flow_dissector: constify raw input data argument
[linux-block.git] / net / core / flow_dissector.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <linux/ptp_classify.h>
27 #include <net/flow_dissector.h>
28 #include <scsi/fc/fc_fcoe.h>
29 #include <uapi/linux/batadv_packet.h>
30 #include <linux/bpf.h>
31 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
32 #include <net/netfilter/nf_conntrack_core.h>
33 #include <net/netfilter/nf_conntrack_labels.h>
34 #endif
35 #include <linux/bpf-netns.h>
36
37 static void dissector_set_key(struct flow_dissector *flow_dissector,
38                               enum flow_dissector_key_id key_id)
39 {
40         flow_dissector->used_keys |= (1 << key_id);
41 }
42
43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
44                              const struct flow_dissector_key *key,
45                              unsigned int key_count)
46 {
47         unsigned int i;
48
49         memset(flow_dissector, 0, sizeof(*flow_dissector));
50
51         for (i = 0; i < key_count; i++, key++) {
52                 /* User should make sure that every key target offset is within
53                  * boundaries of unsigned short.
54                  */
55                 BUG_ON(key->offset > USHRT_MAX);
56                 BUG_ON(dissector_uses_key(flow_dissector,
57                                           key->key_id));
58
59                 dissector_set_key(flow_dissector, key->key_id);
60                 flow_dissector->offset[key->key_id] = key->offset;
61         }
62
63         /* Ensure that the dissector always includes control and basic key.
64          * That way we are able to avoid handling lack of these in fast path.
65          */
66         BUG_ON(!dissector_uses_key(flow_dissector,
67                                    FLOW_DISSECTOR_KEY_CONTROL));
68         BUG_ON(!dissector_uses_key(flow_dissector,
69                                    FLOW_DISSECTOR_KEY_BASIC));
70 }
71 EXPORT_SYMBOL(skb_flow_dissector_init);
72
73 #ifdef CONFIG_BPF_SYSCALL
74 int flow_dissector_bpf_prog_attach_check(struct net *net,
75                                          struct bpf_prog *prog)
76 {
77         enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
78
79         if (net == &init_net) {
80                 /* BPF flow dissector in the root namespace overrides
81                  * any per-net-namespace one. When attaching to root,
82                  * make sure we don't have any BPF program attached
83                  * to the non-root namespaces.
84                  */
85                 struct net *ns;
86
87                 for_each_net(ns) {
88                         if (ns == &init_net)
89                                 continue;
90                         if (rcu_access_pointer(ns->bpf.run_array[type]))
91                                 return -EEXIST;
92                 }
93         } else {
94                 /* Make sure root flow dissector is not attached
95                  * when attaching to the non-root namespace.
96                  */
97                 if (rcu_access_pointer(init_net.bpf.run_array[type]))
98                         return -EEXIST;
99         }
100
101         return 0;
102 }
103 #endif /* CONFIG_BPF_SYSCALL */
104
105 /**
106  * __skb_flow_get_ports - extract the upper layer ports and return them
107  * @skb: sk_buff to extract the ports from
108  * @thoff: transport header offset
109  * @ip_proto: protocol for which to get port offset
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
112  *
113  * The function will try to retrieve the ports at offset thoff + poff where poff
114  * is the protocol port offset returned from proto_ports_offset
115  */
116 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
117                             const void *data, int hlen)
118 {
119         int poff = proto_ports_offset(ip_proto);
120
121         if (!data) {
122                 data = skb->data;
123                 hlen = skb_headlen(skb);
124         }
125
126         if (poff >= 0) {
127                 __be32 *ports, _ports;
128
129                 ports = __skb_header_pointer(skb, thoff + poff,
130                                              sizeof(_ports), data, hlen, &_ports);
131                 if (ports)
132                         return *ports;
133         }
134
135         return 0;
136 }
137 EXPORT_SYMBOL(__skb_flow_get_ports);
138
139 static bool icmp_has_id(u8 type)
140 {
141         switch (type) {
142         case ICMP_ECHO:
143         case ICMP_ECHOREPLY:
144         case ICMP_TIMESTAMP:
145         case ICMP_TIMESTAMPREPLY:
146         case ICMPV6_ECHO_REQUEST:
147         case ICMPV6_ECHO_REPLY:
148                 return true;
149         }
150
151         return false;
152 }
153
154 /**
155  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
156  * @skb: sk_buff to extract from
157  * @key_icmp: struct flow_dissector_key_icmp to fill
158  * @data: raw buffer pointer to the packet
159  * @thoff: offset to extract at
160  * @hlen: packet header length
161  */
162 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
163                            struct flow_dissector_key_icmp *key_icmp,
164                            const void *data, int thoff, int hlen)
165 {
166         struct icmphdr *ih, _ih;
167
168         ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
169         if (!ih)
170                 return;
171
172         key_icmp->type = ih->type;
173         key_icmp->code = ih->code;
174
175         /* As we use 0 to signal that the Id field is not present,
176          * avoid confusion with packets without such field
177          */
178         if (icmp_has_id(ih->type))
179                 key_icmp->id = ih->un.echo.id ? : 1;
180         else
181                 key_icmp->id = 0;
182 }
183 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
184
185 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
186  * using skb_flow_get_icmp_tci().
187  */
188 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
189                                     struct flow_dissector *flow_dissector,
190                                     void *target_container, const void *data,
191                                     int thoff, int hlen)
192 {
193         struct flow_dissector_key_icmp *key_icmp;
194
195         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
196                 return;
197
198         key_icmp = skb_flow_dissector_target(flow_dissector,
199                                              FLOW_DISSECTOR_KEY_ICMP,
200                                              target_container);
201
202         skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
203 }
204
205 void skb_flow_dissect_meta(const struct sk_buff *skb,
206                            struct flow_dissector *flow_dissector,
207                            void *target_container)
208 {
209         struct flow_dissector_key_meta *meta;
210
211         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
212                 return;
213
214         meta = skb_flow_dissector_target(flow_dissector,
215                                          FLOW_DISSECTOR_KEY_META,
216                                          target_container);
217         meta->ingress_ifindex = skb->skb_iif;
218 }
219 EXPORT_SYMBOL(skb_flow_dissect_meta);
220
221 static void
222 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
223                                    struct flow_dissector *flow_dissector,
224                                    void *target_container)
225 {
226         struct flow_dissector_key_control *ctrl;
227
228         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
229                 return;
230
231         ctrl = skb_flow_dissector_target(flow_dissector,
232                                          FLOW_DISSECTOR_KEY_ENC_CONTROL,
233                                          target_container);
234         ctrl->addr_type = type;
235 }
236
237 void
238 skb_flow_dissect_ct(const struct sk_buff *skb,
239                     struct flow_dissector *flow_dissector,
240                     void *target_container, u16 *ctinfo_map,
241                     size_t mapsize, bool post_ct)
242 {
243 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
244         struct flow_dissector_key_ct *key;
245         enum ip_conntrack_info ctinfo;
246         struct nf_conn_labels *cl;
247         struct nf_conn *ct;
248
249         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
250                 return;
251
252         ct = nf_ct_get(skb, &ctinfo);
253         if (!ct && !post_ct)
254                 return;
255
256         key = skb_flow_dissector_target(flow_dissector,
257                                         FLOW_DISSECTOR_KEY_CT,
258                                         target_container);
259
260         if (!ct) {
261                 key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
262                                 TCA_FLOWER_KEY_CT_FLAGS_INVALID;
263                 return;
264         }
265
266         if (ctinfo < mapsize)
267                 key->ct_state = ctinfo_map[ctinfo];
268 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
269         key->ct_zone = ct->zone.id;
270 #endif
271 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
272         key->ct_mark = ct->mark;
273 #endif
274
275         cl = nf_ct_labels_find(ct);
276         if (cl)
277                 memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
278 #endif /* CONFIG_NF_CONNTRACK */
279 }
280 EXPORT_SYMBOL(skb_flow_dissect_ct);
281
282 void
283 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
284                              struct flow_dissector *flow_dissector,
285                              void *target_container)
286 {
287         struct ip_tunnel_info *info;
288         struct ip_tunnel_key *key;
289
290         /* A quick check to see if there might be something to do. */
291         if (!dissector_uses_key(flow_dissector,
292                                 FLOW_DISSECTOR_KEY_ENC_KEYID) &&
293             !dissector_uses_key(flow_dissector,
294                                 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
295             !dissector_uses_key(flow_dissector,
296                                 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
297             !dissector_uses_key(flow_dissector,
298                                 FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
299             !dissector_uses_key(flow_dissector,
300                                 FLOW_DISSECTOR_KEY_ENC_PORTS) &&
301             !dissector_uses_key(flow_dissector,
302                                 FLOW_DISSECTOR_KEY_ENC_IP) &&
303             !dissector_uses_key(flow_dissector,
304                                 FLOW_DISSECTOR_KEY_ENC_OPTS))
305                 return;
306
307         info = skb_tunnel_info(skb);
308         if (!info)
309                 return;
310
311         key = &info->key;
312
313         switch (ip_tunnel_info_af(info)) {
314         case AF_INET:
315                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
316                                                    flow_dissector,
317                                                    target_container);
318                 if (dissector_uses_key(flow_dissector,
319                                        FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
320                         struct flow_dissector_key_ipv4_addrs *ipv4;
321
322                         ipv4 = skb_flow_dissector_target(flow_dissector,
323                                                          FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
324                                                          target_container);
325                         ipv4->src = key->u.ipv4.src;
326                         ipv4->dst = key->u.ipv4.dst;
327                 }
328                 break;
329         case AF_INET6:
330                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
331                                                    flow_dissector,
332                                                    target_container);
333                 if (dissector_uses_key(flow_dissector,
334                                        FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
335                         struct flow_dissector_key_ipv6_addrs *ipv6;
336
337                         ipv6 = skb_flow_dissector_target(flow_dissector,
338                                                          FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
339                                                          target_container);
340                         ipv6->src = key->u.ipv6.src;
341                         ipv6->dst = key->u.ipv6.dst;
342                 }
343                 break;
344         }
345
346         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
347                 struct flow_dissector_key_keyid *keyid;
348
349                 keyid = skb_flow_dissector_target(flow_dissector,
350                                                   FLOW_DISSECTOR_KEY_ENC_KEYID,
351                                                   target_container);
352                 keyid->keyid = tunnel_id_to_key32(key->tun_id);
353         }
354
355         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
356                 struct flow_dissector_key_ports *tp;
357
358                 tp = skb_flow_dissector_target(flow_dissector,
359                                                FLOW_DISSECTOR_KEY_ENC_PORTS,
360                                                target_container);
361                 tp->src = key->tp_src;
362                 tp->dst = key->tp_dst;
363         }
364
365         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
366                 struct flow_dissector_key_ip *ip;
367
368                 ip = skb_flow_dissector_target(flow_dissector,
369                                                FLOW_DISSECTOR_KEY_ENC_IP,
370                                                target_container);
371                 ip->tos = key->tos;
372                 ip->ttl = key->ttl;
373         }
374
375         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
376                 struct flow_dissector_key_enc_opts *enc_opt;
377
378                 enc_opt = skb_flow_dissector_target(flow_dissector,
379                                                     FLOW_DISSECTOR_KEY_ENC_OPTS,
380                                                     target_container);
381
382                 if (info->options_len) {
383                         enc_opt->len = info->options_len;
384                         ip_tunnel_info_opts_get(enc_opt->data, info);
385                         enc_opt->dst_opt_type = info->key.tun_flags &
386                                                 TUNNEL_OPTIONS_PRESENT;
387                 }
388         }
389 }
390 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
391
392 void skb_flow_dissect_hash(const struct sk_buff *skb,
393                            struct flow_dissector *flow_dissector,
394                            void *target_container)
395 {
396         struct flow_dissector_key_hash *key;
397
398         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
399                 return;
400
401         key = skb_flow_dissector_target(flow_dissector,
402                                         FLOW_DISSECTOR_KEY_HASH,
403                                         target_container);
404
405         key->hash = skb_get_hash_raw(skb);
406 }
407 EXPORT_SYMBOL(skb_flow_dissect_hash);
408
409 static enum flow_dissect_ret
410 __skb_flow_dissect_mpls(const struct sk_buff *skb,
411                         struct flow_dissector *flow_dissector,
412                         void *target_container, const void *data, int nhoff,
413                         int hlen, int lse_index, bool *entropy_label)
414 {
415         struct mpls_label *hdr, _hdr;
416         u32 entry, label, bos;
417
418         if (!dissector_uses_key(flow_dissector,
419                                 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
420             !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
421                 return FLOW_DISSECT_RET_OUT_GOOD;
422
423         if (lse_index >= FLOW_DIS_MPLS_MAX)
424                 return FLOW_DISSECT_RET_OUT_GOOD;
425
426         hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
427                                    hlen, &_hdr);
428         if (!hdr)
429                 return FLOW_DISSECT_RET_OUT_BAD;
430
431         entry = ntohl(hdr->entry);
432         label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
433         bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
434
435         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
436                 struct flow_dissector_key_mpls *key_mpls;
437                 struct flow_dissector_mpls_lse *lse;
438
439                 key_mpls = skb_flow_dissector_target(flow_dissector,
440                                                      FLOW_DISSECTOR_KEY_MPLS,
441                                                      target_container);
442                 lse = &key_mpls->ls[lse_index];
443
444                 lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
445                 lse->mpls_bos = bos;
446                 lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
447                 lse->mpls_label = label;
448                 dissector_set_mpls_lse(key_mpls, lse_index);
449         }
450
451         if (*entropy_label &&
452             dissector_uses_key(flow_dissector,
453                                FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
454                 struct flow_dissector_key_keyid *key_keyid;
455
456                 key_keyid = skb_flow_dissector_target(flow_dissector,
457                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
458                                                       target_container);
459                 key_keyid->keyid = cpu_to_be32(label);
460         }
461
462         *entropy_label = label == MPLS_LABEL_ENTROPY;
463
464         return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
465 }
466
467 static enum flow_dissect_ret
468 __skb_flow_dissect_arp(const struct sk_buff *skb,
469                        struct flow_dissector *flow_dissector,
470                        void *target_container, const void *data,
471                        int nhoff, int hlen)
472 {
473         struct flow_dissector_key_arp *key_arp;
474         struct {
475                 unsigned char ar_sha[ETH_ALEN];
476                 unsigned char ar_sip[4];
477                 unsigned char ar_tha[ETH_ALEN];
478                 unsigned char ar_tip[4];
479         } *arp_eth, _arp_eth;
480         const struct arphdr *arp;
481         struct arphdr _arp;
482
483         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
484                 return FLOW_DISSECT_RET_OUT_GOOD;
485
486         arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
487                                    hlen, &_arp);
488         if (!arp)
489                 return FLOW_DISSECT_RET_OUT_BAD;
490
491         if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
492             arp->ar_pro != htons(ETH_P_IP) ||
493             arp->ar_hln != ETH_ALEN ||
494             arp->ar_pln != 4 ||
495             (arp->ar_op != htons(ARPOP_REPLY) &&
496              arp->ar_op != htons(ARPOP_REQUEST)))
497                 return FLOW_DISSECT_RET_OUT_BAD;
498
499         arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
500                                        sizeof(_arp_eth), data,
501                                        hlen, &_arp_eth);
502         if (!arp_eth)
503                 return FLOW_DISSECT_RET_OUT_BAD;
504
505         key_arp = skb_flow_dissector_target(flow_dissector,
506                                             FLOW_DISSECTOR_KEY_ARP,
507                                             target_container);
508
509         memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
510         memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
511
512         /* Only store the lower byte of the opcode;
513          * this covers ARPOP_REPLY and ARPOP_REQUEST.
514          */
515         key_arp->op = ntohs(arp->ar_op) & 0xff;
516
517         ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
518         ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
519
520         return FLOW_DISSECT_RET_OUT_GOOD;
521 }
522
523 static enum flow_dissect_ret
524 __skb_flow_dissect_gre(const struct sk_buff *skb,
525                        struct flow_dissector_key_control *key_control,
526                        struct flow_dissector *flow_dissector,
527                        void *target_container, const void *data,
528                        __be16 *p_proto, int *p_nhoff, int *p_hlen,
529                        unsigned int flags)
530 {
531         struct flow_dissector_key_keyid *key_keyid;
532         struct gre_base_hdr *hdr, _hdr;
533         int offset = 0;
534         u16 gre_ver;
535
536         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
537                                    data, *p_hlen, &_hdr);
538         if (!hdr)
539                 return FLOW_DISSECT_RET_OUT_BAD;
540
541         /* Only look inside GRE without routing */
542         if (hdr->flags & GRE_ROUTING)
543                 return FLOW_DISSECT_RET_OUT_GOOD;
544
545         /* Only look inside GRE for version 0 and 1 */
546         gre_ver = ntohs(hdr->flags & GRE_VERSION);
547         if (gre_ver > 1)
548                 return FLOW_DISSECT_RET_OUT_GOOD;
549
550         *p_proto = hdr->protocol;
551         if (gre_ver) {
552                 /* Version1 must be PPTP, and check the flags */
553                 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
554                         return FLOW_DISSECT_RET_OUT_GOOD;
555         }
556
557         offset += sizeof(struct gre_base_hdr);
558
559         if (hdr->flags & GRE_CSUM)
560                 offset += sizeof_field(struct gre_full_hdr, csum) +
561                           sizeof_field(struct gre_full_hdr, reserved1);
562
563         if (hdr->flags & GRE_KEY) {
564                 const __be32 *keyid;
565                 __be32 _keyid;
566
567                 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
568                                              sizeof(_keyid),
569                                              data, *p_hlen, &_keyid);
570                 if (!keyid)
571                         return FLOW_DISSECT_RET_OUT_BAD;
572
573                 if (dissector_uses_key(flow_dissector,
574                                        FLOW_DISSECTOR_KEY_GRE_KEYID)) {
575                         key_keyid = skb_flow_dissector_target(flow_dissector,
576                                                               FLOW_DISSECTOR_KEY_GRE_KEYID,
577                                                               target_container);
578                         if (gre_ver == 0)
579                                 key_keyid->keyid = *keyid;
580                         else
581                                 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
582                 }
583                 offset += sizeof_field(struct gre_full_hdr, key);
584         }
585
586         if (hdr->flags & GRE_SEQ)
587                 offset += sizeof_field(struct pptp_gre_header, seq);
588
589         if (gre_ver == 0) {
590                 if (*p_proto == htons(ETH_P_TEB)) {
591                         const struct ethhdr *eth;
592                         struct ethhdr _eth;
593
594                         eth = __skb_header_pointer(skb, *p_nhoff + offset,
595                                                    sizeof(_eth),
596                                                    data, *p_hlen, &_eth);
597                         if (!eth)
598                                 return FLOW_DISSECT_RET_OUT_BAD;
599                         *p_proto = eth->h_proto;
600                         offset += sizeof(*eth);
601
602                         /* Cap headers that we access via pointers at the
603                          * end of the Ethernet header as our maximum alignment
604                          * at that point is only 2 bytes.
605                          */
606                         if (NET_IP_ALIGN)
607                                 *p_hlen = *p_nhoff + offset;
608                 }
609         } else { /* version 1, must be PPTP */
610                 u8 _ppp_hdr[PPP_HDRLEN];
611                 u8 *ppp_hdr;
612
613                 if (hdr->flags & GRE_ACK)
614                         offset += sizeof_field(struct pptp_gre_header, ack);
615
616                 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
617                                                sizeof(_ppp_hdr),
618                                                data, *p_hlen, _ppp_hdr);
619                 if (!ppp_hdr)
620                         return FLOW_DISSECT_RET_OUT_BAD;
621
622                 switch (PPP_PROTOCOL(ppp_hdr)) {
623                 case PPP_IP:
624                         *p_proto = htons(ETH_P_IP);
625                         break;
626                 case PPP_IPV6:
627                         *p_proto = htons(ETH_P_IPV6);
628                         break;
629                 default:
630                         /* Could probably catch some more like MPLS */
631                         break;
632                 }
633
634                 offset += PPP_HDRLEN;
635         }
636
637         *p_nhoff += offset;
638         key_control->flags |= FLOW_DIS_ENCAPSULATION;
639         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
640                 return FLOW_DISSECT_RET_OUT_GOOD;
641
642         return FLOW_DISSECT_RET_PROTO_AGAIN;
643 }
644
645 /**
646  * __skb_flow_dissect_batadv() - dissect batman-adv header
647  * @skb: sk_buff to with the batman-adv header
648  * @key_control: flow dissectors control key
649  * @data: raw buffer pointer to the packet, if NULL use skb->data
650  * @p_proto: pointer used to update the protocol to process next
651  * @p_nhoff: pointer used to update inner network header offset
652  * @hlen: packet header length
653  * @flags: any combination of FLOW_DISSECTOR_F_*
654  *
655  * ETH_P_BATMAN packets are tried to be dissected. Only
656  * &struct batadv_unicast packets are actually processed because they contain an
657  * inner ethernet header and are usually followed by actual network header. This
658  * allows the flow dissector to continue processing the packet.
659  *
660  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
661  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
662  *  otherwise FLOW_DISSECT_RET_OUT_BAD
663  */
664 static enum flow_dissect_ret
665 __skb_flow_dissect_batadv(const struct sk_buff *skb,
666                           struct flow_dissector_key_control *key_control,
667                           const void *data, __be16 *p_proto, int *p_nhoff,
668                           int hlen, unsigned int flags)
669 {
670         struct {
671                 struct batadv_unicast_packet batadv_unicast;
672                 struct ethhdr eth;
673         } *hdr, _hdr;
674
675         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
676                                    &_hdr);
677         if (!hdr)
678                 return FLOW_DISSECT_RET_OUT_BAD;
679
680         if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
681                 return FLOW_DISSECT_RET_OUT_BAD;
682
683         if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
684                 return FLOW_DISSECT_RET_OUT_BAD;
685
686         *p_proto = hdr->eth.h_proto;
687         *p_nhoff += sizeof(*hdr);
688
689         key_control->flags |= FLOW_DIS_ENCAPSULATION;
690         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
691                 return FLOW_DISSECT_RET_OUT_GOOD;
692
693         return FLOW_DISSECT_RET_PROTO_AGAIN;
694 }
695
696 static void
697 __skb_flow_dissect_tcp(const struct sk_buff *skb,
698                        struct flow_dissector *flow_dissector,
699                        void *target_container, const void *data,
700                        int thoff, int hlen)
701 {
702         struct flow_dissector_key_tcp *key_tcp;
703         struct tcphdr *th, _th;
704
705         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
706                 return;
707
708         th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
709         if (!th)
710                 return;
711
712         if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
713                 return;
714
715         key_tcp = skb_flow_dissector_target(flow_dissector,
716                                             FLOW_DISSECTOR_KEY_TCP,
717                                             target_container);
718         key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
719 }
720
721 static void
722 __skb_flow_dissect_ports(const struct sk_buff *skb,
723                          struct flow_dissector *flow_dissector,
724                          void *target_container, const void *data,
725                          int nhoff, u8 ip_proto, int hlen)
726 {
727         enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
728         struct flow_dissector_key_ports *key_ports;
729
730         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
731                 dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
732         else if (dissector_uses_key(flow_dissector,
733                                     FLOW_DISSECTOR_KEY_PORTS_RANGE))
734                 dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
735
736         if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
737                 return;
738
739         key_ports = skb_flow_dissector_target(flow_dissector,
740                                               dissector_ports,
741                                               target_container);
742         key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
743                                                 data, hlen);
744 }
745
746 static void
747 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
748                         struct flow_dissector *flow_dissector,
749                         void *target_container, const void *data,
750                         const struct iphdr *iph)
751 {
752         struct flow_dissector_key_ip *key_ip;
753
754         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
755                 return;
756
757         key_ip = skb_flow_dissector_target(flow_dissector,
758                                            FLOW_DISSECTOR_KEY_IP,
759                                            target_container);
760         key_ip->tos = iph->tos;
761         key_ip->ttl = iph->ttl;
762 }
763
764 static void
765 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
766                         struct flow_dissector *flow_dissector,
767                         void *target_container, const void *data,
768                         const struct ipv6hdr *iph)
769 {
770         struct flow_dissector_key_ip *key_ip;
771
772         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
773                 return;
774
775         key_ip = skb_flow_dissector_target(flow_dissector,
776                                            FLOW_DISSECTOR_KEY_IP,
777                                            target_container);
778         key_ip->tos = ipv6_get_dsfield(iph);
779         key_ip->ttl = iph->hop_limit;
780 }
781
782 /* Maximum number of protocol headers that can be parsed in
783  * __skb_flow_dissect
784  */
785 #define MAX_FLOW_DISSECT_HDRS   15
786
787 static bool skb_flow_dissect_allowed(int *num_hdrs)
788 {
789         ++*num_hdrs;
790
791         return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
792 }
793
794 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
795                                      struct flow_dissector *flow_dissector,
796                                      void *target_container)
797 {
798         struct flow_dissector_key_ports *key_ports = NULL;
799         struct flow_dissector_key_control *key_control;
800         struct flow_dissector_key_basic *key_basic;
801         struct flow_dissector_key_addrs *key_addrs;
802         struct flow_dissector_key_tags *key_tags;
803
804         key_control = skb_flow_dissector_target(flow_dissector,
805                                                 FLOW_DISSECTOR_KEY_CONTROL,
806                                                 target_container);
807         key_control->thoff = flow_keys->thoff;
808         if (flow_keys->is_frag)
809                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
810         if (flow_keys->is_first_frag)
811                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
812         if (flow_keys->is_encap)
813                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
814
815         key_basic = skb_flow_dissector_target(flow_dissector,
816                                               FLOW_DISSECTOR_KEY_BASIC,
817                                               target_container);
818         key_basic->n_proto = flow_keys->n_proto;
819         key_basic->ip_proto = flow_keys->ip_proto;
820
821         if (flow_keys->addr_proto == ETH_P_IP &&
822             dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
823                 key_addrs = skb_flow_dissector_target(flow_dissector,
824                                                       FLOW_DISSECTOR_KEY_IPV4_ADDRS,
825                                                       target_container);
826                 key_addrs->v4addrs.src = flow_keys->ipv4_src;
827                 key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
828                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
829         } else if (flow_keys->addr_proto == ETH_P_IPV6 &&
830                    dissector_uses_key(flow_dissector,
831                                       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
832                 key_addrs = skb_flow_dissector_target(flow_dissector,
833                                                       FLOW_DISSECTOR_KEY_IPV6_ADDRS,
834                                                       target_container);
835                 memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
836                        sizeof(key_addrs->v6addrs));
837                 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
838         }
839
840         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
841                 key_ports = skb_flow_dissector_target(flow_dissector,
842                                                       FLOW_DISSECTOR_KEY_PORTS,
843                                                       target_container);
844         else if (dissector_uses_key(flow_dissector,
845                                     FLOW_DISSECTOR_KEY_PORTS_RANGE))
846                 key_ports = skb_flow_dissector_target(flow_dissector,
847                                                       FLOW_DISSECTOR_KEY_PORTS_RANGE,
848                                                       target_container);
849
850         if (key_ports) {
851                 key_ports->src = flow_keys->sport;
852                 key_ports->dst = flow_keys->dport;
853         }
854
855         if (dissector_uses_key(flow_dissector,
856                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
857                 key_tags = skb_flow_dissector_target(flow_dissector,
858                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
859                                                      target_container);
860                 key_tags->flow_label = ntohl(flow_keys->flow_label);
861         }
862 }
863
864 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
865                       __be16 proto, int nhoff, int hlen, unsigned int flags)
866 {
867         struct bpf_flow_keys *flow_keys = ctx->flow_keys;
868         u32 result;
869
870         /* Pass parameters to the BPF program */
871         memset(flow_keys, 0, sizeof(*flow_keys));
872         flow_keys->n_proto = proto;
873         flow_keys->nhoff = nhoff;
874         flow_keys->thoff = flow_keys->nhoff;
875
876         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
877                      (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
878         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
879                      (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
880         BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
881                      (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
882         flow_keys->flags = flags;
883
884         result = bpf_prog_run_pin_on_cpu(prog, ctx);
885
886         flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
887         flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
888                                    flow_keys->nhoff, hlen);
889
890         return result == BPF_OK;
891 }
892
893 /**
894  * __skb_flow_dissect - extract the flow_keys struct and return it
895  * @net: associated network namespace, derived from @skb if NULL
896  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
897  * @flow_dissector: list of keys to dissect
898  * @target_container: target structure to put dissected values into
899  * @data: raw buffer pointer to the packet, if NULL use skb->data
900  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
901  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
902  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
903  * @flags: flags that control the dissection process, e.g.
904  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
905  *
906  * The function will try to retrieve individual keys into target specified
907  * by flow_dissector from either the skbuff or a raw buffer specified by the
908  * rest parameters.
909  *
910  * Caller must take care of zeroing target container memory.
911  */
912 bool __skb_flow_dissect(const struct net *net,
913                         const struct sk_buff *skb,
914                         struct flow_dissector *flow_dissector,
915                         void *target_container, const void *data,
916                         __be16 proto, int nhoff, int hlen, unsigned int flags)
917 {
918         struct flow_dissector_key_control *key_control;
919         struct flow_dissector_key_basic *key_basic;
920         struct flow_dissector_key_addrs *key_addrs;
921         struct flow_dissector_key_tags *key_tags;
922         struct flow_dissector_key_vlan *key_vlan;
923         enum flow_dissect_ret fdret;
924         enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
925         bool mpls_el = false;
926         int mpls_lse = 0;
927         int num_hdrs = 0;
928         u8 ip_proto = 0;
929         bool ret;
930
931         if (!data) {
932                 data = skb->data;
933                 proto = skb_vlan_tag_present(skb) ?
934                          skb->vlan_proto : skb->protocol;
935                 nhoff = skb_network_offset(skb);
936                 hlen = skb_headlen(skb);
937 #if IS_ENABLED(CONFIG_NET_DSA)
938                 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
939                              proto == htons(ETH_P_XDSA))) {
940                         const struct dsa_device_ops *ops;
941                         int offset = 0;
942
943                         ops = skb->dev->dsa_ptr->tag_ops;
944                         /* Tail taggers don't break flow dissection */
945                         if (!ops->tail_tag) {
946                                 if (ops->flow_dissect)
947                                         ops->flow_dissect(skb, &proto, &offset);
948                                 else
949                                         dsa_tag_generic_flow_dissect(skb,
950                                                                      &proto,
951                                                                      &offset);
952                                 hlen -= offset;
953                                 nhoff += offset;
954                         }
955                 }
956 #endif
957         }
958
959         /* It is ensured by skb_flow_dissector_init() that control key will
960          * be always present.
961          */
962         key_control = skb_flow_dissector_target(flow_dissector,
963                                                 FLOW_DISSECTOR_KEY_CONTROL,
964                                                 target_container);
965
966         /* It is ensured by skb_flow_dissector_init() that basic key will
967          * be always present.
968          */
969         key_basic = skb_flow_dissector_target(flow_dissector,
970                                               FLOW_DISSECTOR_KEY_BASIC,
971                                               target_container);
972
973         if (skb) {
974                 if (!net) {
975                         if (skb->dev)
976                                 net = dev_net(skb->dev);
977                         else if (skb->sk)
978                                 net = sock_net(skb->sk);
979                 }
980         }
981
982         WARN_ON_ONCE(!net);
983         if (net) {
984                 enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
985                 struct bpf_prog_array *run_array;
986
987                 rcu_read_lock();
988                 run_array = rcu_dereference(init_net.bpf.run_array[type]);
989                 if (!run_array)
990                         run_array = rcu_dereference(net->bpf.run_array[type]);
991
992                 if (run_array) {
993                         struct bpf_flow_keys flow_keys;
994                         struct bpf_flow_dissector ctx = {
995                                 .flow_keys = &flow_keys,
996                                 .data = data,
997                                 .data_end = data + hlen,
998                         };
999                         __be16 n_proto = proto;
1000                         struct bpf_prog *prog;
1001
1002                         if (skb) {
1003                                 ctx.skb = skb;
1004                                 /* we can't use 'proto' in the skb case
1005                                  * because it might be set to skb->vlan_proto
1006                                  * which has been pulled from the data
1007                                  */
1008                                 n_proto = skb->protocol;
1009                         }
1010
1011                         prog = READ_ONCE(run_array->items[0].prog);
1012                         ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
1013                                                hlen, flags);
1014                         __skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1015                                                  target_container);
1016                         rcu_read_unlock();
1017                         return ret;
1018                 }
1019                 rcu_read_unlock();
1020         }
1021
1022         if (dissector_uses_key(flow_dissector,
1023                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1024                 struct ethhdr *eth = eth_hdr(skb);
1025                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
1026
1027                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1028                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
1029                                                           target_container);
1030                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1031         }
1032
1033 proto_again:
1034         fdret = FLOW_DISSECT_RET_CONTINUE;
1035
1036         switch (proto) {
1037         case htons(ETH_P_IP): {
1038                 const struct iphdr *iph;
1039                 struct iphdr _iph;
1040
1041                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1042                 if (!iph || iph->ihl < 5) {
1043                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1044                         break;
1045                 }
1046
1047                 nhoff += iph->ihl * 4;
1048
1049                 ip_proto = iph->protocol;
1050
1051                 if (dissector_uses_key(flow_dissector,
1052                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1053                         key_addrs = skb_flow_dissector_target(flow_dissector,
1054                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1055                                                               target_container);
1056
1057                         memcpy(&key_addrs->v4addrs, &iph->saddr,
1058                                sizeof(key_addrs->v4addrs));
1059                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1060                 }
1061
1062                 __skb_flow_dissect_ipv4(skb, flow_dissector,
1063                                         target_container, data, iph);
1064
1065                 if (ip_is_fragment(iph)) {
1066                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1067
1068                         if (iph->frag_off & htons(IP_OFFSET)) {
1069                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1070                                 break;
1071                         } else {
1072                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
1073                                 if (!(flags &
1074                                       FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1075                                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1076                                         break;
1077                                 }
1078                         }
1079                 }
1080
1081                 break;
1082         }
1083         case htons(ETH_P_IPV6): {
1084                 const struct ipv6hdr *iph;
1085                 struct ipv6hdr _iph;
1086
1087                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1088                 if (!iph) {
1089                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1090                         break;
1091                 }
1092
1093                 ip_proto = iph->nexthdr;
1094                 nhoff += sizeof(struct ipv6hdr);
1095
1096                 if (dissector_uses_key(flow_dissector,
1097                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1098                         key_addrs = skb_flow_dissector_target(flow_dissector,
1099                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1100                                                               target_container);
1101
1102                         memcpy(&key_addrs->v6addrs, &iph->saddr,
1103                                sizeof(key_addrs->v6addrs));
1104                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1105                 }
1106
1107                 if ((dissector_uses_key(flow_dissector,
1108                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1109                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1110                     ip6_flowlabel(iph)) {
1111                         __be32 flow_label = ip6_flowlabel(iph);
1112
1113                         if (dissector_uses_key(flow_dissector,
1114                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1115                                 key_tags = skb_flow_dissector_target(flow_dissector,
1116                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
1117                                                                      target_container);
1118                                 key_tags->flow_label = ntohl(flow_label);
1119                         }
1120                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1121                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1122                                 break;
1123                         }
1124                 }
1125
1126                 __skb_flow_dissect_ipv6(skb, flow_dissector,
1127                                         target_container, data, iph);
1128
1129                 break;
1130         }
1131         case htons(ETH_P_8021AD):
1132         case htons(ETH_P_8021Q): {
1133                 const struct vlan_hdr *vlan = NULL;
1134                 struct vlan_hdr _vlan;
1135                 __be16 saved_vlan_tpid = proto;
1136
1137                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1138                     skb && skb_vlan_tag_present(skb)) {
1139                         proto = skb->protocol;
1140                 } else {
1141                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1142                                                     data, hlen, &_vlan);
1143                         if (!vlan) {
1144                                 fdret = FLOW_DISSECT_RET_OUT_BAD;
1145                                 break;
1146                         }
1147
1148                         proto = vlan->h_vlan_encapsulated_proto;
1149                         nhoff += sizeof(*vlan);
1150                 }
1151
1152                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1153                         dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1154                 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1155                         dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1156                 } else {
1157                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1158                         break;
1159                 }
1160
1161                 if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1162                         key_vlan = skb_flow_dissector_target(flow_dissector,
1163                                                              dissector_vlan,
1164                                                              target_container);
1165
1166                         if (!vlan) {
1167                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1168                                 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1169                         } else {
1170                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1171                                         VLAN_VID_MASK;
1172                                 key_vlan->vlan_priority =
1173                                         (ntohs(vlan->h_vlan_TCI) &
1174                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1175                         }
1176                         key_vlan->vlan_tpid = saved_vlan_tpid;
1177                 }
1178
1179                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1180                 break;
1181         }
1182         case htons(ETH_P_PPP_SES): {
1183                 struct {
1184                         struct pppoe_hdr hdr;
1185                         __be16 proto;
1186                 } *hdr, _hdr;
1187                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1188                 if (!hdr) {
1189                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1190                         break;
1191                 }
1192
1193                 proto = hdr->proto;
1194                 nhoff += PPPOE_SES_HLEN;
1195                 switch (proto) {
1196                 case htons(PPP_IP):
1197                         proto = htons(ETH_P_IP);
1198                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1199                         break;
1200                 case htons(PPP_IPV6):
1201                         proto = htons(ETH_P_IPV6);
1202                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1203                         break;
1204                 default:
1205                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1206                         break;
1207                 }
1208                 break;
1209         }
1210         case htons(ETH_P_TIPC): {
1211                 struct tipc_basic_hdr *hdr, _hdr;
1212
1213                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1214                                            data, hlen, &_hdr);
1215                 if (!hdr) {
1216                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1217                         break;
1218                 }
1219
1220                 if (dissector_uses_key(flow_dissector,
1221                                        FLOW_DISSECTOR_KEY_TIPC)) {
1222                         key_addrs = skb_flow_dissector_target(flow_dissector,
1223                                                               FLOW_DISSECTOR_KEY_TIPC,
1224                                                               target_container);
1225                         key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1226                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1227                 }
1228                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1229                 break;
1230         }
1231
1232         case htons(ETH_P_MPLS_UC):
1233         case htons(ETH_P_MPLS_MC):
1234                 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1235                                                 target_container, data,
1236                                                 nhoff, hlen, mpls_lse,
1237                                                 &mpls_el);
1238                 nhoff += sizeof(struct mpls_label);
1239                 mpls_lse++;
1240                 break;
1241         case htons(ETH_P_FCOE):
1242                 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1243                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1244                         break;
1245                 }
1246
1247                 nhoff += FCOE_HEADER_LEN;
1248                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1249                 break;
1250
1251         case htons(ETH_P_ARP):
1252         case htons(ETH_P_RARP):
1253                 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1254                                                target_container, data,
1255                                                nhoff, hlen);
1256                 break;
1257
1258         case htons(ETH_P_BATMAN):
1259                 fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1260                                                   &proto, &nhoff, hlen, flags);
1261                 break;
1262
1263         case htons(ETH_P_1588): {
1264                 struct ptp_header *hdr, _hdr;
1265
1266                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
1267                                            hlen, &_hdr);
1268                 if (!hdr) {
1269                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1270                         break;
1271                 }
1272
1273                 nhoff += ntohs(hdr->message_length);
1274                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1275                 break;
1276         }
1277
1278         default:
1279                 fdret = FLOW_DISSECT_RET_OUT_BAD;
1280                 break;
1281         }
1282
1283         /* Process result of proto processing */
1284         switch (fdret) {
1285         case FLOW_DISSECT_RET_OUT_GOOD:
1286                 goto out_good;
1287         case FLOW_DISSECT_RET_PROTO_AGAIN:
1288                 if (skb_flow_dissect_allowed(&num_hdrs))
1289                         goto proto_again;
1290                 goto out_good;
1291         case FLOW_DISSECT_RET_CONTINUE:
1292         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1293                 break;
1294         case FLOW_DISSECT_RET_OUT_BAD:
1295         default:
1296                 goto out_bad;
1297         }
1298
1299 ip_proto_again:
1300         fdret = FLOW_DISSECT_RET_CONTINUE;
1301
1302         switch (ip_proto) {
1303         case IPPROTO_GRE:
1304                 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1305                                                target_container, data,
1306                                                &proto, &nhoff, &hlen, flags);
1307                 break;
1308
1309         case NEXTHDR_HOP:
1310         case NEXTHDR_ROUTING:
1311         case NEXTHDR_DEST: {
1312                 u8 _opthdr[2], *opthdr;
1313
1314                 if (proto != htons(ETH_P_IPV6))
1315                         break;
1316
1317                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1318                                               data, hlen, &_opthdr);
1319                 if (!opthdr) {
1320                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1321                         break;
1322                 }
1323
1324                 ip_proto = opthdr[0];
1325                 nhoff += (opthdr[1] + 1) << 3;
1326
1327                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1328                 break;
1329         }
1330         case NEXTHDR_FRAGMENT: {
1331                 struct frag_hdr _fh, *fh;
1332
1333                 if (proto != htons(ETH_P_IPV6))
1334                         break;
1335
1336                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1337                                           data, hlen, &_fh);
1338
1339                 if (!fh) {
1340                         fdret = FLOW_DISSECT_RET_OUT_BAD;
1341                         break;
1342                 }
1343
1344                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1345
1346                 nhoff += sizeof(_fh);
1347                 ip_proto = fh->nexthdr;
1348
1349                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
1350                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
1351                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1352                                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1353                                 break;
1354                         }
1355                 }
1356
1357                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
1358                 break;
1359         }
1360         case IPPROTO_IPIP:
1361                 proto = htons(ETH_P_IP);
1362
1363                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1364                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1365                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1366                         break;
1367                 }
1368
1369                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1370                 break;
1371
1372         case IPPROTO_IPV6:
1373                 proto = htons(ETH_P_IPV6);
1374
1375                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1376                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1377                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1378                         break;
1379                 }
1380
1381                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1382                 break;
1383
1384
1385         case IPPROTO_MPLS:
1386                 proto = htons(ETH_P_MPLS_UC);
1387                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1388                 break;
1389
1390         case IPPROTO_TCP:
1391                 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1392                                        data, nhoff, hlen);
1393                 break;
1394
1395         case IPPROTO_ICMP:
1396         case IPPROTO_ICMPV6:
1397                 __skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1398                                         data, nhoff, hlen);
1399                 break;
1400
1401         default:
1402                 break;
1403         }
1404
1405         if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1406                 __skb_flow_dissect_ports(skb, flow_dissector, target_container,
1407                                          data, nhoff, ip_proto, hlen);
1408
1409         /* Process result of IP proto processing */
1410         switch (fdret) {
1411         case FLOW_DISSECT_RET_PROTO_AGAIN:
1412                 if (skb_flow_dissect_allowed(&num_hdrs))
1413                         goto proto_again;
1414                 break;
1415         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1416                 if (skb_flow_dissect_allowed(&num_hdrs))
1417                         goto ip_proto_again;
1418                 break;
1419         case FLOW_DISSECT_RET_OUT_GOOD:
1420         case FLOW_DISSECT_RET_CONTINUE:
1421                 break;
1422         case FLOW_DISSECT_RET_OUT_BAD:
1423         default:
1424                 goto out_bad;
1425         }
1426
1427 out_good:
1428         ret = true;
1429
1430 out:
1431         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1432         key_basic->n_proto = proto;
1433         key_basic->ip_proto = ip_proto;
1434
1435         return ret;
1436
1437 out_bad:
1438         ret = false;
1439         goto out;
1440 }
1441 EXPORT_SYMBOL(__skb_flow_dissect);
1442
1443 static siphash_key_t hashrnd __read_mostly;
1444 static __always_inline void __flow_hash_secret_init(void)
1445 {
1446         net_get_random_once(&hashrnd, sizeof(hashrnd));
1447 }
1448
1449 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1450 {
1451         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1452         return &flow->FLOW_KEYS_HASH_START_FIELD;
1453 }
1454
1455 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1456 {
1457         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1458
1459         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1460
1461         switch (flow->control.addr_type) {
1462         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1463                 diff -= sizeof(flow->addrs.v4addrs);
1464                 break;
1465         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1466                 diff -= sizeof(flow->addrs.v6addrs);
1467                 break;
1468         case FLOW_DISSECTOR_KEY_TIPC:
1469                 diff -= sizeof(flow->addrs.tipckey);
1470                 break;
1471         }
1472         return sizeof(*flow) - diff;
1473 }
1474
1475 __be32 flow_get_u32_src(const struct flow_keys *flow)
1476 {
1477         switch (flow->control.addr_type) {
1478         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1479                 return flow->addrs.v4addrs.src;
1480         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1481                 return (__force __be32)ipv6_addr_hash(
1482                         &flow->addrs.v6addrs.src);
1483         case FLOW_DISSECTOR_KEY_TIPC:
1484                 return flow->addrs.tipckey.key;
1485         default:
1486                 return 0;
1487         }
1488 }
1489 EXPORT_SYMBOL(flow_get_u32_src);
1490
1491 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1492 {
1493         switch (flow->control.addr_type) {
1494         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1495                 return flow->addrs.v4addrs.dst;
1496         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1497                 return (__force __be32)ipv6_addr_hash(
1498                         &flow->addrs.v6addrs.dst);
1499         default:
1500                 return 0;
1501         }
1502 }
1503 EXPORT_SYMBOL(flow_get_u32_dst);
1504
1505 /* Sort the source and destination IP (and the ports if the IP are the same),
1506  * to have consistent hash within the two directions
1507  */
1508 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1509 {
1510         int addr_diff, i;
1511
1512         switch (keys->control.addr_type) {
1513         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1514                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1515                             (__force u32)keys->addrs.v4addrs.src;
1516                 if ((addr_diff < 0) ||
1517                     (addr_diff == 0 &&
1518                      ((__force u16)keys->ports.dst <
1519                       (__force u16)keys->ports.src))) {
1520                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1521                         swap(keys->ports.src, keys->ports.dst);
1522                 }
1523                 break;
1524         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1525                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1526                                    &keys->addrs.v6addrs.src,
1527                                    sizeof(keys->addrs.v6addrs.dst));
1528                 if ((addr_diff < 0) ||
1529                     (addr_diff == 0 &&
1530                      ((__force u16)keys->ports.dst <
1531                       (__force u16)keys->ports.src))) {
1532                         for (i = 0; i < 4; i++)
1533                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
1534                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
1535                         swap(keys->ports.src, keys->ports.dst);
1536                 }
1537                 break;
1538         }
1539 }
1540
1541 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1542                                         const siphash_key_t *keyval)
1543 {
1544         u32 hash;
1545
1546         __flow_hash_consistentify(keys);
1547
1548         hash = siphash(flow_keys_hash_start(keys),
1549                        flow_keys_hash_length(keys), keyval);
1550         if (!hash)
1551                 hash = 1;
1552
1553         return hash;
1554 }
1555
1556 u32 flow_hash_from_keys(struct flow_keys *keys)
1557 {
1558         __flow_hash_secret_init();
1559         return __flow_hash_from_keys(keys, &hashrnd);
1560 }
1561 EXPORT_SYMBOL(flow_hash_from_keys);
1562
1563 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1564                                   struct flow_keys *keys,
1565                                   const siphash_key_t *keyval)
1566 {
1567         skb_flow_dissect_flow_keys(skb, keys,
1568                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1569
1570         return __flow_hash_from_keys(keys, keyval);
1571 }
1572
1573 struct _flow_keys_digest_data {
1574         __be16  n_proto;
1575         u8      ip_proto;
1576         u8      padding;
1577         __be32  ports;
1578         __be32  src;
1579         __be32  dst;
1580 };
1581
1582 void make_flow_keys_digest(struct flow_keys_digest *digest,
1583                            const struct flow_keys *flow)
1584 {
1585         struct _flow_keys_digest_data *data =
1586             (struct _flow_keys_digest_data *)digest;
1587
1588         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1589
1590         memset(digest, 0, sizeof(*digest));
1591
1592         data->n_proto = flow->basic.n_proto;
1593         data->ip_proto = flow->basic.ip_proto;
1594         data->ports = flow->ports.ports;
1595         data->src = flow->addrs.v4addrs.src;
1596         data->dst = flow->addrs.v4addrs.dst;
1597 }
1598 EXPORT_SYMBOL(make_flow_keys_digest);
1599
1600 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1601
1602 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1603 {
1604         struct flow_keys keys;
1605
1606         __flow_hash_secret_init();
1607
1608         memset(&keys, 0, sizeof(keys));
1609         __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1610                            &keys, NULL, 0, 0, 0,
1611                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1612
1613         return __flow_hash_from_keys(&keys, &hashrnd);
1614 }
1615 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1616
1617 /**
1618  * __skb_get_hash: calculate a flow hash
1619  * @skb: sk_buff to calculate flow hash from
1620  *
1621  * This function calculates a flow hash based on src/dst addresses
1622  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1623  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1624  * if hash is a canonical 4-tuple hash over transport ports.
1625  */
1626 void __skb_get_hash(struct sk_buff *skb)
1627 {
1628         struct flow_keys keys;
1629         u32 hash;
1630
1631         __flow_hash_secret_init();
1632
1633         hash = ___skb_get_hash(skb, &keys, &hashrnd);
1634
1635         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1636 }
1637 EXPORT_SYMBOL(__skb_get_hash);
1638
1639 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1640                            const siphash_key_t *perturb)
1641 {
1642         struct flow_keys keys;
1643
1644         return ___skb_get_hash(skb, &keys, perturb);
1645 }
1646 EXPORT_SYMBOL(skb_get_hash_perturb);
1647
1648 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1649                    const struct flow_keys_basic *keys, int hlen)
1650 {
1651         u32 poff = keys->control.thoff;
1652
1653         /* skip L4 headers for fragments after the first */
1654         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1655             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1656                 return poff;
1657
1658         switch (keys->basic.ip_proto) {
1659         case IPPROTO_TCP: {
1660                 /* access doff as u8 to avoid unaligned access */
1661                 const u8 *doff;
1662                 u8 _doff;
1663
1664                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1665                                             data, hlen, &_doff);
1666                 if (!doff)
1667                         return poff;
1668
1669                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1670                 break;
1671         }
1672         case IPPROTO_UDP:
1673         case IPPROTO_UDPLITE:
1674                 poff += sizeof(struct udphdr);
1675                 break;
1676         /* For the rest, we do not really care about header
1677          * extensions at this point for now.
1678          */
1679         case IPPROTO_ICMP:
1680                 poff += sizeof(struct icmphdr);
1681                 break;
1682         case IPPROTO_ICMPV6:
1683                 poff += sizeof(struct icmp6hdr);
1684                 break;
1685         case IPPROTO_IGMP:
1686                 poff += sizeof(struct igmphdr);
1687                 break;
1688         case IPPROTO_DCCP:
1689                 poff += sizeof(struct dccp_hdr);
1690                 break;
1691         case IPPROTO_SCTP:
1692                 poff += sizeof(struct sctphdr);
1693                 break;
1694         }
1695
1696         return poff;
1697 }
1698
1699 /**
1700  * skb_get_poff - get the offset to the payload
1701  * @skb: sk_buff to get the payload offset from
1702  *
1703  * The function will get the offset to the payload as far as it could
1704  * be dissected.  The main user is currently BPF, so that we can dynamically
1705  * truncate packets without needing to push actual payload to the user
1706  * space and can analyze headers only, instead.
1707  */
1708 u32 skb_get_poff(const struct sk_buff *skb)
1709 {
1710         struct flow_keys_basic keys;
1711
1712         if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1713                                               NULL, 0, 0, 0, 0))
1714                 return 0;
1715
1716         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1717 }
1718
1719 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1720 {
1721         memset(keys, 0, sizeof(*keys));
1722
1723         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1724             sizeof(keys->addrs.v6addrs.src));
1725         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1726             sizeof(keys->addrs.v6addrs.dst));
1727         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1728         keys->ports.src = fl6->fl6_sport;
1729         keys->ports.dst = fl6->fl6_dport;
1730         keys->keyid.keyid = fl6->fl6_gre_key;
1731         keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1732         keys->basic.ip_proto = fl6->flowi6_proto;
1733
1734         return flow_hash_from_keys(keys);
1735 }
1736 EXPORT_SYMBOL(__get_hash_from_flowi6);
1737
1738 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1739         {
1740                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1741                 .offset = offsetof(struct flow_keys, control),
1742         },
1743         {
1744                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1745                 .offset = offsetof(struct flow_keys, basic),
1746         },
1747         {
1748                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1749                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1750         },
1751         {
1752                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1753                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1754         },
1755         {
1756                 .key_id = FLOW_DISSECTOR_KEY_TIPC,
1757                 .offset = offsetof(struct flow_keys, addrs.tipckey),
1758         },
1759         {
1760                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1761                 .offset = offsetof(struct flow_keys, ports),
1762         },
1763         {
1764                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1765                 .offset = offsetof(struct flow_keys, vlan),
1766         },
1767         {
1768                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1769                 .offset = offsetof(struct flow_keys, tags),
1770         },
1771         {
1772                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1773                 .offset = offsetof(struct flow_keys, keyid),
1774         },
1775 };
1776
1777 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1778         {
1779                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1780                 .offset = offsetof(struct flow_keys, control),
1781         },
1782         {
1783                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1784                 .offset = offsetof(struct flow_keys, basic),
1785         },
1786         {
1787                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1788                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1789         },
1790         {
1791                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1792                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1793         },
1794         {
1795                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1796                 .offset = offsetof(struct flow_keys, ports),
1797         },
1798 };
1799
1800 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1801         {
1802                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1803                 .offset = offsetof(struct flow_keys, control),
1804         },
1805         {
1806                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1807                 .offset = offsetof(struct flow_keys, basic),
1808         },
1809 };
1810
1811 struct flow_dissector flow_keys_dissector __read_mostly;
1812 EXPORT_SYMBOL(flow_keys_dissector);
1813
1814 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1815 EXPORT_SYMBOL(flow_keys_basic_dissector);
1816
1817 static int __init init_default_flow_dissectors(void)
1818 {
1819         skb_flow_dissector_init(&flow_keys_dissector,
1820                                 flow_keys_dissector_keys,
1821                                 ARRAY_SIZE(flow_keys_dissector_keys));
1822         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1823                                 flow_keys_dissector_symmetric_keys,
1824                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1825         skb_flow_dissector_init(&flow_keys_basic_dissector,
1826                                 flow_keys_basic_dissector_keys,
1827                                 ARRAY_SIZE(flow_keys_basic_dissector_keys));
1828         return 0;
1829 }
1830 core_initcall(init_default_flow_dissectors);