[NEIGH]: Combine neighbour cleanup and release
[linux-2.6-block.git] / net / core / neighbour.c
1 /*
2  *      Generic address resolution entity
3  *
4  *      Authors:
5  *      Pedro Roque             <roque@di.fc.ul.pt>
6  *      Alexey Kuznetsov        <kuznet@ms2.inr.ac.ru>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *      Fixes:
14  *      Vitaly E. Lavrov        releasing NULL neighbor in neigh_add.
15  *      Harald Welte            Add neighbour cache statistics like rtstat
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/neighbour.h>
29 #include <net/dst.h>
30 #include <net/sock.h>
31 #include <net/netevent.h>
32 #include <net/netlink.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/random.h>
35 #include <linux/string.h>
36 #include <linux/log2.h>
37
38 #define NEIGH_DEBUG 1
39
40 #define NEIGH_PRINTK(x...) printk(x)
41 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
42 #define NEIGH_PRINTK0 NEIGH_PRINTK
43 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
44 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
45
46 #if NEIGH_DEBUG >= 1
47 #undef NEIGH_PRINTK1
48 #define NEIGH_PRINTK1 NEIGH_PRINTK
49 #endif
50 #if NEIGH_DEBUG >= 2
51 #undef NEIGH_PRINTK2
52 #define NEIGH_PRINTK2 NEIGH_PRINTK
53 #endif
54
55 #define PNEIGH_HASHMASK         0xF
56
57 static void neigh_timer_handler(unsigned long arg);
58 #ifdef CONFIG_ARPD
59 static void neigh_app_notify(struct neighbour *n);
60 #endif
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
63
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static const struct file_operations neigh_stat_seq_fops;
67 #endif
68
69 /*
70    Neighbour hash table buckets are protected with rwlock tbl->lock.
71
72    - All the scans/updates to hash buckets MUST be made under this lock.
73    - NOTHING clever should be made under this lock: no callbacks
74      to protocol backends, no attempts to send something to network.
75      It will result in deadlocks, if backend/driver wants to use neighbour
76      cache.
77    - If the entry requires some non-trivial actions, increase
78      its reference count and release table lock.
79
80    Neighbour entries are protected:
81    - with reference count.
82    - with rwlock neigh->lock
83
84    Reference count prevents destruction.
85
86    neigh->lock mainly serializes ll address data and its validity state.
87    However, the same lock is used to protect another entry fields:
88     - timer
89     - resolution queue
90
91    Again, nothing clever shall be made under neigh->lock,
92    the most complicated procedure, which we allow is dev->hard_header.
93    It is supposed, that dev->hard_header is simplistic and does
94    not make callbacks to neighbour tables.
95
96    The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97    list of neighbour tables. This list is used only in process context,
98  */
99
100 static DEFINE_RWLOCK(neigh_tbl_lock);
101
102 static int neigh_blackhole(struct sk_buff *skb)
103 {
104         kfree_skb(skb);
105         return -ENETDOWN;
106 }
107
108 static void neigh_cleanup_and_release(struct neighbour *neigh)
109 {
110         if (neigh->parms->neigh_cleanup)
111                 neigh->parms->neigh_cleanup(neigh);
112
113         neigh_release(neigh);
114 }
115
116 /*
117  * It is random distribution in the interval (1/2)*base...(3/2)*base.
118  * It corresponds to default IPv6 settings and is not overridable,
119  * because it is really reasonable choice.
120  */
121
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124         return (base ? (net_random() % base) + (base >> 1) : 0);
125 }
126
127
128 static int neigh_forced_gc(struct neigh_table *tbl)
129 {
130         int shrunk = 0;
131         int i;
132
133         NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
134
135         write_lock_bh(&tbl->lock);
136         for (i = 0; i <= tbl->hash_mask; i++) {
137                 struct neighbour *n, **np;
138
139                 np = &tbl->hash_buckets[i];
140                 while ((n = *np) != NULL) {
141                         /* Neighbour record may be discarded if:
142                          * - nobody refers to it.
143                          * - it is not permanent
144                          */
145                         write_lock(&n->lock);
146                         if (atomic_read(&n->refcnt) == 1 &&
147                             !(n->nud_state & NUD_PERMANENT)) {
148                                 *np     = n->next;
149                                 n->dead = 1;
150                                 shrunk  = 1;
151                                 write_unlock(&n->lock);
152                                 neigh_cleanup_and_release(n);
153                                 continue;
154                         }
155                         write_unlock(&n->lock);
156                         np = &n->next;
157                 }
158         }
159
160         tbl->last_flush = jiffies;
161
162         write_unlock_bh(&tbl->lock);
163
164         return shrunk;
165 }
166
167 static int neigh_del_timer(struct neighbour *n)
168 {
169         if ((n->nud_state & NUD_IN_TIMER) &&
170             del_timer(&n->timer)) {
171                 neigh_release(n);
172                 return 1;
173         }
174         return 0;
175 }
176
177 static void pneigh_queue_purge(struct sk_buff_head *list)
178 {
179         struct sk_buff *skb;
180
181         while ((skb = skb_dequeue(list)) != NULL) {
182                 dev_put(skb->dev);
183                 kfree_skb(skb);
184         }
185 }
186
187 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
188 {
189         int i;
190
191         for (i = 0; i <= tbl->hash_mask; i++) {
192                 struct neighbour *n, **np = &tbl->hash_buckets[i];
193
194                 while ((n = *np) != NULL) {
195                         if (dev && n->dev != dev) {
196                                 np = &n->next;
197                                 continue;
198                         }
199                         *np = n->next;
200                         write_lock(&n->lock);
201                         neigh_del_timer(n);
202                         n->dead = 1;
203
204                         if (atomic_read(&n->refcnt) != 1) {
205                                 /* The most unpleasant situation.
206                                    We must destroy neighbour entry,
207                                    but someone still uses it.
208
209                                    The destroy will be delayed until
210                                    the last user releases us, but
211                                    we must kill timers etc. and move
212                                    it to safe state.
213                                  */
214                                 skb_queue_purge(&n->arp_queue);
215                                 n->output = neigh_blackhole;
216                                 if (n->nud_state & NUD_VALID)
217                                         n->nud_state = NUD_NOARP;
218                                 else
219                                         n->nud_state = NUD_NONE;
220                                 NEIGH_PRINTK2("neigh %p is stray.\n", n);
221                         }
222                         write_unlock(&n->lock);
223                         neigh_cleanup_and_release(n);
224                 }
225         }
226 }
227
228 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
229 {
230         write_lock_bh(&tbl->lock);
231         neigh_flush_dev(tbl, dev);
232         write_unlock_bh(&tbl->lock);
233 }
234
235 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
236 {
237         write_lock_bh(&tbl->lock);
238         neigh_flush_dev(tbl, dev);
239         pneigh_ifdown(tbl, dev);
240         write_unlock_bh(&tbl->lock);
241
242         del_timer_sync(&tbl->proxy_timer);
243         pneigh_queue_purge(&tbl->proxy_queue);
244         return 0;
245 }
246
247 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
248 {
249         struct neighbour *n = NULL;
250         unsigned long now = jiffies;
251         int entries;
252
253         entries = atomic_inc_return(&tbl->entries) - 1;
254         if (entries >= tbl->gc_thresh3 ||
255             (entries >= tbl->gc_thresh2 &&
256              time_after(now, tbl->last_flush + 5 * HZ))) {
257                 if (!neigh_forced_gc(tbl) &&
258                     entries >= tbl->gc_thresh3)
259                         goto out_entries;
260         }
261
262         n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
263         if (!n)
264                 goto out_entries;
265
266         skb_queue_head_init(&n->arp_queue);
267         rwlock_init(&n->lock);
268         n->updated        = n->used = now;
269         n->nud_state      = NUD_NONE;
270         n->output         = neigh_blackhole;
271         n->parms          = neigh_parms_clone(&tbl->parms);
272         init_timer(&n->timer);
273         n->timer.function = neigh_timer_handler;
274         n->timer.data     = (unsigned long)n;
275
276         NEIGH_CACHE_STAT_INC(tbl, allocs);
277         n->tbl            = tbl;
278         atomic_set(&n->refcnt, 1);
279         n->dead           = 1;
280 out:
281         return n;
282
283 out_entries:
284         atomic_dec(&tbl->entries);
285         goto out;
286 }
287
288 static struct neighbour **neigh_hash_alloc(unsigned int entries)
289 {
290         unsigned long size = entries * sizeof(struct neighbour *);
291         struct neighbour **ret;
292
293         if (size <= PAGE_SIZE) {
294                 ret = kzalloc(size, GFP_ATOMIC);
295         } else {
296                 ret = (struct neighbour **)
297                       __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
298         }
299         return ret;
300 }
301
302 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
303 {
304         unsigned long size = entries * sizeof(struct neighbour *);
305
306         if (size <= PAGE_SIZE)
307                 kfree(hash);
308         else
309                 free_pages((unsigned long)hash, get_order(size));
310 }
311
312 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
313 {
314         struct neighbour **new_hash, **old_hash;
315         unsigned int i, new_hash_mask, old_entries;
316
317         NEIGH_CACHE_STAT_INC(tbl, hash_grows);
318
319         BUG_ON(!is_power_of_2(new_entries));
320         new_hash = neigh_hash_alloc(new_entries);
321         if (!new_hash)
322                 return;
323
324         old_entries = tbl->hash_mask + 1;
325         new_hash_mask = new_entries - 1;
326         old_hash = tbl->hash_buckets;
327
328         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
329         for (i = 0; i < old_entries; i++) {
330                 struct neighbour *n, *next;
331
332                 for (n = old_hash[i]; n; n = next) {
333                         unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
334
335                         hash_val &= new_hash_mask;
336                         next = n->next;
337
338                         n->next = new_hash[hash_val];
339                         new_hash[hash_val] = n;
340                 }
341         }
342         tbl->hash_buckets = new_hash;
343         tbl->hash_mask = new_hash_mask;
344
345         neigh_hash_free(old_hash, old_entries);
346 }
347
348 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
349                                struct net_device *dev)
350 {
351         struct neighbour *n;
352         int key_len = tbl->key_len;
353         u32 hash_val = tbl->hash(pkey, dev);
354
355         NEIGH_CACHE_STAT_INC(tbl, lookups);
356
357         read_lock_bh(&tbl->lock);
358         for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
359                 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
360                         neigh_hold(n);
361                         NEIGH_CACHE_STAT_INC(tbl, hits);
362                         break;
363                 }
364         }
365         read_unlock_bh(&tbl->lock);
366         return n;
367 }
368
369 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
370 {
371         struct neighbour *n;
372         int key_len = tbl->key_len;
373         u32 hash_val = tbl->hash(pkey, NULL);
374
375         NEIGH_CACHE_STAT_INC(tbl, lookups);
376
377         read_lock_bh(&tbl->lock);
378         for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
379                 if (!memcmp(n->primary_key, pkey, key_len)) {
380                         neigh_hold(n);
381                         NEIGH_CACHE_STAT_INC(tbl, hits);
382                         break;
383                 }
384         }
385         read_unlock_bh(&tbl->lock);
386         return n;
387 }
388
389 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
390                                struct net_device *dev)
391 {
392         u32 hash_val;
393         int key_len = tbl->key_len;
394         int error;
395         struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
396
397         if (!n) {
398                 rc = ERR_PTR(-ENOBUFS);
399                 goto out;
400         }
401
402         memcpy(n->primary_key, pkey, key_len);
403         n->dev = dev;
404         dev_hold(dev);
405
406         /* Protocol specific setup. */
407         if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
408                 rc = ERR_PTR(error);
409                 goto out_neigh_release;
410         }
411
412         /* Device specific setup. */
413         if (n->parms->neigh_setup &&
414             (error = n->parms->neigh_setup(n)) < 0) {
415                 rc = ERR_PTR(error);
416                 goto out_neigh_release;
417         }
418
419         n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
420
421         write_lock_bh(&tbl->lock);
422
423         if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
424                 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
425
426         hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
427
428         if (n->parms->dead) {
429                 rc = ERR_PTR(-EINVAL);
430                 goto out_tbl_unlock;
431         }
432
433         for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
434                 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
435                         neigh_hold(n1);
436                         rc = n1;
437                         goto out_tbl_unlock;
438                 }
439         }
440
441         n->next = tbl->hash_buckets[hash_val];
442         tbl->hash_buckets[hash_val] = n;
443         n->dead = 0;
444         neigh_hold(n);
445         write_unlock_bh(&tbl->lock);
446         NEIGH_PRINTK2("neigh %p is created.\n", n);
447         rc = n;
448 out:
449         return rc;
450 out_tbl_unlock:
451         write_unlock_bh(&tbl->lock);
452 out_neigh_release:
453         neigh_release(n);
454         goto out;
455 }
456
457 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
458                                     struct net_device *dev, int creat)
459 {
460         struct pneigh_entry *n;
461         int key_len = tbl->key_len;
462         u32 hash_val = *(u32 *)(pkey + key_len - 4);
463
464         hash_val ^= (hash_val >> 16);
465         hash_val ^= hash_val >> 8;
466         hash_val ^= hash_val >> 4;
467         hash_val &= PNEIGH_HASHMASK;
468
469         read_lock_bh(&tbl->lock);
470
471         for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
472                 if (!memcmp(n->key, pkey, key_len) &&
473                     (n->dev == dev || !n->dev)) {
474                         read_unlock_bh(&tbl->lock);
475                         goto out;
476                 }
477         }
478         read_unlock_bh(&tbl->lock);
479         n = NULL;
480         if (!creat)
481                 goto out;
482
483         n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
484         if (!n)
485                 goto out;
486
487         memcpy(n->key, pkey, key_len);
488         n->dev = dev;
489         if (dev)
490                 dev_hold(dev);
491
492         if (tbl->pconstructor && tbl->pconstructor(n)) {
493                 if (dev)
494                         dev_put(dev);
495                 kfree(n);
496                 n = NULL;
497                 goto out;
498         }
499
500         write_lock_bh(&tbl->lock);
501         n->next = tbl->phash_buckets[hash_val];
502         tbl->phash_buckets[hash_val] = n;
503         write_unlock_bh(&tbl->lock);
504 out:
505         return n;
506 }
507
508
509 int pneigh_delete(struct neigh_table *tbl, const void *pkey,
510                   struct net_device *dev)
511 {
512         struct pneigh_entry *n, **np;
513         int key_len = tbl->key_len;
514         u32 hash_val = *(u32 *)(pkey + key_len - 4);
515
516         hash_val ^= (hash_val >> 16);
517         hash_val ^= hash_val >> 8;
518         hash_val ^= hash_val >> 4;
519         hash_val &= PNEIGH_HASHMASK;
520
521         write_lock_bh(&tbl->lock);
522         for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
523              np = &n->next) {
524                 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
525                         *np = n->next;
526                         write_unlock_bh(&tbl->lock);
527                         if (tbl->pdestructor)
528                                 tbl->pdestructor(n);
529                         if (n->dev)
530                                 dev_put(n->dev);
531                         kfree(n);
532                         return 0;
533                 }
534         }
535         write_unlock_bh(&tbl->lock);
536         return -ENOENT;
537 }
538
539 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
540 {
541         struct pneigh_entry *n, **np;
542         u32 h;
543
544         for (h = 0; h <= PNEIGH_HASHMASK; h++) {
545                 np = &tbl->phash_buckets[h];
546                 while ((n = *np) != NULL) {
547                         if (!dev || n->dev == dev) {
548                                 *np = n->next;
549                                 if (tbl->pdestructor)
550                                         tbl->pdestructor(n);
551                                 if (n->dev)
552                                         dev_put(n->dev);
553                                 kfree(n);
554                                 continue;
555                         }
556                         np = &n->next;
557                 }
558         }
559         return -ENOENT;
560 }
561
562
563 /*
564  *      neighbour must already be out of the table;
565  *
566  */
567 void neigh_destroy(struct neighbour *neigh)
568 {
569         struct hh_cache *hh;
570
571         NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
572
573         if (!neigh->dead) {
574                 printk(KERN_WARNING
575                        "Destroying alive neighbour %p\n", neigh);
576                 dump_stack();
577                 return;
578         }
579
580         if (neigh_del_timer(neigh))
581                 printk(KERN_WARNING "Impossible event.\n");
582
583         while ((hh = neigh->hh) != NULL) {
584                 neigh->hh = hh->hh_next;
585                 hh->hh_next = NULL;
586
587                 write_seqlock_bh(&hh->hh_lock);
588                 hh->hh_output = neigh_blackhole;
589                 write_sequnlock_bh(&hh->hh_lock);
590                 if (atomic_dec_and_test(&hh->hh_refcnt))
591                         kfree(hh);
592         }
593
594         skb_queue_purge(&neigh->arp_queue);
595
596         dev_put(neigh->dev);
597         neigh_parms_put(neigh->parms);
598
599         NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
600
601         atomic_dec(&neigh->tbl->entries);
602         kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
603 }
604
605 /* Neighbour state is suspicious;
606    disable fast path.
607
608    Called with write_locked neigh.
609  */
610 static void neigh_suspect(struct neighbour *neigh)
611 {
612         struct hh_cache *hh;
613
614         NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
615
616         neigh->output = neigh->ops->output;
617
618         for (hh = neigh->hh; hh; hh = hh->hh_next)
619                 hh->hh_output = neigh->ops->output;
620 }
621
622 /* Neighbour state is OK;
623    enable fast path.
624
625    Called with write_locked neigh.
626  */
627 static void neigh_connect(struct neighbour *neigh)
628 {
629         struct hh_cache *hh;
630
631         NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
632
633         neigh->output = neigh->ops->connected_output;
634
635         for (hh = neigh->hh; hh; hh = hh->hh_next)
636                 hh->hh_output = neigh->ops->hh_output;
637 }
638
639 static void neigh_periodic_timer(unsigned long arg)
640 {
641         struct neigh_table *tbl = (struct neigh_table *)arg;
642         struct neighbour *n, **np;
643         unsigned long expire, now = jiffies;
644
645         NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
646
647         write_lock(&tbl->lock);
648
649         /*
650          *      periodically recompute ReachableTime from random function
651          */
652
653         if (time_after(now, tbl->last_rand + 300 * HZ)) {
654                 struct neigh_parms *p;
655                 tbl->last_rand = now;
656                 for (p = &tbl->parms; p; p = p->next)
657                         p->reachable_time =
658                                 neigh_rand_reach_time(p->base_reachable_time);
659         }
660
661         np = &tbl->hash_buckets[tbl->hash_chain_gc];
662         tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
663
664         while ((n = *np) != NULL) {
665                 unsigned int state;
666
667                 write_lock(&n->lock);
668
669                 state = n->nud_state;
670                 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
671                         write_unlock(&n->lock);
672                         goto next_elt;
673                 }
674
675                 if (time_before(n->used, n->confirmed))
676                         n->used = n->confirmed;
677
678                 if (atomic_read(&n->refcnt) == 1 &&
679                     (state == NUD_FAILED ||
680                      time_after(now, n->used + n->parms->gc_staletime))) {
681                         *np = n->next;
682                         n->dead = 1;
683                         write_unlock(&n->lock);
684                         neigh_cleanup_and_release(n);
685                         continue;
686                 }
687                 write_unlock(&n->lock);
688
689 next_elt:
690                 np = &n->next;
691         }
692
693         /* Cycle through all hash buckets every base_reachable_time/2 ticks.
694          * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
695          * base_reachable_time.
696          */
697         expire = tbl->parms.base_reachable_time >> 1;
698         expire /= (tbl->hash_mask + 1);
699         if (!expire)
700                 expire = 1;
701
702         if (expire>HZ)
703                 mod_timer(&tbl->gc_timer, round_jiffies(now + expire));
704         else
705                 mod_timer(&tbl->gc_timer, now + expire);
706
707         write_unlock(&tbl->lock);
708 }
709
710 static __inline__ int neigh_max_probes(struct neighbour *n)
711 {
712         struct neigh_parms *p = n->parms;
713         return (n->nud_state & NUD_PROBE ?
714                 p->ucast_probes :
715                 p->ucast_probes + p->app_probes + p->mcast_probes);
716 }
717
718 static inline void neigh_add_timer(struct neighbour *n, unsigned long when)
719 {
720         if (unlikely(mod_timer(&n->timer, when))) {
721                 printk("NEIGH: BUG, double timer add, state is %x\n",
722                        n->nud_state);
723                 dump_stack();
724         }
725 }
726
727 /* Called when a timer expires for a neighbour entry. */
728
729 static void neigh_timer_handler(unsigned long arg)
730 {
731         unsigned long now, next;
732         struct neighbour *neigh = (struct neighbour *)arg;
733         unsigned state;
734         int notify = 0;
735
736         write_lock(&neigh->lock);
737
738         state = neigh->nud_state;
739         now = jiffies;
740         next = now + HZ;
741
742         if (!(state & NUD_IN_TIMER)) {
743 #ifndef CONFIG_SMP
744                 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
745 #endif
746                 goto out;
747         }
748
749         if (state & NUD_REACHABLE) {
750                 if (time_before_eq(now,
751                                    neigh->confirmed + neigh->parms->reachable_time)) {
752                         NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
753                         next = neigh->confirmed + neigh->parms->reachable_time;
754                 } else if (time_before_eq(now,
755                                           neigh->used + neigh->parms->delay_probe_time)) {
756                         NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
757                         neigh->nud_state = NUD_DELAY;
758                         neigh->updated = jiffies;
759                         neigh_suspect(neigh);
760                         next = now + neigh->parms->delay_probe_time;
761                 } else {
762                         NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
763                         neigh->nud_state = NUD_STALE;
764                         neigh->updated = jiffies;
765                         neigh_suspect(neigh);
766                         notify = 1;
767                 }
768         } else if (state & NUD_DELAY) {
769                 if (time_before_eq(now,
770                                    neigh->confirmed + neigh->parms->delay_probe_time)) {
771                         NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
772                         neigh->nud_state = NUD_REACHABLE;
773                         neigh->updated = jiffies;
774                         neigh_connect(neigh);
775                         notify = 1;
776                         next = neigh->confirmed + neigh->parms->reachable_time;
777                 } else {
778                         NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
779                         neigh->nud_state = NUD_PROBE;
780                         neigh->updated = jiffies;
781                         atomic_set(&neigh->probes, 0);
782                         next = now + neigh->parms->retrans_time;
783                 }
784         } else {
785                 /* NUD_PROBE|NUD_INCOMPLETE */
786                 next = now + neigh->parms->retrans_time;
787         }
788
789         if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
790             atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
791                 struct sk_buff *skb;
792
793                 neigh->nud_state = NUD_FAILED;
794                 neigh->updated = jiffies;
795                 notify = 1;
796                 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
797                 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
798
799                 /* It is very thin place. report_unreachable is very complicated
800                    routine. Particularly, it can hit the same neighbour entry!
801
802                    So that, we try to be accurate and avoid dead loop. --ANK
803                  */
804                 while (neigh->nud_state == NUD_FAILED &&
805                        (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
806                         write_unlock(&neigh->lock);
807                         neigh->ops->error_report(neigh, skb);
808                         write_lock(&neigh->lock);
809                 }
810                 skb_queue_purge(&neigh->arp_queue);
811         }
812
813         if (neigh->nud_state & NUD_IN_TIMER) {
814                 if (time_before(next, jiffies + HZ/2))
815                         next = jiffies + HZ/2;
816                 if (!mod_timer(&neigh->timer, next))
817                         neigh_hold(neigh);
818         }
819         if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
820                 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
821                 /* keep skb alive even if arp_queue overflows */
822                 if (skb)
823                         skb_get(skb);
824                 write_unlock(&neigh->lock);
825                 neigh->ops->solicit(neigh, skb);
826                 atomic_inc(&neigh->probes);
827                 if (skb)
828                         kfree_skb(skb);
829         } else {
830 out:
831                 write_unlock(&neigh->lock);
832         }
833         if (notify)
834                 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
835
836 #ifdef CONFIG_ARPD
837         if (notify && neigh->parms->app_probes)
838                 neigh_app_notify(neigh);
839 #endif
840         neigh_release(neigh);
841 }
842
843 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
844 {
845         int rc;
846         unsigned long now;
847
848         write_lock_bh(&neigh->lock);
849
850         rc = 0;
851         if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
852                 goto out_unlock_bh;
853
854         now = jiffies;
855
856         if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
857                 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
858                         atomic_set(&neigh->probes, neigh->parms->ucast_probes);
859                         neigh->nud_state     = NUD_INCOMPLETE;
860                         neigh->updated = jiffies;
861                         neigh_hold(neigh);
862                         neigh_add_timer(neigh, now + 1);
863                 } else {
864                         neigh->nud_state = NUD_FAILED;
865                         neigh->updated = jiffies;
866                         write_unlock_bh(&neigh->lock);
867
868                         if (skb)
869                                 kfree_skb(skb);
870                         return 1;
871                 }
872         } else if (neigh->nud_state & NUD_STALE) {
873                 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
874                 neigh_hold(neigh);
875                 neigh->nud_state = NUD_DELAY;
876                 neigh->updated = jiffies;
877                 neigh_add_timer(neigh,
878                                 jiffies + neigh->parms->delay_probe_time);
879         }
880
881         if (neigh->nud_state == NUD_INCOMPLETE) {
882                 if (skb) {
883                         if (skb_queue_len(&neigh->arp_queue) >=
884                             neigh->parms->queue_len) {
885                                 struct sk_buff *buff;
886                                 buff = neigh->arp_queue.next;
887                                 __skb_unlink(buff, &neigh->arp_queue);
888                                 kfree_skb(buff);
889                         }
890                         __skb_queue_tail(&neigh->arp_queue, skb);
891                 }
892                 rc = 1;
893         }
894 out_unlock_bh:
895         write_unlock_bh(&neigh->lock);
896         return rc;
897 }
898
899 static void neigh_update_hhs(struct neighbour *neigh)
900 {
901         struct hh_cache *hh;
902         void (*update)(struct hh_cache*, struct net_device*, unsigned char *) =
903                 neigh->dev->header_cache_update;
904
905         if (update) {
906                 for (hh = neigh->hh; hh; hh = hh->hh_next) {
907                         write_seqlock_bh(&hh->hh_lock);
908                         update(hh, neigh->dev, neigh->ha);
909                         write_sequnlock_bh(&hh->hh_lock);
910                 }
911         }
912 }
913
914
915
916 /* Generic update routine.
917    -- lladdr is new lladdr or NULL, if it is not supplied.
918    -- new    is new state.
919    -- flags
920         NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
921                                 if it is different.
922         NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
923                                 lladdr instead of overriding it
924                                 if it is different.
925                                 It also allows to retain current state
926                                 if lladdr is unchanged.
927         NEIGH_UPDATE_F_ADMIN    means that the change is administrative.
928
929         NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
930                                 NTF_ROUTER flag.
931         NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
932                                 a router.
933
934    Caller MUST hold reference count on the entry.
935  */
936
937 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
938                  u32 flags)
939 {
940         u8 old;
941         int err;
942         int notify = 0;
943         struct net_device *dev;
944         int update_isrouter = 0;
945
946         write_lock_bh(&neigh->lock);
947
948         dev    = neigh->dev;
949         old    = neigh->nud_state;
950         err    = -EPERM;
951
952         if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
953             (old & (NUD_NOARP | NUD_PERMANENT)))
954                 goto out;
955
956         if (!(new & NUD_VALID)) {
957                 neigh_del_timer(neigh);
958                 if (old & NUD_CONNECTED)
959                         neigh_suspect(neigh);
960                 neigh->nud_state = new;
961                 err = 0;
962                 notify = old & NUD_VALID;
963                 goto out;
964         }
965
966         /* Compare new lladdr with cached one */
967         if (!dev->addr_len) {
968                 /* First case: device needs no address. */
969                 lladdr = neigh->ha;
970         } else if (lladdr) {
971                 /* The second case: if something is already cached
972                    and a new address is proposed:
973                    - compare new & old
974                    - if they are different, check override flag
975                  */
976                 if ((old & NUD_VALID) &&
977                     !memcmp(lladdr, neigh->ha, dev->addr_len))
978                         lladdr = neigh->ha;
979         } else {
980                 /* No address is supplied; if we know something,
981                    use it, otherwise discard the request.
982                  */
983                 err = -EINVAL;
984                 if (!(old & NUD_VALID))
985                         goto out;
986                 lladdr = neigh->ha;
987         }
988
989         if (new & NUD_CONNECTED)
990                 neigh->confirmed = jiffies;
991         neigh->updated = jiffies;
992
993         /* If entry was valid and address is not changed,
994            do not change entry state, if new one is STALE.
995          */
996         err = 0;
997         update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
998         if (old & NUD_VALID) {
999                 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1000                         update_isrouter = 0;
1001                         if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1002                             (old & NUD_CONNECTED)) {
1003                                 lladdr = neigh->ha;
1004                                 new = NUD_STALE;
1005                         } else
1006                                 goto out;
1007                 } else {
1008                         if (lladdr == neigh->ha && new == NUD_STALE &&
1009                             ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1010                              (old & NUD_CONNECTED))
1011                             )
1012                                 new = old;
1013                 }
1014         }
1015
1016         if (new != old) {
1017                 neigh_del_timer(neigh);
1018                 if (new & NUD_IN_TIMER) {
1019                         neigh_hold(neigh);
1020                         neigh_add_timer(neigh, (jiffies +
1021                                                 ((new & NUD_REACHABLE) ?
1022                                                  neigh->parms->reachable_time :
1023                                                  0)));
1024                 }
1025                 neigh->nud_state = new;
1026         }
1027
1028         if (lladdr != neigh->ha) {
1029                 memcpy(&neigh->ha, lladdr, dev->addr_len);
1030                 neigh_update_hhs(neigh);
1031                 if (!(new & NUD_CONNECTED))
1032                         neigh->confirmed = jiffies -
1033                                       (neigh->parms->base_reachable_time << 1);
1034                 notify = 1;
1035         }
1036         if (new == old)
1037                 goto out;
1038         if (new & NUD_CONNECTED)
1039                 neigh_connect(neigh);
1040         else
1041                 neigh_suspect(neigh);
1042         if (!(old & NUD_VALID)) {
1043                 struct sk_buff *skb;
1044
1045                 /* Again: avoid dead loop if something went wrong */
1046
1047                 while (neigh->nud_state & NUD_VALID &&
1048                        (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1049                         struct neighbour *n1 = neigh;
1050                         write_unlock_bh(&neigh->lock);
1051                         /* On shaper/eql skb->dst->neighbour != neigh :( */
1052                         if (skb->dst && skb->dst->neighbour)
1053                                 n1 = skb->dst->neighbour;
1054                         n1->output(skb);
1055                         write_lock_bh(&neigh->lock);
1056                 }
1057                 skb_queue_purge(&neigh->arp_queue);
1058         }
1059 out:
1060         if (update_isrouter) {
1061                 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1062                         (neigh->flags | NTF_ROUTER) :
1063                         (neigh->flags & ~NTF_ROUTER);
1064         }
1065         write_unlock_bh(&neigh->lock);
1066
1067         if (notify)
1068                 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
1069 #ifdef CONFIG_ARPD
1070         if (notify && neigh->parms->app_probes)
1071                 neigh_app_notify(neigh);
1072 #endif
1073         return err;
1074 }
1075
1076 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1077                                  u8 *lladdr, void *saddr,
1078                                  struct net_device *dev)
1079 {
1080         struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1081                                                  lladdr || !dev->addr_len);
1082         if (neigh)
1083                 neigh_update(neigh, lladdr, NUD_STALE,
1084                              NEIGH_UPDATE_F_OVERRIDE);
1085         return neigh;
1086 }
1087
1088 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1089                           __be16 protocol)
1090 {
1091         struct hh_cache *hh;
1092         struct net_device *dev = dst->dev;
1093
1094         for (hh = n->hh; hh; hh = hh->hh_next)
1095                 if (hh->hh_type == protocol)
1096                         break;
1097
1098         if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1099                 seqlock_init(&hh->hh_lock);
1100                 hh->hh_type = protocol;
1101                 atomic_set(&hh->hh_refcnt, 0);
1102                 hh->hh_next = NULL;
1103                 if (dev->hard_header_cache(n, hh)) {
1104                         kfree(hh);
1105                         hh = NULL;
1106                 } else {
1107                         atomic_inc(&hh->hh_refcnt);
1108                         hh->hh_next = n->hh;
1109                         n->hh       = hh;
1110                         if (n->nud_state & NUD_CONNECTED)
1111                                 hh->hh_output = n->ops->hh_output;
1112                         else
1113                                 hh->hh_output = n->ops->output;
1114                 }
1115         }
1116         if (hh) {
1117                 atomic_inc(&hh->hh_refcnt);
1118                 dst->hh = hh;
1119         }
1120 }
1121
1122 /* This function can be used in contexts, where only old dev_queue_xmit
1123    worked, f.e. if you want to override normal output path (eql, shaper),
1124    but resolution is not made yet.
1125  */
1126
1127 int neigh_compat_output(struct sk_buff *skb)
1128 {
1129         struct net_device *dev = skb->dev;
1130
1131         __skb_pull(skb, skb_network_offset(skb));
1132
1133         if (dev->hard_header &&
1134             dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1135                              skb->len) < 0 &&
1136             dev->rebuild_header(skb))
1137                 return 0;
1138
1139         return dev_queue_xmit(skb);
1140 }
1141
1142 /* Slow and careful. */
1143
1144 int neigh_resolve_output(struct sk_buff *skb)
1145 {
1146         struct dst_entry *dst = skb->dst;
1147         struct neighbour *neigh;
1148         int rc = 0;
1149
1150         if (!dst || !(neigh = dst->neighbour))
1151                 goto discard;
1152
1153         __skb_pull(skb, skb_network_offset(skb));
1154
1155         if (!neigh_event_send(neigh, skb)) {
1156                 int err;
1157                 struct net_device *dev = neigh->dev;
1158                 if (dev->hard_header_cache && !dst->hh) {
1159                         write_lock_bh(&neigh->lock);
1160                         if (!dst->hh)
1161                                 neigh_hh_init(neigh, dst, dst->ops->protocol);
1162                         err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1163                                                neigh->ha, NULL, skb->len);
1164                         write_unlock_bh(&neigh->lock);
1165                 } else {
1166                         read_lock_bh(&neigh->lock);
1167                         err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1168                                                neigh->ha, NULL, skb->len);
1169                         read_unlock_bh(&neigh->lock);
1170                 }
1171                 if (err >= 0)
1172                         rc = neigh->ops->queue_xmit(skb);
1173                 else
1174                         goto out_kfree_skb;
1175         }
1176 out:
1177         return rc;
1178 discard:
1179         NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1180                       dst, dst ? dst->neighbour : NULL);
1181 out_kfree_skb:
1182         rc = -EINVAL;
1183         kfree_skb(skb);
1184         goto out;
1185 }
1186
1187 /* As fast as possible without hh cache */
1188
1189 int neigh_connected_output(struct sk_buff *skb)
1190 {
1191         int err;
1192         struct dst_entry *dst = skb->dst;
1193         struct neighbour *neigh = dst->neighbour;
1194         struct net_device *dev = neigh->dev;
1195
1196         __skb_pull(skb, skb_network_offset(skb));
1197
1198         read_lock_bh(&neigh->lock);
1199         err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1200                                neigh->ha, NULL, skb->len);
1201         read_unlock_bh(&neigh->lock);
1202         if (err >= 0)
1203                 err = neigh->ops->queue_xmit(skb);
1204         else {
1205                 err = -EINVAL;
1206                 kfree_skb(skb);
1207         }
1208         return err;
1209 }
1210
1211 static void neigh_proxy_process(unsigned long arg)
1212 {
1213         struct neigh_table *tbl = (struct neigh_table *)arg;
1214         long sched_next = 0;
1215         unsigned long now = jiffies;
1216         struct sk_buff *skb;
1217
1218         spin_lock(&tbl->proxy_queue.lock);
1219
1220         skb = tbl->proxy_queue.next;
1221
1222         while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1223                 struct sk_buff *back = skb;
1224                 long tdif = NEIGH_CB(back)->sched_next - now;
1225
1226                 skb = skb->next;
1227                 if (tdif <= 0) {
1228                         struct net_device *dev = back->dev;
1229                         __skb_unlink(back, &tbl->proxy_queue);
1230                         if (tbl->proxy_redo && netif_running(dev))
1231                                 tbl->proxy_redo(back);
1232                         else
1233                                 kfree_skb(back);
1234
1235                         dev_put(dev);
1236                 } else if (!sched_next || tdif < sched_next)
1237                         sched_next = tdif;
1238         }
1239         del_timer(&tbl->proxy_timer);
1240         if (sched_next)
1241                 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1242         spin_unlock(&tbl->proxy_queue.lock);
1243 }
1244
1245 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1246                     struct sk_buff *skb)
1247 {
1248         unsigned long now = jiffies;
1249         unsigned long sched_next = now + (net_random() % p->proxy_delay);
1250
1251         if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1252                 kfree_skb(skb);
1253                 return;
1254         }
1255
1256         NEIGH_CB(skb)->sched_next = sched_next;
1257         NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1258
1259         spin_lock(&tbl->proxy_queue.lock);
1260         if (del_timer(&tbl->proxy_timer)) {
1261                 if (time_before(tbl->proxy_timer.expires, sched_next))
1262                         sched_next = tbl->proxy_timer.expires;
1263         }
1264         dst_release(skb->dst);
1265         skb->dst = NULL;
1266         dev_hold(skb->dev);
1267         __skb_queue_tail(&tbl->proxy_queue, skb);
1268         mod_timer(&tbl->proxy_timer, sched_next);
1269         spin_unlock(&tbl->proxy_queue.lock);
1270 }
1271
1272
1273 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1274                                       struct neigh_table *tbl)
1275 {
1276         struct neigh_parms *p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1277
1278         if (p) {
1279                 p->tbl            = tbl;
1280                 atomic_set(&p->refcnt, 1);
1281                 INIT_RCU_HEAD(&p->rcu_head);
1282                 p->reachable_time =
1283                                 neigh_rand_reach_time(p->base_reachable_time);
1284                 if (dev) {
1285                         if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1286                                 kfree(p);
1287                                 return NULL;
1288                         }
1289
1290                         dev_hold(dev);
1291                         p->dev = dev;
1292                 }
1293                 p->sysctl_table = NULL;
1294                 write_lock_bh(&tbl->lock);
1295                 p->next         = tbl->parms.next;
1296                 tbl->parms.next = p;
1297                 write_unlock_bh(&tbl->lock);
1298         }
1299         return p;
1300 }
1301
1302 static void neigh_rcu_free_parms(struct rcu_head *head)
1303 {
1304         struct neigh_parms *parms =
1305                 container_of(head, struct neigh_parms, rcu_head);
1306
1307         neigh_parms_put(parms);
1308 }
1309
1310 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1311 {
1312         struct neigh_parms **p;
1313
1314         if (!parms || parms == &tbl->parms)
1315                 return;
1316         write_lock_bh(&tbl->lock);
1317         for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1318                 if (*p == parms) {
1319                         *p = parms->next;
1320                         parms->dead = 1;
1321                         write_unlock_bh(&tbl->lock);
1322                         if (parms->dev)
1323                                 dev_put(parms->dev);
1324                         call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1325                         return;
1326                 }
1327         }
1328         write_unlock_bh(&tbl->lock);
1329         NEIGH_PRINTK1("neigh_parms_release: not found\n");
1330 }
1331
1332 void neigh_parms_destroy(struct neigh_parms *parms)
1333 {
1334         kfree(parms);
1335 }
1336
1337 static struct lock_class_key neigh_table_proxy_queue_class;
1338
1339 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1340 {
1341         unsigned long now = jiffies;
1342         unsigned long phsize;
1343
1344         atomic_set(&tbl->parms.refcnt, 1);
1345         INIT_RCU_HEAD(&tbl->parms.rcu_head);
1346         tbl->parms.reachable_time =
1347                           neigh_rand_reach_time(tbl->parms.base_reachable_time);
1348
1349         if (!tbl->kmem_cachep)
1350                 tbl->kmem_cachep =
1351                         kmem_cache_create(tbl->id, tbl->entry_size, 0,
1352                                           SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1353                                           NULL);
1354         tbl->stats = alloc_percpu(struct neigh_statistics);
1355         if (!tbl->stats)
1356                 panic("cannot create neighbour cache statistics");
1357
1358 #ifdef CONFIG_PROC_FS
1359         tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat);
1360         if (!tbl->pde)
1361                 panic("cannot create neighbour proc dir entry");
1362         tbl->pde->proc_fops = &neigh_stat_seq_fops;
1363         tbl->pde->data = tbl;
1364 #endif
1365
1366         tbl->hash_mask = 1;
1367         tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1368
1369         phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1370         tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1371
1372         if (!tbl->hash_buckets || !tbl->phash_buckets)
1373                 panic("cannot allocate neighbour cache hashes");
1374
1375         get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1376
1377         rwlock_init(&tbl->lock);
1378         init_timer(&tbl->gc_timer);
1379         tbl->gc_timer.data     = (unsigned long)tbl;
1380         tbl->gc_timer.function = neigh_periodic_timer;
1381         tbl->gc_timer.expires  = now + 1;
1382         add_timer(&tbl->gc_timer);
1383
1384         init_timer(&tbl->proxy_timer);
1385         tbl->proxy_timer.data     = (unsigned long)tbl;
1386         tbl->proxy_timer.function = neigh_proxy_process;
1387         skb_queue_head_init_class(&tbl->proxy_queue,
1388                         &neigh_table_proxy_queue_class);
1389
1390         tbl->last_flush = now;
1391         tbl->last_rand  = now + tbl->parms.reachable_time * 20;
1392 }
1393
1394 void neigh_table_init(struct neigh_table *tbl)
1395 {
1396         struct neigh_table *tmp;
1397
1398         neigh_table_init_no_netlink(tbl);
1399         write_lock(&neigh_tbl_lock);
1400         for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1401                 if (tmp->family == tbl->family)
1402                         break;
1403         }
1404         tbl->next       = neigh_tables;
1405         neigh_tables    = tbl;
1406         write_unlock(&neigh_tbl_lock);
1407
1408         if (unlikely(tmp)) {
1409                 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1410                        "family %d\n", tbl->family);
1411                 dump_stack();
1412         }
1413 }
1414
1415 int neigh_table_clear(struct neigh_table *tbl)
1416 {
1417         struct neigh_table **tp;
1418
1419         /* It is not clean... Fix it to unload IPv6 module safely */
1420         del_timer_sync(&tbl->gc_timer);
1421         del_timer_sync(&tbl->proxy_timer);
1422         pneigh_queue_purge(&tbl->proxy_queue);
1423         neigh_ifdown(tbl, NULL);
1424         if (atomic_read(&tbl->entries))
1425                 printk(KERN_CRIT "neighbour leakage\n");
1426         write_lock(&neigh_tbl_lock);
1427         for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1428                 if (*tp == tbl) {
1429                         *tp = tbl->next;
1430                         break;
1431                 }
1432         }
1433         write_unlock(&neigh_tbl_lock);
1434
1435         neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1436         tbl->hash_buckets = NULL;
1437
1438         kfree(tbl->phash_buckets);
1439         tbl->phash_buckets = NULL;
1440
1441         free_percpu(tbl->stats);
1442         tbl->stats = NULL;
1443
1444         return 0;
1445 }
1446
1447 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1448 {
1449         struct ndmsg *ndm;
1450         struct nlattr *dst_attr;
1451         struct neigh_table *tbl;
1452         struct net_device *dev = NULL;
1453         int err = -EINVAL;
1454
1455         if (nlmsg_len(nlh) < sizeof(*ndm))
1456                 goto out;
1457
1458         dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1459         if (dst_attr == NULL)
1460                 goto out;
1461
1462         ndm = nlmsg_data(nlh);
1463         if (ndm->ndm_ifindex) {
1464                 dev = dev_get_by_index(ndm->ndm_ifindex);
1465                 if (dev == NULL) {
1466                         err = -ENODEV;
1467                         goto out;
1468                 }
1469         }
1470
1471         read_lock(&neigh_tbl_lock);
1472         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1473                 struct neighbour *neigh;
1474
1475                 if (tbl->family != ndm->ndm_family)
1476                         continue;
1477                 read_unlock(&neigh_tbl_lock);
1478
1479                 if (nla_len(dst_attr) < tbl->key_len)
1480                         goto out_dev_put;
1481
1482                 if (ndm->ndm_flags & NTF_PROXY) {
1483                         err = pneigh_delete(tbl, nla_data(dst_attr), dev);
1484                         goto out_dev_put;
1485                 }
1486
1487                 if (dev == NULL)
1488                         goto out_dev_put;
1489
1490                 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1491                 if (neigh == NULL) {
1492                         err = -ENOENT;
1493                         goto out_dev_put;
1494                 }
1495
1496                 err = neigh_update(neigh, NULL, NUD_FAILED,
1497                                    NEIGH_UPDATE_F_OVERRIDE |
1498                                    NEIGH_UPDATE_F_ADMIN);
1499                 neigh_release(neigh);
1500                 goto out_dev_put;
1501         }
1502         read_unlock(&neigh_tbl_lock);
1503         err = -EAFNOSUPPORT;
1504
1505 out_dev_put:
1506         if (dev)
1507                 dev_put(dev);
1508 out:
1509         return err;
1510 }
1511
1512 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1513 {
1514         struct ndmsg *ndm;
1515         struct nlattr *tb[NDA_MAX+1];
1516         struct neigh_table *tbl;
1517         struct net_device *dev = NULL;
1518         int err;
1519
1520         err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1521         if (err < 0)
1522                 goto out;
1523
1524         err = -EINVAL;
1525         if (tb[NDA_DST] == NULL)
1526                 goto out;
1527
1528         ndm = nlmsg_data(nlh);
1529         if (ndm->ndm_ifindex) {
1530                 dev = dev_get_by_index(ndm->ndm_ifindex);
1531                 if (dev == NULL) {
1532                         err = -ENODEV;
1533                         goto out;
1534                 }
1535
1536                 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1537                         goto out_dev_put;
1538         }
1539
1540         read_lock(&neigh_tbl_lock);
1541         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1542                 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1543                 struct neighbour *neigh;
1544                 void *dst, *lladdr;
1545
1546                 if (tbl->family != ndm->ndm_family)
1547                         continue;
1548                 read_unlock(&neigh_tbl_lock);
1549
1550                 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1551                         goto out_dev_put;
1552                 dst = nla_data(tb[NDA_DST]);
1553                 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1554
1555                 if (ndm->ndm_flags & NTF_PROXY) {
1556                         struct pneigh_entry *pn;
1557
1558                         err = -ENOBUFS;
1559                         pn = pneigh_lookup(tbl, dst, dev, 1);
1560                         if (pn) {
1561                                 pn->flags = ndm->ndm_flags;
1562                                 err = 0;
1563                         }
1564                         goto out_dev_put;
1565                 }
1566
1567                 if (dev == NULL)
1568                         goto out_dev_put;
1569
1570                 neigh = neigh_lookup(tbl, dst, dev);
1571                 if (neigh == NULL) {
1572                         if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1573                                 err = -ENOENT;
1574                                 goto out_dev_put;
1575                         }
1576
1577                         neigh = __neigh_lookup_errno(tbl, dst, dev);
1578                         if (IS_ERR(neigh)) {
1579                                 err = PTR_ERR(neigh);
1580                                 goto out_dev_put;
1581                         }
1582                 } else {
1583                         if (nlh->nlmsg_flags & NLM_F_EXCL) {
1584                                 err = -EEXIST;
1585                                 neigh_release(neigh);
1586                                 goto out_dev_put;
1587                         }
1588
1589                         if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1590                                 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1591                 }
1592
1593                 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1594                 neigh_release(neigh);
1595                 goto out_dev_put;
1596         }
1597
1598         read_unlock(&neigh_tbl_lock);
1599         err = -EAFNOSUPPORT;
1600
1601 out_dev_put:
1602         if (dev)
1603                 dev_put(dev);
1604 out:
1605         return err;
1606 }
1607
1608 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1609 {
1610         struct nlattr *nest;
1611
1612         nest = nla_nest_start(skb, NDTA_PARMS);
1613         if (nest == NULL)
1614                 return -ENOBUFS;
1615
1616         if (parms->dev)
1617                 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1618
1619         NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1620         NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1621         NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1622         NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1623         NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1624         NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1625         NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1626         NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1627                       parms->base_reachable_time);
1628         NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1629         NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1630         NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1631         NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1632         NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1633         NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1634
1635         return nla_nest_end(skb, nest);
1636
1637 nla_put_failure:
1638         return nla_nest_cancel(skb, nest);
1639 }
1640
1641 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1642                               u32 pid, u32 seq, int type, int flags)
1643 {
1644         struct nlmsghdr *nlh;
1645         struct ndtmsg *ndtmsg;
1646
1647         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1648         if (nlh == NULL)
1649                 return -EMSGSIZE;
1650
1651         ndtmsg = nlmsg_data(nlh);
1652
1653         read_lock_bh(&tbl->lock);
1654         ndtmsg->ndtm_family = tbl->family;
1655         ndtmsg->ndtm_pad1   = 0;
1656         ndtmsg->ndtm_pad2   = 0;
1657
1658         NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1659         NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1660         NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1661         NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1662         NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1663
1664         {
1665                 unsigned long now = jiffies;
1666                 unsigned int flush_delta = now - tbl->last_flush;
1667                 unsigned int rand_delta = now - tbl->last_rand;
1668
1669                 struct ndt_config ndc = {
1670                         .ndtc_key_len           = tbl->key_len,
1671                         .ndtc_entry_size        = tbl->entry_size,
1672                         .ndtc_entries           = atomic_read(&tbl->entries),
1673                         .ndtc_last_flush        = jiffies_to_msecs(flush_delta),
1674                         .ndtc_last_rand         = jiffies_to_msecs(rand_delta),
1675                         .ndtc_hash_rnd          = tbl->hash_rnd,
1676                         .ndtc_hash_mask         = tbl->hash_mask,
1677                         .ndtc_hash_chain_gc     = tbl->hash_chain_gc,
1678                         .ndtc_proxy_qlen        = tbl->proxy_queue.qlen,
1679                 };
1680
1681                 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1682         }
1683
1684         {
1685                 int cpu;
1686                 struct ndt_stats ndst;
1687
1688                 memset(&ndst, 0, sizeof(ndst));
1689
1690                 for_each_possible_cpu(cpu) {
1691                         struct neigh_statistics *st;
1692
1693                         st = per_cpu_ptr(tbl->stats, cpu);
1694                         ndst.ndts_allocs                += st->allocs;
1695                         ndst.ndts_destroys              += st->destroys;
1696                         ndst.ndts_hash_grows            += st->hash_grows;
1697                         ndst.ndts_res_failed            += st->res_failed;
1698                         ndst.ndts_lookups               += st->lookups;
1699                         ndst.ndts_hits                  += st->hits;
1700                         ndst.ndts_rcv_probes_mcast      += st->rcv_probes_mcast;
1701                         ndst.ndts_rcv_probes_ucast      += st->rcv_probes_ucast;
1702                         ndst.ndts_periodic_gc_runs      += st->periodic_gc_runs;
1703                         ndst.ndts_forced_gc_runs        += st->forced_gc_runs;
1704                 }
1705
1706                 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1707         }
1708
1709         BUG_ON(tbl->parms.dev);
1710         if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1711                 goto nla_put_failure;
1712
1713         read_unlock_bh(&tbl->lock);
1714         return nlmsg_end(skb, nlh);
1715
1716 nla_put_failure:
1717         read_unlock_bh(&tbl->lock);
1718         nlmsg_cancel(skb, nlh);
1719         return -EMSGSIZE;
1720 }
1721
1722 static int neightbl_fill_param_info(struct sk_buff *skb,
1723                                     struct neigh_table *tbl,
1724                                     struct neigh_parms *parms,
1725                                     u32 pid, u32 seq, int type,
1726                                     unsigned int flags)
1727 {
1728         struct ndtmsg *ndtmsg;
1729         struct nlmsghdr *nlh;
1730
1731         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1732         if (nlh == NULL)
1733                 return -EMSGSIZE;
1734
1735         ndtmsg = nlmsg_data(nlh);
1736
1737         read_lock_bh(&tbl->lock);
1738         ndtmsg->ndtm_family = tbl->family;
1739         ndtmsg->ndtm_pad1   = 0;
1740         ndtmsg->ndtm_pad2   = 0;
1741
1742         if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1743             neightbl_fill_parms(skb, parms) < 0)
1744                 goto errout;
1745
1746         read_unlock_bh(&tbl->lock);
1747         return nlmsg_end(skb, nlh);
1748 errout:
1749         read_unlock_bh(&tbl->lock);
1750         nlmsg_cancel(skb, nlh);
1751         return -EMSGSIZE;
1752 }
1753
1754 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1755                                                       int ifindex)
1756 {
1757         struct neigh_parms *p;
1758
1759         for (p = &tbl->parms; p; p = p->next)
1760                 if ((p->dev && p->dev->ifindex == ifindex) ||
1761                     (!p->dev && !ifindex))
1762                         return p;
1763
1764         return NULL;
1765 }
1766
1767 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1768         [NDTA_NAME]             = { .type = NLA_STRING },
1769         [NDTA_THRESH1]          = { .type = NLA_U32 },
1770         [NDTA_THRESH2]          = { .type = NLA_U32 },
1771         [NDTA_THRESH3]          = { .type = NLA_U32 },
1772         [NDTA_GC_INTERVAL]      = { .type = NLA_U64 },
1773         [NDTA_PARMS]            = { .type = NLA_NESTED },
1774 };
1775
1776 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1777         [NDTPA_IFINDEX]                 = { .type = NLA_U32 },
1778         [NDTPA_QUEUE_LEN]               = { .type = NLA_U32 },
1779         [NDTPA_PROXY_QLEN]              = { .type = NLA_U32 },
1780         [NDTPA_APP_PROBES]              = { .type = NLA_U32 },
1781         [NDTPA_UCAST_PROBES]            = { .type = NLA_U32 },
1782         [NDTPA_MCAST_PROBES]            = { .type = NLA_U32 },
1783         [NDTPA_BASE_REACHABLE_TIME]     = { .type = NLA_U64 },
1784         [NDTPA_GC_STALETIME]            = { .type = NLA_U64 },
1785         [NDTPA_DELAY_PROBE_TIME]        = { .type = NLA_U64 },
1786         [NDTPA_RETRANS_TIME]            = { .type = NLA_U64 },
1787         [NDTPA_ANYCAST_DELAY]           = { .type = NLA_U64 },
1788         [NDTPA_PROXY_DELAY]             = { .type = NLA_U64 },
1789         [NDTPA_LOCKTIME]                = { .type = NLA_U64 },
1790 };
1791
1792 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1793 {
1794         struct neigh_table *tbl;
1795         struct ndtmsg *ndtmsg;
1796         struct nlattr *tb[NDTA_MAX+1];
1797         int err;
1798
1799         err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1800                           nl_neightbl_policy);
1801         if (err < 0)
1802                 goto errout;
1803
1804         if (tb[NDTA_NAME] == NULL) {
1805                 err = -EINVAL;
1806                 goto errout;
1807         }
1808
1809         ndtmsg = nlmsg_data(nlh);
1810         read_lock(&neigh_tbl_lock);
1811         for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1812                 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1813                         continue;
1814
1815                 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1816                         break;
1817         }
1818
1819         if (tbl == NULL) {
1820                 err = -ENOENT;
1821                 goto errout_locked;
1822         }
1823
1824         /*
1825          * We acquire tbl->lock to be nice to the periodic timers and
1826          * make sure they always see a consistent set of values.
1827          */
1828         write_lock_bh(&tbl->lock);
1829
1830         if (tb[NDTA_PARMS]) {
1831                 struct nlattr *tbp[NDTPA_MAX+1];
1832                 struct neigh_parms *p;
1833                 int i, ifindex = 0;
1834
1835                 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1836                                        nl_ntbl_parm_policy);
1837                 if (err < 0)
1838                         goto errout_tbl_lock;
1839
1840                 if (tbp[NDTPA_IFINDEX])
1841                         ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1842
1843                 p = lookup_neigh_params(tbl, ifindex);
1844                 if (p == NULL) {
1845                         err = -ENOENT;
1846                         goto errout_tbl_lock;
1847                 }
1848
1849                 for (i = 1; i <= NDTPA_MAX; i++) {
1850                         if (tbp[i] == NULL)
1851                                 continue;
1852
1853                         switch (i) {
1854                         case NDTPA_QUEUE_LEN:
1855                                 p->queue_len = nla_get_u32(tbp[i]);
1856                                 break;
1857                         case NDTPA_PROXY_QLEN:
1858                                 p->proxy_qlen = nla_get_u32(tbp[i]);
1859                                 break;
1860                         case NDTPA_APP_PROBES:
1861                                 p->app_probes = nla_get_u32(tbp[i]);
1862                                 break;
1863                         case NDTPA_UCAST_PROBES:
1864                                 p->ucast_probes = nla_get_u32(tbp[i]);
1865                                 break;
1866                         case NDTPA_MCAST_PROBES:
1867                                 p->mcast_probes = nla_get_u32(tbp[i]);
1868                                 break;
1869                         case NDTPA_BASE_REACHABLE_TIME:
1870                                 p->base_reachable_time = nla_get_msecs(tbp[i]);
1871                                 break;
1872                         case NDTPA_GC_STALETIME:
1873                                 p->gc_staletime = nla_get_msecs(tbp[i]);
1874                                 break;
1875                         case NDTPA_DELAY_PROBE_TIME:
1876                                 p->delay_probe_time = nla_get_msecs(tbp[i]);
1877                                 break;
1878                         case NDTPA_RETRANS_TIME:
1879                                 p->retrans_time = nla_get_msecs(tbp[i]);
1880                                 break;
1881                         case NDTPA_ANYCAST_DELAY:
1882                                 p->anycast_delay = nla_get_msecs(tbp[i]);
1883                                 break;
1884                         case NDTPA_PROXY_DELAY:
1885                                 p->proxy_delay = nla_get_msecs(tbp[i]);
1886                                 break;
1887                         case NDTPA_LOCKTIME:
1888                                 p->locktime = nla_get_msecs(tbp[i]);
1889                                 break;
1890                         }
1891                 }
1892         }
1893
1894         if (tb[NDTA_THRESH1])
1895                 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1896
1897         if (tb[NDTA_THRESH2])
1898                 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1899
1900         if (tb[NDTA_THRESH3])
1901                 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1902
1903         if (tb[NDTA_GC_INTERVAL])
1904                 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1905
1906         err = 0;
1907
1908 errout_tbl_lock:
1909         write_unlock_bh(&tbl->lock);
1910 errout_locked:
1911         read_unlock(&neigh_tbl_lock);
1912 errout:
1913         return err;
1914 }
1915
1916 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1917 {
1918         int family, tidx, nidx = 0;
1919         int tbl_skip = cb->args[0];
1920         int neigh_skip = cb->args[1];
1921         struct neigh_table *tbl;
1922
1923         family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1924
1925         read_lock(&neigh_tbl_lock);
1926         for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1927                 struct neigh_parms *p;
1928
1929                 if (tidx < tbl_skip || (family && tbl->family != family))
1930                         continue;
1931
1932                 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1933                                        cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1934                                        NLM_F_MULTI) <= 0)
1935                         break;
1936
1937                 for (nidx = 0, p = tbl->parms.next; p; p = p->next, nidx++) {
1938                         if (nidx < neigh_skip)
1939                                 continue;
1940
1941                         if (neightbl_fill_param_info(skb, tbl, p,
1942                                                      NETLINK_CB(cb->skb).pid,
1943                                                      cb->nlh->nlmsg_seq,
1944                                                      RTM_NEWNEIGHTBL,
1945                                                      NLM_F_MULTI) <= 0)
1946                                 goto out;
1947                 }
1948
1949                 neigh_skip = 0;
1950         }
1951 out:
1952         read_unlock(&neigh_tbl_lock);
1953         cb->args[0] = tidx;
1954         cb->args[1] = nidx;
1955
1956         return skb->len;
1957 }
1958
1959 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
1960                            u32 pid, u32 seq, int type, unsigned int flags)
1961 {
1962         unsigned long now = jiffies;
1963         struct nda_cacheinfo ci;
1964         struct nlmsghdr *nlh;
1965         struct ndmsg *ndm;
1966
1967         nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
1968         if (nlh == NULL)
1969                 return -EMSGSIZE;
1970
1971         ndm = nlmsg_data(nlh);
1972         ndm->ndm_family  = neigh->ops->family;
1973         ndm->ndm_pad1    = 0;
1974         ndm->ndm_pad2    = 0;
1975         ndm->ndm_flags   = neigh->flags;
1976         ndm->ndm_type    = neigh->type;
1977         ndm->ndm_ifindex = neigh->dev->ifindex;
1978
1979         NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
1980
1981         read_lock_bh(&neigh->lock);
1982         ndm->ndm_state   = neigh->nud_state;
1983         if ((neigh->nud_state & NUD_VALID) &&
1984             nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
1985                 read_unlock_bh(&neigh->lock);
1986                 goto nla_put_failure;
1987         }
1988
1989         ci.ndm_used      = now - neigh->used;
1990         ci.ndm_confirmed = now - neigh->confirmed;
1991         ci.ndm_updated   = now - neigh->updated;
1992         ci.ndm_refcnt    = atomic_read(&neigh->refcnt) - 1;
1993         read_unlock_bh(&neigh->lock);
1994
1995         NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
1996         NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1997
1998         return nlmsg_end(skb, nlh);
1999
2000 nla_put_failure:
2001         nlmsg_cancel(skb, nlh);
2002         return -EMSGSIZE;
2003 }
2004
2005
2006 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2007                             struct netlink_callback *cb)
2008 {
2009         struct neighbour *n;
2010         int rc, h, s_h = cb->args[1];
2011         int idx, s_idx = idx = cb->args[2];
2012
2013         read_lock_bh(&tbl->lock);
2014         for (h = 0; h <= tbl->hash_mask; h++) {
2015                 if (h < s_h)
2016                         continue;
2017                 if (h > s_h)
2018                         s_idx = 0;
2019                 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
2020                         if (idx < s_idx)
2021                                 continue;
2022                         if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2023                                             cb->nlh->nlmsg_seq,
2024                                             RTM_NEWNEIGH,
2025                                             NLM_F_MULTI) <= 0) {
2026                                 read_unlock_bh(&tbl->lock);
2027                                 rc = -1;
2028                                 goto out;
2029                         }
2030                 }
2031         }
2032         read_unlock_bh(&tbl->lock);
2033         rc = skb->len;
2034 out:
2035         cb->args[1] = h;
2036         cb->args[2] = idx;
2037         return rc;
2038 }
2039
2040 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2041 {
2042         struct neigh_table *tbl;
2043         int t, family, s_t;
2044
2045         read_lock(&neigh_tbl_lock);
2046         family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2047         s_t = cb->args[0];
2048
2049         for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2050                 if (t < s_t || (family && tbl->family != family))
2051                         continue;
2052                 if (t > s_t)
2053                         memset(&cb->args[1], 0, sizeof(cb->args) -
2054                                                 sizeof(cb->args[0]));
2055                 if (neigh_dump_table(tbl, skb, cb) < 0)
2056                         break;
2057         }
2058         read_unlock(&neigh_tbl_lock);
2059
2060         cb->args[0] = t;
2061         return skb->len;
2062 }
2063
2064 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2065 {
2066         int chain;
2067
2068         read_lock_bh(&tbl->lock);
2069         for (chain = 0; chain <= tbl->hash_mask; chain++) {
2070                 struct neighbour *n;
2071
2072                 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2073                         cb(n, cookie);
2074         }
2075         read_unlock_bh(&tbl->lock);
2076 }
2077 EXPORT_SYMBOL(neigh_for_each);
2078
2079 /* The tbl->lock must be held as a writer and BH disabled. */
2080 void __neigh_for_each_release(struct neigh_table *tbl,
2081                               int (*cb)(struct neighbour *))
2082 {
2083         int chain;
2084
2085         for (chain = 0; chain <= tbl->hash_mask; chain++) {
2086                 struct neighbour *n, **np;
2087
2088                 np = &tbl->hash_buckets[chain];
2089                 while ((n = *np) != NULL) {
2090                         int release;
2091
2092                         write_lock(&n->lock);
2093                         release = cb(n);
2094                         if (release) {
2095                                 *np = n->next;
2096                                 n->dead = 1;
2097                         } else
2098                                 np = &n->next;
2099                         write_unlock(&n->lock);
2100                         if (release)
2101                                 neigh_cleanup_and_release(n);
2102                 }
2103         }
2104 }
2105 EXPORT_SYMBOL(__neigh_for_each_release);
2106
2107 #ifdef CONFIG_PROC_FS
2108
2109 static struct neighbour *neigh_get_first(struct seq_file *seq)
2110 {
2111         struct neigh_seq_state *state = seq->private;
2112         struct neigh_table *tbl = state->tbl;
2113         struct neighbour *n = NULL;
2114         int bucket = state->bucket;
2115
2116         state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2117         for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2118                 n = tbl->hash_buckets[bucket];
2119
2120                 while (n) {
2121                         if (state->neigh_sub_iter) {
2122                                 loff_t fakep = 0;
2123                                 void *v;
2124
2125                                 v = state->neigh_sub_iter(state, n, &fakep);
2126                                 if (!v)
2127                                         goto next;
2128                         }
2129                         if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2130                                 break;
2131                         if (n->nud_state & ~NUD_NOARP)
2132                                 break;
2133                 next:
2134                         n = n->next;
2135                 }
2136
2137                 if (n)
2138                         break;
2139         }
2140         state->bucket = bucket;
2141
2142         return n;
2143 }
2144
2145 static struct neighbour *neigh_get_next(struct seq_file *seq,
2146                                         struct neighbour *n,
2147                                         loff_t *pos)
2148 {
2149         struct neigh_seq_state *state = seq->private;
2150         struct neigh_table *tbl = state->tbl;
2151
2152         if (state->neigh_sub_iter) {
2153                 void *v = state->neigh_sub_iter(state, n, pos);
2154                 if (v)
2155                         return n;
2156         }
2157         n = n->next;
2158
2159         while (1) {
2160                 while (n) {
2161                         if (state->neigh_sub_iter) {
2162                                 void *v = state->neigh_sub_iter(state, n, pos);
2163                                 if (v)
2164                                         return n;
2165                                 goto next;
2166                         }
2167                         if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2168                                 break;
2169
2170                         if (n->nud_state & ~NUD_NOARP)
2171                                 break;
2172                 next:
2173                         n = n->next;
2174                 }
2175
2176                 if (n)
2177                         break;
2178
2179                 if (++state->bucket > tbl->hash_mask)
2180                         break;
2181
2182                 n = tbl->hash_buckets[state->bucket];
2183         }
2184
2185         if (n && pos)
2186                 --(*pos);
2187         return n;
2188 }
2189
2190 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2191 {
2192         struct neighbour *n = neigh_get_first(seq);
2193
2194         if (n) {
2195                 while (*pos) {
2196                         n = neigh_get_next(seq, n, pos);
2197                         if (!n)
2198                                 break;
2199                 }
2200         }
2201         return *pos ? NULL : n;
2202 }
2203
2204 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2205 {
2206         struct neigh_seq_state *state = seq->private;
2207         struct neigh_table *tbl = state->tbl;
2208         struct pneigh_entry *pn = NULL;
2209         int bucket = state->bucket;
2210
2211         state->flags |= NEIGH_SEQ_IS_PNEIGH;
2212         for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2213                 pn = tbl->phash_buckets[bucket];
2214                 if (pn)
2215                         break;
2216         }
2217         state->bucket = bucket;
2218
2219         return pn;
2220 }
2221
2222 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2223                                             struct pneigh_entry *pn,
2224                                             loff_t *pos)
2225 {
2226         struct neigh_seq_state *state = seq->private;
2227         struct neigh_table *tbl = state->tbl;
2228
2229         pn = pn->next;
2230         while (!pn) {
2231                 if (++state->bucket > PNEIGH_HASHMASK)
2232                         break;
2233                 pn = tbl->phash_buckets[state->bucket];
2234                 if (pn)
2235                         break;
2236         }
2237
2238         if (pn && pos)
2239                 --(*pos);
2240
2241         return pn;
2242 }
2243
2244 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2245 {
2246         struct pneigh_entry *pn = pneigh_get_first(seq);
2247
2248         if (pn) {
2249                 while (*pos) {
2250                         pn = pneigh_get_next(seq, pn, pos);
2251                         if (!pn)
2252                                 break;
2253                 }
2254         }
2255         return *pos ? NULL : pn;
2256 }
2257
2258 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2259 {
2260         struct neigh_seq_state *state = seq->private;
2261         void *rc;
2262
2263         rc = neigh_get_idx(seq, pos);
2264         if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2265                 rc = pneigh_get_idx(seq, pos);
2266
2267         return rc;
2268 }
2269
2270 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2271 {
2272         struct neigh_seq_state *state = seq->private;
2273         loff_t pos_minus_one;
2274
2275         state->tbl = tbl;
2276         state->bucket = 0;
2277         state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2278
2279         read_lock_bh(&tbl->lock);
2280
2281         pos_minus_one = *pos - 1;
2282         return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2283 }
2284 EXPORT_SYMBOL(neigh_seq_start);
2285
2286 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2287 {
2288         struct neigh_seq_state *state;
2289         void *rc;
2290
2291         if (v == SEQ_START_TOKEN) {
2292                 rc = neigh_get_idx(seq, pos);
2293                 goto out;
2294         }
2295
2296         state = seq->private;
2297         if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2298                 rc = neigh_get_next(seq, v, NULL);
2299                 if (rc)
2300                         goto out;
2301                 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2302                         rc = pneigh_get_first(seq);
2303         } else {
2304                 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2305                 rc = pneigh_get_next(seq, v, NULL);
2306         }
2307 out:
2308         ++(*pos);
2309         return rc;
2310 }
2311 EXPORT_SYMBOL(neigh_seq_next);
2312
2313 void neigh_seq_stop(struct seq_file *seq, void *v)
2314 {
2315         struct neigh_seq_state *state = seq->private;
2316         struct neigh_table *tbl = state->tbl;
2317
2318         read_unlock_bh(&tbl->lock);
2319 }
2320 EXPORT_SYMBOL(neigh_seq_stop);
2321
2322 /* statistics via seq_file */
2323
2324 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2325 {
2326         struct proc_dir_entry *pde = seq->private;
2327         struct neigh_table *tbl = pde->data;
2328         int cpu;
2329
2330         if (*pos == 0)
2331                 return SEQ_START_TOKEN;
2332
2333         for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2334                 if (!cpu_possible(cpu))
2335                         continue;
2336                 *pos = cpu+1;
2337                 return per_cpu_ptr(tbl->stats, cpu);
2338         }
2339         return NULL;
2340 }
2341
2342 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2343 {
2344         struct proc_dir_entry *pde = seq->private;
2345         struct neigh_table *tbl = pde->data;
2346         int cpu;
2347
2348         for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2349                 if (!cpu_possible(cpu))
2350                         continue;
2351                 *pos = cpu+1;
2352                 return per_cpu_ptr(tbl->stats, cpu);
2353         }
2354         return NULL;
2355 }
2356
2357 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2358 {
2359
2360 }
2361
2362 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2363 {
2364         struct proc_dir_entry *pde = seq->private;
2365         struct neigh_table *tbl = pde->data;
2366         struct neigh_statistics *st = v;
2367
2368         if (v == SEQ_START_TOKEN) {
2369                 seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs\n");
2370                 return 0;
2371         }
2372
2373         seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2374                         "%08lx %08lx  %08lx %08lx\n",
2375                    atomic_read(&tbl->entries),
2376
2377                    st->allocs,
2378                    st->destroys,
2379                    st->hash_grows,
2380
2381                    st->lookups,
2382                    st->hits,
2383
2384                    st->res_failed,
2385
2386                    st->rcv_probes_mcast,
2387                    st->rcv_probes_ucast,
2388
2389                    st->periodic_gc_runs,
2390                    st->forced_gc_runs
2391                    );
2392
2393         return 0;
2394 }
2395
2396 static const struct seq_operations neigh_stat_seq_ops = {
2397         .start  = neigh_stat_seq_start,
2398         .next   = neigh_stat_seq_next,
2399         .stop   = neigh_stat_seq_stop,
2400         .show   = neigh_stat_seq_show,
2401 };
2402
2403 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2404 {
2405         int ret = seq_open(file, &neigh_stat_seq_ops);
2406
2407         if (!ret) {
2408                 struct seq_file *sf = file->private_data;
2409                 sf->private = PDE(inode);
2410         }
2411         return ret;
2412 };
2413
2414 static const struct file_operations neigh_stat_seq_fops = {
2415         .owner   = THIS_MODULE,
2416         .open    = neigh_stat_seq_open,
2417         .read    = seq_read,
2418         .llseek  = seq_lseek,
2419         .release = seq_release,
2420 };
2421
2422 #endif /* CONFIG_PROC_FS */
2423
2424 #ifdef CONFIG_ARPD
2425 static inline size_t neigh_nlmsg_size(void)
2426 {
2427         return NLMSG_ALIGN(sizeof(struct ndmsg))
2428                + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2429                + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2430                + nla_total_size(sizeof(struct nda_cacheinfo))
2431                + nla_total_size(4); /* NDA_PROBES */
2432 }
2433
2434 static void __neigh_notify(struct neighbour *n, int type, int flags)
2435 {
2436         struct sk_buff *skb;
2437         int err = -ENOBUFS;
2438
2439         skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2440         if (skb == NULL)
2441                 goto errout;
2442
2443         err = neigh_fill_info(skb, n, 0, 0, type, flags);
2444         if (err < 0) {
2445                 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2446                 WARN_ON(err == -EMSGSIZE);
2447                 kfree_skb(skb);
2448                 goto errout;
2449         }
2450         err = rtnl_notify(skb, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2451 errout:
2452         if (err < 0)
2453                 rtnl_set_sk_err(RTNLGRP_NEIGH, err);
2454 }
2455
2456 void neigh_app_ns(struct neighbour *n)
2457 {
2458         __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2459 }
2460
2461 static void neigh_app_notify(struct neighbour *n)
2462 {
2463         __neigh_notify(n, RTM_NEWNEIGH, 0);
2464 }
2465
2466 #endif /* CONFIG_ARPD */
2467
2468 #ifdef CONFIG_SYSCTL
2469
2470 static struct neigh_sysctl_table {
2471         struct ctl_table_header *sysctl_header;
2472         ctl_table               neigh_vars[__NET_NEIGH_MAX];
2473         ctl_table               neigh_dev[2];
2474         ctl_table               neigh_neigh_dir[2];
2475         ctl_table               neigh_proto_dir[2];
2476         ctl_table               neigh_root_dir[2];
2477 } neigh_sysctl_template __read_mostly = {
2478         .neigh_vars = {
2479                 {
2480                         .ctl_name       = NET_NEIGH_MCAST_SOLICIT,
2481                         .procname       = "mcast_solicit",
2482                         .maxlen         = sizeof(int),
2483                         .mode           = 0644,
2484                         .proc_handler   = &proc_dointvec,
2485                 },
2486                 {
2487                         .ctl_name       = NET_NEIGH_UCAST_SOLICIT,
2488                         .procname       = "ucast_solicit",
2489                         .maxlen         = sizeof(int),
2490                         .mode           = 0644,
2491                         .proc_handler   = &proc_dointvec,
2492                 },
2493                 {
2494                         .ctl_name       = NET_NEIGH_APP_SOLICIT,
2495                         .procname       = "app_solicit",
2496                         .maxlen         = sizeof(int),
2497                         .mode           = 0644,
2498                         .proc_handler   = &proc_dointvec,
2499                 },
2500                 {
2501                         .ctl_name       = NET_NEIGH_RETRANS_TIME,
2502                         .procname       = "retrans_time",
2503                         .maxlen         = sizeof(int),
2504                         .mode           = 0644,
2505                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2506                 },
2507                 {
2508                         .ctl_name       = NET_NEIGH_REACHABLE_TIME,
2509                         .procname       = "base_reachable_time",
2510                         .maxlen         = sizeof(int),
2511                         .mode           = 0644,
2512                         .proc_handler   = &proc_dointvec_jiffies,
2513                         .strategy       = &sysctl_jiffies,
2514                 },
2515                 {
2516                         .ctl_name       = NET_NEIGH_DELAY_PROBE_TIME,
2517                         .procname       = "delay_first_probe_time",
2518                         .maxlen         = sizeof(int),
2519                         .mode           = 0644,
2520                         .proc_handler   = &proc_dointvec_jiffies,
2521                         .strategy       = &sysctl_jiffies,
2522                 },
2523                 {
2524                         .ctl_name       = NET_NEIGH_GC_STALE_TIME,
2525                         .procname       = "gc_stale_time",
2526                         .maxlen         = sizeof(int),
2527                         .mode           = 0644,
2528                         .proc_handler   = &proc_dointvec_jiffies,
2529                         .strategy       = &sysctl_jiffies,
2530                 },
2531                 {
2532                         .ctl_name       = NET_NEIGH_UNRES_QLEN,
2533                         .procname       = "unres_qlen",
2534                         .maxlen         = sizeof(int),
2535                         .mode           = 0644,
2536                         .proc_handler   = &proc_dointvec,
2537                 },
2538                 {
2539                         .ctl_name       = NET_NEIGH_PROXY_QLEN,
2540                         .procname       = "proxy_qlen",
2541                         .maxlen         = sizeof(int),
2542                         .mode           = 0644,
2543                         .proc_handler   = &proc_dointvec,
2544                 },
2545                 {
2546                         .ctl_name       = NET_NEIGH_ANYCAST_DELAY,
2547                         .procname       = "anycast_delay",
2548                         .maxlen         = sizeof(int),
2549                         .mode           = 0644,
2550                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2551                 },
2552                 {
2553                         .ctl_name       = NET_NEIGH_PROXY_DELAY,
2554                         .procname       = "proxy_delay",
2555                         .maxlen         = sizeof(int),
2556                         .mode           = 0644,
2557                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2558                 },
2559                 {
2560                         .ctl_name       = NET_NEIGH_LOCKTIME,
2561                         .procname       = "locktime",
2562                         .maxlen         = sizeof(int),
2563                         .mode           = 0644,
2564                         .proc_handler   = &proc_dointvec_userhz_jiffies,
2565                 },
2566                 {
2567                         .ctl_name       = NET_NEIGH_GC_INTERVAL,
2568                         .procname       = "gc_interval",
2569                         .maxlen         = sizeof(int),
2570                         .mode           = 0644,
2571                         .proc_handler   = &proc_dointvec_jiffies,
2572                         .strategy       = &sysctl_jiffies,
2573                 },
2574                 {
2575                         .ctl_name       = NET_NEIGH_GC_THRESH1,
2576                         .procname       = "gc_thresh1",
2577                         .maxlen         = sizeof(int),
2578                         .mode           = 0644,
2579                         .proc_handler   = &proc_dointvec,
2580                 },
2581                 {
2582                         .ctl_name       = NET_NEIGH_GC_THRESH2,
2583                         .procname       = "gc_thresh2",
2584                         .maxlen         = sizeof(int),
2585                         .mode           = 0644,
2586                         .proc_handler   = &proc_dointvec,
2587                 },
2588                 {
2589                         .ctl_name       = NET_NEIGH_GC_THRESH3,
2590                         .procname       = "gc_thresh3",
2591                         .maxlen         = sizeof(int),
2592                         .mode           = 0644,
2593                         .proc_handler   = &proc_dointvec,
2594                 },
2595                 {
2596                         .ctl_name       = NET_NEIGH_RETRANS_TIME_MS,
2597                         .procname       = "retrans_time_ms",
2598                         .maxlen         = sizeof(int),
2599                         .mode           = 0644,
2600                         .proc_handler   = &proc_dointvec_ms_jiffies,
2601                         .strategy       = &sysctl_ms_jiffies,
2602                 },
2603                 {
2604                         .ctl_name       = NET_NEIGH_REACHABLE_TIME_MS,
2605                         .procname       = "base_reachable_time_ms",
2606                         .maxlen         = sizeof(int),
2607                         .mode           = 0644,
2608                         .proc_handler   = &proc_dointvec_ms_jiffies,
2609                         .strategy       = &sysctl_ms_jiffies,
2610                 },
2611         },
2612         .neigh_dev = {
2613                 {
2614                         .ctl_name       = NET_PROTO_CONF_DEFAULT,
2615                         .procname       = "default",
2616                         .mode           = 0555,
2617                 },
2618         },
2619         .neigh_neigh_dir = {
2620                 {
2621                         .procname       = "neigh",
2622                         .mode           = 0555,
2623                 },
2624         },
2625         .neigh_proto_dir = {
2626                 {
2627                         .mode           = 0555,
2628                 },
2629         },
2630         .neigh_root_dir = {
2631                 {
2632                         .ctl_name       = CTL_NET,
2633                         .procname       = "net",
2634                         .mode           = 0555,
2635                 },
2636         },
2637 };
2638
2639 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2640                           int p_id, int pdev_id, char *p_name,
2641                           proc_handler *handler, ctl_handler *strategy)
2642 {
2643         struct neigh_sysctl_table *t = kmemdup(&neigh_sysctl_template,
2644                                                sizeof(*t), GFP_KERNEL);
2645         const char *dev_name_source = NULL;
2646         char *dev_name = NULL;
2647         int err = 0;
2648
2649         if (!t)
2650                 return -ENOBUFS;
2651         t->neigh_vars[0].data  = &p->mcast_probes;
2652         t->neigh_vars[1].data  = &p->ucast_probes;
2653         t->neigh_vars[2].data  = &p->app_probes;
2654         t->neigh_vars[3].data  = &p->retrans_time;
2655         t->neigh_vars[4].data  = &p->base_reachable_time;
2656         t->neigh_vars[5].data  = &p->delay_probe_time;
2657         t->neigh_vars[6].data  = &p->gc_staletime;
2658         t->neigh_vars[7].data  = &p->queue_len;
2659         t->neigh_vars[8].data  = &p->proxy_qlen;
2660         t->neigh_vars[9].data  = &p->anycast_delay;
2661         t->neigh_vars[10].data = &p->proxy_delay;
2662         t->neigh_vars[11].data = &p->locktime;
2663
2664         if (dev) {
2665                 dev_name_source = dev->name;
2666                 t->neigh_dev[0].ctl_name = dev->ifindex;
2667                 t->neigh_vars[12].procname = NULL;
2668                 t->neigh_vars[13].procname = NULL;
2669                 t->neigh_vars[14].procname = NULL;
2670                 t->neigh_vars[15].procname = NULL;
2671         } else {
2672                 dev_name_source = t->neigh_dev[0].procname;
2673                 t->neigh_vars[12].data = (int *)(p + 1);
2674                 t->neigh_vars[13].data = (int *)(p + 1) + 1;
2675                 t->neigh_vars[14].data = (int *)(p + 1) + 2;
2676                 t->neigh_vars[15].data = (int *)(p + 1) + 3;
2677         }
2678
2679         t->neigh_vars[16].data  = &p->retrans_time;
2680         t->neigh_vars[17].data  = &p->base_reachable_time;
2681
2682         if (handler || strategy) {
2683                 /* RetransTime */
2684                 t->neigh_vars[3].proc_handler = handler;
2685                 t->neigh_vars[3].strategy = strategy;
2686                 t->neigh_vars[3].extra1 = dev;
2687                 /* ReachableTime */
2688                 t->neigh_vars[4].proc_handler = handler;
2689                 t->neigh_vars[4].strategy = strategy;
2690                 t->neigh_vars[4].extra1 = dev;
2691                 /* RetransTime (in milliseconds)*/
2692                 t->neigh_vars[16].proc_handler = handler;
2693                 t->neigh_vars[16].strategy = strategy;
2694                 t->neigh_vars[16].extra1 = dev;
2695                 /* ReachableTime (in milliseconds) */
2696                 t->neigh_vars[17].proc_handler = handler;
2697                 t->neigh_vars[17].strategy = strategy;
2698                 t->neigh_vars[17].extra1 = dev;
2699         }
2700
2701         dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2702         if (!dev_name) {
2703                 err = -ENOBUFS;
2704                 goto free;
2705         }
2706
2707         t->neigh_dev[0].procname = dev_name;
2708
2709         t->neigh_neigh_dir[0].ctl_name = pdev_id;
2710
2711         t->neigh_proto_dir[0].procname = p_name;
2712         t->neigh_proto_dir[0].ctl_name = p_id;
2713
2714         t->neigh_dev[0].child          = t->neigh_vars;
2715         t->neigh_neigh_dir[0].child    = t->neigh_dev;
2716         t->neigh_proto_dir[0].child    = t->neigh_neigh_dir;
2717         t->neigh_root_dir[0].child     = t->neigh_proto_dir;
2718
2719         t->sysctl_header = register_sysctl_table(t->neigh_root_dir);
2720         if (!t->sysctl_header) {
2721                 err = -ENOBUFS;
2722                 goto free_procname;
2723         }
2724         p->sysctl_table = t;
2725         return 0;
2726
2727         /* error path */
2728  free_procname:
2729         kfree(dev_name);
2730  free:
2731         kfree(t);
2732
2733         return err;
2734 }
2735
2736 void neigh_sysctl_unregister(struct neigh_parms *p)
2737 {
2738         if (p->sysctl_table) {
2739                 struct neigh_sysctl_table *t = p->sysctl_table;
2740                 p->sysctl_table = NULL;
2741                 unregister_sysctl_table(t->sysctl_header);
2742                 kfree(t->neigh_dev[0].procname);
2743                 kfree(t);
2744         }
2745 }
2746
2747 #endif  /* CONFIG_SYSCTL */
2748
2749 static int __init neigh_init(void)
2750 {
2751         rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2752         rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2753         rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2754
2755         rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2756         rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2757
2758         return 0;
2759 }
2760
2761 subsys_initcall(neigh_init);
2762
2763 EXPORT_SYMBOL(__neigh_event_send);
2764 EXPORT_SYMBOL(neigh_changeaddr);
2765 EXPORT_SYMBOL(neigh_compat_output);
2766 EXPORT_SYMBOL(neigh_connected_output);
2767 EXPORT_SYMBOL(neigh_create);
2768 EXPORT_SYMBOL(neigh_destroy);
2769 EXPORT_SYMBOL(neigh_event_ns);
2770 EXPORT_SYMBOL(neigh_ifdown);
2771 EXPORT_SYMBOL(neigh_lookup);
2772 EXPORT_SYMBOL(neigh_lookup_nodev);
2773 EXPORT_SYMBOL(neigh_parms_alloc);
2774 EXPORT_SYMBOL(neigh_parms_release);
2775 EXPORT_SYMBOL(neigh_rand_reach_time);
2776 EXPORT_SYMBOL(neigh_resolve_output);
2777 EXPORT_SYMBOL(neigh_table_clear);
2778 EXPORT_SYMBOL(neigh_table_init);
2779 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2780 EXPORT_SYMBOL(neigh_update);
2781 EXPORT_SYMBOL(pneigh_enqueue);
2782 EXPORT_SYMBOL(pneigh_lookup);
2783
2784 #ifdef CONFIG_ARPD
2785 EXPORT_SYMBOL(neigh_app_ns);
2786 #endif
2787 #ifdef CONFIG_SYSCTL
2788 EXPORT_SYMBOL(neigh_sysctl_register);
2789 EXPORT_SYMBOL(neigh_sysctl_unregister);
2790 #endif