_port(cpu_dp, dst) {
782                 struct net_device *master = cpu_dp->master;
783                 bool admin_up = (master->flags & IFF_UP) &&
784                                 !qdisc_tx_is_noop(master);
785
786                 err = dsa_master_setup(master, cpu_dp);
787                 if (err)
788                         break;
789
790                 /* Replay master state event */
791                 dsa_tree_master_admin_state_change(dst, master, admin_up);
792                 dsa_tree_master_oper_state_change(dst, master,
793                                                   netif_oper_up(master));
794         }
795
796         rtnl_unlock();
797
798         return err;
799 }
800
801 static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
802 {
803         struct dsa_port *cpu_dp;
804
805         rtnl_lock();
806
807         dsa_tree_for_each_cpu_port(cpu_dp, dst) {
808                 struct net_device *master = cpu_dp->master;
809
810                 /* Synthesizing an "admin down" state is sufficient for
811                  * the switches to get a notification if the master is
812                  * currently up and running.
813                  */
814                 dsa_tree_master_admin_state_change(dst, master, false);
815
816                 dsa_master_teardown(master);
817         }
818
819         rtnl_unlock();
820 }
821
822 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
823 {
824         unsigned int len = 0;
825         struct dsa_port *dp;
826
827         list_for_each_entry(dp, &dst->ports, list) {
828                 if (dp->ds->num_lag_ids > len)
829                         len = dp->ds->num_lag_ids;
830         }
831
832         if (!len)
833                 return 0;
834
835         dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
836         if (!dst->lags)
837                 return -ENOMEM;
838
839         dst->lags_len = len;
840         return 0;
841 }
842
843 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
844 {
845         kfree(dst->lags);
846 }
847
848 static int dsa_tree_setup(struct dsa_switch_tree *dst)
849 {
850         bool complete;
851         int err;
852
853         if (dst->setup) {
854                 pr_err("DSA: tree %d already setup! Disjoint trees?\n",
855                        dst->index);
856                 return -EEXIST;
857         }
858
859         complete = dsa_tree_setup_routing_table(dst);
860         if (!complete)
861                 return 0;
862
863         err = dsa_tree_setup_cpu_ports(dst);
864         if (err)
865                 return err;
866
867         err = dsa_tree_setup_switches(dst);
868         if (err)
869                 goto teardown_cpu_ports;
870
871         err = dsa_tree_setup_ports(dst);
872         if (err)
873                 goto teardown_switches;
874
875         err = dsa_tree_setup_master(dst);
876         if (err)
877                 goto teardown_ports;
878
879         err = dsa_tree_setup_lags(dst);
880         if (err)
881                 goto teardown_master;
882
883         dst->setup = true;
884
885         pr_info("DSA: tree %d setup\n", dst->index);
886
887         return 0;
888
889 teardown_master:
890         dsa_tree_teardown_master(dst);
891 teardown_ports:
892         dsa_tree_teardown_ports(dst);
893 teardown_switches:
894         dsa_tree_teardown_switches(dst);
895 teardown_cpu_ports:
896         dsa_tree_teardown_cpu_ports(dst);
897
898         return err;
899 }
900
901 static void dsa_tree_teardown(struct dsa_switch_tree *dst)
902 {
903         struct dsa_link *dl, *next;
904
905         if (!dst->setup)
906                 return;
907
908         dsa_tree_teardown_lags(dst);
909
910         dsa_tree_teardown_master(dst);
911
912         dsa_tree_teardown_ports(dst);
913
914         dsa_tree_teardown_switches(dst);
915
916         dsa_tree_teardown_cpu_ports(dst);
917
918         list_for_each_entry_safe(dl, next, &dst->rtable, list) {
919                 list_del(&dl->list);
920                 kfree(dl);
921         }
922
923         pr_info("DSA: tree %d torn down\n", dst->index);
924
925         dst->setup = false;
926 }
927
928 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
929                                    const struct dsa_device_ops *tag_ops)
930 {
931         const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
932         struct dsa_notifier_tag_proto_info info;
933         int err;
934
935         dst->tag_ops = tag_ops;
936
937         /* Notify the switches from this tree about the connection
938          * to the new tagger
939          */
940         info.tag_ops = tag_ops;
941         err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
942         if (err && err != -EOPNOTSUPP)
943                 goto out_disconnect;
944
945         /* Notify the old tagger about the disconnection from this tree */
946         info.tag_ops = old_tag_ops;
947         dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
948
949         return 0;
950
951 out_disconnect:
952         info.tag_ops = tag_ops;
953         dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
954         dst->tag_ops = old_tag_ops;
955
956         return err;
957 }
958
959 /* Since the dsa/tagging sysfs device attribute is per master, the assumption
960  * is that all DSA switches within a tree share the same tagger, otherwise
961  * they would have formed disjoint trees (different "dsa,member" values).
962  */
963 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
964                               const struct dsa_device_ops *tag_ops,
965                               const struct dsa_device_ops *old_tag_ops)
966 {
967         struct dsa_notifier_tag_proto_info info;
968         struct dsa_port *dp;
969         int err = -EBUSY;
970
971         if (!rtnl_trylock())
972                 return restart_syscall();
973
974         /* At the moment we don't allow changing the tag protocol under
975          * traffic. The rtnl_mutex also happens to serialize concurrent
976          * attempts to change the tagging protocol. If we ever lift the IFF_UP
977          * restriction, there needs to be another mutex which serializes this.
978          */
979         dsa_tree_for_each_user_port(dp, dst) {
980                 if (dsa_port_to_master(dp)->flags & IFF_UP)
981                         goto out_unlock;
982
983                 if (dp->slave->flags & IFF_UP)
984                         goto out_unlock;
985         }
986
987         /* Notify the tag protocol change */
988         info.tag_ops = tag_ops;
989         err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
990         if (err)
991                 goto out_unwind_tagger;
992
993         err = dsa_tree_bind_tag_proto(dst, tag_ops);
994         if (err)
995                 goto out_unwind_tagger;
996
997         rtnl_unlock();
998
999         return 0;
1000
1001 out_unwind_tagger:
1002         info.tag_ops = old_tag_ops;
1003         dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1004 out_unlock:
1005         rtnl_unlock();
1006         return err;
1007 }
1008
1009 static void dsa_tree_master_state_change(struct dsa_switch_tree *dst,
1010                                          struct net_device *master)
1011 {
1012         struct dsa_notifier_master_state_info info;
1013         struct dsa_port *cpu_dp = master->dsa_ptr;
1014
1015         info.master = master;
1016         info.operational = dsa_port_master_is_operational(cpu_dp);
1017
1018         dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info);
1019 }
1020
1021 void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst,
1022                                         struct net_device *master,
1023                                         bool up)
1024 {
1025         struct dsa_port *cpu_dp = master->dsa_ptr;
1026         bool notify = false;
1027
1028         /* Don't keep track of admin state on LAG DSA masters,
1029          * but rather just of physical DSA masters
1030          */
1031         if (netif_is_lag_master(master))
1032                 return;
1033
1034         if ((dsa_port_master_is_operational(cpu_dp)) !=
1035             (up && cpu_dp->master_oper_up))
1036                 notify = true;
1037
1038         cpu_dp->master_admin_up = up;
1039
1040         if (notify)
1041                 dsa_tree_master_state_change(dst, master);
1042 }
1043
1044 void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst,
1045                                        struct net_device *master,
1046                                        bool up)
1047 {
1048         struct dsa_port *cpu_dp = master->dsa_ptr;
1049         bool notify = false;
1050
1051         /* Don't keep track of oper state on LAG DSA masters,
1052          * but rather just of physical DSA masters
1053          */
1054         if (netif_is_lag_master(master))
1055                 return;
1056
1057         if ((dsa_port_master_is_operational(cpu_dp)) !=
1058             (cpu_dp->master_admin_up && up))
1059                 notify = true;
1060
1061         cpu_dp->master_oper_up = up;
1062
1063         if (notify)
1064                 dsa_tree_master_state_change(dst, master);
1065 }
1066
1067 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1068 {
1069         struct dsa_switch_tree *dst = ds->dst;
1070         struct dsa_port *dp;
1071
1072         dsa_switch_for_each_port(dp, ds)
1073                 if (dp->index == index)
1074                         return dp;
1075
1076         dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1077         if (!dp)
1078                 return NULL;
1079
1080         dp->ds = ds;
1081         dp->index = index;
1082
1083         mutex_init(&dp->addr_lists_lock);
1084         mutex_init(&dp->vlans_lock);
1085         INIT_LIST_HEAD(&dp->fdbs);
1086         INIT_LIST_HEAD(&dp->mdbs);
1087         INIT_LIST_HEAD(&dp->vlans);
1088         INIT_LIST_HEAD(&dp->list);
1089         list_add_tail(&dp->list, &dst->ports);
1090
1091         return dp;
1092 }
1093
1094 static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1095 {
1096         dp->type = DSA_PORT_TYPE_USER;
1097         dp->name = name;
1098
1099         return 0;
1100 }
1101
1102 static int dsa_port_parse_dsa(struct dsa_port *dp)
1103 {
1104         dp->type = DSA_PORT_TYPE_DSA;
1105
1106         return 0;
1107 }
1108
1109 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1110                                                   struct net_device *master)
1111 {
1112         enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1113         struct dsa_switch *mds, *ds = dp->ds;
1114         unsigned int mdp_upstream;
1115         struct dsa_port *mdp;
1116
1117         /* It is possible to stack DSA switches onto one another when that
1118          * happens the switch driver may want to know if its tagging protocol
1119          * is going to work in such a configuration.
1120          */
1121         if (dsa_slave_dev_check(master)) {
1122                 mdp = dsa_slave_to_port(master);
1123                 mds = mdp->ds;
1124                 mdp_upstream = dsa_upstream_port(mds, mdp->index);
1125                 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1126                                                           DSA_TAG_PROTO_NONE);
1127         }
1128
1129         /* If the master device is not itself a DSA slave in a disjoint DSA
1130          * tree, then return immediately.
1131          */
1132         return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1133 }
1134
1135 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
1136                               const char *user_protocol)
1137 {
1138         const struct dsa_device_ops *tag_ops = NULL;
1139         struct dsa_switch *ds = dp->ds;
1140         struct dsa_switch_tree *dst = ds->dst;
1141         enum dsa_tag_protocol default_proto;
1142
1143         /* Find out which protocol the switch would prefer. */
1144         default_proto = dsa_get_tag_protocol(dp, master);
1145         if (dst->default_proto) {
1146                 if (dst->default_proto != default_proto) {
1147                         dev_err(ds->dev,
1148                                 "A DSA switch tree can have only one tagging protocol\n");
1149                         return -EINVAL;
1150                 }
1151         } else {
1152                 dst->default_proto = default_proto;
1153         }
1154
1155         /* See if the user wants to override that preference. */
1156         if (user_protocol) {
1157                 if (!ds->ops->change_tag_protocol) {
1158                         dev_err(ds->dev, "Tag protocol cannot be modified\n");
1159                         return -EINVAL;
1160                 }
1161
1162                 tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1163                 if (IS_ERR(tag_ops)) {
1164                         dev_warn(ds->dev,
1165                                  "Failed to find a tagging driver for protocol %s, using default\n",
1166                                  user_protocol);
1167                         tag_ops = NULL;
1168                 }
1169         }
1170
1171         if (!tag_ops)
1172                 tag_ops = dsa_tag_driver_get_by_id(default_proto);
1173
1174         if (IS_ERR(tag_ops)) {
1175                 if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1176                         return -EPROBE_DEFER;
1177
1178                 dev_warn(ds->dev, "No tagger for this switch\n");
1179                 return PTR_ERR(tag_ops);
1180         }
1181
1182         if (dst->tag_ops) {
1183                 if (dst->tag_ops != tag_ops) {
1184                         dev_err(ds->dev,
1185                                 "A DSA switch tree can have only one tagging protocol\n");
1186
1187                         dsa_tag_driver_put(tag_ops);
1188                         return -EINVAL;
1189                 }
1190
1191                 /* In the case of multiple CPU ports per switch, the tagging
1192                  * protocol is still reference-counted only per switch tree.
1193                  */
1194                 dsa_tag_driver_put(tag_ops);
1195         } else {
1196                 dst->tag_ops = tag_ops;
1197         }
1198
1199         dp->master = master;
1200         dp->type = DSA_PORT_TYPE_CPU;
1201         dsa_port_set_tag_protocol(dp, dst->tag_ops);
1202         dp->dst = dst;
1203
1204         /* At this point, the tree may be configured to use a different
1205          * tagger than the one chosen by the switch driver during
1206          * .setup, in the case when a user selects a custom protocol
1207          * through the DT.
1208          *
1209          * This is resolved by syncing the driver with the tree in
1210          * dsa_switch_setup_tag_protocol once .setup has run and the
1211          * driver is ready to accept calls to .change_tag_protocol. If
1212          * the driver does not support the custom protocol at that
1213          * point, the tree is wholly rejected, thereby ensuring that the
1214          * tree and driver are always in agreement on the protocol to
1215          * use.
1216          */
1217         return 0;
1218 }
1219
1220 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1221 {
1222         struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1223         const char *name = of_get_property(dn, "label", NULL);
1224         bool link = of_property_read_bool(dn, "link");
1225
1226         dp->dn = dn;
1227
1228         if (ethernet) {
1229                 struct net_device *master;
1230                 const char *user_protocol;
1231
1232                 master = of_find_net_device_by_node(ethernet);
1233                 of_node_put(ethernet);
1234                 if (!master)
1235                         return -EPROBE_DEFER;
1236
1237                 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1238                 return dsa_port_parse_cpu(dp, master, user_protocol);
1239         }
1240
1241         if (link)
1242                 return dsa_port_parse_dsa(dp);
1243
1244         return dsa_port_parse_user(dp, name);
1245 }
1246
1247 static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1248                                      struct device_node *dn)
1249 {
1250         struct device_node *ports, *port;
1251         struct dsa_port *dp;
1252         int err = 0;
1253         u32 reg;
1254
1255         ports = of_get_child_by_name(dn, "ports");
1256         if (!ports) {
1257                 /* The second possibility is "ethernet-ports" */
1258                 ports = of_get_child_by_name(dn, "ethernet-ports");
1259                 if (!ports) {
1260                         dev_err(ds->dev, "no ports child node found\n");
1261                         return -EINVAL;
1262                 }
1263         }
1264
1265         for_each_available_child_of_node(ports, port) {
1266                 err = of_property_read_u32(port, "reg", &reg);
1267                 if (err) {
1268                         of_node_put(port);
1269                         goto out_put_node;
1270                 }
1271
1272                 if (reg >= ds->num_ports) {
1273                         dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1274                                 port, reg, ds->num_ports);
1275                         of_node_put(port);
1276                         err = -EINVAL;
1277                         goto out_put_node;
1278                 }
1279
1280                 dp = dsa_to_port(ds, reg);
1281
1282                 err = dsa_port_parse_of(dp, port);
1283                 if (err) {
1284                         of_node_put(port);
1285                         goto out_put_node;
1286                 }
1287         }
1288
1289 out_put_node:
1290         of_node_put(ports);
1291         return err;
1292 }
1293
1294 static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1295                                       struct device_node *dn)
1296 {
1297         u32 m[2] = { 0, 0 };
1298         int sz;
1299
1300         /* Don't error out if this optional property isn't found */
1301         sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1302         if (sz < 0 && sz != -EINVAL)
1303                 return sz;
1304
1305         ds->index = m[1];
1306
1307         ds->dst = dsa_tree_touch(m[0]);
1308         if (!ds->dst)
1309                 return -ENOMEM;
1310
1311         if (dsa_switch_find(ds->dst->index, ds->index)) {
1312                 dev_err(ds->dev,
1313                         "A DSA switch with index %d already exists in tree %d\n",
1314                         ds->index, ds->dst->index);
1315                 return -EEXIST;
1316         }
1317
1318         if (ds->dst->last_switch < ds->index)
1319                 ds->dst->last_switch = ds->index;
1320
1321         return 0;
1322 }
1323
1324 static int dsa_switch_touch_ports(struct dsa_switch *ds)
1325 {
1326         struct dsa_port *dp;
1327         int port;
1328
1329         for (port = 0; port < ds->num_ports; port++) {
1330                 dp = dsa_port_touch(ds, port);
1331                 if (!dp)
1332                         return -ENOMEM;
1333         }
1334
1335         return 0;
1336 }
1337
1338 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1339 {
1340         int err;
1341
1342         err = dsa_switch_parse_member_of(ds, dn);
1343         if (err)
1344                 return err;
1345
1346         err = dsa_switch_touch_ports(ds);
1347         if (err)
1348                 return err;
1349
1350         return dsa_switch_parse_ports_of(ds, dn);
1351 }
1352
1353 static int dev_is_class(struct device *dev, void *class)
1354 {
1355         if (dev->class != NULL && !strcmp(dev->class->name, class))
1356                 return 1;
1357
1358         return 0;
1359 }
1360
1361 static struct device *dev_find_class(struct device *parent, char *class)
1362 {
1363         if (dev_is_class(parent, class)) {
1364                 get_device(parent);
1365                 return parent;
1366         }
1367
1368         return device_find_child(parent, class, dev_is_class);
1369 }
1370
1371 static struct net_device *dsa_dev_to_net_device(struct device *dev)
1372 {
1373         struct device *d;
1374
1375         d = dev_find_class(dev, "net");
1376         if (d != NULL) {
1377                 struct net_device *nd;
1378
1379                 nd = to_net_dev(d);
1380                 dev_hold(nd);
1381                 put_device(d);
1382
1383                 return nd;
1384         }
1385
1386         return NULL;
1387 }
1388
1389 static int dsa_port_parse(struct dsa_port *dp, const char *name,
1390                           struct device *dev)
1391 {
1392         if (!strcmp(name, "cpu")) {
1393                 struct net_device *master;
1394
1395                 master = dsa_dev_to_net_device(dev);
1396                 if (!master)
1397                         return -EPROBE_DEFER;
1398
1399                 dev_put(master);
1400
1401                 return dsa_port_parse_cpu(dp, master, NULL);
1402         }
1403
1404         if (!strcmp(name, "dsa"))
1405                 return dsa_port_parse_dsa(dp);
1406
1407         return dsa_port_parse_user(dp, name);
1408 }
1409
1410 static int dsa_switch_parse_ports(struct dsa_switch *ds,
1411                                   struct dsa_chip_data *cd)
1412 {
1413         bool valid_name_found = false;
1414         struct dsa_port *dp;
1415         struct device *dev;
1416         const char *name;
1417         unsigned int i;
1418         int err;
1419
1420         for (i = 0; i < DSA_MAX_PORTS; i++) {
1421                 name = cd->port_names[i];
1422                 dev = cd->netdev[i];
1423                 dp = dsa_to_port(ds, i);
1424
1425                 if (!name)
1426                         continue;
1427
1428                 err = dsa_port_parse(dp, name, dev);
1429                 if (err)
1430                         return err;
1431
1432                 valid_name_found = true;
1433         }
1434
1435         if (!valid_name_found && i == DSA_MAX_PORTS)
1436                 return -EINVAL;
1437
1438         return 0;
1439 }
1440
1441 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1442 {
1443         int err;
1444
1445         ds->cd = cd;
1446
1447         /* We don't support interconnected switches nor multiple trees via
1448          * platform data, so this is the unique switch of the tree.
1449          */
1450         ds->index = 0;
1451         ds->dst = dsa_tree_touch(0);
1452         if (!ds->dst)
1453                 return -ENOMEM;
1454
1455         err = dsa_switch_touch_ports(ds);
1456         if (err)
1457                 return err;
1458
1459         return dsa_switch_parse_ports(ds, cd);
1460 }
1461
1462 static void dsa_switch_release_ports(struct dsa_switch *ds)
1463 {
1464         struct dsa_port *dp, *next;
1465
1466         dsa_switch_for_each_port_safe(dp, next, ds) {
1467                 WARN_ON(!list_empty(&dp->fdbs));
1468                 WARN_ON(!list_empty(&dp->mdbs));
1469                 WARN_ON(!list_empty(&dp->vlans));
1470                 list_del(&dp->list);
1471                 kfree(dp);
1472         }
1473 }
1474
1475 static int dsa_switch_probe(struct dsa_switch *ds)
1476 {
1477         struct dsa_switch_tree *dst;
1478         struct dsa_chip_data *pdata;
1479         struct device_node *np;
1480         int err;
1481
1482         if (!ds->dev)
1483                 return -ENODEV;
1484
1485         pdata = ds->dev->platform_data;
1486         np = ds->dev->of_node;
1487
1488         if (!ds->num_ports)
1489                 return -EINVAL;
1490
1491         if (np) {
1492                 err = dsa_switch_parse_of(ds, np);
1493                 if (err)
1494                         dsa_switch_release_ports(ds);
1495         } else if (pdata) {
1496                 err = dsa_switch_parse(ds, pdata);
1497                 if (err)
1498                         dsa_switch_release_ports(ds);
1499         } else {
1500                 err = -ENODEV;
1501         }
1502
1503         if (err)
1504                 return err;
1505
1506         dst = ds->dst;
1507         dsa_tree_get(dst);
1508         err = dsa_tree_setup(dst);
1509         if (err) {
1510                 dsa_switch_release_ports(ds);
1511                 dsa_tree_put(dst);
1512         }
1513
1514         return err;
1515 }
1516
1517 int dsa_register_switch(struct dsa_switch *ds)
1518 {
1519         int err;
1520
1521         mutex_lock(&dsa2_mutex);
1522         err = dsa_switch_probe(ds);
1523         dsa_tree_put(ds->dst);
1524         mutex_unlock(&dsa2_mutex);
1525
1526         return err;
1527 }
1528 EXPORT_SYMBOL_GPL(dsa_register_switch);
1529
1530 static void dsa_switch_remove(struct dsa_switch *ds)
1531 {
1532         struct dsa_switch_tree *dst = ds->dst;
1533
1534         dsa_tree_teardown(dst);
1535         dsa_switch_release_ports(ds);
1536         dsa_tree_put(dst);
1537 }
1538
1539 void dsa_unregister_switch(struct dsa_switch *ds)
1540 {
1541         mutex_lock(&dsa2_mutex);
1542         dsa_switch_remove(ds);
1543         mutex_unlock(&dsa2_mutex);
1544 }
1545 EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1546
1547 /* If the DSA master chooses to unregister its net_device on .shutdown, DSA is
1548  * blocking that operation from completion, due to the dev_hold taken inside
1549  * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of
1550  * the DSA master, so that the system can reboot successfully.
1551  */
1552 void dsa_switch_shutdown(struct dsa_switch *ds)
1553 {
1554         struct net_device *master, *slave_dev;
1555         struct dsa_port *dp;
1556
1557         mutex_lock(&dsa2_mutex);
1558
1559         if (!ds->setup)
1560                 goto out;
1561
1562         rtnl_lock();
1563
1564         dsa_switch_for_each_user_port(dp, ds) {
1565                 master = dsa_port_to_master(dp);
1566                 slave_dev = dp->slave;
1567
1568                 netdev_upper_dev_unlink(master, slave_dev);
1569         }
1570
1571         /* Disconnect from further netdevice notifiers on the master,
1572          * since netdev_uses_dsa() will now return false.
1573          */
1574         dsa_switch_for_each_cpu_port(dp, ds)
1575                 dp->master->dsa_ptr = NULL;
1576
1577         rtnl_unlock();
1578 out:
1579         mutex_unlock(&dsa2_mutex);
1580 }
1581 EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1582
1583 #ifdef CONFIG_PM_SLEEP
1584 static bool dsa_port_is_initialized(const struct dsa_port *dp)
1585 {
1586         return dp->type == DSA_PORT_TYPE_USER && dp->slave;
1587 }
1588
1589 int dsa_switch_suspend(struct dsa_switch *ds)
1590 {
1591         struct dsa_port *dp;
1592         int ret = 0;
1593
1594         /* Suspend slave network devices */
1595         dsa_switch_for_each_port(dp, ds) {
1596                 if (!dsa_port_is_initialized(dp))
1597                         continue;
1598
1599                 ret = dsa_slave_suspend(dp->slave);
1600                 if (ret)
1601                         return ret;
1602         }
1603
1604         if (ds->ops->suspend)
1605                 ret = ds->ops->suspend(ds);
1606
1607         return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1610
1611 int dsa_switch_resume(struct dsa_switch *ds)
1612 {
1613         struct dsa_port *dp;
1614         int ret = 0;
1615
1616         if (ds->ops->resume)
1617                 ret = ds->ops->resume(ds);
1618
1619         if (ret)
1620                 return ret;
1621
1622         /* Resume slave network devices */
1623         dsa_switch_for_each_port(dp, ds) {
1624                 if (!dsa_port_is_initialized(dp))
1625                         continue;
1626
1627                 ret = dsa_slave_resume(dp->slave);
1628                 if (ret)
1629                         return ret;
1630         }
1631
1632         return 0;
1633 }
1634 EXPORT_SYMBOL_GPL(dsa_switch_resume);
1635 #endif
1636
1637 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1638 {
1639         if (!netdev || !dsa_slave_dev_check(netdev))
1640                 return ERR_PTR(-ENODEV);
1641
1642         return dsa_slave_to_port(netdev);
1643 }
1644 EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1645
1646 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1647 {
1648         if (a->type != b->type)
1649                 return false;
1650
1651         switch (a->type) {
1652         case DSA_DB_PORT:
1653                 return a->dp == b->dp;
1654         case DSA_DB_LAG:
1655                 return a->lag.dev == b->lag.dev;
1656         case DSA_DB_BRIDGE:
1657                 return a->bridge.num == b->bridge.num;
1658         default:
1659                 WARN_ON(1);
1660                 return false;
1661         }
1662 }
1663
1664 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1665                                  const unsigned char *addr, u16 vid,
1666                                  struct dsa_db db)
1667 {
1668         struct dsa_port *dp = dsa_to_port(ds, port);
1669         struct dsa_mac_addr *a;
1670
1671         lockdep_assert_held(&dp->addr_lists_lock);
1672
1673         list_for_each_entry(a, &dp->fdbs, list) {
1674                 if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1675                         continue;
1676
1677                 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1678                         return true;
1679         }
1680
1681         return false;
1682 }
1683 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1684
1685 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1686                                  const struct switchdev_obj_port_mdb *mdb,
1687                                  struct dsa_db db)
1688 {
1689         struct dsa_port *dp = dsa_to_port(ds, port);
1690         struct dsa_mac_addr *a;
1691
1692         lockdep_assert_held(&dp->addr_lists_lock);
1693
1694         list_for_each_entry(a, &dp->mdbs, list) {
1695                 if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1696                         continue;
1697
1698                 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1699                         return true;
1700         }
1701
1702         return false;
1703 }
1704 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1705
1706 static const struct dsa_stubs __dsa_stubs = {
1707         .master_hwtstamp_validate = __dsa_master_hwtstamp_validate,
1708 };
1709
1710 static void dsa_register_stubs(void)
1711 {
1712         dsa_stubs = &__dsa_stubs;
1713 }
1714
1715 static void dsa_unregister_stubs(void)
1716 {
1717         dsa_stubs = NULL;
1718 }
1719
1720 static int __init dsa_init_module(void)
1721 {
1722         int rc;
1723
1724         dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1725                                           WQ_MEM_RECLAIM);
1726         if (!dsa_owq)
1727                 return -ENOMEM;
1728
1729         rc = dsa_slave_register_notifier();
1730         if (rc)
1731                 goto register_notifier_fail;
1732
1733         dev_add_pack(&dsa_pack_type);
1734
1735         rc = rtnl_link_register(&dsa_link_ops);
1736         if (rc)
1737                 goto netlink_register_fail;
1738
1739         dsa_register_stubs();
1740
1741         return 0;
1742
1743 netlink_register_fail:
1744         dsa_slave_unregister_notifier();
1745         dev_remove_pack(&dsa_pack_type);
1746 register_notifier_fail:
1747         destroy_workqueue(dsa_owq);
1748
1749         return rc;
1750 }
1751 module_init(dsa_init_module);
1752
1753 static void __exit dsa_cleanup_module(void)
1754 {
1755         dsa_unregister_stubs();
1756
1757         rtnl_link_unregister(&dsa_link_ops);
1758
1759         dsa_slave_unregister_notifier();
1760         dev_remove_pack(&dsa_pack_type);
1761         destroy_workqueue(dsa_owq);
1762 }
1763 module_exit(dsa_cleanup_module);
1764
1765 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1766 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1767 MODULE_LICENSE("GPL");
1768 MODULE_ALIAS("platform:dsa");